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Abstract— The advent of ar@ficial intelligence (AI) has revolu@onized mul@ple aspects of digital content crea@on and 
manipula@on, enabling sophis@cated techniques for genera@ng and edi@ng videos. While AI-driven advancements 
offer numerous benefits, they also introduce challenges related to the authen@city and trustworthiness of digital 
media. The rapid dissemina@on of manipulated videos, deepfakes, and other forms of synthe@c media has fuelled 
concerns about the spread of misinforma@on and its detrimental effects on society. This book chapter explores the 
integra@on of blockchains with AI video authen@ca@on to combat misinforma@on. Our approach leverages 
blockchain's immutable ledger and AI algorithms to verify content integrity, providing a robust solu@on against 
synthe@c media threats. Our results show enhanced detec@on accuracy compared to the exis@ng methods. 
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1. INTRODUCTION 

In this chapter, we explore the poten@al synergy between video blockchain (Gedara, Nguyen, & Yan, 2023), 
(Moolikagedara et al., 2023), and AI-generated video iden@fica@on systems to address the prolifera@on of 
misinforma@on in digital media. By leveraging blockchain’s decentralized and immutable ledger, coupled with 
cryptographic algorithms for video analysis. we enhance the authen@city and trustworthiness of digital videos. Our 
objec@ve is to develop a robust framework that can accurately verify the origin and integrity of video content, thereby 
enabling users to make informed decisions and combat the spread of misinforma@on effec@vely. 

One of the most pressing concerns in the digital age is the prolifera@on of misinforma@on and disinforma@on, 
especially through manipulated videos. The ability to create highly realis@c but fabricated videos, known as deepfakes 
has made it increasingly difficult to discern truth from falsehood in digital content. The rapid spread of such misleading 
videos has serious implica@ons for society, ranging from poli@cal manipula@on to reputa@onal damage and privacy 
breaches (Hu & Yan, 2020), integrity of digital content in the face of evolving technological capabili@es. By exploring 
the integra@on of blockchain and AI, this project seeks to contribute to the efforts to combat misinforma@on and 
ensure the reliability of digital media in the digital age. There is a cri@cal need to address the escala@ng issue of 
misinforma@on propagated through AI-generated videos. As AI advances, it becomes increasingly challenging to 
dis@nguish between authen@c and fabricated content. 

In response to these challenges, there is a growing need for innova@ve solu@ons for effec@vely authen@ca@ng video 
content and mi@gate the risks associated with misinforma@on. Tradi@onal methods of verifying video authen@city, 
such as digital watermarking or digital signatures are oaen insufficient in the face of AI-generated manipula@on. This 
has led to explore new approaches that leverage cubng-edge technologies to address this complex issue (Wang & 
Liao, 2021). 

One of the modern approaches is the integra@on of video blockchains with AI-generated video iden@fica@on. 
Blockchain, a decentralized and immutable ledger technology, offers a promising solu@on for establishing the 
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provenance and integrity of digital assets including videos. By combining blockchain's capabili@es with cryptographic 
algorithms for video analysis, we aim to create a robust framework for authen@ca@ng video content and comba@ng 
misinforma@on effec@vely. Through empirical tes@ng and valida@on, the outcomes demonstrate the efficacy of this 
approach in mi@ga@ng the risks posed by manipulated videos and deep fakes (Mi et al., 2022). By exploring the 
integra@on of blockchain and cryptographic techniques, this project seeks to contribute to the efforts to combat 
misinforma@on and ensure the reliability of digital media in the digital age. 

Overall, this research project is mo@vated by the urgent needs to develop innova@ve solu@ons that can safeguard the 
by leveraging video blockchain-powered authen@ca@on, we reinforce the iden@fica@on of AI-generated videos, 
thereby enhancing the credibility and reliability of visual content. This approach offers a promising solu@on to combat 
misinforma@on, safeguarding the integrity of informa@on shared online. Through this chapter, we seek to explore the 
poten@al of blockchain in mi@ga@ng harmful effects of misinforma@on, contribu@ng to a more trustworthy digital 
landscape. With the introduc@on of AI-generated videos, text-to-video by using OpenAI. This problem has again 
become the main topic for most of the par@es. Addi@onally, most of the influencers looked at the effect that will be 
going to happen with this new implementa@on. Our video blockchain has addressed this kind of problems by 
combining mul@ple methods and cryptographic func@ons (Moolikagedara et al., 2023). It aims to address this problem 
that is affec@ng globally. At the moment, we are finding out how to deal with AI-generated content differently. Video 
blockchain has been employed to secure video files generated in digital surveillance for the smart ci@es. In addi@on, 
it can be implemented by combining appropriate methods to address this misinforma@on problem. 

In this book chapter, we take use of our proposed algorithm to resize and compare the process in the Video 
Blockchain(VB) that ensures the integrity and authen@city of the AI-generated video content by crea@ng a tamper-
proof record by using video blocks. It makes use of a Merkle tree to construct the blockchain for each frame and 
computes the root hash as a unique iden@fier for the frame. Using the Block Matrix (BM) algorithm we proposed in 
this chapter, we compress the blocks of each frame for efficient storage and retrieval. 

The Bucke@sa@on algorithms hash the frames of the video into buckets, create a hashed representa@on of the video 
content, and combine the results from the Super-bit LSH (Super-bit Locality-Sensi@ve Hashing ) hashing, blockchain 
verifica@on, and block matrix analysis to determine if the video is likely to be AI-generated misinforma@on. 

