
Wei Qi Yan

Robotic Vision

From Deep Learning to Autonomous Systems

September 15, 2025

©All Rights Reserved.

Preface

This book has been drafted based on my lectures and seminars in recent years for
postgraduate students at Auckland University of Technology (AUT), New Zealand.
We have integrated and synthesized materials on robotics, machine vision, machine
intelligence and deep learning. Compared with conventional books, this book leads
authors to use the knowledge from digital image processing and computer vision
to control robots with autonomous systems. Our aim is to provide a resource that
benefits postgraduate students, particularly those who are working on their theses,
by sharing our research outputs and teaching work to augment their projects.

In this book, we have structured the content with a focus on knowledge obtained
from our seminars. We begin by explaining fundamental concepts in robotics from
computational point of view. We delve into robotic vision with deep learning meth-
ods. We add new content from what we have known and applied robotic vision to
robotic control. At the end of each chapter, we emphasize on the practical imple-
mentation of algorithms by using Python-based platforms and MATLAB toolboxes.
Additionally, we provide a lab session for each chapter with demonstrations and ex-
periment reporting as well as a list of questions for the purpose of discussion and
reflection.

In this book, our focus is on robotic vision. The book is to follow our research
methodology of computer science with mathematical background, modeling, algo-
rithms, experimental implementation, result analysis and comparisons.

Before reading this book, we strongly encourage our readers to have a solid foun-
dation in postgraduate mathematics. Developing computational knowledge will not
only aid readers to quickly understand this book but also enable them to engage with
relevant journal articles and conference papers.

This book was written for research students, computer engineers, computer sci-
entists, and anyone interested in robotic vision for both theoretical research and
practical applications. Additionally, it is relevant for researchers in the fields such
as machine intelligence, pattern analysis, and control theory.

Auckland New Zealand Wei Qi Yan
June 2025

v

Acknowledgments

In the past years, we have endowed in all aspects of robotics to make the book full
and perfect. Following the instructions from our Springer editors, students and au-
diences, the author has detailed the vocal descriptions, flowchart, data structures,
pipelines, deployments, equations and algorithms, as well as updated each chapter
with the latest references and citings. Compared to others, this book emphasizes on
fundamentals of robotics, mobile robots and arm-type robots, robotic vision, digital
image processing, stereo vision, 3D object reconstructions, deep learning, robotic
intelligence and control, reinforcement learning, and supercomputing as well as
MATLAB Toolboxes and examples.

Thanks to Springer editors who had iterative discussion for this book to be pub-
lished. Thanks to our peer colleagues and students whose materials were referenced
and who have given invaluable comments on this book, especial thanks to my super-
vised students: Mr. B. Ma, Mr. X. Gao, Mr. Z. Chen, Mr. G. Yang, Mr. R. Tantiya,
Mr. D. Peng, Mr. Y. Huan, Dr. S Mehtab, Dr. J. Qi, Dr. K. Gedara, Dr. F. Younus
and my colleagues Dr. W. Zhu, Prof. X. Wang, Prof. X. Li, Prof. M. Nguyen.

vii

Contents

1 Introduction to Robotic Vision . 5
1.1 Overview of Robotic Vision . 6
1.2 Importance and Applications of Robotic Vision 8
1.3 Key Challenges in Robotic Vision . 9
1.4 Foundational in Machine Learning and Deep Learning 10
1.5 Mathematics Background . 15
1.6 Prerequisite Mathematics for Robotic Vision . 18

1.6.1 Linear Algebra . 18
1.6.2 Geometry . 19
1.6.3 Probability . 22

1.7 Structure of the Book . 22
1.8 Lab Session: Introduction to Tools and Platforms 23
1.9 Exercises . 24
1.10 Appendix: History of Computing . 24
References . 25

2 Robotics . 31
2.1 Mobile Vehicles . 32
2.2 Humanoid Robots . 34
2.3 Navigation . 37

2.3.1 Automata . 37
2.3.2 D* Algorithm . 39
2.3.3 Voronoi Diagram . 41
2.3.4 PRM: Probability-Based Method . 42
2.3.5 RRT: Rapid-Exploring Random Tree . 45
2.3.6 Dead Reckoning . 47

2.4 Mathematics Background . 48
2.5 Robot Arm Kinematics . 53
2.6 Dynamics and Control . 56
2.7 Applications of Robotics . 59
2.8 Lab Session: Mobile Arm with MATLAB . 64

ix

x Contents

2.9 Exercises . 66
References . 66

3 Image Processing for Robotics . 71
3.1 Fundamentals of Image Formation . 72
3.2 Camera Calibration . 74
3.3 Essentials of Image Processing . 76
3.4 Image Morphology . 78
3.5 Feature Extraction for Object Detection and Recognition 81
3.6 Image Processing with MATLAB . 85
3.7 Lab Session: Implement Camera Calibration with MATLAB 85
3.8 Exercises . 87
References . 87

4 Stereo Vision and 3D Reconstruction . 91
4.1 Stereo Camera and Stereo Vision . 92
4.2 3D Reconstruction . 98
4.3 Applications of Stereo Vision . 101

4.3.1 Applications of Robot Navigation . 101
4.3.2 Applications in Deep Scene Understanding 101
4.3.3 Applications in Visual Object Recognition 103

4.4 Lab Session: Implementing Stereo Vision Systems with MATLAB . 103
4.5 Exercises . 105
References . 105

5 Deep Learning for Robotic Vision . 109
5.1 Overview of Deep Learning Architectures for Vision 110
5.2 Convolutional Neural Networks (CNNs) and YOLO Models 111

5.2.1 CNN Models . 111
5.2.2 YOLO Models . 113

5.3 RNNs, Transformers, and Multimodal Approaches 116
5.3.1 RNNs . 116
5.3.2 Vision Transformers . 118
5.3.3 Diffusion Transformers . 119

5.4 Lab Session: Training a Vision Model with MATLAB 122
5.5 Exercises . 124
References . 124

6 Robotic Perception and Intelligence . 129
6.1 Perception . 130
6.2 Robotic Intelligence . 131
6.3 Reinforcement Learning for Visual Control . 136
6.4 Imitation Learning and Inverse Reinforcement Learning 139
6.5 Federated Learning and Distributed Models . 141
6.6 Lab Session: Implementing Perception Algorithms with MATLAB . 143
6.7 Exercises . 144

Contents xi

References . 145

7 Vision-Based Robotic Control . 149
7.1 Basics of Visual Servoing . 150
7.2 Advanced Visual Servoing . 152
7.3 Vision-Based Navigation and Path Planning Algorithms 154
7.4 Lab Session: Visual Servoing with MATLAB 156
7.5 Exercises . 158
References . 158

8 Computational Tools for Robotic Vision . 161
8.1 Robot Operating System (ROS) . 162
8.2 Modern Computing for Robotics . 163

8.2.1 Supercomputing . 163
8.2.2 GPU Acceleration . 164
8.2.3 Mobile Computing for Robotics . 166

8.3 Tools for Parallel Computing in Robotics . 170
8.4 Lab Session: Working with MATLAB for ROS and

GPU-Accelerated Algorithms . 172
8.5 Exercises . 173
References . 173

Glossary . 177

Index . 181

Short Book Description . 189

Key Points of This Book . 191

xii Contents

Wei Qi Yan
Auckland University of Technology, Auckland New Zealand.

Short Biography.
Wei Qi Yan is with the Department of Computer and Information Sciences at

the Auckland University of Technology (AUT), New Zealand. His expertise cov-
ers robotics, deep learning, machine intelligence, computer vision, and multimedia
computing.

Dr. Yan is an Associate Editor of ACM Transactions on Multimedia Computing,
Communications and Applications, a Senior Area Editor of IEEE Signal Processing
Letters, a Section Editor of Springer journal Discover Artificial Intelligence (AI).

Dr. Yan has worked as an exchange computer scientist between the Royal So-
ciety Te Apārangi (RSNZ) and the Chinese Academy of Sciences (CAS) in China.
Dr. Yan is the director of joint research laboratory with the Shandong Academy of
Sciences (SDAS) Shandong China, the director of the joint laboratory with China
Jiliang University (CJLU), Zhejiang China. Dr. Yan is recognized as one of the “Top
Two Percent of Scientists in the World”, he currently holds the position of Chair of
ACM Multimedia Chapter of New Zealand, he is a Fellow of Engineering New
Zealand (FEngNZ).

