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Abstract—This paper aims at introducing a special cubic
cardinal spline from the GMK-splines, which is able to obtain
almost the same interpolation results of cubic B-spline, but
without solving the system of equations for getting control
vertices, and exploring its applications in geometric modeling
and image processing. The spline involved can be obtained by
using a linear combination of several shifted B-splines of the
same degree. The spatial and frequency domain comparison
demonstrates its superior local support and frequency domain
performance. In addition, a number of examples are involved
in geometric modeling and digital image processing, compared
with a few conventional methods. As shown in this paper, the
cubic cardinal spline is an alternative choice instead of the cubic
B-spline in the interpolation procedure in order to avoid solving
the system of equations over and over again.

Index Terms—GMK-spline, B-spline, interpolation, geometric
modeling, image processing.

I. INTRODUCTION

Spline generally possesses a few merit properties, such as
local shape control and high-order smoothness, with pretty
rich applications, such as data fitting [1], interpolation [2],
sketching, curve and surface modeling. The earliest recorded
use of splines in a manufacturing environment seems to go
back to early AD Roman times, for the purpose of ship
building [3]. With the advent of big data era and artificial
intelligence (AI), spline methods are still widely applied to
multiple fields, including computer-aided geometric design
(CAGD)˜ [4], [5], signal and image processing [6]–[13],
industry manufacture, information science [14], [15], applied
mathematics˜ [16], engineering science and technology˜ [17]–
[19], and mechanical engineering [20]. The applications have
led to decades of research for all types of spline functions,
including polynomial splines [21], cardinal splines [22], [23],
and rational splines. Especially, cardinal splines, also called
explicit interpolatory splines, catch great interest from engi-
neers and researchers and have a tremendous impact in these
fields.

Among all the existing spline interpolation schemes, high-
order B-splines play a crucial role in geometric modeling
and digital image processing in which they can provide
interpolation results of high-order smoothness which always
means high quality. However, these high-order B-splines are

not explicitly interpolatory, hence, there exists a troublesome
problem that is to solve the system of equations in an in-
terpolation procedure for getting control vertices. In order to
overcome this problem, the B-spline interpolators are proposed
by means of multiple signal processing techniques in the
literature [23], [24].

Hence, the B-spline interpolators are the summations of
infinite terms and are not exactly locally supported. However,
this inspires the question whether there exist local-supported
basis functions represented by a finite number of shifted B-
splines? Therefore, we construct a class of basis functions.
This idea is in accordance with the many-knots (abbreviated
as MK)-spline, which was firstly proposed by Qi et al. [21].
Since the MK-spline is proposed, it has made a plethora of
applications and great achievements [25]–[27].

In this paper, we introduce a special cubic cardinal spline
that behaves like B-spline interpolation in applications like
geometric modeling and image processing, but without solving
equations for control vertices. This spline is a special general-
ized MK-spline (GMK-spline) with explicit interpolatory prop-
erty. The GMK-spline, proposed in our prior work [28], has
infinitely distinct basis functions. Similar to the GMK-spline,
the spline is also a linear combination of several same-degree
shifted B-splines, with coefficients determined by solving
Lagrange interpolation condition equations. It inherits cubic B-
spline properties like central symmetry, local support, integral
unity, partition of unity, and linear precision. It achieves
interpolation without solving control vertex equations, and
replaces cubic B-splines in interpolation, yielding nearly iden-
tical results in geometric modeling and image processing.
To prove this, we compare it with cubic B-splines and the
interpolators in spatial and frequency domains, and present
examples in geometric modeling and image processing.

The subsequent structure of this paper is organized as
follows. Section II constructs a special cardinal spline, firstly
introducing the cubic B-spline basis function, then expounding
the cardinal basis function representation of the GMK-spline,
the solution of the equation system, and spatial and frequency
analysis. Section III presents the applications of the spline
in geometric modeling (curve and surface design) and image
processing (low-pass frequency filter), together with method
comparisons. Section IV summarizes the characteristics, ad-
vantages and application prospects of the GMK-spline.979-8-3315-8654-6/25/$31.00 ©2025 IEEE



Fig. 1. Examples of GMK-spline curve and B-spline curve.