The results of this book chapter demonstrate the efficacy of the proposed blockchain-powered authen@ca@on 
framework in enhancing AI-generated video iden@fica@on against misinforma@on. By leveraging blockchain's 
immutable ledger, we effec@vely track the provenance of video content and verify its authen@city, thereby mi@ga@ng 
the risks posed by manipulated videos and deepfakes. Furthermore, the integra@on of cryptographic algorithms 
enables automated detec@on and analysis of suspicious content and enhances the overall security and reliability of 
the system. Consequently, this research work has the following contribu@ons: 

• We introduce the new algorithms by combining video blockchain with a block matrix. 

• LSH Bucke@sa@on connects with the improved video blockchain and block matrix. 

• We present the analysis of theore@cal effec@veness comparing this method with preset research works. 

• We present the experimental tes@ng results based on our selected datasets. 

This chapter has been organized as follows: We present the review of the related work in a similar capacity, also 
covering blockchain and block matrix to iden@fy the current stage of the related work. In Sec@on 3, we describe the 
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proposed method of resolving the problem related to misinforma@on in AI- generated video content. In Sec@on 4, we 
exhibit our experimental results and analysis. 

2. Related work 

In this sec@on, we conduct a compara@ve review of the state-of-the-art approaches to AI-generated video 
iden@fica@on and visual misinforma@on detec@on. In addi@on, we highlight the problems these solu@ons addressed 
to date. This ensures the best solu@on for our research problems. 

The State-of-the-art blockchain for video iden@fica@on 

The decentralized nature of blockchain is a key agribute that ensures the verifica@on and re-verifica@on of each 
transac@on. This intrinsic feature is not confined solely to currency-based implementa@ons but extends to a diverse 
array of applica@ons. The paramount advantage of this decentralized ledger lies in its ability to maintain the 
immutability of data once it has been appended to the blockchain. 

The par@cularly advantageous in the context of comba@ng misinforma@on propagated through AI-generated videos. 
Despite the clear advantages, it is important to note that a standardized mechanism for effec@vely addressing 
misinforma@on using blockchain has yet to be universally established. However, in comparison to other available 
solu@ons, blockchain emerges as one of the most viable and effec@ve op@ons available at present. 

To ensure the integrity of the recorded videos, the unique features of the distributed and tamper-proofing 
characteris@cs in blockchain have been employed. In blockchain, @mestamping features are applied to verify and 
transfer unaltered data to a distributed repository. Similarly, the captured data from a closed- circuit television (CCTV) 
camera in smart ci@es have been further explored. 

The blockchain-based system can guarantee that the recorded data is stored without being altered or tampered with. 
It avoids manipula@ng the data integrity of original videos. Because a distributed ledger of blockchain records the data 
with metadata, the CCTV system will assist law enforcement and clients to secure data from surveillance. 

BleddSPS is a public safety system with a decentralized secure architecture, which supports immutability, audibility, 
and traceability to ensure smart city safety. SD-IoD is the soaware-defined Internet architecture that makes use of 
smart contractor and blockchain to secure real-@me monitoring systems by using drones. Maintaining the correct 
order of the recording data can ensure reliability and integrity. 

The processing @me for visual data, as well as resistance, is evaluated in computa@onal methods. According to the 
analysis, video blockchains enable smart ci@es to con@nue the opera@ons without a single point of failure. In this book 
chapter, computa@onal methods of visual blockchains are taken into considera@on, a new prototype is created for 
visual data storage by using blockchains, and all visual data is linked together by using a blockchain with a 
decentralizing or flagened method. 

Securing surveillance is a crucial for face detec@on, human behaviour analysis, and traffic rule viola@on detec@on. 
These tools have shown significant contribu@ons in preven@ng crimes, anomalous incidents, and privacy policy 
viola@ons. Our previous work related to blockchain and computer vision leads to more robust method to address 
malicious agackers and hackers can illegally manipulate video repositories and surveillance cameras, thereby 
rendering the recorded footage unusable in criminal cases. 

Agackers may manipulate or tamper with video footage, which leading to compromised integrity. Tamper-resistant 
and immutable blockchain features are employed to protect stored data and ensure data integrity. 
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Hashing is a reliable method for crea@ng confiden@ality between two blocks in the chain. Cryptographic hash 
func@ons convert confiden@al data into a random string of fixed size. Security requirements such as one-witness and 
collision-resistance are necessary. 

Misinforma@on related to AI-generated videos 

With the implementa@on of OpenAI Sora system, the topic of AI-generated content has rapidly spread as a means to 
address the growing problem of misinforma@on, especially with the advent of text-to-video AI technology. One of the 
primary challenges iden@fied in this context is the difficulty in dis@nguishing between real videos and AI-generated 
videos. Our naked eyes alone oaen struggle to make this dis@nc@on, requiring considerable efforts to discern the 
genuine from the fabricated. 

However, a number of cues, such as anomalies or inconsistencies, can @p off viewers to the presence of AI- generated 
content. The familiar items or elements that appear slightly off or unusual may be easier for the human eye to detect. 
To combat this challenge, classifica@on techniques have been employed, u@lizing improved algorithms. 

The impact of misinforma@on spread through videos can be severe, leading to nega@ve consequences for a wide 
range of stakeholders (Wang & Liao, 2021). In the work on comba@ng online misinforma@on videos, researchers have 
characterized the problem, iden@fied detec@on methods, and proposed future direc@ons for addressing this issue. 
The research categorized misinforma@on into three levels based on characteriza@on: Signal, seman@c, and intent. 

