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Abstract—To address the challenges of pose estimation jitter and
cumulative errors in visual SLAM systems operating in complex
dynamic environments, this paper proposes an enhanced ORB-
SLAM?2 algorithm that integrates an Extended Kalman Filter
(EKF)-based frontend pose smoother with a Particle Swarm
Optimization (PSO)-driven backend optimizer. At the frontend,
the EKF pose smoother fuses Inertial Measurement Unit (IMU)
data with visual odometry to correct camera trajectories in real-
time, effectively suppressing short-term pose drift. At the backend,
the PSO algorithm dynamically optimizes node constraints in the
pose graph and adaptively adjusts loop-closure thresholds,
refining the weights of reprojection errors to enhance consistency
between mapping outputs and the original environment.
Experimental results demonstrate that compared to the baseline
ORB-SLAM?2 and PV-LIO algorithms, the proposed method
significantly improves efficiency across three map scales—
reducing mapping time and scanning duration while maintaining
mapping quality—and achieves notable error suppression.

Keywords—Particle Swarm Optimization; Oriented FAST
and Rotated BRIEF-SLAM Second version; Extended Kalman
Filter; Hybrid Optimization; Visual SLAM.

I. INTRODUCTION

Visual SLAM (Simultaneous Localization and Mapping)
algorithm, as the core perception method for autonomous
navigation systems, exhibits a distinct trajectory of
technological iteration. In 2015, Mur-Artal et al. introduced
the ORB-SLAM framework [1], realizing the first feature-
based, fully functional visual SLAM system; it utilized ORB
features for real-time camera tracking and map construction.
Building on this, the same team released ORB-SLAM?2
(Oriented FAST and Rotated BRIEF-SLAM Second version)
in 2017 [2], which significantly enhanced system accuracy
and robustness through the incorporation of multi-map
management and loop closure detection techniques, thereby
elevating it to a benchmark in the visual SLAM domain.
Regarding sensor fusion, the OKVIS system pioneered by
Leutenegger et al. in 2016 [3] established the foundation for
tightly-coupled visual-inertial integration by employing pre-
integration techniques to achieve efficient fusion of IMU and
visual data. Further advancing visual-inertial SLAM, Qin et
al. proposed the VINS-Mono system in 2018 [4], which
combined sliding-window optimization with marginalization
strategies to improve system stability. In 2020, Campos et al.
developed OpenVSLAM [5], demonstrating substantial gains

979-8-3315-8654-6/25/$31.00 ©2025 IEEE

Yueyang Li
School of Electrical
Engineering
University of Jinan, China

Qinjun Zhao
School of Electrical
Engineering
University of Jinan, China

in mapping efficiency for large-scale environments via
enhancements to the Bag-of-Words model and parallelized
processing.

Despite significant advancements in the existing research
work, visual SLAM systems continue to face several critical
technical bottlenecks. As demonstrated by Yang’s study in
2021 [6], the estimation error of the Extended Kalman Filter
(EKF) increases exponentially when the system nonlinearity
exceeds a critical threshold. Furthermore, a fundamental
trade-off exists between optimization efficiency and accuracy
in the backend optimization module. Comparative
experiments [7] confirmed that the computational complexity
of graph optimization-based methods escalates sharply
beyond 1,000 pose nodes, reaching levels unacceptable for
real-time performance. Additionally, empirical data [8]
indicates a 2 to 3-fold increase in localization error for
existing SLAM systems operating in environments where
dynamic objects constitute over 30% of the scene. While the
ORB-SLAM?2 algorithm is renowned for its robust system
architecture, real-time performance, and high precision [9],
traditional visual SLAM algorithms exhibit significantly
degraded performance under dark or highly dynamic
conditions despite excelling in well-lit environments. Current
mainstream frontend implementations predominantly employ
the Extended Kalman Filter (EKF) for IMU and odometry
data fusion [10].

However, the inherent limitations of the EKF in handling
nonlinear problems become increasingly pronounced as
environmental dynamics intensify [11]. Although backend
optimization—a critical component responsible for resolving
global consistency issues and rectifying cumulative errors
from frontend processing [12]-[14] can theoretically achieve
globally optimal solutions through traditional graph-based
methods, its practical application is frequently constrained by
computational efficiency and real-time requirements.