List of Symbols

argmax(·) Argument of the maxima
argmin(·) Argument of the minima
p(·|·) Conditional probability
J(·) Cost function
△
= Definition
d f (x)

dx or f ′(x) Derivative
det(·) Determinant
(bi)n×1 Element bi of vector bn×1
(wi j)m×n Element wi j of m×n matrix Wm×n
E Euclidean space
∃ Exist
E(·) Expected value function
exp(·) Exponential function
C1 First-order parametric continuity
∀ For all
1,n From 1 to n, i.e., 1,2, · · · ,n
C Function continuity
N(·) Gaussian or normal distribution
tanh(·) Hyperbolic tangent function
C∞ Infinite continuity
∞ Infinity
< ·> Inner or dot product∫

Integral
∩ Intersection of sets
∥ · ∥0 L0 Norm
∥ · ∥1 L1 Norm
∥ · ∥2 L2 Norm
∥ · ∥p Lp Norm
∥ · ∥∞ L∞ Norm
log(·) Logarithm base 10

xiii

xiv List of Symbols

L Loss function
7→ Mapping
W⊤ Matrix W transpose
max(·) Max function
µ Mean
∈ Member
ln(·) Natural logarithm
N Set of natural numbers
∥ · ∥ Norm
∂ f
∂x Partial derivative
⊥ Perpendicular
± Plus or minus
P Point
∏ Product
⊂ Proper subset
C2 Second-order parametric continuity
S Set
Z Set of integer numbers
Z + Set of positive integer numbers
R Set of real numbers
b Shift vector
sgn(·) Sign function
⊆ Subset equal
∑ Sum
T Tensor space
∪ Union of sets
σ Variance
b⊤ Vector transpose
W Weight matrix

Acronyms

ACCV Asian Conference on Computer Vision
ACM Association for Computing Machinery
ADAS Advanced Driver Assistance Systems
AI Artificial Intelligence
ANN Artificial Neural Networks
ASCII American Standard Code for Information Interchange
BERT Bidirectional Encoder Representations
CapsNet Capsule Neural Network
CNN Convolutional Neural Network
ConvNet Convolutional Neural Network
CoT Chain-of-Thought
CPU Central Processing Unit
CVPR International Conference on Computer Vision and Pattern Recognition
DBM Deep Boltzmann Machine
DDPG Deep Deterministic Policy Gradient
DDS Data Distribution Service
DETR Detection Transformer
DiT Diffusion Transformer
DL Deep Learning
DNN Deep Neural Network
DoF Degree of Freedom
DQN Deep Q-Network
ECCV European Conference on Computer Vision
EQ Emotional Quotient
EI Emotional Intelligence
KF Kalman Filtering
FCNN Fully Connected Neural Network
FFNN Feedforward Neural Network
FK Forward Kinematics
FN False Negative
FoV Field of View

1

2 Acronyms

FP False Positive
FSD Full Self Driving
FSM Finite State Machine
FRU Fully Gated Unit
GA Genetic Algorithm
GAN Generative Adversarial Network
GPT Generative Pre-trained Transformer
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
HVS Human Vision System
IBVS Image-Based Visual Servoing
ICCV International Conference on Computer Vision
IoU Intersection over Union
IQ Intelligence Quotient
IK Inverse Kinematics
IRL Inverse Reinforcement Learning
LLM Large Language Models
LMS Least Mean Squares
LSTM Long Short-Term Memory
MDP Markov Decision Process
MGU Minimal Gated Unit
ML Machine Learning
MLP Multilayer Perceptron
MNIST Modified NIST Database
MPC Model Predictive Controller
MRP Markov Random Process
NLP Natural Language Processing
NPU Neural Processing Unit
NURBS Non-Uniform Rational B-Splines
PBVS Pose-Based Visual Servo
PRM Probabilistic Roadmap
RBM Restricted Boltzmann Machine
R-CNN Region-Based CNN
ReLU Rectified Linear Unit
ResNet Residual Neural Network
RNN Recurrent Neural Network
ROI Region of Interest
ROS Robot Operating System
RPN Region Proposal Network
RRT Rapid-Exploring Random Tree
SAD Sum of Absolute Differences
SGD Stochastic Gradient Descent
SSD Sum of Squared Differences
TN True Negative
TP True Positive

Acronyms 3

TPU Tensor Processing Unit
ViT Vision Transformer
VS Visual Servoing
YOLO You Only Look Once

Chapter 1
Introduction to Robotic Vision

Abstract

In this chapter, robotic vision is delineated along with robotic control, deep learning,
and autonomous systems. Robotic vision is a crucial subject of robotics, and the
application of deep learning. This chapter explores robotic vision using video and
image data from diverse robots (arm-type, mobile, aerial, etc.). The goal is to build
foundational knowledge for vision-based control systems. The significance of this
chapter is to convey the holistic view of robotic vision.

5

6 1 Introduction to Robotic Vision

1.1 Overview of Robotic Vision

Robotic vision - computer vision applied to robotics - enables machines to perceive
environments, interpret, and interact with the designated environment. By using dig-
ital cameras, sensors, and AI-based algorithms, robotic vision aids robots to recog-
nize visual objects, navigate spaces, and make intelligent decisions. In this book,
the solutions are derived for robotic vision and visual control characterized by using
specifics of image data and deep learning algorithms [12, 131]. This chapter en-
capsulates the fundamentals of robotic vision [47]. With respect to this book, there
are two concepts, one is robotic vision, the other is robot vision. Robotic vision is
academic and formal. Robot vision is informal or casual.

The performance of robotic vision will be critically assessed with deep learning
algorithms, benchmark data, performance measures, and the ways to define ground
truth. The opportunities of using robotic vision as a way of information acquisition
through complex robotic systems and applications in artificial intelligence (AI) [18,
94, 107] will be examined.

In this book, the key concepts, methods, and algorithms are introduced. The con-
tent is based on pixel-level digital images, with a focus on robotic vision, including
camera properties and calibration [137]. The methods are further explored to ex-
tract edges, blobs, motif, silhouette, contour or shape of visual objects [55]. Thus,
the focus of this chapter is on object segmentation, object detection and recognition,
and object tracking in robotic vision.

Typically, mobile cameras are considered. Modern mobile phones allow effort-
less image capture, unlike analog-era media requiring digital conversion with a sim-
ple tap on the screen, an image or video can be taken. But previously, we have
many photos on newspapers or images from analogue videos, the images and videos
were analogy-based in cassette. Thus, a digital-to-analog converter (DA converter)
is needed for the purpose of conversion for these images and videos.

Unlike mobile cameras, surveillance cameras are usually fixed in place [90, 130].
Usually, object detection and recognition as well as object tracking [4, 5, 78] in
surveillance are implemented through camera panning, tilting, and zooming (PTZ).
However, mobile cameras can be moved to anywhere, operating with translation and
rotation, etc.

While early digital cameras were costly, modern ubiquitous sensors enable ev-
eryone to take pictures. Nowadays, everyone has very small cameras mounted on
mobile phones. The camera specifications are beyond 20 years ago, which are avail-
able through metadata such as EXIF. Given an image from mobile camera, what we
would like is to understand that how good this camera is and what function could be
applied to which purpose.

Recently, Tesla conducted FSD (Full Self Driving) testing. In the testing, the
entire system is completely camera-based. This is an innovation for robotic vision
and control without any LiDAR support. We should take the step and follow up this
change with our knowledge in deep learning and computer vision [47, 131].

In camera calibration, the distance based on grid board is calculated with black
and white grid patterns. Regarding the cameras with mega pixels, camera calibra-

1.1 Overview of Robotic Vision 7

tion or sensor calibration is always needed in scene understanding of this real world
so as to correct the distortion and measure the distance from sensors to the targeted
objects [137]. Camera calibration is called geometric camera calibration, the term
also refers to photometric camera calibration or is restricted for the estimation of
intrinsic parameters only. Exterior orientation and interior orientation mean the de-
termination of the extrinsic and intrinsic parameters, respectively. Through digital
images with pixels for camera calibration, we are able to reconstruct 3D objects.
Cameras can reconstruct the 3D space, including the origin and spatial dimensions.

The cameras reflect the positions located in 3D space. The locations are offered
by using two cameras so that they quickly convert the pixel space to the correspond-
ing real 3D space, bridging the gap between them. Due to various conditions and
scenarios, we may get an image with visual artifacts that may be too dark, too bright,
or too blurry. In image processing, if the image is too blurry, that means, the camera
is moving too fast or zooming operation is very rapid. Hence, how to remove blurs
is challenging work in image processing [125, 129].

If a car is being driven in motorway with the speed 100 kilometers per hour, the
car is a fast-moving robot. For example, when a traffic sign appears beside the road,
a key challenge is whether the robot can recognize it clearly [123, 141]. It means a
camera is needed to be mounted on the moving vehicle to capture images [75]. How
to capture the image of this traffic sign [100] timely and visibly with the cameras on
high-speed car is a real problem. The task is relevant to the speed of our algorithms
for image processing and object detection and recognition. Another example is that,
after landed on the Mars, robots need to facilitate with an unmanned vehicle, the car
is required to be controlled remotely. The photographs will be taken by using digital
cameras on the vehicle to explore the lands from the Earth. The outcomes of image
processing and analysis are employed for further exploration.