However, it is important to note that while this research work which represents a significant advancement in the field 
of misinforma@on detec@on may be outdated due to the con@nuous improvement of the AI technologies. These 
advancements highlight the need for ongoing research and development in this area to stay ahead of evolving 
challenges posed by AI-generated content. 

Revolu@on of the super-bit LSH bucke@za@on 

LSH is a method in data mining and machine learning to efficiently calculate approximate nearest neighbours in high- 
dimensional spaces. This concept combines super-bit hashing and LSH, aiming to map similar points to the same 
buckets with high probability. This bucke@za@on method enables a fast and accurate search for the nearest 
neighbours. 

      𝑅 =
!	×$%&(!")

$%&(!#)
, w>0, a>0                                                              (1) 

where 𝑅 represents the number of revolu@ons needed to achieve the desired recall. The parameter b corresponds to 
the number of bits in the hash, while α is the approxima@on factor, and w represents the width parameter. This shows 
a way to es@mate the number of revolu@ons required for the Super-bit LSH Bucke@za@on to achieve a specific level 
of recall. 

The Super-bit LSH has been widely employed in various research fields, including distributed frameworks, automa@c 
processing, image and video processing, blockchain, biological sciences, and geological sciences. This innova@ve 
approach, combining super-bit hashing and LSH, has significantly impacted these fields. 

While considering the connec@on between blockchain technology and LSH, this method has shown promise in 
enhancing blockchain processes. It is applied to improve data storage, retrieval, and verifica@on in blockchain systems, 
contribu@ng to the advancement of blockchain technology. Furthermore, it was designed and employed for audio 
signal processing, digital image / video processing, text / documenta@on processing (Wang & Liao, 2021), and 
biological sciences. 
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In blockchain, this has been employed as image copyright protec@on and provided the copyright over the network 
under distribu@on constraints. Thus, it was employed with blockchain to find out the copyright ownership by following 
image metadata. 

In this sec@on, we provide a compara@ve review of the current state of AI-generated video iden@fica@on to combat 
misinforma@on. It contrasts the problem iden@fica@on and solu@on breakdown to date, ensuring the selec@on of the 
best solu@on for research problems. In this sec@on, we highlight its decentralized nature and ability to maintain data 
immutability, par@cularly beneficial in comba@ng misinforma@on through AI-generated videos. 

3. Methodology 

In this sec@on, we will elucidate into the proposed method for enhancing the future of Video Blockchain by adding 
Block Matrix to enrich the AI-generated video misinforma@on detec@ons. 

Overview of the video blockchain against misinforma@on 

Previously, while discussing video blockchain, it is ini@ally introduced as a method to secure surveillance videos. 
However, its applica@on has been expanded to include securing IoT device data, and autonomous vehicle data and 
ensuring the privacy protec@on of data added to the blockchain-distributed network. These advancements highlight 
the versa@lity and adaptability of blockchain technology in addressing various security and privacy concerns across 
different domains. 

• The execu@on @me for each itera@on is calculated: 𝑡𝑒𝑥𝑒𝑐,𝑖 = 𝑡𝑒𝑛𝑑,𝑖 − 𝑡𝑠𝑡𝑎𝑟𝑡,𝑖.  

The execu@on @mes are grouped into bins: {𝐵1 ,𝐵2,…, 𝐵𝑘 }. 

• The frequency of the execu@on @mes is counted in each bin, 𝑓𝑗 = 𝑐𝑜𝑢𝑛𝑡{𝑡𝑒𝑥𝑒𝑐,𝑖 ∈ 𝐵𝑗} 𝑓𝑜𝑟 𝑗 = 1,2 … , 𝑘. 

• The histogram is represented by the set of frequency  corresponding to each bin. 

In our video blockchain, we selected the SHA256 by following the same process we used to select the Merkle three 
for video blockchain. The selec@on of cryptographic func@on was carried out by using Mul@-Criteria Decision Making 
(MCDM). Future more, we have shown the Merkle tree is the most suitable data structure. 

We combine the Schnorr signature, Merkle tree, and Block Matrix for detec@ng AI-generated videos, the key steps 
are proposed. Let 𝑉 be a video file with 𝑛 frames, each divided into m fixed-size blocks 𝐵𝑖𝑗, where 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑖 ≤ 
𝑚. 

Firstly, the Schnorr signature scheme is employed for video authen@ca@on. This scheme involves a private key 𝐾 and 
a public key 𝑃. Each block is signed using K to produce signature 𝜎𝑖𝑗, which is verified by using 𝑃. 

Next, a Merkle tree is constructed for each frame to ensure data integrity. A cryptographic hash func@on H (e.g., SHA-
256) is applied to each block to calculate its hash  These hashes are employed to build the Merkle tree  for frame , 
where leaf nodes represent block hashes and internal nodes represent the hash of their children. The root hash of  
serves as a unique iden@fier for . 

Finally, Block Matrix is employed to organize and compress the blocks of each frame for efficient storage and retrieval. 
By combining this blockchain method, a secure and efficient method is established for detec@ng AI-generated videos. 
The Block Matrix can be harnessed to analyse the video frames for pagerns or anomalies indica@ve of AI-generated 
content, enhancing the overall security and integrity of the video data 
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Empowering Video Blockchain for Misinforma@on 

As video blockchain and AIGV are described in the previous sec@on, this method is combined with Block Matrix to 
enhance the feature of the video blockchain method. In our published papers (Gedara, Nguyen, & Yan, 
2023)(Moolikagedara et al., 2023), we have adopted Block Matrix to secure privacy. and implement a secure and 
suitable autonomous vehicle video network In the Block matrix, Data Block Matrix, denoted as 𝑀, is a 𝑛 × 𝑚 matrix 
where each element  represents a block   of the video frame . 