In this paper, we propose an improved ORB-SLAM?2
algorithm integrating EKF with Particle Swarm Optimization
(PSO). The frontend employs an adaptive noise covariance
mechanism in EKF to suppress time-varying sensor noise,
while the backend adopts PSO for pose graph optimization,
leveraging swarm intelligence to avoid local optima. The
experiments confirm significantly enhanced accuracy and
robustness, particularly in dynamic environments.
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Fig. 1. Improved algorithm framework diagram

II. RESEARCH METHODS

A. Overall Framework for Improving the Algorithm

Based on the ORB-SLAM?2 framework, which integrates
five modules and three operating threads, this paper
introduces an enhanced algorithm incorporating an EKF
module at the frontend to fuse IMU data with ORB pose
observations for smoothed pose estimation. At the backend,
Particle Swarm Optimization (PSO) is employed to
dynamically adjust EKF noise parameters (Q and R) and ORB
feature thresholds. As illustrated in Figure 1, the improved
system utilizes multimodal data fusion and optimization
mechanisms for real-time localization and mapping: the data
input layer synchronously acquires IMU measurements and
RGB image streams, which are processed via an EKF fusion
module for calibration and preliminary motion estimation; the
processing layer adopts a multithreaded architecture
encompassing parallel frontend optimization, backend
optimization, and map construction—the frontend thread
enhances feature stability through pose observation fusion,
ORB feature refinement, and keyframe selection; the backend
optimization thread leverages PSO to dynamically tune
threshold parameters and optimize the EKF state prediction
model. Meanwhile, the map construction thread handles
Bundle Adjustment (BA) and incremental map updates.

In Figure 2, the algorithm establishes a closed-loop
processing flow encompassing sensor data input, frontend
real-time pose estimation, and backend pose graph
optimization. Starting with image input, an EKF-based pose
smoother fuses visual-inertial data and feeds into a tracking
status monitoring module. This module continuously
evaluates feature quality: upon successful detection, it
initiates a keyframe insertion mechanism to trigger the local
mapping thread for bundle adjustment and point cloud
updates; if tracking fails, the relocalisation module is
activated. For backend processing, the PSO algorithm
dynamically optimizes threshold parameters—adjusting the
ORB feature threshold and refining EKF noise covariance
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matrices (Q, R). These optimized parameters are fed back to
frontend modules via a real-time feedback loop, thus forming
an adaptive closed-loop feedback mechanism that
continuously enhances system robustness against dynamic
environmental disturbances and sensor uncertainties.

B. Front-end Optimization

EKF is a widely used recursive filtering algorithm for
state estimation in dynamic systems. This algorithm achieves
real-time estimation of system states by linearizing non-linear
systems. The basic framework of the EKF consists of two
main steps: State prediction and measurement update. During
the state prediction phase, the EKF uses the system's dynamic
model to predict the next state based on the current state and
control input [15]. Specifically, the state vector x is predicted,
representing the position and orientation of the robot and the
covariance matrix Py ,.; is updated as (1)

{xt\m :f(xx-l\t-b ”t) W,

Pt\r-] :FtPt-I\t-IFtT+Q,

where f is a nonlinear function describing the dynamics of
the system, u, is the control input, W, is the process noise, F,
is the state transition matrix, and Q, is the process noise
covariance.

During the measurement update phase, the EKF combines
newly acquired observation information to correct the
predicted state. If the measurement model is z;, x, is the
updated pose, and the updated state covariance is (2), where
h is the observation model, z, is the observation value, v, is
the measurement noise, and the state estimate is updated using
Kalman gain K;; H, is the observation matrix, and / is the unit
matrix. The primary advantage of the EKF lies in its
computational efficiency and real-time performance, making
it the preferred state estimation method for many dynamic
systems.

z,=h(x)+v,

Xt =X4t-1 +K, (Zr‘h(xt\r-l)) @)
Pz\t:(I‘KtHz)Pz\t-I

O]