Stereo vision is built on 3D reconstruction. Computer vision is related to the
3D information from digital images. By comparing visual information related to a
scene from two vanishing points as shown in Fig.1.1, the 3D information can be
reconstructed by examining the relative positions of visual objects. This is similar
to biological process of stereopsis.

Stereo vision uses two cameras at least to estimate depth. By comparing hori-
zontal offsets (disparity), it generates a depth map where larger disparities indicate
closer objects. The values in this disparity map are inversely proportional to the
scene depth at the corresponding pixel locations. For example, in cinema, 3D trains
can be seen on screen. All of these are based on 3D vision. When we watch the
movie through a pair of special glasses, 3D scene will be generated in our mind.
That is applied to movie industry. In 3D object reconstruction, for example, if we
take a slew of photographs, the 3D objects will be rebuilt.

Stereo vision is highly significant in fields such as robotics to locate the relative
position of 3D objects in the vicinity of autonomous systems [86]. Other applica-
tions for robotics include visual object recognition, where depth information allows
for the system to separate occluding image components.

8 1 Introduction to Robotic Vision

Fig. 1.1: Three vanishing points in 3D space

1.2 Importance and Applications of Robotic Vision

Having established camera basics, we now discuss robotic vision. Robotic vision
plays a crucial role in enabling robots to perceive, interpret, and respond to our
surrounding environment [138]. With multiple images from a group of cameras
working together, the robot is able to understand scenes deeply. Robots with full
intelligence, namely agents have the ability to make decision independently after
observed the 3D world. Robots equipped with computer vision systems can under-
stand the surroundings and make smart decisions without human intervention.

Digital cameras have been designed with very high resolutions. Assisted with
GPS information, vision-based systems improve the accuracy of robotic operations
and manipulations, such as pick-and-place, assembly, inspection, and navigation.
Vision-based robots enhance the safety in industries by detecting hazards and avoid-
ing collisions. With the well-trained deep learning models, vision-based robots can
be operated within the given work envelop, understand the scene depth and predict
what will happen from the past disasters [108]. Robots with vision systems are adap-
tive to dynamic environments. Vision-equipped robots are adaptive to any changing
conditions in real-time based on scene understanding from the acquired visual infor-
mation. We thus have the special feature to showcase that robot perception directly
determines the operational decisions.

Vision systems reduce the needs for complex guides and sensors, thus lower
operational costs. Multiple sensors equipped on robots will fuse the information
and avoid to generate misunderstandings due to errors [130, 131]. The images and
videos from digital cameras will provide accurate blobs, edges, silhouette, skeleton,
and textures. The point cloud systems acquired from a LiDAR (Light Detection
and Ranging) system could not[85]. LiDAR systems take use of a laser to measure
distance and object depth.

1.3 Key Challenges in Robotic Vision 9

1.3 Key Challenges in Robotic Vision

Robotic vision faces the key challenges that impact the effectiveness and reliability
of robots in real-world applications. Visual object detection and recognition are the
predominant tasks of robotic vision. Accurately identifying and classifying objects
from a camera in diverse environments are tough due to variations in lighting, view
angles, object occlusions, and object appearance, etc. Vision models to handle these
variations robustly remain a significant challenge.

Another challenge is real-time image processing in robotic vision. Robotics, es-
pecially in mobile or autonomous systems, is waiting for real-time results of vision
processing to take next step. This places high demands on computing power and
lower complexity of algorithms to accelerate the process of visual object classifica-
tion and make decisions instantly. Compared to audio and images, video processing
is much slower and needs GPU assistance as well as parallel computing facilities to
support the process based on pixel arrays.

Robots are operating with a real-time system. The changes of lighting in indoor
and weather conditions in outdoor environments significantly affect the robots to
perceive the scenes. Developing vision systems in real-world requests the robustness
of algorithms to observe the environmental variability. This makes sure that robots
can get correct information.

In dynamic environments, keeping correct track of moving objects, while main-
taining an accurate map of the environment is a must. Tracking moving objects
across video frames without losing the identity is computationally expensive and
error-prone. Visual objects may be partially obscured by other objects, making it
exigent for the system to deeply understand holistic scene. Designing the vision al-
gorithms that can handle partial occlusions[116, 117], accurately identify objects
and friendly interact with robots is important for the tasks like grasping and manip-
ulation.

Pertaining to depth perception, understanding 3D environment from 2D images
remains a significant gap, especially for the tasks like manipulation and navigation.
Depth sensors, stereo vision, and structure-from-motion (SfM) techniques are often
adopted, but they all have limitations such as accuracy or robustness on specific
hardware. Regarding sensor fusion, integrating data from multiple sensors (e.g.,
cameras, LiDAR, etc.) to create a coherent understanding of 3D scene is compli-
cated. The fusion process is accurate and efficient for the tasks like navigation and
autonomous decision-making.

Robots are controlled from human and machine interactions (HMI) through robot
operating system (ROS). As robotic vision is increasingly harnessed to real-world
applications, we need ensure the safety of both robots and humans interactions,
and guarantee the requirements of ethics in decision making. Implementing robotic
vision systems that perform well in outdoor conditions as opposed to controlled in-
door environments, involves dealing with noise in sensor data, unpredictable object
movements, and unexpected environmental changes.

Chatbots using Large Language Models (LLMs) integrated with Open WebUI,
Dify, CompfyUI, and Ollama models have been successfully deployed to robotic

10 1 Introduction to Robotic Vision

control[97, 135]. The input and output of LLMs are challenges of modern com-
puting. The prompts for inputs and outputs of LLM models should be filtered,
especially visual information from generative models such as Generative Adver-
sarial Networks (GANs), autoencoders, and diffusion models [131]. The halluci-
nation outputs generated from the LLMs due to unexpected changes should be
treated seriously in case of violation of ethics regulations. Retrieval-Augmented
Generation (RAG) and Model Context Protocol (MCP) are thought as the so-
lutions to resolve these problems, accompanying with Agent to Agent (A2A)
technology[58, 94, 119, 135].

1.4 Foundational in Machine Learning and Deep Learning

In deep learning (DL), because of new development, all computer vision textbooks
have to be updated at present. For example, conventional algorithms in face de-
tection and recognition are based on Viola–Jones object detection framework and
Principal Component Analysis (PCA) algorithms, the algorithms based on CNN
and RNN models are popular at present. In computer vision, we have developed a
plethora of algorithms from deep learning for object segmentation, object detection
and recognition, object tracking [4, 5, 78, 107], etc.

Deep learning algorithms are relevant to datasets and ground truth. The ground
truth refers to labels of visual data. Given the data as samples, we have the labeling
process, we have annotations, labels, or tags. After trained our models by taking
advantage of the datasets, the algorithms can output results [24, 25], we evaluate the
performance, this evaluation should be quantitative and reflected in computational
way.

Why deep learning algorithms are better than those general machine learning
methods? Because deep learning is end-to-end based which can bring various results
for us that are able to give better measurements and comparisons. The previous
algorithms may only conduct face detection and recognition from the front view,
now the new methods can conduct human face detection and recognition from side
views [3, 26, 116, 117].

Deep learning (DL) uses multi-layered artificial neural networks (ANNs). In-
spired by biological neurons, these networks process data hierarchically - extracting
features from raw pixels to high-level semantics [84, 17]. Artificial neural networks
(ANNs) like our human brain [94, 118]. The neurons in human brain can be con-
nected together [45, 88]. We assume, a full connection is that any neurons can es-
tablish connections mutually [88]. But the situation is not true. A few old neurons
will be died, a large number of new neurons will be grown up. The neurons will be
enlarged or shrunken during its life.

If neurons are connected with each other [88], they will be deployed with lay-
ers. The layer-based structure has been employed for deep learning algorithms.
Hence, multiple layers of neurons are connected together. Deep learning refers to
the depth of what neural networks were constructed [45]. The deep learning is a sim-

1.4 Foundational in Machine Learning and Deep Learning 11

ple change, however it is powerful, based on the work of Professor Geoffrey Hinton
from Canada, who created the realm of deep learning, especially for his great con-
tributions in Restricted Boltzmann Machine, Capsule Neural Networks (CapsNets),
Deep Belief Nets [34, 38, 77, 106]. Professor Hinton received ACM Turing Award
2018 in 2019 and Nobel prize in physics in 2024.

In 2024, OpenAI created the Sora, a text-to-video model. The model gener-
ates short video clips based on user prompts, which can extend the existing short
videos [96]. The model is a diffusion transformer: A denoising latent diffusion
model with one Transformer as the denoiser. A video is generated in latent space by
denoising 3D patches. A video-to-text model was applied to create detailed captions
on videos. This is a great advance. Furthermore, OpenAI ChatGPT and DeepSeek
are redhot currently. How to embed the deep learning algorithms into chatbots to
develop our own interface and applications is an interesting topic.

