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Abstract—In this paper, we introduce RobotFlags, an intelligent
system that integrates flag language with deep learning, large
language models, and humanoid robots to support learning
and interactive communication. The core of this system is the
improved YOLO-AKEMA model, which incorporates attention
mechanisms and adaptive convolutions to achieve high-accuracy
recognition across 27 flag classes, forming a reliable foundation
for gesture analysis. The user interface is implemented on the
Dify AI platform, with a retrieval-augmented generation (RAG)
framework constructed from curated semaphore documents
and the BGE-M3 embedding model, enabling context-aware
responses. A humanoid robot is seamlessly integrated as both
a demonstrator and an evaluator: It performs flag gestures,
assesses learners’ performance, and provides detailed feedback.
To ensure real-time interaction, optimization strategies such as
half-precision computation, streaming inference, and caching
are employed, maintaining average response times under three
seconds. Altogether, RobotFlags delivers a robust, multimodal
learning environment that advances flag language demonstration
and creates new opportunities for gesture-based human-robot
interaction.

Index Terms—semaphore recognition, semaphore learning sys-
tem, humanoid robot, YOLO-AKEMA, DeepSeek

I. INTRODUCTION

Flag language is a traditional, visual, and standardized
form of long-distance communication, transmitting informa-
tion through precise configurations of flags or arms [1]. It
remains an essential component of training in educational
institutions, maritime academies, and military programs. Tra-
ditional instructional approaches demand the memorization
of numerous gesture-angle configurations, thereby imposing
significant cognitive demands on beginners.

Currently, an AR card-based flag signal learning system is
employed to assist Indonesian scouts in understanding flag
semaphore and to enhance their interest in learning [2]. While
the system has demonstrated positive outcomes, it is limited to
static media displays and app-based input operations. It lacks
support for interactive human-computer communication and
does not accommodate diverse presentation formats or media
carriers.

In order to enhance the interactivity and display carrier
diversity of the flag language learning system, we developed
RobotFlags, an innovative interactive platform. This system
employs a deep learning-based flag signal recognition model
as its analytical foundation, and a large-scale language model
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as the core component for interaction and interpretation,
thereby enhancing its overall intelligence. A humanoid robot is
integrated to support the demonstration and assessment of flag
gestures. Through the fusion of intelligent interaction, intuitive
video-based analysis, and physical robot demonstrations, the
system broadens the diversity of flag signal presentation meth-
ods and improves the scalability of user input modalities.

II. RELATED WORK
A. Pose and Flag Recognition

Early research on posture and flag recognition primarily
relied on traditional image processing methods, including color
segmentation, edge detection, and shape feature extraction.

In 2011, researchers firstly employed Kinect[3], [4] depth
cameras as a new data source and achieved human posture
recognition from single-frame depth images based on joint po-
sition estimation, providing a foundation and new direction for
subsequent research and applications in posture analysis [5],
[6].

The development of flag learning systems represents another
important application of flag recognition algorithm [7]. Rach-
mad and Fuad [8] proposed a system based on bone images
acquired by Kinect sensors, which is employed to assist in
teaching and practicing signal flags.

Driven by the swift progress of deep learning, research work
in human pose estimation and flag signal recognition has pro-
gressively moved away from traditional feature engineering,
embracing deep models such as convolutional neural networks
(CNNs)[9]-[11] to enable end-to-end automatic feature extrac-
tion and classification.

Compared to traditional methods, deep learning models
exhibit superior feature representation capabilities and can
autonomously learn robust visual features from large-scale
image datasets. In 2016, there was a convolutional neural
network-based model for flag signal recognition[12]. Exper-
imental findings affirmed that this method achieves superior
performance compared to conventional techniques, particularly
in recognition precision, while also enhancing system stability
and scalability.

