
979-8-3315-8654-6/25/$31.00 ©2025 IEEE 

An Improved ORB-SLAM2 Algorithm Based on 
Extended Kalman Filtering and Particle Swarm 

Optimization 
 

Hongyan Chen   
School of Electrical 

Engineering             
University of Jinan, China 

 

Wei Qi Yan 
 Auckland University of 

Technology 
Auckland, New Zealand 

 

Qinjun Zhao 
School of Electrical 

Engineering              
University of Jinan, China 

 

Yueyang Li 
School of Electrical 

Engineering             
University of Jinan, China 

 

Abstract—To address the challenges of pose estimation jitter and 
cumulative errors in visual SLAM systems operating in complex 
dynamic environments, this paper proposes an enhanced ORB-
SLAM2 algorithm that integrates an Extended Kalman Filter 
(EKF)-based frontend pose smoother with a Particle Swarm 
Optimization (PSO)-driven backend optimizer. At the frontend, 
the EKF pose smoother fuses Inertial Measurement Unit (IMU) 
data with visual odometry to correct camera trajectories in real-
time, effectively suppressing short-term pose drift. At the backend, 
the PSO algorithm dynamically optimizes node constraints in the 
pose graph and adaptively adjusts loop-closure thresholds, 
refining the weights of reprojection errors to enhance consistency 
between mapping outputs and the original environment. 
Experimental results demonstrate that compared to the baseline 
ORB-SLAM2 and PV-LIO algorithms, the proposed method 
significantly improves efficiency across three map scales—
reducing mapping time and scanning duration while maintaining 
mapping quality—and achieves notable error suppression.  

Keywords—Particle Swarm Optimization; Oriented FAST 
and Rotated BRIEF-SLAM Second version; Extended Kalman 
Filter; Hybrid Optimization; Visual SLAM. 

I. INTRODUCTION  
Visual SLAM (Simultaneous Localization and Mapping) 

algorithm, as the core perception method for autonomous 
navigation systems, exhibits a distinct trajectory of 
technological iteration. In 2015, Mur-Artal et al. introduced 
the ORB-SLAM framework [1], realizing the first feature-
based, fully functional visual SLAM system; it utilized ORB 
features for real-time camera tracking and map construction. 
Building on this, the same team released ORB-SLAM2 
(Oriented FAST and Rotated BRIEF-SLAM Second version) 
in 2017 [2], which significantly enhanced system accuracy 
and robustness through the incorporation of multi-map 
management and loop closure detection techniques, thereby 
elevating it to a benchmark in the visual SLAM domain. 
Regarding sensor fusion, the OKVIS system pioneered by 
Leutenegger et al. in 2016 [3] established the foundation for 
tightly-coupled visual-inertial integration by employing pre-
integration techniques to achieve efficient fusion of IMU and 
visual data. Further advancing visual-inertial SLAM, Qin et 
al. proposed the VINS-Mono system in 2018 [4], which 
combined sliding-window optimization with marginalization 
strategies to improve system stability. In 2020, Campos et al. 
developed OpenVSLAM [5], demonstrating substantial gains 

in mapping efficiency for large-scale environments via 
enhancements to the Bag-of-Words model and parallelized 
processing. 

Despite significant advancements in the existing research 
work, visual SLAM systems continue to face several critical 
technical bottlenecks. As demonstrated by Yang’s study in 
2021 [6], the estimation error of the Extended Kalman Filter 
(EKF) increases exponentially when the system nonlinearity 
exceeds a critical threshold. Furthermore, a fundamental 
trade-off exists between optimization efficiency and accuracy 
in the backend optimization module. Comparative 
experiments [7] confirmed that the computational complexity 
of graph optimization-based methods escalates sharply 
beyond 1,000 pose nodes, reaching levels unacceptable for 
real-time performance. Additionally, empirical data [8] 
indicates a 2 to 3-fold increase in localization error for 
existing SLAM systems operating in environments where 
dynamic objects constitute over 30% of the scene. While the 
ORB-SLAM2 algorithm is renowned for its robust system 
architecture, real-time performance, and high precision [9], 
traditional visual SLAM algorithms exhibit significantly 
degraded performance under dark or highly dynamic 
conditions despite excelling in well-lit environments. Current 
mainstream frontend implementations predominantly employ 
the Extended Kalman Filter (EKF) for IMU and odometry 
data fusion [10].  

