Reducing the Pain: A Novel Tool for Efficient Ground-Truth Labelling in Images


by C. J. Rapson and B. Seet, M. A. Naeem and J. E. Lee and M. Al-Sarayreh and R. Klette
Reference:
Reducing the Pain: A Novel Tool for Efficient Ground-Truth Labelling in Images (C. J. Rapson and B. Seet, M. A. Naeem and J. E. Lee and M. Al-Sarayreh and R. Klette), In 2018 International Conference on Image and Vision Computing New Zealand (IVCNZ), volume , 2018.
Bibtex Entry:
@INPROCEEDINGS{Rapson2018a, 
author={C. J. {Rapson} and B. {Seet} and M. A. {Naeem} and J. E. {Lee} and M. {Al-Sarayreh} and R. {Klette}}, 
booktitle={2018 International Conference on Image and Vision Computing New Zealand (IVCNZ)}, 
title={Reducing the Pain: A Novel Tool for Efficient Ground-Truth Labelling in Images}, 
year={2018}, 
volume={}, 
number={}, 
pages={1-9}, 
keywords={image classification;image segmentation;learning (artificial intelligence);object detection;traffic engineering computing;manual ground truth labelling;bounding boxes;classification labels;labelling task;arbitrarily shaped objects;bounding box labels;rectangular objects;customisable label names;image segmentation labels;vehicle head lights;image processing problems;efficient labelling tool;efficient ground-truth labelling;MELT;mask files;Labeling;Tools;Image segmentation;Image color analysis;Brushes;Head;Automobiles;image labelling;annotations;segmentation;vehicle lights;image dataset}, 
doi={10.1109/IVCNZ.2018.8634750}, 
ISSN={2151-2205}, 
month={Nov},
}