𝑀 =(Bij)nxm                                                           (2) 

where it comes to the video blockchain method, let 𝐻 be a cryptographic hash func@on (SHA-256) to calculate the 
hash of each block. The Video Blockchain, denoted as 𝐵, is a chain of hashes where each block contains the hash of 
the previous block. Let  be the ini@al hash value (e.g., the hash of the first block of the first frame). The Data Block 
Matrix 𝑀 organizes the blocks of each frame into a structured matrix for efficient storage and access. 

Algorithm: AI-Generated Video Misinforma0on Detec0on   

Input: A video file 𝑉 consis0ng of frames. 

Output: A binary value indica0ng whether the video is likely to be AI-generated misinforma0on. 

Block Matrix Algorithm: 

• Divide each frame of the video into fixed-size blocks (16x16 pixels). 

• Store the blocks of each frame in a matrix, where each row represents a block, and each column represents a 
frame. 

• Apply compression algorithms (JPEG) to each block to reduce data size. 

• Store the compressed block matrix as a binary file. 

Super-bit LSH Bucke<sa<on Algorithm: 

• Generate a Super-bit structure 𝑆 using the Generate Super-bit Structure func0on. 

• Loop through the dataset records: 

• Select the next record 𝜋. 

• Compute hashes for the record using the Super-bit structure: ℎ𝑖  

𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐻𝑎𝑠ℎ𝑒𝑠𝑅𝑒𝑐𝑜𝑟𝑑 (𝜋, 𝑆) 

• Map the computed hashes into buckets 𝐻 = 𝑀𝑎𝑝𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑠 (ℎ1,ℎ2, … , ℎ𝑝, 𝑆). 

Detec<on: 

• Analyse the compressed block matrices and the mapped hashes to detect paWerns or anomalies indica0ve of 
AI-generated content. 

Output: Return a binary value indica0ng whether the video is likely to be AI-generated misinforma0on (1) or authen0c 
content (0). 
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In eq. (2), The Video Blockchain 𝐵 ensures the integrity and authen@city of the video content by crea@ng a tamper-
proof record of the video blocks. Together, the Data Block Matrix data structure and the Video Blockchain method 
provide a comprehensive approach to organizing, storing, and verifying video content, enabling the detec@on of AI-
generated video misinforma@on. 

LSH Bucke@sa@on is a method for hashing high-dimensional data into buckets for efficient approximate nearest 
neighbor search. The algorithm takes as input a Dataset 𝐷, the number of stages 𝑛 stages, the number of buckets 𝑛 
buckets, and the data dimensionality data dimensionality. It generates a super-bit structure 𝑆 using the Generate 
Super-bit Structure-func@on 𝜋 and compu@ng hashes for the record using the super-bit structure 𝑆. These hashes are 
then mapped into buckets using the map-signatures func@on, forming the mapped set 𝐻, which is returned as the 
output. The algorithm u@lizes the super-bit LSH to efficiently hash high-dimensional data and enable fast nearest 
neighbor search opera@ons. 

This algorithm leverages the Block Matrix algorithm to efficiently store and access video data and the Super-bit LSH 
Bucke@sa@on algorithm to hash high-dimensional data, enabling efficient detec@on of AI-generated content. The final 
step involves using advanced analysis to classify the videos based on the detected pagerns or anomalies. 

Empowering Video Blockchain for Misinforma@on 

In this sec@on, we explore the improvement of our final findings. By referring to Algorithm 1, we demonstrate the 
individual methods included in Algorithm 1's overall process for AIGV (AI-generated video) misinforma@on detec@on 
using video blockchain. Firstly, we u@lize video frames where resizing may occur. We define V as the input video 
composed of frames Fi was ranges from 1 to, with being the total number of frames in the video. Each frame Fi is 
divided into blocks of size pixels. In this paper, we choose an 8x8 block. 

𝐵𝑖𝑗 = 𝐵𝑙𝑜𝑐𝑘 (𝐹𝑖, 𝑗) ,  𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1, 𝑘]                                                        (3) 

We store these blocks in a matrix M, 

𝑀𝑗𝑘 = 𝐵𝑘𝑗 ,  𝑗 ∈ [1, 𝑘], 𝑘 ∈ [1, 𝑛]                                                            (4) 

In eq. (3), the process starts with the input video 𝑉, which consists of frames,  where 𝑖 ∈ [1, 𝑛] and 𝑛 is the total 
number of frames. This process leads to dividing each frame  into given pixel block sizes. The process of eq. (5), leads 
to compression a compression algorithm (JPEG) to each block. It ini@ates the same value to the next process to 
enhance the process of video detec@on. 

𝐶𝑖𝑗 = 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 (𝐵𝑖𝑗) , 𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1, 𝑘]                                              (5) 

𝐶 = 𝐵𝑖𝑛𝑎𝑟𝑦𝐹𝑖𝑙𝑒 (𝐶𝑗𝑖)                                                                        (6) 

In the process of compression, each block 𝐵𝑖𝑗, and then 𝐶𝑖𝑗 represents the compressed version of block 𝐵𝑖𝑗. 
Furthermore, eq.(6) processes the 𝐶𝑖𝑗 to Binary file to enhance the space efficacy and speed of access, it allows faster 
opera@on when it’s handling a large number of compressed blocks during processing. 