If we look at the history of modern computers, it is easy to find how this tech-
nology was developed. In 1945, the first electronic computer, ENIAC (i.e., Elec-
tronic Numerical Integrator and Computer) was developed. ENIAC was the first
programmable, electronic, general-purpose digital computer, completed in 1945. In
1957, this world saw a perceptual IBM computer. We saw chain rule in 1974 as
shown in the Appendix of this chapter. Later, we have the multilayer perceptron.

From 1995 to 2015, Support Vector Machine (SVM) was taken into dominant
consideration. The SVM algorithm was the primarily part of machine learning. In
machine learning, SVMs are supervised max-margin models that analyze data for
pattern classification [3, 18, 29, 99].

Pertaining to deep learning, the state-of-the-art (SOTA) model is transformer [34,
16]. Transformer models have the advantage without recurrent units, and require
less training time than earlier recurrent neural architectures (RNNs) such as long
short-term memory (LSTM). Later variations have been widely adopted for training
Large Language Models (LLM) on large datasets [6, 11].

While CNNs and RNNs dominated early deep learning, newer architectures like
Transformers now offer advantages in speed and scalability. Reinforcement learn-
ing [14, 89], transfer learning [93], etc. further expand capabilities. With these al-
gorithms, robots now can clean floors, charge batteries, etc. When the robots start
working, they’ll avoid obstacles [112]. Fig. 1.2 shows a mobile robot is working.

Reinforcement learning is based on agent interactions with an environment [14,
89]. Given ample data for the algorithms to be trained, the reinforcement learning
models are spirally becoming better through iterative interactions, namely, updating
states, actions, and rewards, these elements follow the episode sequence of rein-
forcement learning [110].

In deep learning, the existing models are harnessed to conduct classification with
unknown classes of samples, the accuracy is not so high at very beginning, but if
more samples are fed up, the accuracy rate of this model will be beefed, this is called
transfer learning [93].

We have a deep learning playground prototype which was developed by Google
based on TensorFlow. On the interface, we add layers and neurons of neural net-
works, operate the neuron connections [88, 131]. Most of beginners started study-

12 1 Introduction to Robotic Vision

Fig. 1.2: A mobile robot is working.

ing deep learning from this software. While increasing the number of layers and the
number of neurons on each layer, the classification accuracy will be increased.

A second part of deep learning models is called RNN (recurrent neural network).
In RNNs, we have the input layer, hidden layers or invisible layers, and output
layer. The input layer and output layer are called visible layers, the invisible lay-
ers are named as latent layers. Through using LSTM, we are able to predict the
state changes, like weather changes, changes of exchange rates, changes of housing
markets, stock markets, or share markets, etc. RNNs are seen as very deep feedfor-
ward networks (DFN) in which all the layers share the same weights [45]. RNNs
process an input sequence maintaining in the hidden units that implicitly contains
information about the history of all the past elements of sequence [17]. Most Natu-
ral Language Processing (NLP) systems rely on gated RNNs [11], such as LSTMs
and gated recurrent units (GRUs), with added attention mechanisms [43, 113, 140].
RNNs (LSTM, GRU, etc.) have been firmly established in sequence modeling and
transduction problems such as language modeling [80, 81] and machine transla-
tion [11].

RNNs follow the mechanism of Turing machine. Turing machine is an ideal-
ized model of a central processing unit (CPU) that controls all data manipulation
throughout a computer. Turing machines (e.g., FSM) and memory networks are
being employed for the tasks that would normally require reasoning [29, 94] and
symbol manipulations [9, 94].

Transformer is based solely on attention mechanisms [43, 113, 140], dispensing
on recurrence and convolutions entirely [80, 81]. Transformers are the state-of-the-
art (SOTA) deep learning model for dealing with sequences [82], e.g., in text pro-
cessing [11], machine translation [46], etc. Transformers were invented in 2017 by
Google Brain for NLP problems, replacing RNN models (e.g., LSTM) [121].

Transformer models are trained with large datasets. Transformer is a deep learn-
ing model that adopts the mechanism of self-attention [113, 140], deferentially

1.4 Foundational in Machine Learning and Deep Learning 13

weighting the significance of each part of the input data. Like RNNs, Transformers
were designed to handle sequential input data. Unlike RNNs, Transformers do not
necessarily process the data in order [82]. The attention mechanism [43, 113, 140]
provides context for any position in the input sequence.

Transformers were previously employed for English and French translation. En-
glish has its grammar, correspondingly, French has the relevant grammar. While
speaking English, the speech can automatically be translated to French by using
machine translation [66, 67]. Now, this has been implemented in Microsoft Office
software like Microsoft PowerPoint and Microsoft Teams. If we play a PowerPoint
file, the captions between two languages could be toggled in real time [11]. In trans-
former models, token pairs are taken into consideration. If we translate English to
other languages [80, 81], another corresponding set of tokens should be already
there. For example, there is a set in Chinese around 10,000 tokens. Hence, the trans-
formers will search for a high probability matching between the two languages for
translating.

Supercomputing can serve us in computing acceleration, the typical one is
NVIDIA GPU. GPUs are thought as the computing power. We need these chips
because transformer is parallel computation-based. In parallel algebra, if two vec-
tors are added together, GPU computing is much faster than that of CPUs. With
GPUs, all the results will be popped up at the same time, we take advantage of par-
allel computing. Currently, the multicore programming and multi-thread computing
are adopted to carry out these tasks. Fig.1.3 shows a GPU laptop is working for
object detection and recognition.

Fig. 1.3: A GPU laptop is working.

As well known, Tesla has developed and adopted the ASD system, which is com-
pletely computer vision-based. This new solution for robotic vision and visual con-
trol tasks is characterized by using the strengths and specifics of image data and
deep learning algorithms as well as scene understanding for vehicle control. Visual
control means we make use of digital cameras to understand the scene and con-

14 1 Introduction to Robotic Vision

trol the mobile robot. Previously, we took use of sensors and computers to control
robots. Nowadays, a high-resolution and high-speed camera is mounted on a un-
manned vehicle to control the car. Consequently, visual servoing and ROS through
wireless communications in robotics play the decisive role in operating unmanned
vehicles. Hence, this is the reason why we make use of robotic vision as the key part
of autonomous systems.

Robots assist human in waste classification and fruit pick and place [22, 23, 87,
120, 121, 122], serving the industry like moving bags with milk power, beef and
lamb, or other agricultural products. Especially for the countries who have not so
much population, robots are an effective tool to save human labor and resolve the
lack of professionals, such as for cleaning high buildings and painting on the surface
of cars. The toxic work is very hazardous, which is not beneficial for human health
and safe. But robots have not these constraints and limitations. While cleaning our
floor, if we have a robot to vacuum and mop the ground, it works for us without
stopping. Even if it runs out of battery, it can go back to the charging station and
charge itself. After charged, the robot continues the cleaning work. This is a typical
kind of applications.

Robotics is a typical application of deep learning [12, 83]. For example, while
walking, if we close our eyes, we cannot walk too far. Compared with human hear-
ing system, human vision system (HVS) is much crucial, which occupied 75% in-
formation intake [13, 15]. From this point of view, lost vision is a real troublesome
issue. Robots are facilitated with sensors and digital cameras. Boston Dynamics is
good at computer vision. All of vision systems are relevant to computable methods
or algorithms, no matter whether our computers are fast or slow, because a computer
is robot’s brain, we thus process information in multiple ways [84, 118].

Generally, CPU is a bottleneck in modern computers, we cannot take break-
through for a few of years. The limited space could hold too many adders in a CPU,
it is called bottleneck for computing power. Fundamentally, this problem could be
resolved by using advanced algorithms like DeepSeek, the GPU (Graphics Process-
ing Unit), TPU (Tensor Processing Unit), and NPU (Neuron Processing Unit) can
resolve the problems from hardware point of view. Under GPU support, the moving
speed of a robot will be much faster than our human body. In these cases, the ur-
gent issue is computing power. Computing power is the essence of supercomputing.
After read this book, our readers are expected to create the fastest robots by using
GPU chips at hand, that will accelerate resolving this problems in real world.

MATLAB software was designed for numerical analysis and simulation which
is applied to scientific research, like robot navigation and control because MAT-
LAB software is robust, reliable, and stable [114]. The arm-type robots could be
controlled by using MATLAB software collaborating with Robot Operating Sys-
tem (ROS). ROS is a set of middle software (Middleware) with multiple libraries
and tools that assists us to explore and exploit robotic applications. If a robot is re-
quired to be operated, it will be started or halted immediately under the control, in-
dependent on other hardware. MATLAB ROS is excellent in robotic control, which
provides the standard interface, that’s the reason why industry sector likes using
MATLAB software.