II. CARDINAL SPLINE CONSTRUCTION

In this paper, we introduce a special cardinal spline from
the GMK-spline [28] instead of the cubic B-spline in the
interpolation procedure in order to avoid solving the system
of equations over and over again.

When a spline basis function s(t) satisfies the Lagrange
interpolation conditions:

s(0) = 1, s(k) = 0, k ̸= 0, k ∈ Z, (1)

where the spline s(t) is called a cardinal spline or an explicit
interpolatory spline, which is the basic definition for the
subsequent construction of a cardinal spline.

A. Cubic B-spline basis function
Denote β3(t) as the cubic B-spline. Its algebraic represen-

tation is provided,

β3(t) =


|t|3
2 − t2 + 2

3 , |t| ≤ 1;

− |t|3
6 + t2 − 2|t|+ 4

3 , 1 < |t| < 2;

0, |t| ≥ 2,

(2)

In terms of piecewise polynomials with uniform knots, the
cubic B-spline β3(t) in (2) has local support over [−2, 2]. We
know that it has second smoothness at the knots. However,
the cubic B-spline is not a cardinal spline and lacks explicit
interpolatory. That is to say, for the B-spline interpolation, we
need to determine the coefficients (or control vertices) so that
the resulting function can pass through the given samples.

In the following, we briefly introduce a cubic B-spline
interpolator, which is a basis function satisfying (1) and
proposed in [23], [29], [30]. Based on the cubic B-spline, the
B-spline interpolator is presented by

η3(t) =
−6α

1− α2

+∞∑
k=−∞

α|k|β3(t− k), (3)

where the constant α equals
√
3− 2. The basis function η3(t)

has the explicit interpolation property, but obviously, it has
infinite terms and infinite support, which will lead to minor
truncation errors. We use it in this work to explain the truth
of cubic B-spline interpolation. Therefore, it is conceptual, but
with little practical usefulness.

B. Cardinal basis function representation

Unlike the B-spline interpolator (3) whose shifts are all
integers, the shifts for the GMK-spline basis functions are any
real numbers. Additionally, since the GMK-spline is a cardinal
(interpolatory) spline and designed with central symmetry,
its shifts must appear in pairs. For convenience, we sort the
positive shifts in ascending order as 0 ≤ a1 < a2 < · · · < aI .
Therefore, the basis functions of the GMK-spline are written
by

g(t) =

I∑
i=1

Ai
β3(t+ ai) + β3(t− ai)

2

= (A1δa1 +A2δa2 + · · ·+AIδaI
) ∗ β3(t), (4)

where Ai and ai (i = 1, 2, · · · , I) are undetermined constants,
and β3(t) is the cubic B-spline. In addition,

δa(t) =
δ(t+ a) + δ(t− a)

2

, where δ(t) is a Dirac delta function and the constant a is a
time shift.

C. Equation system

To determine the unknown constants Ai and ai (i =
1, 2, · · · , I), we start by simplifying the interpolation condition
(1). The cubic B-spline β3(t) defined in (2) has a local support
[−2, 2]. This means β3(t − aI) ≡ 0 when t ≥ aI + 2,
and consequently, g(n) ≡ 0 for any integer n such that
n ≥ ⌈aI⌉ + 2 (where ⌈x⌉ represents the smallest integer
greater than or equal to x ). Therefore, in the interpolation
condition (1), we only need to consider the cases where
n = 0, 1, · · · , ⌈aI⌉+ 1. This leads to the following nonlinear
equation system with ⌈aI⌉+ 2 constraints:{

g(0) = 1;

g(1) = g(2) = · · · = g(⌈aI⌉+ 1) = 0.
(5)

Since ⌈aI⌉ ≥ 1, the number of constraints is at least
three. The equation system (5) implies that

∑I
i=1 Ai = 1 for

any basis function g(t). The detailed proof of this result is
presented in [28].