𝑇𝑖𝑗 = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑉𝑖𝑠𝑢𝑎𝑙𝐼𝑚𝑎𝑔𝑒𝑠 (𝐵𝑖𝑗 ) , 𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1, 𝑘]                               (7) 

BCL = 𝐵𝑙𝑜𝑐𝑘Cℎ𝑎i𝑛𝐿𝑖𝑛𝑘 (𝑇𝑖𝑗 )                                                                     (8) 

This is the main stage of the AI-generated video detec@on by using Video Blockchain Method with improved func@on. 
We see that eq. (7) follows the crea@on of the token set and blockchain linking process. Also, its extracts visual image 
from blocks 𝐵𝑖𝑗 to create a token set, in eq. (8), 𝑇𝑖𝑗 Video Blockchain is applied to link and iden@fy the tokens. 
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𝑆 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑢𝑝𝑒𝑟𝐵𝑖𝑡𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒                                                          (9) 

For each compressed block matrix record π: 

ℎ𝑖 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐻𝑎𝑠ℎ𝑒𝑠𝑅𝑒𝑐𝑜𝑟𝑑 (𝜋, 𝑆), 𝑓𝑜𝑟 𝑖 ∈  [1, 𝑝]                                       (10) 

It sees that eq. (9) and eq. (10) lead to the genera@ng super bit structure to involves crea@ng a set of hyperplanes in 
the feature space. 

In eq. (10), the hash func@on is applied to the feature vectors of the compressed block matrix M. These hash func@ons 
map high-dimensional data points into a lower-dimensional space, preserving the locality of similar items. The main 
requirement of this process is to ensure that similar blocks are mapped to the same or nearby buckets. 

𝐻 = 𝑀𝑎𝑝𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑠 (ℎ1, ℎ2, ℎ3, …., ℎ𝑝)                                               (11) 

The final step of eq. (11), we achieve the requirement of this process by compu@ng hash codes are computed for each 
compressed block matrix record, which need to be mapped to specific buckets. Buckets 𝐻 serve as containers for 
storing similar items together. 

Moreover, we summaries the process of all eq. (3) to eq. (11) for beger understa@ng 𝑆 by using a predefined func@on. 
Then, it iterates through the dataset records, selec@ng each record 𝜋 in turn. For each record, it computes hashes ℎ𝑖 
using the Super-bit structure. 

𝑟𝑒𝑠𝑢𝑙𝑡 = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦 (𝐶, 𝑇, 𝐻)                                                   (12) 

The stage of detec@on and classifica@on has been the major part of this whole process. The compressed block 
matrices C, token sets T, and mapped hashes H are analysed for pagerns or anomalies indica@ng AI-generated content. 

Moreover, in eq. (11), the algorithm analyses the compressed block matrices and the mapped hashes to iden@fy 
pagerns or anomalies that may indicate AI-generated content. This analysis is crucial for dis@nguishing between 
authen@c and AI-generated videos. Finally, the algorithm is use of sta@s@cal. 
We know that eq. (12) is a binary value indica@ng the likelihood of the video being AI-generated misinforma@on (1) 
or authen@c content (0). The key equa@ons in the algorithm involve compu@ng hashes for each record and mapping 
these hashes into buckets for analysis, providing a structured approach to detec@ng AI-generated video 
misinforma@on. 

In this study, we outlined a robust method for detec@ng AI-generated misinforma@on in videos. Our approach 
encompasses a mul@-step process, star@ng with the division and compression of video frames, followed by the 
extrac@on and linking of visual tokens using video blockchain. Addi@onally, we employ Super-bit Locality Sensi@ve 
Hashing (LSH) for efficient Bucke@sa@on of computed hashes, methods to classify the video as either likely to be AI-
generated misinforma@on or authen@c content based on the analysis results. 

Hence, we understand that eq. (12) is a binary value indica@ng the likelihood of the video being AI-generated 
misinforma@on (1) or authen@c content (0). The key equa@ons in the algorithm involve compu@ng hashes for each 
record and mapping these hashes into buckets for analysis, providing a structured approach to detec@ng AI-generated 
video misinforma@on. 

4. Our experiments 

In this sec@on, we present our experimental results and provide the compara@ve experiment analysis to beger 
understand the performance of our implementa@on. We are use of metrics to evaluate the proposed video Blockchain 
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algorithm for AI-generated video (AIGV) detec@on. Our results are divided into three main sec@ons: Experimental 
sebngs, detec@on performance, and comparisons in detec@ng misleading AI-generated videos. 

Datasets and Evalua@on Metrics 

To evaluate the AI-generated misinforma@on detec@on algorithm, we u@lize four diverse and challenging datasets to 
assess the performance and generaliza@on capabili@es of our deepfake detec@on methods: WildDeepfake, Celeb-DF, 
and DeeperForensics-1.0. 

WildDeepfake (Heidari et al., 2024) is a dataset is designed for real-world deepfake detec@on. It contains sequences 
extracted from 707 deepfake videos collected from verified internet sources. Although it is smaller compared to other 
two datasets, WildDeepfake is harnessed to ini@ate our evalua@on process due to its real-world relevance. 

DeeperForensics-1.0 (Korshunov & Marcel, 2022) is a dataset which contains over 10,000 deepfake videos generated 
using a state-of-the-art face- swapping algorithm. The comprehensive and me@culously- designed perturba@ons make 
it an excellent benchmark for tes@ng the robustness of deepfake detec@on models under diverse condi@ons. 