1.5 Mathematics Background 15

1.5 Mathematics Background

A Bézier curve [20] is presented as a parametric curve in computer graphics [21].
The curve is defined by a set of control points P0 through Pn, where n is the order
of curve (n = 1 for linear, n = 2 for quadratic, n = 3 for cubic, etc.). The first and
last control points are always the endpoints of the curve. This set of discrete points
define a smooth and continuous curve [102, 128] as shown in Fig.1.4.

Fig. 1.4: The control polygon and Bézier curve

Typically, a Bézier curve with a control polygon was developed for designing
curves in car industry. The algorithm is based on De Casteljau’s algorithm. The
pseudocode is shown in Algorithm (1). In numerical analysis [91], De Casteljau’s
algorithm is a recursive method to implement polynomials in Bernstein form or
Bézier curves [19, 20]. De Casteljau’s algorithm is employed by splitting a single
Bézier curve into two with an arbitrary parameter. The algorithm is numerically
stable compared to direct evaluation of polynomials. Fig. 1.4 shows a Bézier curve
which was implemented by using De Casteljau’s algorithm [21]. The corresponding
source code in Python is shown in Fig. 1.5.

16 1 Introduction to Robotic Vision

Fig. 1.5: The source code for implementing a Bézier curve in Python

Algorithm 1: The algorithm for Bézier curve implementation

Input: List of control points P0,P1, . . . ,Pn ∈R2; parameter t ∈ [0,1]
Output: Point B(t) on the Bézier curve

1 Let B(0)
i ← Pi, for i = 0 to n;

2 for r← 1 to n do
3 for i← 0 to n− r do
4 B(r)

i ← (1− t) ·B(r−1)
i + t ·B(r−1)

i+1 ;

5 return B(n)
0

The polygon formed by connecting the control points with straight lines is called
control polygon. The convex hull of control polygon contains the Bézier curve. A
quadratic Bézier curve is the path traced by the function B(t), given points P0, P1,
and P2.

B(t) = (1− t)2P0 + t(1− t)P1 + t2P2, t ∈ [0,1] (1.1)

The first derivative of Bézier curve with respect to t is,

B′(t) = 2(1− t)(P1−P0)++2t(P2−P1), t ∈ [0,1] (1.2)

The second derivative of Bézier curve with respect to t is,

B′′(t) = 2(P2−2P1 +P0), t ∈ [0,1] (1.3)

1.5 Mathematics Background 17

A quadratic Bézier curve is a segment of a parabola. The cubic curve is defined
as a linear combination of two quadratic Bézier curves,

B(t) = tBP0,P1,P2(t)+(1− t)BP1,P2,P3(t), t ∈ [0,1] (1.4)

Hence, the Bézier curve of degree n is recursively implemented by using a linear
interpolation of a pair of corresponding points in two Bézier curves. Hence, we have

B(t) =
n

∑
i=0

bi
n(t)Pi(t), t ∈ [0,1] (1.5)

where the points Pi, i = 0,n,n ∈N are called control points. The polynomial bi
n(t)

is Bernstein basis of degree n.

bi
n(t) =Ci

n(1− t)it(n−i), t ∈ [0,1] (1.6)

where i = 0,n,n ∈Z +.

Ci
n =

n!
i!(n− i)!

,n≥ i, i,n ∈Z +. (1.7)

The derivative for a curve is

B′(t) = n
n−1

∑
i=0

bi
n−1(t)(Pi+1−Pi), t ∈ [0,1]. (1.8)

Given n+1 control points P0,P1, · · · ,Pn, the rational Bézier curve is given by

C(t) =
∑

n
i=0 bi

n(t)wiPi

∑
n
i=0 bi

n(t)wi
=

n

∑
i=0

Ri
n(t)Pi, t ∈ [0,1],0≤ wi ∈R+ (1.9)

where

Ri
n(t) =

bi
n(t)wi

∑
n
i=0 bi

n(t)wi
, t ∈ [0,1],0≤ wi ∈R+ (1.10)

More generally, we have non-uniform rational B-spline curves (NURBS) [8, 127,
128],

C(t) =
∑

n
i=0 Ni

n(t)wiPi

∑
n
i=0 Ni

n(t)wi
=

n

∑
i=0

Ri
n(t)Pi, t ∈ [0,1],0≤ wi ∈R+ (1.11)

where Ni
n(t) is the basis function of a B-spline curve.

This algorithm is applied to the smooth trajectories in robotics [83]. Because
the control polygon allows to show whether or not the path collides with any ob-
stacles [112], Bézier curves are harnessed in producing robot trajectories [128]. The
derivatives are utilized in calculation of dynamics and control effort (torque profiles)
of the robotic manipulator.

18 1 Introduction to Robotic Vision

1.6 Prerequisite Mathematics for Robotic Vision

1.6.1 Linear Algebra

In image processing, as well known, images are stored as an array of pixel values.
Correspondingly, linear algebra is needed, especially vectors and matrices like what
we have developed in MATLAB. Vectors and matrices in linear algebra combine
separate scalar data into a single, multidimensional group, which are to form finite
sequences of numbers with a fixed length, such as vector V and matrix M.

V = (v1,v2, · · · ,vn)
⊤ (1.12)

where the dimension of vectors is n, vi, i = 1,2, · · · ,n, n ∈N is the elements of
vector V. Similarly, we have matrix M with dimension n×n,

Mn×n =


m11 m12 · · · mn1
m21 m22 · · · mn2

...
...

. . .
...

mn1 mn2 · · · mnn

 (1.13)

where mi, j ∈ R, i = 1, · · · ,n and j = 1, · · · ,n is the element of matrix Mn×n. In
linear algebra, matrix M has its determinant det(M), eigenvalues, and eigenvectors
which has been applied to resolve various mathematical problems such as solving
linear systems. MATLAB can assist us to resolve these problems quickly.

In image processing, image manipulations (e.g., rotation, scaling, and transla-
tion) and image analysis in frequency domain need the transformation matrices
T3×3. (

x′

y′

)
= T2×2 ·

(
x
y

)
(1.14)

where (x,y) and (x′,y′) are the locations of a pixel on the image before and after the
transformation.

T3×3 =

β · cos(α) sin(α) ∆x
−sin(α) γ · cos(α) ∆y

0 0 1

 (1.15)

where α is the angle of rotation along z-axis, β and γ are scaling factors along x and
y directions, respectively. ∆x and ∆y are the shifts along x, y, and z directions, re-
spectively. Hence, det(T) ̸= 0. More broadly, the matrix T is employed to represent
geometric transformations in 3D space. The matrix could be generalized for Affine
transformation and projective transformations. Affine transformation is

T3×3 =

 t11 t12 t13
t21 t22 t23
t31 t32 t33

 (1.16)

1.6 Prerequisite Mathematics for Robotic Vision 19

where ti, j is the element (i, j) of matrix T3×3, det(T) ̸= 0. Regarding rotation, given
two angles α ∈R and β ∈R, we have,

cos(α +β) = cos(α)cos(β)− sin(α)sin(β) (1.17)

sin(α +β) = sin(α)cos(β)+ cos(α)sin(β) (1.18)

By using rotation matrices (orthogonal matrices), the determinant equals 1.

R2×2 =

[
cos(α) sin(α)
−sin(α) cos(α)

]
(1.19)

where α is the angle of clockwise rotation. Regarding counterclockwise rotation,

R2×2 =

[
cos(α) −sin(α)
sin(α) cos(α)

]
(1.20)

Regarding translation using a shift matrix for translation,

S2×3 =

[
1 0 ∆x
0 1 ∆y

]
(1.21)

where ∆x and ∆y are the shifts along x and y directions, respectively. If rotation and
translation are combined in a homogeneous transformation matrix, then,

H2×3 =

[
cos(α) sin(α) ∆x
−sin(α) cos(α) ∆y

]
(1.22)

The homogeneous transformation H is operated in this way,x′

y′

1

=

 cos(α) sin(α) ∆x
−sin(α) cos(α) ∆y

0 0 1

 ·
x

y
1

 (1.23)

A perspective transformation is a linear transformation that changes the appear-
ance of lines and objects. The perspective transformation is(

x′

y′

)
=

f
z

[
1 0
0 1

]
·
(

x
y

)
(1.24)

where (x,y,z) ∈R3 is a point in 3D space, f is focal length of the camera.