In order to obtain the special cardinal spline, we select
a1 = 0, a2 = 5

4 , a3 = 7
4 , and a4 = 2. The reason why we

choose these shifts originates from deeper research is based
on [28]. Then, we substitute them into the equation (5). Next,
the corresponding equation is simplified as follows:

β3(0) β3(
5
4 ) β3(

7
4 ) 0

2β3(1) β3(
1
4 ) β3(

3
4 ) β3(1)

0 β3(
3
4 ) β3(

1
4 ) β3(0)

0 β3(
7
4 ) β3(

5
4 ) β3(1)




A1

A2

A3

A4

 =


1

0

0

0

 . (6)

This shows that the coefficient matrix is non-singular and
the equation exists only one solution. Solving (6), we achieve
that A1 = 130

79 , A2 = − 1016
711 , A3 = − 104

79 , and A4 = − 379
711 .



D. Spatial and frequency analysis

That is to say, a cubic cardinal spline is represented as
follows:

g(t) =

(
130

79
δ0 −

1016

711
δ 5

4
+

104

79
δ 7

4
− 379

711
δ2

)
∗ β3(t).

Its algebraic expression is obtained after computing a con-
volution of the B-spline basis function (2) and these shift op-
erators. The algebraic expression is more efficient in practical
applications. For convenience, the algebraic expression of the
cubic cardinal spline is provided as:

g(t) =

6641
8532 |t|

3 − 478
237 t

2 + 1, |t| < 1
4 ;

11641
8532 |t|3 − 3493

1422 t
2 + 625

5688 |t|+
67631
68256 ,

1
4 ≤ |t| < 3

4 ;

6881
8532 |t|

3 − 854
237 t

2 − 2365
2844 |t|+

5231
4266 ,

3
4 ≤ |t| < 1;

− 107
948 |t|

3 + 123
79 t2 − 3403

948 |t|+ 339
158 , 1 ≤ |t| < 5

4 ;

− 2353
2844 |t|

3 + 1004
237 t2 − 3289

948 |t|+ 40283
11376 ,

5
4 ≤ |t| < 7

4 ;

− 481
2844 |t|

3 + 185
79 t2 − 845

948 |t|+
19

1422 ,
7
4 ≤ |t| < 2;

− 51
316 |t|

3 + 58
79 t

2 − 757
948 |t| −

23
474 , 2 ≤ |t| < 9

4 ;

2687
8532 |t|

3 − 196
79 t2 + 6101

948 |t| − 10379
1896 , 9

4 ≤ |t| < 11
4 ;

− 1057
8532 |t|

3 + 90
79 t

2 − 3337
948 |t|+ 577

158 ,
11
4 ≤ |t| < 3;

17
316 |t|

3 − 109
237 t

2 + 1211
948 |t| − 181

158 , 3 ≤ |t| < 13
4 ;

− 557
8532 |t|

3 + 997
1422 t

2 − 14197
5688 |t|+ 200827

68256 , 13
4 ≤ |t| < 15

4 ;

379
8532 (|t| − 4)3, 15

4 ≤ |t| < 4;
0, otherwise.

When we choose different n, I and h, various basis func-
tions of the GMK-spline are derived. Fig. 1 shows the results
using the GMK-spline and the B-spline where we do not solve
systems of equations. We found that the GMK-spline curve
pass through each given data point, whereas the B-spline curve
cannot pass through them. The plots of several special splines
are shown in Fig. 2. It is clear that the GMK-spline g(t)
has compact support interval over [−4, 4], but the B-spline
interpolator has not strictly local support; the GMK-spline has
better frequency performance than the B-spline and is even
better a little bit than the B-spline interpolator in the sense of
approximating the idea filter.

For convenience, Fourier transforms of the cubic B-spline,
the cubic B-spline interpolator (3), and the special cubic
GMK-spline g(t) are given as:

HB(ω) =


(
2 sin(ω/2)

ω

)4

, ω ̸= 0;

1, ω = 0,

(7)

HBint(ω) =


48 sin4(ω/2)

ω4(2 + cos(ω))
, ω ̸= 0;

1, ω = 0,

(8)

(a) (b)

(c) (d)

Fig. 2. Comparison among the three different basis functions: Cubic B-spline
(brown dotted solid line), cubic B-spline interpolator η3(t) (magenta dotted
line), and the GMK-spline g(t) (blue solid line). (a) Comparison in spacial
domain, where cubic B-spline interpolator refers to a truncation of η3(t) in
(3) with k = −200, . . . , 200 and t ∈ [−3, 3]. (b) Comparison in spacial
domain, where t ∈ [3, 16]. (c) Comparison in frequency domain, adding the
ideal filter (black dash line), where ω ∈ [−8, 8]. (d) Comparison in frequency
domain, where ω ∈ [8, 30].