Deep learning has demonstrated significant potential in the
domain of flag signal recognition. Nevertheless, a notable gap
persists in its practical application within instructional con-
texts. Humanoid robots play a pivotal role in the research and
application of semaphore communication. Recent studies have



compared the effectiveness of learning semaphore through
video-based interaction and robot-assisted interaction[13]. The
findings reveal that robots offer distinct advantages in facili-
tating semaphore learning, particularly in conveying dynamic
gestures, with these effects being more pronounced among
adolescents. Additionally, a cloud-based human-robot inter-
action system has been developed to enable a humanoid robot
to autonomously replicate semaphore gestures performed by
a human demonstrator, further highlighting the potential of
integrating robotics with semaphore communication[14]-[16].
However, this system relies solely on discrete letter-level
instructions rather than dynamically captured video input, the
communication remains unidirectional. Building upon these
findings, in this paper, we propose the integration of a vision
model within the robot to recognize semaphore movements
from video streams and generate responsive feedback. More-
over, a chat-based interface is introduced to facilitate natural
and interactive communication between the user and the robot.

B. Large Language Models

Large Language Models (LLMs) constitute a category of
natural language processing systems that are grounded in deep
neural architectures and trained on extensive text corpora.

In recent years, LLM applications have expanded rapidly
across various industries. Numerous studies have demonstrated
the potential across diverse scenarios. In the education sector
in particular, LLMs show great promise. In recent research
work, integrating LLM-powered chatbots into higher education
database courses has been shown to enable personalized learn-
ing and real-time feedback, thereby alleviating teaching work-
load [17]. In enterprise scenarios, LLMs have been combined
with Retrieval-Augmented Generation (RAG) and frameworks
such as LangChain to enhance information retrieval and gen-
erative services, ultimately improving operational efficiency
[18], [19]. These projects reflect the growing versatility of
LLMs across sectors. However, despite longstanding efforts in
semaphore teaching, the integration of LLMs into this domain
remains unexplored.

III. METHODOLOGY

The RobotFlags system consists of two main components:
Flag recognition and user interaction through DeepSeek. The
following sections provide a detailed introduction to each
component.

The system architecture is shown in Fig. 1. The basic service
is responsible for data interaction with the user interface,
issuing commands to the humanoid robot and receiving feed-
back from the robot. The humanoid robot’s core controller
is a Raspberry Pi, with an integrated head camera for visual
processing. It also has 18 servos throughout its body, whose
parameters are adjusted to achieve the desired gesture display
and movement of the robot’s flag signals.

YOLOL11 presents notable enhancements over its earlier
version, offering a more compact architecture, fewer parame-
ters, improved feature representation, and accelerated infer-
ence speed. A recent investigation utilized a synthetically
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Fig. 1. System architecture

constructed dataset—produced through a large language model
(LLM)—to develop apple detection models by using both
YOLOI11 and YOLOv10. The study demonstrated that the
integration of synthetic data can improve model robustness
and generalization. On real-world orchard imagery, YOLO11
attained a detection accuracy of 0.84 and a mAP@50 score of
0.89, confirming its effectiveness in object detection tasks [20].
Given these results, YOLO11 was selected for the subsequent
experimental phases.

The EMA (Efficient Multi-Scale Attention) component
functions as a compact attention strategy aimed at improving
the representational strength of CNNs in applications like
visual categorization and object recognition [21]. To enhance
the model sensitivity to the flag-bearing arm region and im-
prove the quality of feature representations, the present study
incorporates the EMA module into the YOLO network as an
attention mechanism. AKConv (Arbitrary Kernel Convolution)
represents an innovative convolutional operator aimed at ad-
dressing the structural constraints of traditional convolution
kernels in terms of fixed sampling shapes and constrained
parameter quantities [22]. In contrast to standard convolution
operations, it enhances the expressiveness of learned features
and leads to notable performance improvements in various
multi-object. YOLO11 was enhanced through the integration
of the Efficient Multi-Scale Attention (EMA) and Arbitrary
Kernel Convolution (AKConv) modules, forming the improved
YOLO-AKEMA model.

For the large language model, we chose the DeepSeek-
R1:7b model and deployed it with Ollama. Unlike conven-
tional approaches relying on supervised fine-tuning (SFT), the
research team firstly developed DeepSeek-R1-Zero, trained
entirely via RL without human-labeled data [23].