1.6.2 Geometry

In geometry, a straight line is:

Ax+By+C = 0 (1.25)

20 1 Introduction to Robotic Vision

where A,B,C ∈R are constants, (x,y) ∈R2. Typically, this equation is applied to
pattern classification. We denote the straight line in parametric form,{

x = x0 + t · (x1− x0)
y = y0 + t · (y1− y0)

(1.26)

where (x0,y0) and (x1,y1) are starting point and end points of a straight line, respec-
tively, t ∈R is the parameter. If the slop is denoted as k,

k =
y1− y0

x1− x0
,x1 ̸= x0 (1.27)

We have,

y = y0 + k · (x− x0) (1.28)

where k is the slope rate. The slope of a straight line is a measure of its steepness.
Mathematically, the slope is calculated as the change in y divided by change in x.
Hence,

y = k · x+b (1.29)

where b and k are constants. Furthermore, we denote conic curves or quadratic curve
as

F(x,y) = Ax2 +Bxy+Cy2 +Dx+Ey+F (1.30)

where A ̸= 0,A,B,C,D,E,F ∈R are the constants. (x,y) is the point in 2D space.
Hence, the quadratic curve is,

F(x,y) = (x,y)M
(

x
y

)
(1.31)

where M2,2 = {mi, j}2×2 is a matrix,

M =

[
m11 m12
m21 m22

]
(1.32)

Hence, any quadratic curves are possible to be converted to its standard form
after a series of transformations,[

λ1 0
0 λ2

]
= X−1MX (1.33)

where X is the matrix consisting of eigenvectors, det(X) ̸= 0. λ1 ̸= 0 and λ2 ̸= 0 are
eigenvalues.

I =
[

1 0
0 1

]
=

[
λ1 0
0 λ2

][1
λ1

0
0 1

λ2

]
(1.34)

1.6 Prerequisite Mathematics for Robotic Vision 21

Thus, we obtain function F ′(x,y) after a series of transformations from function
F(x,y),

F ′(x,y) = x2 + y2 (1.35)

Given a polynomial,
f (x) = x2 +2x+1 (1.36)

where x ∈R. We denote it in the way of matrix,

f (x) = (x,1)
[

1 1
1 1

](
x
1

)
(1.37)

Generally, if we have a general polynomial,

f (x) = a0 +∑
i=1

aixi (1.38)

where an ̸= 0, ai ∈R, i = 0,1, · · · ,n,n ∈N . We denote it as

f (x) = (xs,xs−1, · · · ,1)


p11 p12 · · · p1t
p21 p22 · · · p2t
· · · · · · · · · · · ·
ps1 ps2 · · · s2t




xt

xt−1

· · ·
1

 (1.39)

where s + t = n, n,s, t ∈ N . If a curve is smooth, the derivatives exist f (x) ∈
Cn[a,b],n ∈N . If n = 0, the function f (x) is continuous.

A curvature is the reciprocal of radius of curvature. That is,

k =
1
R

(1.40)

where R is the radius of the osculating circle. A parametrically-defined curve in
three dimensions given in Cartesian coordinates by using γ(t) = (x(t),y(t),z(t))⊤,
the curvature is,

k =
∥γ ′ × γ

′′∥
∥γ ′∥3 (1.41)

where × denotes the vector cross product.
In geometry, a geodesic is a curve that is the locally shortest path (arc) between

two points in a surface, or more generally in a Riemannian manifold[57]. The inter-
national nautical mile is defined as exactly 1,852 meters. The derived unit of speed
is knot, namely, one nautical mile per hour.

In this section, we denote all elements of linear algebra in the matrix way. The
reason is that we expect to easily compute the values on computers for various
programming.

22 1 Introduction to Robotic Vision

1.6.3 Probability

Starting from Bayes’ theorem, Bayes’ law or Bayes’ rule is,

p(x|y) = p(y|x)p(x)
p(y)

(1.42)

where p(x|y) ∈ [0,1] is conditional probability of p(x) ∈ [0,1], given p(y) ∈ [0,1].
p(x,y) ∈ [0,1] is the joint probability.

p(x,y) = p(x|y)p(y) = p(y|x)p(x) (1.43)

If p(x,y) is independent, we have

p(x,y) = p(x|y)p(y) = p(y)p(x) (1.44)

Entropy is the measure of missing information before reception. The definition
of information entropy is expressed in terms of a discrete set of probabilities,

H(X) =− ∑
xi∈X

p(xi) ln p(xi) (1.45)

where X = {xi, i = 1, · · · ,n,n ∈N }. Mutual entropy is based on Bayes’ theorem.

H(X ,Y) = H(X |Y)+H(Y) = H(Y |X)+H(X) (1.46)

where Y = {yi, i = 1, · · · ,n,n ∈N }.
Hence,

H(Y) = H(X ,Y)−H(X |Y) (1.47)

H(X) = H(X ,Y)−H(Y |X) (1.48)

Relative entropy is called Kullback–Leibler (KL) divergence or I-divergence,
which is a type of statistical distances, a measure of how much a model probability
distribution Q is different from a true probability distribution P.

HKL(P∥Q) = ∑
xi∈X

P(xi)
P(xi)

Q(xi)
(1.49)

where HKL(P∥Q) ̸= HKL(Q∥P).

1.7 Structure of the Book

This book is organized in a natural order that aligns with our understanding of
robotics. We firstly explore what robots are and how they function. Then, we delve

1.8 Lab Session: Introduction to Tools and Platforms 23

into image processing and computer vision for robotic scene understanding, with a
particular focus on stereo vision and 3D surface reconstruction.

Rather than relying on traditional machine learning methods, we directly uti-
lize deep learning for object detection and recognition in robotic vision. We in-
vestigate how deep learning can be applied to robot control and navigation. Ad-
ditionally, we introduce Robot Operating System (ROS), parallel computing (e.g.,
GPU, FPGA, etc.), and mobile computing for human and robot interactions (HRI).
Through our design and analysis of robotic systems, we aim to expand the applica-
tion of robots into broader research areas, including manufacturing, industrial au-
tomation, autonomous vehicles, and various applications. Finally, we discuss the
emerging trends and urgent applications in the field.

1.8 Lab Session: Introduction to Tools and Platforms

At the end of this chapter, all readers are recommended to complete the Lab report.
Please fill in the form shown in Table 1.1 after each lab session (2 hours).

Table 1.1: Lab report for robotic vision

Name <First Name Last Name>
Email <firstname.lastname@mailbox>
Lab date <dd-mm-yy>
Submitted date <dd-mm-yy>
Project title <A clear and concise title that accurately

reflects the content of the experiment or project.>
Lab objectives <The goal, aim, or purpose, hypotheses, etc.>
Configurations and settings <The preferences, software, hardware, platforms, tools, etc.>
Methods <The relevant scientific theories or concepts >
Workflow <The step-by-step procedure for the experiment>
Datasets <The data and materials for your experiments>
Input <image filename, size, resolution >
Output <image filename, size, resolution>
Testing steps <Functional & non-functional testing methods step by step>
Bugs or problems <The system error code, lines of the code>
Result analysis <The tables, graphs, and figures, etc.>
Conclusion/Reflection <The strengths and weaknesses, or learned from this project >
References <MATLAB website>
Appendix: <Source codes with comments and line numbers>

24 1 Introduction to Robotic Vision

1.9 Exercises

Question 1.1. In robotics, why the position and orientation of robots are so im-
portant?
Question 1.2. In robotics, how to understand the trajectory of a moving object?
Question 1.3. Why De Casteljau’s algorithm for implementing Bézier curves is
independent on device resolution?
Question 1.4. What are the challenges of robotic vision?
Question 1.5. What are the differences between machine learning and deep
learning?
Question 1.6. In deep learning, what is the relationship between RNNs and
Transformers?
Question 1.7. What is NURBS curve in Computer Aided Geometry Design
(CAGD)?

1.10 Appendix: History of Computing

• 2025: ACM Turing Award 2024 (Andrew Barto and Richard Sutton)
• 2025: Qwen3, YOLOv13
• 2024: Nobel Prize in Physics (J. Hopfield and G. Hinton) and Chemistry (D.

Hassabis)
• 2024: OpenAI Sora, YOLOv9, YOLOv10, YOLO11
• 2023: YOLOv8, Diffusion Transformer(DiT), DALL·E
• 2022: ChatGPT, YOLOv7 [27, 79] & YOLOv6
• 2021: Vision Transformer (ViT)
• 2020: YOLOv4 & YOLOv5, GPT-3
• 2019: ACM Turing Award 2018
• 2018: YOLOv3 & Mask R-CNN [37]
• 2017: CapsNets & YOLO9000 [76, 78]
• 2016: You Only Look Once (YOLO) [103]
• 2015: ResNet [35, 115, 36], GoogLeNet, & Fast / Faster R-CNN [30, 104]
• 2014: GAN & VGG [33], AlphaGo (DeepMind)
• 2013: Region-Based CNN(R-CNN) [31, 32]
• 2012: AlexNet (ImageNet) [105]
• 1997: Long Short-Term Memory [6] (LSTM)
• 1990: Convolutional Neural Networks (CNNs or ConvNets)
• 1986: Restricted Boltzmann Machine (RBM)
• 1986: Iterative Dichotomiser 3 (ID3)
• 1974: Multilayer Perceptron (MLP)
• 1970: Automatic Differentiation (AD, e.g., Chain rule)
• 1969: XOR Logic Function
• 1960: Least Mean Squares (LMS)
• 1957: Perceptron (IBM 704).