 However, the inherent limitations of the EKF in handling 
nonlinear problems become increasingly pronounced as 
environmental dynamics intensify [11]. Although backend 
optimization—a critical component responsible for resolving 
global consistency issues and rectifying cumulative errors 
from frontend processing [12]-[14] can theoretically achieve 
globally optimal solutions through traditional graph-based 
methods, its practical application is frequently constrained by 
computational efficiency and real-time requirements. 

In this paper, we propose an improved ORB-SLAM2 
algorithm integrating EKF with Particle Swarm Optimization 
(PSO). The frontend employs an adaptive noise covariance 
mechanism in EKF to suppress time-varying sensor noise, 
while the backend adopts PSO for pose graph optimization, 
leveraging swarm intelligence to avoid local optima. The 
experiments confirm significantly enhanced accuracy and 
robustness, particularly in dynamic environments. 
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Fig. 1. Improved algorithm framework diagram 

II. RESEARCH METHODS 

A. Overall Framework for Improving the Algorithm 
Based on the ORB-SLAM2 framework, which integrates 

five modules and three operating threads, this paper 
introduces an enhanced algorithm incorporating an EKF 
module at the frontend to fuse IMU data with ORB pose 
observations for smoothed pose estimation. At the backend, 
Particle Swarm Optimization (PSO) is employed to 
dynamically adjust EKF noise parameters (Q and R) and ORB 
feature thresholds. As illustrated in Figure 1, the improved 
system utilizes multimodal data fusion and optimization 
mechanisms for real-time localization and mapping: the data 
input layer synchronously acquires IMU measurements and 
RGB image streams, which are processed via an EKF fusion 
module for calibration and preliminary motion estimation; the 
processing layer adopts a multithreaded architecture 
encompassing parallel frontend optimization, backend 
optimization, and map construction—the frontend thread 
enhances feature stability through pose observation fusion, 
ORB feature refinement, and keyframe selection; the backend 
optimization thread leverages PSO to dynamically tune 
threshold parameters and optimize the EKF state prediction 
model. Meanwhile, the map construction thread handles 
Bundle Adjustment (BA) and incremental map updates. 

In Figure 2, the algorithm establishes a closed-loop 
processing flow encompassing sensor data input, frontend 
real-time pose estimation, and backend pose graph 
optimization. Starting with image input, an EKF-based pose 
smoother fuses visual-inertial data and feeds into a tracking 
status monitoring module. This module continuously 
evaluates feature quality: upon successful detection, it 
initiates a keyframe insertion mechanism to trigger the local 
mapping thread for bundle adjustment and point cloud 
updates; if tracking fails, the relocalisation module is 
activated. For backend processing, the PSO algorithm 
dynamically optimizes threshold parameters—adjusting the 
ORB feature threshold and refining EKF noise covariance 

matrices (Q, R). These optimized parameters are fed back to 
frontend modules via a real-time feedback loop, thus forming 
an adaptive closed-loop feedback mechanism that 
continuously enhances system robustness against dynamic 
environmental disturbances and sensor uncertainties. 

B. Front-end Optimization 
EKF is a widely used recursive filtering algorithm for 

state estimation in dynamic systems. This algorithm achieves 
real-time estimation of system states by linearizing non-linear 
systems. The basic framework of the EKF consists of two 
main steps: State prediction and measurement update. During 
the state prediction phase, the EKF uses the system's dynamic 
model to predict the next state based on the current state and 
control input [15]. Specifically, the state vector x is predicted, 
representing the position and orientation of the robot and the 
covariance matrix Pt|t-1 is updated as (1) 

!
xt|t-1=f"xt-1|t-1,ut#+Wt
Pt|t-1=FtPt-1|t-1FtT+Qt

(1) 

where  f	 is a nonlinear function describing the dynamics of 
the system, ut is the control input, Wt is the process noise, Ft  
is the state transition matrix, and Qt  is the process noise 
covariance. 

   During the measurement update phase, the EKF combines 
newly acquired observation information to correct the 
predicted state. If the measurement model is zt , xt  is the 
updated pose, and the updated state covariance is (2), where  
h is the observation model, zt is the observation value, vt is 
the measurement noise, and the state estimate is updated using 
Kalman gain Kt; Ht is the observation matrix, and  I is the unit 
matrix. The primary advantage of the EKF lies in its 
computational efficiency and real-time performance, making 
it the preferred state estimation method for many dynamic 
systems. 