Celeb-DF (Ramachandran, Nadimpalli, & Ragani, 2021) dataset is a includes 5,639 deepfake videos, fulfilling various 
research evalua@on requirements. It is par@cularly valuable for evalua@ng detec@on methods due to its high visual 
fidelity and challenging nature. The Celeb-DF dataset addresses the limita@ons of other datasets by providing high-
quality deepfake videos that closely resemble real-world scenarios. 

FaceForensics++ [14] is a newly-built dataset designed to facilitate research work in detec@ng manipulated facial 
images and videos. These datasets take use of face manipula@on methods providing resource for training and 
evalua@on detec@on algorithms. This data sets contain 1,000 deepfake videos. 

To evaluate the algorithms for AI-generated video misinforma@on detec@on, we employ standard metrics including 
accuracy, precision, recall, and F1 score. These metrics provide a comprehensive evalua@on of the detec@on 
capabili@es, ensuring that the models are not only accurate but also reliable and robust in various scenarios. 

Experimental Sebngs 

The video blockchain was developed by using a private blockchain implemented with Python and JavaScript. Ini@ally, 
we employed our tailored protocol, which incorporates cryptographic methods to ensure data integrity and 
immutability. To enhance AI-generated video detec@on, we integrated the Locality-Sensi@ve Hashing (LSH) method. 
For our experimental datasets, we took use of Visual Studio Code IDE to run, debug, and deploy the blockchain 
func@ons. Addi@onally, for data analysis and plot genera@on, we made use of Matplotlib. All soaware was run on 
Microsoa Windows 1164-bit with an Intel Core i7-8550U processor and 16GB of RAM. We adopted Python version 
3.12.0 with the pip module installed. 

Performance 
In this sec@on, we demonstrate our implemented algorithm using different elements. All of these performances have 
been completed within our experimental setup to ensure accurate results for beger understanding. Face Forensics++ 
datasets have been using for these detec@on performance evalua@on process. 

Table 1:Scores of the precision, F1 score, accuracy, and recall for Algorithm 1 

Metrics Scores 

Precision 1.0 
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F1 score 0.75 

Accuracy 0.8 

Recall 0.6 

 

Table 2:Detailed metrics breakdown by classes 

 Precision Recall F1 score Support 

Class 0 0.714286 1.0 0.833333 5.0 

Class 1 1.000000 0.6 0.750000 5.0 

Accuracy 0.800000 0.8 0.800000 0.8 

Macro 
Average 

0.857143 0.8 0.791667 10.0 

Weighted 
Average 

0.857143 0.8 0.791667 10.0 

 

In Table 1, its comprehensive evalua@on of the proposed algorithm, it demonstrates its strengths to all four metrics. 
In Table 1 and Table 2, we extract the detailed metrics of the class 0, the precision is approximately 0.71, recall is 1.0, 
and F1 score is 0.83, indica@ng that while the model is perfect at iden@fying nega@ves, it includes false posi@ves in its 
predic@ons. Moreover, regarding Class 1, the precision is perfect at 1.0, but recall drops to 0.6, resul@ng in an F1 score 
of 0.75, highligh@ng that the model is very precise but misses some posi@ve instances. While comparing to the overall 
accuracy of the model is 80%, with both the macro and weighted averages showing high precision (0.857), but slightly 
lower recall and F1 score (both approximately 0.8 and 0.79, respec@vely), reflec@ng the model’s strong but slightly 
imbalanced performance across classes. 

 (a)   (b)  
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 (c)  (d) 

Figure 1:The precision, recall, Accuracy, F1 Score and ROC curve at different thresholds calculate using 
FaceForensics++ dataset to measure the performance of the algorithm 1 implementa0on.

In summary, Table 2 illustrates the model correctly classified all 5 instances of the nega@ve class (Class 0) as nega@ve, 
but misclassified 2 out of 5 posi@ve class instances (Class 1) as nega@ve, resul@ng in 3 true posi@ves and 2 false 
nega@ves. Aaer translated to percentages, the confusion matrix indicates that 100% of actual nega@ves were correctly 
predicted, while only 60% of actual posi@ves were correctly predicted. 

In Fig.1(a), ground_truth represents the true labels, and predicted_probabili0es shows the predicted probabili@es 
from our algorithm. The precision_recall_curve (•) func@on calculates precision and recall at different thresholds. The 
resul@ng plot shows how precision and recall change as the classifica@on threshold varies. 

In Fig.1(b), we calculate the accuracy and recall at different thresholds by itera@ng over a range of thresholds and 
conver@ng predicted probabili@es to binary predic@ons based on each threshold. It then calculates the accuracy and 
recall values for each threshold and plots them against the threshold values. 

Fig.1(c) shows the calcula@on results of precision and F1 score at various thresholds by itera@ng over a range of 
thresholds and conver@ng predicted probabili@es to binary predic@ons based on each threshold. It calculates the 
precision and F1 score values for each threshold and plots them against the threshold values 

Fig.1(d) indicates the ROC curve by using the roc_curve(•) func@on from scikit-learn. It calculates the area under the 
ROC curve (AUC) using the AUC func@on. Finally, it plots the ROC curve and displays the AUC value in the plot @tle, it 
shows the ROC curve by using the roc_curve(•) func@on from scikit-learn. It calculates the area under the ROC curve.  