The embedded model BGE-M3 is applied to vectorize the
textual knowledge of the flag signals and build a knowledge
base. Driven by the swift evolution of Large Language Models
(LLMs), Retrieval-Augmented Generation (RAG) has become
a prominent framework for enhancing the knowledge represen-
tation capabilities of such models and improving the accuracy
of real-time question answering [24]. The maturity of text
embedding models and the development of efficient vector
retrieval tools have significantly accelerated the adoption of
RAG architectures. These systems have been widely applied



in diverse scenarios, including intelligent question answering,
enterprise knowledge management, and scientific research
assistance[25].

Dify is an open-source Al application tool. We leverage
its ChatFlow feature with a rich set of functional nodes
and workflow orchestration to enable user interaction with
the entire system. When interacting with Al applications,
users frequently impose more stringent requirements regarding
content security, user experience, and compliance with legal
and regulatory standards. Specifically, we integrated a fast
and effective Python-based tool, profanity-check, to identify
profane and offensive expressions in text. This tool employs
a linear Support Vector Machine (SVM) model trained on a
dataset of 200,000 manually annotated examples, encompass-
ing both clean and inappropriate textual content.

IV. EXPERIMENTAL RESULTS
A. Dataset collecting and processing

Video data acquisition was conducted by using the DIJI
Action4 sports camera. Flag signal videos were recorded
under diverse weather conditions and across multiple scene
types, with several individuals performing the gestures. The
recorded gestures covered the full set of alphabetical characters
from A to Z as well as the STOP action. All frames were
extracted at 10-frame intervals from the recorded videos.
Postural landmarks, specifically at the elbow and wrist, were
extracted by using the MediaPipe framework. Images in which
the posture could not be reliably identified were discarded.

The dataset was subsequently divided into training and
validation sets in an 8:2 ratio. All images were resized to
640x640 pixels to comply with the default input dimensions
of the YOLO training pipeline. At this stage, the training set
comprised 17,569 images, while the validation set contained
4,403 images. Then, the training dataset is expanded to 34,566
after data augmentation.

B. Evaluation Indicators

Correctness: Correctness directly reflects whether the sys-
tem output is consistent with the reference answer or the
ground-truth label.
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where N orrect denotes the number of correct responses, while
Niotar refers to the total number of evaluated samples.
Latency: Latency refers to the time interval between user
input and system output. In the context of this system, it
specifically denotes the duration from the moment a user
submits an input to the moment feedback is returned.
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where M denotes the total number of interaction trials, t;”
represents the input timestamp of the j-th interaction, and t?“t
represents the corresponding output timestamp. The difference
(9t — t;”) indicates the latency of the j-th interaction. By

averaging across all M trials, this metric quantifies the overall
responsiveness of the system, with lower values corresponding
to faster response times and improved user experience.
Precision: Precision refers to the proportion of true positive
predictions among all instances identified as positive by the

model.
TP

Precision = TP+ FP 3)
where T'P denotes the count of actual positive cases that
are correctly identified, while F'P represents the number of
samples that are falsely predicted as positive.

mAp: mAP is calculated by averaging the AP over all cat-
egories. To calculate AP, we need to interpolate the PR curve
(precision - recall). Here shows that how AP is calculated:

Pierp(1) = g}ggP(r’) “4)
where the interpolated precision corresponding to a specific
recall threshold r is defined as the highest precision value
observed at any recall level v’ such that ' > r.
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where r; and r;y; denote adjacent recall values, and
Pjn[erp('f'iJrl) is the interpolated precision at the right endpoint
of each interval. This summation serves as a numerical ap-
proximation of the integral of precision over recall.

C
1
mAP; = — > AP, (6)
c=1

where C is the total number of object classes, and AP,
denotes the Average Precision for class ¢ at IoU threshold
t. This equation provides a comprehensive measure of the
model’s ability to detect objects of different categories at a
specified localization accuracy level. Commonly used settings
include t = 0.5 (mAP@50) and the COCO-style average over
multiple thresholds from 0.50 to 0.95 (mAP@50:95), the latter
offering a stricter and more robust performance evaluation.