&

zt=h(xt)+vt
xt|t=xt|t-1+Kt 'zt-h"xt|t-1#(

Pt|t=(I-KtHt)Pt|t-1

(2)
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Fig. 2. Improve algorithm flow 

EKF achieves state optimization in SLAM through third-
order recurrence: Pose prediction is completed based on the 
nonlinear motion model, feature matching is used to construct 
the maximum likelihood association, and Bayesian map 
update is realized through Jacobian matrix linearization 
[16][17]. Although EKF has optimality in minimum variance 
prediction, its computational complexity and the number of 
features increase in a quadratic way, and it is easily affected 
by the accumulation of linearization errors, leading to a 
decline in estimation accuracy and pathological covariance 
matrix problems in high-dimensional feature spaces or 
dynamic environments [18]. In front-end processing, EKF is 
employed to track the status of robots in real time. The 
process consists of state prediction, covariance prediction, 
and measurement update, with (3) and (4). State prediction is 
the use of control input and motion models to predict the state 
of a robot at the next moment. 

x)k+1|k=f"x)k|k,uk# (3) 

where uk  is the control input at time k . x!k+1|k  the state 
estimate and control input at time k, and the predicted state 
at time k+1, that is, the state at time k predicted at time k+1. 
x"k|k  is the optimal state prediction at time k . In (4), Pk|k 
represents the uncertainty of the state estimation at time k, and 
Qk  is the process noise. We pass the state of the previous 
moment to the current and predicted moments, that is, pass 
the uncertainty Pk|k  of the previous moment to the current 
predicted moment through FkPk|kFkT . Among them, Pk|k-1  is 
the covariance matrix of the predicted state, Hk  is the 
Jacobian matrix of the observation model, and Rk is the noise 
covariance matrix. 

*
Pk+1|k=FkPk|kFk

T+Qk
Kk=Pk|k-1Hk

T"HkPk|k-1HkT+Rk#
-1 (4) 

By using (5), the difference between the actual observed 
value and the predicted value and the Kalman gain, the 
predicted state is corrected to obtain x"k|k, which is the optimal 
estimate, is obtained. Pk|k is the uncertainty covariance matrix 

of the updated state, representing the corrected state 
confidence. 

!
x)k|k=x)k|k-1+Kk"zk-ẑk|k-1#
Pk|k=(I-KkHk)Pk|k-1

(5) 

C. Particle Swarm Optimization 
Particle swarm optimization algorithm simulates the 

foraging behavior of bird flocks and searches the solution 
space through particle collaboration. Each particle 
dynamically adjusts the motion vector based on the individual 
optimal solution and the group optimal solution: The velocity 
update integrates self-learning and social learning factors, and 
the position update follows the inertia weight dynamic 
equation. During the iteration, particles explore in parallel 
through distributed information sharing. The self-organizing 
mechanism takes into account the convergence balance of 
diversity, achieving global optimization. The algorithm 
balances local and global search through a dual cognition 
model and has strong robustness to complex multimodal 
problems. In (6), the update of speed and position is shown. 

!vi(t+1)=w⋅vi(t)+c1⋅r1⋅ 'pi-xi(t)(+c2⋅r2⋅"g-xi(t)#
xi(t+1)=xi(t)+vi(t+1)

(6) 

In equation (6), w represents the inertia weight, c1and c2 
are the learning factors, r1 and r1 are random numbers within 
the range of [0,1], pi is the historical optimal position of the 
particle, and g is the global optimal position. In the back-end 
optimization, the Particle Swarm Optimization (PSO) 
algorithm is adopted to enhance the accuracy of state 
estimation. The particle swarm dynamically adjusts the 
velocity and position based on individual optimum and global 
optimum, gradually optimizing the state estimation. The 
velocity update and position update are shown in (7), where 
Pbest,i the historical optimal position of the i-th particle, and 
c1r1 #Pbest,i-xi(t)& is the movement of the particle towards its 
own historical optimal position. gbest  is the global optimal 
position, and c2r2 #gbest-xi(t)&  rives the particle swarm to 
gather towards the global optimal position.
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Fig. 3. Comparison of PSO point cloud configuration 

!vi(t+1)=ωvi(t)+c1r1 'Pbest,i-xi(t)(+c2r2 'gbest-xi(t)(
xi(t+1)=xi(t)+vi(t+1)

(7) 

In global optimization, PSO addresses the cumulative 
error issue in SLAM systems by enabling global optimization 
of robot trajectories and feature point locations through multi-
particle collaborative search [19], thereby effectively 
improving positioning accuracy. In the data association, PSO 
enhances the reliability of feature matching through 
parameter optimization. Each particle can encode the 
matching status of feature points, and the fitness function is 
constructed based on geometric consistency or observation 
likelihood, dynamically selecting the optimal matching 
combination [20].  