EKF front-
—> cndposc —>
smoother

Track
status

Image Input

Keyframe
insertion thread

Relocation

Failure

Success

Back-end PSO
optimisation

Local mapping

Update parameters and

thresholds

Fig. 2. Improve algorithm flow

EKF achieves state optimization in SLAM through third-
order recurrence: Pose prediction is completed based on the
nonlinear motion model, feature matching is used to construct
the maximum likelihood association, and Bayesian map
update is realized through Jacobian matrix linearization
[16][17]. Although EKF has optimality in minimum variance
prediction, its computational complexity and the number of
features increase in a quadratic way, and it is easily affected
by the accumulation of linearization errors, leading to a
decline in estimation accuracy and pathological covariance
matrix problems in high-dimensional feature spaces or
dynamic environments [18]. In front-end processing, EKF is
employed to track the status of robots in real time. The
process consists of state prediction, covariance prediction,
and measurement update, with (3) and (4). State prediction is
the use of control input and motion models to predict the state
of a robot at the next moment.

R \k:f()?k\kr uy) 3

where u is the control input at time k. X, the state
estimate and control input at time £, and the predicted state
at time k+1, that is, the state at time k predicted at time k+1.
X is the optimal state prediction at time k. In (4), Py
represents the uncertainty of the state estimation at time &, and
0O, is the process noise. We pass the state of the previous
moment to the current and predicted moments, that is, pass
the uncertainty Py of the previous moment to the current
predicted moment through kPk|kF,{. Among them, Py, is
the covariance matrix of the predicted state, H; is the
Jacobian matrix of the observation model, and R, is the noise
covariance matrix.
Pk+1\k:FkPk\kFl{+Qk

N (C)
Kk:Pk\k.1H/{(HkPk\k-1H/{+Rk)

By using (5), the difference between the actual observed
value and the predicted value and the Kalman gain, the
predicted state is corrected to obtain Xy, which is the optimal
estimate, is obtained. Py is the uncertainty covariance matrix
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of the updated state, representing the corrected state
confidence.

)

{)Afk\k:}k\m K (Zk-fkvm)
Pry=-KH) Py

C. Particle Swarm Optimization

Particle swarm optimization algorithm simulates the
foraging behavior of bird flocks and searches the solution
space through particle collaboration. Each particle
dynamically adjusts the motion vector based on the individual
optimal solution and the group optimal solution: The velocity
update integrates self-learning and social learning factors, and
the position update follows the inertia weight dynamic
equation. During the iteration, particles explore in parallel
through distributed information sharing. The self-organizing
mechanism takes into account the convergence balance of
diversity, achieving global optimization. The algorithm
balances local and global search through a dual cognition
model and has strong robustness to complex multimodal
problems. In (6), the update of speed and position is shown.

{Vi t+D=wv(D+c; 7 (P,»-xf(l)) +ey 7y (gx,(0)
x;(t+D=x;(O)+v,(t+1)

©

In equation (6), w represents the inertia weight, c;and ¢,
are the learning factors, r; and r; are random numbers within
the range of [0,1], p, is the historical optimal position of the
particle, and g is the global optimal position. In the back-end
optimization, the Particle Swarm Optimization (PSO)
algorithm is adopted to enhance the accuracy of state
estimation. The particle swarm dynamically adjusts the
velocity and position based on individual optimum and global
optimum, gradually optimizing the state estimation. The
velocity update and position update are shown in (7), where
Py, ; the historical optimal position of the i-th particle, and

ciry (Pbes,‘ X (t)) is the movement of the particle towards its
own historical optimal position. g, is the global optimal
position, and c,r, (ghest-x,-(t)) rives the particle swarm to
gather towards the global optimal position.
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In global optimization, PSO addresses the cumulative
error issue in SLAM systems by enabling global optimization
of robot trajectories and feature point locations through multi-
particle collaborative search [19], thereby effectively
improving positioning accuracy. In the data association, PSO
enhances the reliability of feature matching through
parameter optimization. Each particle can encode the
matching status of feature points, and the fitness function is
constructed based on geometric consistency or observation
likelihood, dynamically selecting the optimal matching
combination [20].