References 25

• 1945: ENIAC (Electronic Numerical Integrator and Computer)

References

1. Arnold, R. D., Yamaguchi, H., Tanaka, T. (2018). Search and rescue with autonomous flying
robots through behavior-based cooperative intelligence. Journal of International Humanitar-
ian Action, 3(1), 18.

2. Alexander, R. (2022) Human Facial Emotion Recognition from Digital Images Using Deep
Learning. Master’s Thesis, Auckland University of Technology, New Zealand.

3. Alpaydin, E. (2009) Introduction to Machine Learning, MIT Press.
4. An, N. (2020) Anomalies Detection and Tracking Using Siamese Neural Networks. Master’s

thesis, Auckland University of Technology, New Zealand.
5. An, N., Yan, W. (2021) Multitarget tracking using Siamese neural networks. ACM Transac-

tions on Multimedia Computing, Communications, and Applications, 17(pp 1—16).
6. Bengio, Y., Simard, P., Frasconi, P. (1994). Learning long-term dependencies with gradient

descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157 – 166.
7. Bengio, Y., Lecun, Y., Hinton, G. (2021) Deep Learning for AI. Communications of the ACM,

64(7), 58–65.
8. de Boor, C. (1978). A Practical Guide to Splines. Springer-Verlag. ISBN 978-3-540-90356-7.
9. Caruana, R., Lawrence, S., Giles, C. L. (2001). Overfitting in neural nets: Backpropagation,

conjugate gradient, and early stopping. In Advances in Neural Information Processing Sys-
tems (pp. 402 – 408).

10. Chen, Z., Yan, W. (2023) Real-time pose recognition for billiard player using deep learning.
Deep Learning, Reinforcement Learning and the Rise of Intelligent Systems.

11. Collobert, R., Weston, J. (2008). A unified architecture for natural language processing: Deep
neural networks with multitask learning. In International Conference on Machine Learning
(pp. 160 – 167).

12. Corke, P. Robotics, Vision and Control (2nd Edition), Springer Nature.
13. Cover, T., Thomas, J. (1991) Elements of Information Theory, John Wiley & Sons, Inc.
14. Dabney, W., et al. (2020) A distributional code for value in dopamine-based reinforcement

learning. Nature, 577: 671–675
15. De Boer, P. T., Kroese, D. P., Mannor, S., Rubinstein, R. Y. (2005). A tutorial on the cross-

entropy method. Annals of Operations Research, 134(1), 19 – 67.
16. Dosovitskiy, A., et al. (2021) An image is worth 16×16 words: Transformers for image recog-

nition at scale. International Conference on Learning Representations.
17. Dunne, R. A., Campbell, N. A. (1997). On the pairing of the softmax activation and cross-

entropy penalty functions and the derivation of the softmax activation function. Aust. Conf.
on the Neural Networks (Vol. 181, pp. 185).

18. Ertel, W. (2019) Introduction to Artificial Intelligence. Springer International Publishing.
19. Farin, G. (1997). Curves and Surfaces for Computer-Aided Geometric Design. Elsevier. ISBN

978-0-12-249054-5.
20. Farin, G. (2002). Curves and Surfaces for CAGD: A Practical Guide (5th ed.). Morgan Kauf-

mann.
21. Foley, van D. (1996) Computer Graphics: Principles and Practice. Addison-Wesley (2nd ed.).
22. Fu, Y. (2020) Fruit Freshness Grading Using Deep Learning. Master’s Thesis, Auckland Uni-

versity, New Zealand.
23. Fu, Y., (2020) Fruit freshness grading using deep learning. Springer Nature Computer Sci-

ence.
24. Gao, X. , Nguyen, M., Yan, W. (2021) Face image inpainting based on generative adversarial

network. IEEE IVCNZ.
25. Gao, X. (2021) A Method for Face Image Inpainting Based on Generative Adversarial Net-

works. Master’s Thesis. Auckland University of Technology, New Zealand.

26 1 Introduction to Robotic Vision

26. Gao, X., Nguyen, M., Yan, W. (2023) A high-accuracy deformable model for human face
mask detection. PSIVT.

27. Gao, X., Nguyen, M., Yan, W. (2024) Human face mask detection based on deep learning
using YOLOv7+CBAM. Handbook of Research on AI and ML for Intelligent Machines and
Systems, 94-106.

28. Gao, X., Liu, Y., Nguyen, M., Yan, W. (2024) VICL-CLIP: Enhancing face mask detection in
context with multimodal foundation models. ICONIP.

29. Gashler, M., Giraud-Carrier, C., Martinez, T. (2008). Decision tree ensemble: Small hetero-
geneous is better than large homogeneous. International Conference on Machine Learning
and Applications, pp. 900–905.

30. Girshick, R. (2015). Fast R-CNN. IEEE International Conference on Computer Vision (pp.
1440 – 1448).

31. Girshick, R., Donahue, J., Darrell, T., Malik, J. (2016). Region-based convolutional networks
for accurate object detection and segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 38(1), 142 – 158.

32. Gkioxari, G., Girshick, R., Malik, J. (2015). Contextual action recognition with R-CNN. IEEE
ICCV (pp. 1080 – 1088).

33. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., Bengio, Y. (2014). Generative adversarial networks. International Conference on Neural
Information Processing Systems (pp. 2672 – 2680).

34. Goodfellow, I., Bengio, Y., Courville, A. (2016) Deep Learning, MIT Press.
35. He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual learning for image recognition.

IEEE CVPR (pp. 770 – 778).
36. He, K., Zhang, X., Ren, S., Sun, J. (2016). Identity mappings in deep residual networks.

European Conference on Computer Vision (pp. 630 – 645).
37. He, K., Gkioxari, G., Dollar, P., Girshick, R. (2017). Mask R-CNN. IEEE ICCV (pp. 2980 –

2988).
38. Hinton, G., Osindero, S., Teh, Y. W. (2006). A fast learning algorithm for deep belief nets.

Neural Computation, 18(7), 1527 – 1554.
39. Hinton, G., Salakhutdinov, R. (2006) Reducing the dimensionality of data with neural net-

works. Science, 313(5786):504 – 507
40. Hoo-Chang, S., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., Summers, R. M. (2016).

Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset
characteristics and transfer learning. IEEE Transactions on Medical Imaging, 35(5), 1285.

41. Huang, G., Liu, Z., Weinberger, K. Q., van der Maaten, L. (2017). Densely connected convo-
lutional networks. IEEE CVPR (Vol. 1, No. 2, pp. 3).

42. Ji, H., Liu, Z., Yan, W., Klette. R. (2019) Early diagnosis of Alzheimer’s disease using deep
learning. ACM ICCCV (pp. 87–91)

43. Ji, H., Liu, Z., Yan, W, Klette, R. (2019) Early diagnosis of Alzheimer’s disease based on
selective kernel network with spatial attention. IAPR ACPR (pp.503–515)

44. Jordan, M. I., Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects.
Science, 349(6245), 255–260.

45. Kasabov, N. (1996) Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engi-
neering. The MIT Press.

46. Kim, Y. (2014). Convolutional neural networks for sentence classification. Conference on
Empirical Methods in Natural Language Processing (pp. 1746 – 1751).

47. Klette, R. (2014) Concise Computer Vision: An Introduction into Theory and Algorithms.
Springer-Verlag London, U.K.

48. Kontschieder, P., et al. (2015) Deep neural decision forests. IEEE ICCV.
49. Krizhevsky, A., Sutskever, I., Hinton, G. E. (2012). ImageNet classification with deep con-

volutional neural networks. Advances in Neural Information Processing Systems (pp.1097 –
1105).

50. Kriegeskorte, N. (2015). Deep neural networks: A new framework for modeling biological
vision and brain information processing. Annual Review of Vision Science (pp. 417–446).

References 27

51. Krizhevsky, A., Sutskever, I, Hinton, G. (2017) ImageNet classification with deep convolu-
tional neural networks. Communications of the ACM, 60 (6), 84 – 90.

52. LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., Jackel, L. D.
(1989). Backpropagation applied to handwritten zip code recognition. Neural Computation,
1(4), 541 – 551.

53. LeCun, Y., Bengio, Y. (1995). Convolutional networks for images, speech, and time series.
The Handbook of Brain Theory and Neural Networks, 3361(10).

54. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11), 2278 – 2324.