C. Experiments for Flag Recognition

The 27-class flag signal recognition experiment based on
YOLOI11 were implemented using Python 3.11.6 and Py-
Torch 2.6.0. The hardware configuration includes an NVIDIA
GeForce RTX 4070 Laptop GPU with 8188 MiB of memory,
as well as an AMD 7940HX processor. All YOLO models
adopted in this study belong to the nano variant category.
Specifically, YOLO11, YOLO12, and YOLO-AKEMA were
employed for comparative evaluation. In the model training
experiment, the hyperparameters were configured as follows:
SGD was employed as the optimizer; the batch size was 32;
the epochs were 50; the input image size was set to 640 x 640
pixels; the learning rate was 0.01; and the number of workers
was 16.



D. Experiments For RobotFlags

An interactive interface was developed by using Dify and
connected to DeepSeek, while a text embedding model was
employed to construct a retrieval-augmented generation (RAG)
framework. The flag signal analysis model provided video
analysis and additional functionalities to the system compo-
nents, while also enabling communication with the humanoid
robot.

E. Ablation Experiments

Ablation experiments were conducted to evaluate the in-
dividual contributions of the attention mechanism, AKConv
convolution module, and horizontal flip parameter in data
augmentation within the YOLO-AKEMA framework. Each
experiment was designed to isolate the effect of a single
component through controlled variable settings. The results
were analyzed to assess the specific impact of each module
on overall model performance.

F. Results for YOLO

This section presents the experimental results and conducts
comparative analyses using representative images, charts, and
tables.
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Fig. 2. Performance Comparison of mAP

From Fig. 2, mean average precision (mAP) results of
the three models YOLO11, YOLOI12, and YOLO-AKEMA
are compared under different Intersection over Union (IoU)
thresholds. The results indicate that YOLO-AKEMA achieves
the best performance across all metrics, with an mAP@0.5 of
99.93%, an mAP@0.75 of 97.37%, and an mAP@[0.5:0.95] of
94.95%. Based on the actual video prediction results, YOLO-
AKEMA was able to accurately recognize all flag signal
actions at a confidence threshold exceeding 0.9.

In contrast, YOLOI11 attains an mAP@[0.5:0.95] of only
87.41%. While YOLO12 demonstrates a slight improvement
over YOLOI11 in terms of accuracy, its performance still
remains below that of YOLO-AKEMA. For the intended flag
signal interaction system, it is essential that the model gener-
ates accurate and unique category predictions for each image.
Therefore, greater emphasis is placed on the mAP@[0.5:0.95]
metric, as it provides a more rigorous evaluation of overall
model performance under varying levels of localization preci-
sion.

TABLE I
ABLATION EXPERIMENTS RESULTS

Flipud | AKConv | EMA | Precision | GFLOPs | mAP@0(.5:0.95
v X X 65.81% 6.7 63.03%
X X X 94.87% 6.7 86.42%
X X v 97.92% 6.9 90.12%
X v X 96.92% 6.4 89.12%
X v v 99.94% 6.5 94.95%

From Table I, the results reveal that retaining horizontal
flipping during training has a significant adverse effect on the
baseline model. This is primarily due to the presence of two
mirrored flag gestures within a single category. Such ambiguity
is evident in pairs such as B and F, J and P, K and V, M
and S, and Q and Y. The rate of misclassification for these
categories approaches 50%, resulting in a substantial degrada-
tion of model performance. Evaluation metrics clearly show a
marked improvement when this data augmentation parameter
is disabled, confirming its negative impact on classification
accuracy.

The final experimental outcomes indicate that the improved
model exhibits strong performance in terms of both accuracy
and robustness YOLO-AKEMA model is capable of stably and
accurately recognizing all target categories in the test video
under a high-confidence threshold. These results reflect the
model’s strong generalization ability and its high potential for
practical deployment.