Compared to traditional optimization methods, PSO
exhibits higher adaptability in dynamic environments,
enabling faster responses to environmental changes and real-
time adjustments to position estimation and map updates. As
shown in Figure 3(a), the initial distribution of unoptimized
point clouds reveals significant spatial misalignment between
the red source cloud and blue target cloud in the coordinate
system, characterized by  approximately  0.5-unit
displacement along the X-axis and 0.3-unit displacement
along the Y-axis; The optimization employed 50 particles
over 100 iterations by using an inertia weight of 0.5 and
acceleration coefficients of ¢;=1.8 and ¢,=2.2, while particle
velocity was limited to [-0.2, 0.2] to prevent oscillatory
behavior, Figure 3(b) demonstrates the spatial alignment
effect after PSO-based registration, where the green
transformed cloud achieves precise geometric matching with
the target cloud following rigid transformation through 100
iterative optimizations. Figure 3(c) illustrates the convergence
dynamics via fitness curves, highlighting an exponential 98%
reduction in Mean Square Error (MSE) fitness within the first
5 iterations, with convergence approaching the global
minimum by the 10-th iteration, thereby validating the
algorithm’s efficiency in minimizing registration error and
accelerating convergence to optimal solutions under rigid
transformation constraints.

III. EXPERIMENTS

A. Improved  ORB-SLAM2  Algorithm  for
Optimization Mapping

To verify the effectiveness of the improved algorithm,

simulation experiments were conducted using self-recorded

data. This carried out the simulation in a VMware virtual

machine, and the device configuration used: The operating

Hybrid
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system of Ubuntu20.04, the main frequency of CPU is
2994.375MHz, the running platform is ROS, the
programming language used to develop the simulation system
is python3.12, and the running files are edited in the Visual
Studio Codel.86.2 version editor.

The improved algorithm was simulated by using Rviz in
ROS. Figure 4 shows the simulation model of the robot in
Rviz. From left to right, there are camera perspective, Gazebo
construction, and Rviz. We see that the simulated map is
basically consistent with the map in Gazebo.

“H DN - MOB|*%Z|n im0l

Fig. 6. Map construction based on the improved ORB-SLAM?2
algorithm with hybrid optimization



We ensure that the ROS system is fully operational,
environmental map construction proceeds by loading the
robot model and conducting the SLAM simulation. Figure 5
illustrates the map generated by the original algorithm, while
Figure 6 showcases the result from the hybrid-optimized
ORB-SLAM?2 algorithm. The comparison reveals that the
improved algorithm demonstrates a noticeable improvement
in mapping accuracy. Specifically, the structural features
(circled in Figure 5) that were undetected by the original
method are successfully recognized and displayed in Rviz
when using the enhanced algorithm. Furthermore, the
optimized approach reduces distortion along map edges,
resulting in higher overall precision. This comparative
analysis confirms that the proposed hybrid-optimized ORB-
SLAM?2 algorithm effectively achieves high-precision
environmental mapping.

As shown in the comparative path test results in Table 1,
the same A* path planning algorithm on maps was built by
conventional ORB-SLAM2, PV-LIO (Point-Visual Lidar
Inertial Odometry), and the hybrid-optimized ORB-SLAM?2
variant—the proposed algorithm consistently outperforms
both baseline methods across three map scales. It achieves
shorter path lengths and reduced computation time,
demonstrating significant improvements over the original
ORB-SLAM?2 and PV-LIO in terms of navigation efficiency
and computational resource utilization.

TABLE I. Comparison of path tests after constructing maps of different
sizes

Dimensions: Dimensions: Dimensions:
50 x 50 100 x 100 150 X150
Algorithm
Length Length Length
t(s) t(s) t(s)
(m) (m) (m)

ORB-SLAM2 58.41 0.031 118.66 0.069 169.45 0.092

PV-LIO 52.89 0.023 105.33 0.057 156.22 0.073
Improved

39.23 0.014 87.67 0.032 120.66 0.042
algorithm

Compared to

ORB-SLAM2

32.37% 54.84%  26.12%  53.62%  28.79% = 54.35%

Compared to

PV-LIO

25.82% 39.13% 16.77%  43.86%  22.76%  42.47%

According to the data in Table 1, the improved algorithm
reduces the time required for path planning and significantly
shortens the path length when constructing maps of three
different sizes. The improvement in time is more obvious for
maps of sizes 100x100 (m) and 150%150 (m). A more obvious
comparison of the PV-LIO algorithm and the improved
algorithm is shown in Figure 7.