Compared to traditional optimization methods, PSO 
exhibits higher adaptability in dynamic environments, 
enabling faster responses to environmental changes and real-
time adjustments to position estimation and map updates. As 
shown in Figure 3(a), the initial distribution of unoptimized 
point clouds reveals significant spatial misalignment between 
the red source cloud and blue target cloud in the coordinate 
system, characterized by approximately 0.5-unit 
displacement along the X-axis and 0.3-unit displacement 
along the Y-axis; The optimization employed 50 particles 
over 100 iterations by using an inertia weight of 0.5 and 
acceleration coefficients of c1=1.8 and c2=2.2, while particle 
velocity was limited to [-0.2, 0.2] to prevent oscillatory 
behavior, Figure 3(b) demonstrates the spatial alignment 
effect after PSO-based registration, where the green 
transformed cloud achieves precise geometric matching with 
the target cloud following rigid transformation through 100 
iterative optimizations. Figure 3(c) illustrates the convergence 
dynamics via fitness curves, highlighting an exponential 98% 
reduction in Mean Square Error (MSE) fitness within the first 
5 iterations, with convergence approaching the global 
minimum by the 10-th iteration, thereby validating the 
algorithm’s efficiency in minimizing registration error and 
accelerating convergence to optimal solutions under rigid 
transformation constraints. 

III. EXPERIMENTS 

A. Improved ORB-SLAM2 Algorithm for Hybrid 
Optimization Mapping 

To verify the effectiveness of the improved algorithm, 
simulation experiments were conducted using self-recorded 
data. This carried out the simulation in a VMware virtual 
machine, and the device configuration used: The operating 

system of Ubuntu20.04, the main frequency of CPU is 
2994.375MHz, the running platform is ROS, the 
programming language used to develop the simulation system 
is python3.12, and the running files are edited in the Visual 
Studio Code1.86.2 version editor. 

The improved algorithm was simulated by using Rviz in 
ROS. Figure 4 shows the simulation model of the robot in 
Rviz. From left to right, there are camera perspective, Gazebo 
construction, and Rviz. We see that the simulated map is 
basically consistent with the map in Gazebo. 

Fig. 4. Rviz simulation model construction environment  

Fig. 5. Map construction based on the original algorithm  

Fig. 6. Map construction based on the improved ORB-SLAM2 
algorithm with hybrid optimization  
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We ensure that the ROS system is fully operational, 
environmental map construction proceeds by loading the 
robot model and conducting the SLAM simulation. Figure 5 
illustrates the map generated by the original algorithm, while 
Figure 6 showcases the result from the hybrid-optimized 
ORB-SLAM2 algorithm. The comparison reveals that the 
improved algorithm demonstrates a noticeable improvement 
in mapping accuracy. Specifically, the structural features 
(circled in Figure 5) that were undetected by the original 
method are successfully recognized and displayed in Rviz 
when using the enhanced algorithm. Furthermore, the 
optimized approach reduces distortion along map edges, 
resulting in higher overall precision. This comparative 
analysis confirms that the proposed hybrid-optimized ORB-
SLAM2 algorithm effectively achieves high-precision 
environmental mapping. 

As shown in the comparative path test results in Table 1, 
the same A* path planning algorithm on maps was built by 
conventional ORB-SLAM2, PV-LIO (Point-Visual Lidar 
Inertial Odometry), and the hybrid-optimized ORB-SLAM2 
variant—the proposed algorithm consistently outperforms 
both baseline methods across three map scales. It achieves 
shorter path lengths and reduced computation time, 
demonstrating significant improvements over the original 
ORB-SLAM2 and PV-LIO in terms of navigation efficiency 
and computational resource utilization. 

TABLE I. Comparison of path tests after constructing maps of different 
sizes 

Algorithm 

Dimensions:  

50 × 50 

Dimensions: 

100 × 100 

Dimensions: 

150×150 

Length 

(m) 
t(s) 

Length 

(m) 
t(s) 

Length 

(m) 
t(s) 

ORB-SLAM2 58.41 0.031 118.66 0.069 169.45 0.092 

PV-LIO  52.89 0.023 105.33 0.057 156.22 0.073 

Improved 

algorithm 
39.23 0.014 87.67 0.032 120.66 0.042 

Compared to 

ORB-SLAM2 
32.37% 54.84% 26.12% 53.62% 28.79% 54.35% 

Compared to  

PV-LIO 
25.82% 39.13% 16.77% 43.86% 22.76% 42.47% 

According to the data in Table 1, the improved algorithm 
reduces the time required for path planning and significantly 
shortens the path length when constructing maps of three 
different sizes. The improvement in time is more obvious for 
maps of sizes 100×100 (m) and 150×150 (m). A more obvious 
comparison of the PV-LIO algorithm and the improved 
algorithm is shown in Figure 7.  