Hg(ω) =

{
−16(sin(ω

2 ))
4

711ω4 · P (ω), ω ̸= 0;

1, ω = 0,
(9)

where

P (ω) = 48512 cos8
(ω
4

)
− 59904 cos7

(ω
4

)
− 97024 cos6

(ω
4

)
+ 121088 cos5

(ω
4

)
+ 60640 cos4

(ω
4

)
− 72736 cos3

(ω
4

)
− 12128 cos2

(ω
4

)
+ 11632 cos

(ω
4

)
− 791.

III. APPLICATIONS IN GEOMETRIC MODELING AND IMAGE
PROCESSING

In [31], the GMK-spline has multiple beneficial properties,
such as explicit interpolation, strict local support, high-order
smoothness, unity of integral, partition of unity, and linear
precision. Of course, different GMK-splines have various in-
terpolation effects. In this paper, we focus only on one special
GMK-spline. By using this spline, one can easily construct
various curves and surfaces from just a few sample points.
So, designs based on it offer a high degree of predictability
and freedom. A few examples of shape design by using the
GMK-spline are presented. Note that we employ parametric
expressions to overcome the problem of non-uniform sam-
pling.

A. Curve design

A curve passing through a set of given data points Pk ∈ Rd

(the dimension d ≥ 2) is represented as

P (t) =
∑
k

Pkg(t− k), (10)

with the basis functions of the GMK-spline. Then, the inter-
polatory curve has C2-continuity. This interpolation equation



(10) is explicit in terms of the input discrete data {Pk}. We
choose d = 2 as an example and suppose Pk = (xk, yk), thus,
we get the resulting planar curve in the parameter form as
below: {

x(t) =
∑

k xkg(t− k);
y(t) =

∑
k ykg(t− k).

(a) (b) (c) (d)

Fig. 3. Closed curve construction using cubic GMK-splines g(t) (blue solid
line), and cubic B-spline (brown dotted line). (a) The interpolatory curve
produced by using repeatedly some points three times to approximate a circle.
(b) The sample point Pk is very close to the next one, that results in a knot
on the resulting curve. (c) Modify the position of Pk to eliminate the knot.
(d) Further modify the position of Pk to get more beautiful curve shape.

Based on this parameter form, the examples related to sur-
face design are given in the following. Taken into account of
four vertices of a square and one connecting point from them,
these five points are queued clockwise or counterclockwise as
the original sample points, i.e., P1, P2, P3, P4, P1, where P1

is called the connecting point. For n ≥ 2, the interpolatory
curves closely approximate a circle by repeatedly using the
endpoints with a number of times. Within this example, the
sequence of the control points used is listed as follows:

P3, P4, P1, P2, P3, P4, P1, P2, P3. (11)

Hence, it produces a closed curve that is very close to
a circle. These control points of this example are given
specifically as P1 = (0, 0), P2 = (2, 0), P3 = (2, 2), and
P4 = (0, 2). Besides, the approximated circle is with the
center of (1, 1) and the radius of

√
2. As shown in Fig. 3 (a).

Interestingly, by adjusting the position of Pk, the shape of the
curve is also locally modified. This local modification feature
is very flexible. In practical applications, when fine adjustment
of a specific local area of the curve is necessary to meet
specific shape requirements, only the position of Pk needs to
be changed in a targeted manner, without making large-scale
adjustments to the control points of the entire curve, providing
convenience for personalized design and optimization of the
curve. As shown in Fig. 3 (b)-(d).

.
In the following, the related rules are summarized for basic

shape curves.
• Open curves: The shape of an open curve is affected

by using the number of sample points and the repeti-
tion times of the endpoints. The repetition times of the
endpoints should match the support interval of the basis
function. For example, for g(t) with a support interval
of [-4, 4], its endpoints usually need to be repeated four
times.