Aaer evalua@ng its performance by using metrics like accuracy, precision, recall, and F1 score, the metrics can assist 
us to understand how well our algorithm performs in detec@ng AI-generated video misinforma@on without relying on 
machine learning models. In next, we evaluate the performance of the algorithm with different datasets and compare 
the result with the similar method that have used the same dataset to reevaluate their method performance. 

Table 3:The evalua0on of our proposed methods with similar research works by using WildDeepfake datasets 

Methods Accuracy Precision Recall F1 

score 

DDM[08] 0.925 0.962 0.925 0.942 
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DVD[09] 0.968 0.975 0.932 0.953 

Our Method 0.978 0.981 0.965 0.968 

 

Table 4:The evalua0on of our proposed method with similar research works by using DeeperForensics-1.0 data sets 

Methods Accuracy Precision Recall F1 

Score 

DDDF[10] 0.94 0.96 0.88 0.92 

IDD[11] 0.965 0.978 0.91 0.942 

Our Method 0.973 0.980 00952 0.972 

 

Table 5:The evalua0on of our proposed method with the similar research works by using Celeb-DF datasets 

Methods Accuracy  Precision Recall F1 

Score 

DF[12] 0.95 0.97 0.90 0.63 

MLDD[13] 094 096 0.88 0.92 

Our Method 0.982 0.932 0.912 0.949 

 

We benchmark our research outcomes against the exis@ng research work to validate the effec@veness of our proposed 
method. Our studies employ machine learning models and methods similar to our research approach. This 
comparison provides valuable insights into the advancement and robustness of our method in addressing the research 
problem at hand. 

Table 6:The evalua0on of our proposed method with the similar research works by using FaceForensics++ datasets 

Methods Accuracy Precision Recall F1 

score 

CNN-LSTM [14] 0.6178 0.5269 0.5131 0.5199 

3D-ResNet[15] 0.6617 0.5624 0.5374 0.5496 

Our Method 0.7891 0.9852 0.5915 0.6932 

 

The comparison of our results with other methods that has been employed with different datasets presented in 
Table 3, Table 4, Table 5 and Table 6. These methods shown in the tables for experiments include: 
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• Experiments with WildDeepfake datasets: Deepfake Detec@on Method (DDM) (Ref 08), Deepfake Video 
Detec@on (DVD) (Ref 09). 

• Experiments with DeeperForensics-1.0, datasets: Deepfake Detec@on with Data Farming (DDDF) 
(Korshunov & Marcel, 2022), Interpretability of Deepfake Detec@on (IDD) (Korshunov, Jain, & Marcel, 2022). 

• Deep Face Recogni4on (DFR) (Ramachandran, Nadimpalli, & Ragani, 2021), Machine Learning Approach for 
Deepfake Detec@on (MLDD) (Lacerda & Vasconcelos, n.d.).  

Our method shows the best performance among the all of compared method. Based on the two datasets of 
DeeperForensics-1.0 and Celeb-DF, we have the same best results compared with our proposed method. However, as 
the experimental results illustrate the state-of-the-art share-bit, video blockchain methods deliver superior 
performance on all of the four datasets. Moreover, there is considerable result with FaceForensics++ datasets. 
Compared to other average evalua@on matrix, it shows high degree level of performance rate. But with this data, its 
compara@vely gebng low score with this dataset. 

In addi@on, we iden@fied that other methods also show similar low-level number with this dataset. We highlight the 
superior performance of our approach, par@cularly integrate the Video Blockchain method. Our method not only 
achieved higher accuracy and efficiency but also demonstrated robustness in handling AI-generated video detect. 

By incorpora@ng cryptographic methods within Video Blockchain, we ensure the integrity and immutability of the 
data, addressing key challenges in detec@ng misinforma@on. Furthermore, our method showcases a significant 
improvement in detec@on rates, outperforming tradi@onal approaches and showcasing the poten@al for real-world 
applica@ons in comba@ng cryptographic methods within our Video Blockchain, we ensure the integrity and 
immutability of the data addressing key challenges in detec@ng misinforma@on. Furthermore, our method showcases 
a significant improvement in detec@on rates, outperforming tradi@onal approaches and showcasing the poten@al for 
real-world applica@ons in comba@ng AI-generated video misinforma@on.  

Abla@on Studies Results with Different Block Sizes 

In this sec@on, Algorithm 1 shows the process of Block Division as a frame is divided into image blocks. To get this 
result, each frame 𝐹𝑖 is divided into three different block sizes 8x8, 12 x 12 and 16 x 16. 

• Block Size 8x8: The baseline accuracy is 0.4, which means the model correctly classified 40% of the frames 
with the relevant block size. Without image compression, the accuracy has been dropped to a considerable 
amount. This means that compression is crucial for performance. Finally, no_hashes_record, Abla@ng hash 
computa@on reduces accuracy to 0.2, showing its importance in maintaining performance. 

• Block Size 12x12: In the baseline no_extrac0on accuracy remains 4.0. Both no_compression and 
no_extrac0on significantly increase the accuracy level, indica@ng high performance without each of these 
func@ons. However, no_blockchain_link results in lower accuracy compared to 8x8 block size frames. 
Removing super bit structure s@ll provides a sensible accuracy of 0.6, indica@ng its moderate importance. 
Similarly, abla@on of hash records does not significantly impact accuracy at this block size. 