In Figure 7, six colors are employed to clearly compare
the path length and time consumption of the traditional PV-
LIO algorithm and the improved algorithm at different sizes.
The bar chart at the bottom compares the path lengths of the
two algorithms, while the bar chart at the top compares the
time consumption of the two algorithms. The improved ORB-
SLAM?2 algorithm with mixed optimization significantly
reduces distortion and improves the accuracy of map
construction.
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As demonstrated in the comparative evaluation of
trajectory accuracy and key metrics—including Absolute
Error, Absolute Trajectory Error (ATE), and Relative Pose
Error (RPE)—between the proposed improved algorithm and
the PV-LIO algorithm in Figure 8, the trajectory comparison
in Figure 8(a) (main plot) and absolute error analysis (subplot)
reveal critical performance differences. The PV-LIO
algorithm (blue dashed line) coincides with the ground truth
at the starting point (0,10) but exhibits nonlinear drift along
the X-axis displacement.

In contrast, the improved algorithm (red solid line)
maintains precise alignment with the ground truth (e.g., Y=18
at X=8) and demonstrates superior tracking capability at key
turning regions. The initial response characteristics (orange
diamond markers) show early Y-direction deviation in PV-
LIO, while the critical performance comparison zone (red
square highlights) reveals a maximum deviation of 15% from
the ground truth for PV-LIO compared to a deviation for the
improved algorithm. The terminal convergence region (green
star markers) underscores the improved algorithm’s error
convergence efficacy. The subplot quantitatively contrasts the
Mean Absolute Error (MAE) between the algorithms: the
light-blue band represents PV-LIO’s error distribution, and
the light-green zone highlights the improved algorithm’s error
suppression across the full X-axis range (0~10 meters), with
pronounced convergence particularly in the mid-range,
visually validating the precision enhancement of the proposed
approach.

Figure 8(b) presents a comparative analysis of the key
metrics ATE and RPE, demonstrating that the improved
algorithm achieves a systematic reduction in Mean Absolute
Error (MAE) throughout the spatial displacement range. It
shows particularly notable superiority in the critical
displacement segment, where it reduces MAE by 33.3%
compared to the PV-LIO algorithm. Furthermore, the
improved algorithm exhibits significant enhancements in core
performance indicators, with reductions of 32.7% in ATE and
33.3% in RPE, quantitatively validating its precision
advancement.
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IV. CONCLUSION

To address the issues of significant pose prediction errors
and IMU data loss in the original ORB-SLAM?2 algorithm
under complex environments, as well as the inefficient data
structure and insufficient motion distortion compensation in
the PV-LIO algorithm, this study proposes an enhanced ORB-
SLAM?2 framework integrating an EKF-based frontend pose
smoother with a PSO-driven backend hybrid optimizer, where
the frontend employs EKF to fuse predictions and
observations for generating smoothed pose outputs that
mitigate jitter, while the backend leverages PSO to
dynamically optimize the pose graph, thereby enhancing
feature matching accuracy and efficiency while indirectly
refining pose estimation; for multi-sensor integration
involving cameras, IMUs, and lidars, the improved algorithm
effectively suppresses sensor noise interference to reduce
pose prediction errors, and the backend establishes a closed-
loop detection mechanism through PSO, enabling
simultaneous loop closure validation and particle swarm-
based collaborative optimization to achieve more precise state
estimation and ultimately output an optimized map;
experimental validation across three distinct environmental
scales demonstrates that the proposed algorithm maintains
mapping quality while significantly reducing mapping and
scanning time compared to the original ORB-SLAM2, and
outperforms PV-LIO in key metrics including a 32.7%
reduction in ATE, thereby effectively suppressing cumulative
errors and enhancing overall system robustness in dynamic
scenarios.
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