• Closed curves: Select appropriate sample points (such as
square vertices combined with a connecting point), and
the curve can be approximated to a circle by repeating
the endpoints. If initial sampling causes an unsatisfactory
result, the curve is optimized by resampling, inserting
additional points, and locally adjusting one or several
samples, as shown in Fig. 3 (b)-(d).

• Spline comparison: As shown in Fig. 4, compared to
cubic B-spline fitting and linear interpolation, the GMK-
spline performs significantly better in the spatial domain
and has an interpolation result very similar to the B-spline
interpolation, making it an excellent alternative.

B. Surface design

A tensor surface passing through a grid of given data points
{Pij} (Pij ∈ Rd, the dimension d ≥ 3) is represented in the
parameter form:

P (t1, t2) =
∑
i

∑
j

Pijg(t1 − i)g(t2 − j),

By using the GMK-spline basis function g(t), and then the
interpolatory surface has C2-continuity. Note that the given
data are required to be regular or on the grid. Taking d = 3
into consideration for general applications and assuming Pij =
(xij , yij , zij), we get the resulting surface P = (x, y, z) as
follows:

x(t1, t2) =
∑

i

∑
j xijg(t1 − i)g(t2 − j);

y(t1, t2) =
∑

i

∑
j yijg(t1 − i)g(t2 − j);

z(t1, t2) =
∑

i

∑
j zijg(t1 − i)g(t2 − j).

The control points in (11) are 2D. Now, they are extended
to the 3D space: P1 = (0, 0, 0), P2 = (2, 0, 0), P3 = (2, 2, 0),
and P4 = (0, 2, 0), and two other control points are added
to them: P5 = (1, 1,−

√
2) and P6 = (1, 1,

√
2). The

corresponding control grid is given as
P1 P1 P1 P1 P1

P2 P5 P4 P6 P2

P3 P3 P3 P3 P3

P4 P6 P2 P5 P4

P1 P1 P1 P1 P1

 ,

(a) (b) (c)

(d) (e) (f)
Fig. 4. Shape design example. (a) Sample points. (b) Linear interpolation.
(c) Cubic B-spline fitting. (d) Cubic GMK-spline interpolation by g(t). (e)
Cubic B-spline interpolation. (f) Comparison among the GMK-splines g(t)
(blue solid line) and the cubic B-spline (brown dotted line).



(a) (b) (c)

Fig. 5. (a) Control polygon. (b) GMK-spline g(t) surface. (c) GMK-spline
g(t) surface.

where there are only six distinct control points from the control
polygon shown in Fig. 5 (a) The resulting surfaces approx-
imate a ball centered at (1, 1, 0) with radius

√
2, provided

that the grid is extended by repeating the control points in a
manner similar to that described in (11). Based on the extended
grid, the GMK-spline surface generated by g(t) very closely
approximates the target ball, as shown in Fig. 5 (b) and (c).

C. Digital Image processing

(a) (b) (c)

(d) (e) (f)

Fig. 6. Comparison of image processing in time domain: (a) Original image;
(b) Image polluted by Gaussian noise of µ = 0 and σ = 0.01; (c) Image
denoising by ideal filter; (d) Image denoising by cubic B-spline (7); (e) Image
denoising by B-spline interpolator (8); (f) Image denoising by Hg(ω) (9).

The GMK-spline is applied to image denoising. For a
noisy image f(x, y) corrupted by Gaussian noise, we firstly
cope it with (−1)x+y , then compute its Fourier transform
F (u, v). Next, multiply F (u, v) by the filter transfer function
in the frequency domain H(u, v) based on different frequency
functions to obtain

F̃ (u, v) = H(u, v) · F (u, v).

Afterwards, we perform an inverse Fourier transform on
F̃ (u, v), extract the real part, and perform post-processing with
(−1)x+y to obtain the denoised image f̃(x, y).