G. Results for RobotFlags

TABLE II
SYSTEM EVALUATION ON DIFFERENT COMPONENTS

Component Correctness (%) | Latency (s)
Robot Execution 99%
Video Analysis 99% 13
Video-Image Response 99% 3
RAG Response 80% 2

As shown in Table II, the system’s correctness is slightly
lower in the knowledge base retrieval component, while other
functional components maintain a high level of correctness.
This limitation arises from the insufficient richness of the flag
knowledge descriptions in the knowledge base, as the available
text materials do not fully cover the diversity of possible user
inputs. With respect to average latency, the video analysis
component exhibits a longer processing time, primarily due to
the computational demands of the analysis itself. Nevertheless,
this does not impose a significant negative impact on the
user experience, and the overall system performance remains
smooth and reliable.

By adopting the aforementioned approach, the proposed
system has been successfully implemented and deployed. As
show in Fig.3, the system currently supports natural language
interaction, enabling users to inquire about the meaning of flag
action videos through dialogue, either in the form of individual



Fig. 3. RobotFlags Interface

words or complete sentences. Additionally, the system allows
users to input single or multiple flag action letters, to which
it responds with the corresponding textual descriptions, repre-
sentative images, or generated videos, depending on the user’s
request. The system also adds insult-to-harm filters based on
ethical considerations, making it more humane.

Fig. 4. Robot display and feedback flag movements

As shown in Fig. 4, a humanoid robot was integrated into
the interactive system, enabling it to perform corresponding
flag movements for input words or sentences, accompanied
by synchronized voice playback. This design allows users to
perceive flag movements more intuitively, thereby reducing the
learning difficulty and enhancing the overall learning experi-
ence. At the same time, the robot will make corresponding
flag movements according to the user’s actions and explain
the key points of the movements.

V. DISCUSSION

After a series of experiments, the implementation and
deployment of the RobotFlags system have been completed
and achieved the desired goals. In this section, we discuss the
key challenges encountered during the initial research.

Firstly, YOLO11 improves prediction accuracy by introduc-
ing an attention mechanism and replacing the standard con-
volutional module. The improved YOLO-AKEMA effectively
improves the accuracy of flag gesture prediction. These are
key components of the overall system functionality, providing
stable flag video analysis capabilities and laying the foundation
for subsequent processes.

In the actual deployment, we adopted techniques such
as half-precision computation, streaming inference, and sec-
ondary verification to ensure accuracy and computational effi-
ciency. However, after the initial inference, a caching strategy
is employed to eliminate redundant computations. Pertaining
to text generation, image-based responses, video synthesis, and
other interactive features, the average response time remains
under 3 seconds. Overall, the system’s performance is stable
and ensures a seamless user experience across multiple inter-
action modes.

The RAG system currently exhibits low accuracy, with
frequent errors occurring during the keyword matching phase
of the recall test. This limitation may stem from insufficient
data diversity and the absence of a structured text format.
Nevertheless, the current performance of the RAG component
does not impede the system’s overall functionality, as the
primary focus remains on video analysis, robotic interaction,
and visual content presentation. Future improvements to the
RAG module will involve reducing redundant textual content,
adopting structured text formats, incorporating comparative
queries, optimizing search strategies, and potentially substi-
tuting the underlying model.

The integration of robotic systems enhances the presentation
of flag signals and improves the interactivity and usability of
the system. Building upon this concept, further applications
can be explored by combining computer vision and robotics,
such as integrating visual models, large language models, and
extended reality (XR) technologies, as well as incorporating
natural voice control for robotic interaction.

VI. CONCLUSION

To address the limited functionality of existing flag learning
systems, we proposed the RobotFlags prototype. By enhanc-
ing the YOLOI1 architecture, the system ensures accurate
flag motion video analysis and incorporates an intelligent
interactive interface. The integration of a humanoid robot to
display and provide feedback on flag gestures further enhances
system interactivity and user engagement. This research work
demonstrates the feasibility of combining computer vision,
large language models, and humanoid robotics for flag recog-
nition, offering new insights into the design of multimodal
human—computer interaction systems. However, the current
RAG component exhibits limited accuracy and lacks support
for natural voice control. Future work will focus on improving



the RAG module, fine-tuning the large language model, and
integrating natural voice interaction with XR visualization
technologies to enable more innovative and immersive ap-
proaches to flag learning and interaction.
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