In Figure 7, six colors are employed to clearly compare 
the path length and time consumption of the traditional PV-
LIO algorithm and the improved algorithm at different sizes. 
The bar chart at the bottom compares the path lengths of the 
two algorithms, while the bar chart at the top compares the 
time consumption of the two algorithms. The improved ORB-
SLAM2 algorithm with mixed optimization significantly 
reduces distortion and improves the accuracy of map 
construction. 

Fig. 7. Experimental comparison 
As demonstrated in the comparative evaluation of 

trajectory accuracy and key metrics—including Absolute 
Error, Absolute Trajectory Error (ATE), and Relative Pose 
Error (RPE)—between the proposed improved algorithm and 
the PV-LIO algorithm in Figure 8, the trajectory comparison 
in Figure 8(a) (main plot) and absolute error analysis (subplot) 
reveal critical performance differences. The PV-LIO 
algorithm (blue dashed line) coincides with the ground truth 
at the starting point (0,10) but exhibits nonlinear drift along 
the X-axis displacement.  

In contrast, the improved algorithm (red solid line) 
maintains precise alignment with the ground truth (e.g., Y=18 
at X=8) and demonstrates superior tracking capability at key 
turning regions. The initial response characteristics (orange 
diamond markers) show early Y-direction deviation in PV-
LIO, while the critical performance comparison zone (red 
square highlights) reveals a maximum deviation of 15% from 
the ground truth for PV-LIO compared to a deviation for the 
improved algorithm. The terminal convergence region (green 
star markers) underscores the improved algorithm’s error 
convergence efficacy. The subplot quantitatively contrasts the 
Mean Absolute Error (MAE) between the algorithms: the 
light-blue band represents PV-LIO’s error distribution, and 
the light-green zone highlights the improved algorithm’s error 
suppression across the full X-axis range (0~10 meters), with 
pronounced convergence particularly in the mid-range, 
visually validating the precision enhancement of the proposed 
approach. 

Figure 8(b) presents a comparative analysis of the key 
metrics ATE and RPE, demonstrating that the improved 
algorithm achieves a systematic reduction in Mean Absolute 
Error (MAE) throughout the spatial displacement range. It 
shows particularly notable superiority in the critical 
displacement segment, where it reduces MAE by 33.3% 
compared to the PV-LIO algorithm. Furthermore, the 
improved algorithm exhibits significant enhancements in core 
performance indicators, with reductions of 32.7% in ATE and 
33.3% in RPE, quantitatively validating its precision 
advancement.
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Fig. 8. Algorithm comparison chart  

IV. CONCLUSION 
To address the issues of significant pose prediction errors 

and IMU data loss in the original ORB-SLAM2 algorithm 
under complex environments, as well as the inefficient data 
structure and insufficient motion distortion compensation in 
the PV-LIO algorithm, this study proposes an enhanced ORB-
SLAM2 framework integrating an EKF-based frontend pose 
smoother with a PSO-driven backend hybrid optimizer, where 
the frontend employs EKF to fuse predictions and 
observations for generating smoothed pose outputs that 
mitigate jitter, while the backend leverages PSO to 
dynamically optimize the pose graph, thereby enhancing 
feature matching accuracy and efficiency while indirectly 
refining pose estimation; for multi-sensor integration 
involving cameras, IMUs, and lidars, the improved algorithm  
effectively suppresses sensor noise interference to reduce 
pose prediction errors, and the backend establishes a closed-
loop detection mechanism through PSO, enabling 
simultaneous loop closure validation and particle swarm-
based collaborative optimization to achieve more precise state 
estimation and ultimately output an optimized map; 
experimental validation across three distinct environmental 
scales demonstrates that the proposed algorithm maintains 
mapping quality while significantly reducing mapping and 
scanning time compared to the original ORB-SLAM2, and 
outperforms PV-LIO in key metrics including a 32.7% 
reduction in ATE, thereby effectively suppressing cumulative 
errors and enhancing overall system robustness in dynamic 
scenarios. 
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