We set the variable ω in the frequency functions (7)-(9) for
low-pass filters as:

ω = π
D(u, v)

D0
,

and for high-pass filters as:

ω = π
D0

D(u, v)
,

where D0 is the cutoff frequency, D(u, v) is the distance from
a point (u, v) in the frequency plane to the center. If the image
size is M×N , the corresponding array center is

(
M
2 , N

2

)
, then,

D(u, v) =

√
(u− M

2
)2 + (v − N

2
)2. (12)

To further verify the effectiveness of the GMK-spline-based
frequency domain filter in image denoising, visual and quanti-
tative evaluations are conducted. As we see from TABLE I and
Fig. 6, for different test images (such as peppers, portrait, Milk
Drop Coronet, scenery, etc.) contaminated by Gaussian noise
with the same mean value (µ = 0) and different variances (σ2

= 0.1, 0.01, 0.001):
Although the ideal low-pass filter (Fig. 6 (c)) achieves a

relatively moderate PSNR under multiple variances, its visual
quality is impaired due to the Gibbs phenomenon; the cubic
B-spline filter (Fig. 6 (d)) has the problem of excessive
smoothing, leading to serious loss of fine details in the image,
and its PSNR is relatively low; the B-spline interpolator (Fig. 6
(e)) has a reasonable PSNR performance (e.g., 22.39 dB
when σ2 = 0.01); however, in contrast, the GMK-spline filter
(Fig. 6 (f)) shows competitiveness in various images and noise
variances. Taken the pepper image in Fig. 6 with σ2 = 0.01 as
an example, its PSNR reaches 22.40 dB, and SSIM is 0.9119,
which is higher than 0.9067 of the ideal low-pass filter, 0.8826
of the cubic B-spline filter, and even slightly better than 0.9117
of the B-spline interpolator.

With excellent frequency characteristics, the GMK-spline-
based filters effectively suppress Gaussian noise in specific
frequency regions, ensuring that the denoised image retains
natural details without excessive smoothing. In different test
images and different noise variance scenarios, its visual effect
and quantitative indicators (PSNR, SSIM) are superior to the
aforementioned various filters.

IV. CONCLUSION

In conclusion, the cubic cardinal spline proposed in this
paper is an efficient alternative to the cubic B-spline and
is a special spline from the cubic GMK-splines. It inherits
the excellent properties of the B-spline like central symme-
try and local support, while possessing explicit interpolation
capability without the need for additional solution of systems
of equations. The spatial and frequency domain comparison
demonstrates its superior local support and frequency domain
performance. Geometric modeling examples are applied to
verify that it is able to construct high-precision and high-
smoothness shapes with a small number of sampling points,
and the endpoint repetition strategy adapts to the requirements
of both open and closed graphics. In image denoising, the
frequency-domain filter based on this spline is able to effec-
tively suppress Gaussian noise, balance the denoising effect



TABLE I
PSNR AND SSIM RESULTS OF DIFFERENT IMAGES AND FILTERS

Image Variance Ideal Lowpass Filter B-spline Filter B-spline interpolator Filter GMK Filter
PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM

0.1 20.49 0.8627 19.09 0.8409 20.65 0.8670 20.66 0.8672
0.01 22.04 0.9067 20.47 0.8826 22.39 0.9117 22.40 0.9119

0.001 22.13 0.9109 20.57 0.8865 22.49 0.9160 22.50 0.9162

0.1 20.70 0.6952 19.72 0.7528 20.94 0.7273 20.94 0.7269
0.01 22.57 0.8171 20.90 0.8244 22.85 0.8460 22.87 0.8463

0.001 22.82 0.8335 21.04 0.8320 23.12 0.8631 23.13 0.8635

0.1 21.53 0.8732 20.22 0.8606 21.63 0.8783 21.64 0.8784
0.01 24.12 0.9121 22.13 0.8951 24.45 0.9181 24.46 0.9183

0.001 24.22 0.9159 22.23 0.8986 24.58 0.9221 24.60 0.9222

0.1 18.91 0.6818 17.87 0.6549 19.08 0.6936 19.09 0.6937
0.01 19.80 0.7448 18.78 0.7152 20.11 0.7578 20.12 0.7579

0.001 19.83 0.7490 18.81 0.7192 20.15 0.7621 20.15 0.7622

and detail preservation, and avoid over-smoothing. Therefore,
this proposed spline has important theoretical value and ap-
plication potential in computer-aided geometric design, signal
and image processing. The focus of our future research work
is on exploring the application in higher-dimensional data
processing and complex dynamic modeling.
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