• Block Size 16x16: According to data illustrate in Fig. 2, the average accuracy is maintained without each 
func@on in Algorithm 1. The baseline accuracy is slightly beger at 0.5. Removing compression increases 
accuracy to 0.6, indica@ng less dependence on compression at this larger block size. Moreover, accuracy 
drops to 0.4 without extrac@on, sugges@ng it's more necessary at this block size. Finally, we show the 
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blockchains linking improves accuracy to 0.7 and no_super_bit_structure, no_hashes_record take the 
accuracy remains consistent at 0.6. 

 

Figure 2:Receviver Opera0ng Characteris0c (ROC), analysis with WildDeepfake, DeeperForensics-1.0 and Celeb-DF 
datasets to understand the genera0ng data. 

By evalua@ng different block sizes, we summarize the conclusion. These results indicate in the TABLE VIII. The impact 
of different components in the pipeline varies with block size. In addi@on, smaller blocks (8x8) benefit from 
compression and has computa@on. On the other hand, mid-size blocks (12x12) do not need compression or extrac@on 
but rely heavily on blockchain linking. Finally, we see large blocks (16 x 16) do not require compression, may not need 
blockchain linking, but s@ll require extrac@on. Aaer compering all details, we iden@fy the mid-size and large size blocks 
have more compa@ble with our algorithm. 

 In the abla@on study, the mean, max, and min scores offer numerical insights into the performance varia@on across 
different experiments, specifically various block sizes tested. The mean score, calculated as the average of all 
performance metrics, provides a central measure, such as an average accuracy, precision, or F1 score, indica@ng the 
typical performance level across the tested configura@ons. For instance, in Table VII, the mean score across block sizes 
8x8,12x12, and 16x16 is 0.4667, calculated as the average of the original accuracy scores (0.4, 0.4, and 0.5). 
Conversely, the max score, represen@ng the highest achieved performance, highlights the best-performing 
configura@on. In our example, the max score across block sizes is 0.8, achieved in the "no_extrac0on" scenario with a 
block size of 12x12.  

Conversely, the min score reflects the lowest observed performance, indica@ng the worst-performing configura@on. 
For instance, in our data, the min score is 0.1, observed in the "no_blockchain_link" scenario with a block size of 
12x12. These numerical insights provide researchers with a comprehensive understanding of the performance 
landscape, guiding decisions regarding model configura@ons or interven@ons by illumina@ng the variability in 
performance across different experimental condi@ons. Essen@ally, WildDeepfake comprises a mixture of both real and 
fake videos.  

Similarly, DeeperForensics-1.0 is similar to the WildDeepfake dataset, we assess the performance of the detec@on 
algorithm on DeeperForensics-1.0 by evalua@ng its accuracy in dis@nguishing real from fake sequences. Moving on to 
Celeb-DF dataset, it is represented as a collec@on of real and fake video pairs. Performance evalua@on on Celeb-DF 
involves measuring the ability of our algorithm to differen@ate between real and fake videos. When comparing our 
results using the datasets: Wild Deepfake, Deeper Forensics-1.0, and Celeb-DF datasets, our Algorithm 1 shows 
virtuous performance on all three due to the high resolu@on and realis@c facial expressions, though challenges remain 
with more complex real-world scenarios. Regarding the FaceForensics++ performance, despite of its structured setup, 
this dataset does not always yield the best results in real-world due to its less diverse set of actors and sebngs 
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compared to datasets like WildDeepfake. The controlled nature of the dataset means it might not capture the 
variability and complexity found in real-world deepfakes. 

Conversely, while examining the performance of FaceForensics++, despite of its structured setup, it doesn't 
consistently yield op@mal results in real-world scenarios as show in the Table VII. This is due to its less diverse pool of 
actors and sebngs compared to datasets like WildDeepfake. FaceForensics++ is employed for performance evalua@on 
which has highlight, compared to other datasets, it shows lower performance. This has been noted in mul@ple studies. 
The controlled nature of the dataset may not capture the variability- -and complexity inherent in real-world deepfakes. 
Aaer the analysis of similar research work, we have iden@fied that the reasons for lower performance is the limited 
scene diversity in the FaceForensics++ (FF++) datasets, where 𝑉𝑖 represents different scene varia@ons, 𝑛 is the number 
of videos for FF++, 𝑛 limited, therefor 𝑉 is too low place. In summary, the performance is due to controlled nature of 
FaceForensics++ which does not capture the full range of variability and complexity in real-world deepfakes. This leads 
to reduced generaliza@on performance of detec@on algorithms when applied to more diverse datasets like Wild 
Deepfake. 

5. Conclusion 

In this book chapter, we have demonstrated the effec@veness of integra@ng Video Blockchain with AI-generated video 
iden@fica@on to enhance the authen@city and trustworthiness of digital content. Our primary goal was to classify AI-
generated videos and combat visual misinforma@on. The implementa@on of a robust framework for authen@ca@ng 
video content and compara@ve analysis with other research works highlights the superior performance and 
robustness of our proposed solu@on, par@cularly through the integra@on of cryptographic methods. 

By establishing this framework, we provide a sustainable solu@on for stakeholders concerned with the integrity of 
digital content. Our approach not only achieved higher accuracy and efficiency but also demonstrated significant 
improvements in successful rates, showcasing its poten@al for real-world applica@ons. Mi@ga@ng misinforma@on risks 
is crucial for empowering users to make informed decisions and safeguarding the integrity of digital media. 

Our experimental results, which are evaluated by using mul@ple metrics such as accuracy, precision, recall, and F1 
score, indicate that our method outperforms to the exis@ng approaches.  
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