55. LeCun, Y., Bengio, Y., Hinton, G. (2015) Deep learning. Nature, 521: 436 – 444.
56. Lee, C. Y., Gallagher, P. W., Tu, Z. (2016). Generalizing pooling functions in convolutional

neural networks: Mixed, gated, and tree. Artificial Intelligence and Statistics, 464 – 472.
57. Lee, John M. (2018). Introduction to Riemannian Manifolds. Springer-Verlag.
58. Lewis, P. et al. (2020). Retrieval-augmented generation for knowledge-intensive NLP tasks.

Advances in Neural Information Processing Systems. 33.
59. Li, C. (2022) Special Character Recognition Using Deep Learning. Master’s Thesis, Auck-

land University of Technology, New Zealand.
60. Li, C., Zhou, S., Yan, W. (2024) TFFD-Net: An effective two-stage mixed feature fusion and

detail recovery dehazing network. The Visual Computer.
61. Li, H., Wu, H., Lou, L., Kühnlenz, K., Ravn, O. (2012). Ping-pong robotics with high-

speed vision system. International Conference on Control Automation Robotics & Vision
(ICARCV), 106–111.

62. Li, X. (2018) Preconditioned stochastic gradient descent. IEEE Transactions on Neural Net-
works and Learning Systems, 29(5): 1454 – 1466.

63. Li, Y., Yang, X., Zhao, W., Wang, Y., Yan, W. (2024) Lightweight and efficient deep learning
models for fruit detection in orchards. Nature Scientific Reports.

64. Liang, C., Lu, J., Yan, W. Human action recognition from digital videos based on deep learn-
ing. ICCCV 2022, China.

65. Liang, C., Yan, W. (2023) Human action recognition based on YOLOv7. Deep Learning,
Reinforcement Learning, and the Rise of Intelligent Systems.

66. Liang, S. (2021) Multi-language Datasets for Speech Recognition Based on the End-to-End
Framework. Master’s Thesis, Auckland University, New Zealand.

67. Liang, S., Yan, W. (2022) A hybrid CTC+Attention model based on end-to-end framework
for multilingual speech recognition. Multimedia Tools and Applications.

68. Littman, M. (2015) Reinforcement learning improves behavior from evaluative feedback. Na-
ture, 521, 445 – 451.

69. Liu, C., Yan, W. (2020) Gait recognition using deep learning. Handbook of Research on
Multimedia Cyber Security, 214–226, IGI Global.

70. Liu, J. (2022) Crime Prediction From Digital Videos Using Deep Learning. Master’s Thesis,
Auckland University of Technology, New Zealand.

71. Liu, J. Pan, C., Yan, W. (2023) Litter detection from digital images using deep learning. SN
Computer Science, 4(134),

72. Liu, J., Yan. W. (2021) Crime prediction from video surveillance using deep learning. Hand-
book of Research on Aiding Forensic Investigation Through Deep Learning and Machine
Learning Frameworks, IGI Global.

73. Liu, M., Yan, W. Masked face recognition using MobileNetV2. ACM ICCCV.
74. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., Berg, A. C. (2016). SSD:

Single shot multibox detector. European Conference on Computer Vision (pp. 21 – 37).
75. Liu, X. (2019) Vehicle-Related Scene Understanding Using Deep Learning. Master’s Thesis,

Auckland University of Technology, New Zealand.
76. Liu, X., Yan, W., Kasabov, N. (2020) Vehicle-related scene segmentation using CapsNets.

IEEE IVCNZ (pp. 1–6)
77. Liu, X., Yan, W. (2021) Traffic-light sign recognition using capsule network. Multimedia

Tools and Applications, 80(10), 15161-15171 (2021)

28 1 Introduction to Robotic Vision

78. Liu, X., Yan, W., Kasabov, N. (2023) Moving vehicle tracking and scene understanding: A
hybrid approach. Multimedia Tools and Applications.

79. Liu, X., Yan, W. (2023) Vehicle detection and distance estimation using improved YOLOv7
model. Deep Learning, Reinforcement Learning and the Rise of Intelligent Systems.

80. Liu, Y. (2022) Sign Language Recognition from Digital Videos Using Feature Pyramid Net-
work with Detection Transformer. Master’s Thesis, Auckland University of Technology.

81. Liu, Y., Nand, P., Hossain, M., Nguyen, M., Yan, W. (2023) Sign language recognition from
digital videos using feature pyramid network with Detection Transformer. Multimedia Tools
and Applications.

82. Liu, Z., et al. (2021). Swin Transformer: Hierarchical Vision Transformer using shifted win-
dows. IEEE ICCV.

83. Lynch, K., Park, F. Modern Robotics: Mechanics, Planning, and Control. Cambridge, MA:
Cambridge University Press, 2017.

84. Manning, C., Raghavan, P., Schutze, H. (2008) Introduction to Information Retrieval. Cam-
bridge University Press.

85. Mehtab, S. Yan, W., Narayanan, A. (2022) 3D vehicle detection using cheap LiDAR and
camera sensors. International Conference on Image and Vision Computing New Zealand.

86. Mehtab, S. (2022) Deep Neural Networks for Road Scene Perception in Autonomous Vehicles
Using LiDARs and Vision Sensors. PhD Thesis, Auckland University of Technology, New
Zealand.

87. Mi, Z., Yan, W. (2024) Strawberry ripeness detection using deep learning models. Big Data
and Cognitive Computing 8 (8), 92.

88. Mignan, A., Broccardo, M. (2019) One neuron versus deep learning in aftershock prediction.
Nature, 574(7776), E1-E3.

89. Mnih,V., et al. (2015) Human-level control through deep reinforcement learning. Nature, 518,
529 – 533.

90. Molchanov, V. V., Vishnyakov, B. V., Vizilter, Y. V., Vishnyakova, O. V., Knyaz, V. A. (2017).
Pedestrian detection in video surveillance using fully convolutional YOLO neural network.
Automated Visual Inspection and Machine Vision II (Vol. 10334).

91. Muscat, J. (2014) Functional Analysis, Springer.
92. Nguyen, M., Yan, W. (2023) From faces to traffic lights: A multi-scale approach for emotional

state representation. IEEE International Conference on Smart City.
93. Niculescu-Mizil, A., Caruana, R. (2007), Inductive transfer for Bayesian network structure

learning. International Conference on Artificial Intelligence and Statistics.
94. Norvig, P., Russell, S. (2016) Artificial Intelligence: A Modern Approach (3rd Edition), Pren-

tice Hall.
95. Pan, S. and Yang, Q. (2010) A survey on transfer learning. IEEE Transactions on Knowledge

and Data Engineering, 22(10):1345 – 1359
96. Peebles, W., Xie, S. (2023). Scalable Diffusion Models with Transformers. IEEE/CVF Inter-

national Conference on Computer Vision (ICCV). pp. 4172–4182
97. Peng, D. (2025) Vision Perception Optimization and Adaptive Control for Resource-

Constrained Platform: A Ping-Pong Ball Pick & Place System. Master’s Thesis, Auckland
University of Technology, New Zealand.

98. Piacentini, C., Bernardini, S., Beck, J. C. (2019). Autonomous target search with multiple
coordinated UAVs. J. Artif. Int. Res., 65(1), 519–568.

99. Qi, J., Nguyen, M., Yan, W. (2023) CISO: Co-iteration semi-supervised learning for visual
object detection. Multimedia Tools and Applications.

100. Qin, Z., Yan, W. (2020) Traffic-sign recognition using deep learning. ISGV.
101. Queralta, J. P., Raitoharju, J., Gia, T. N., Passalis, N., Westerlund, T. (2020). AutoSOS: To-

wards multi-UAV systems supporting maritime search and rescue with lightweight AI and
edge computing.

102. Ravankar, A., Ravankar, A. A., Kobayashi, Y., Hoshino, Y., Peng, C.-C. (2018). Path smooth-
ing techniques in robot navigation: State-of-the-art, current and future challenges. Sensors,
18(9), 3170.

References 29

103. Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016). You only look once: Unified, real-
time object detection. IEEE CVPR (pp. 779 – 788).

104. Ren, S., He, K., Girshick, R., Sun, J. (2015). Faster R-CNN: Towards real-time object de-
tection with region proposal networks. Advances in Neural Information Processing Systems
(pp. 91 – 99).

105. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Berg, A. C. (2015).
ImageNet large scale visual recognition challenge. International Journal of Computer Vision,
115(3), 211–252.

106. Sarikaya, R., Hinton, G. E., Deoras, A. (2014). Application of deep belief networks for natu-
ral language understanding. IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, 22(4), 778–784.

107. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks,
61, 85–117.

108. Singh, C. D., He, B., Fermüller, C., Metzler, C., Aloimonos, Y. (2024). Minimal perception:
Enabling autonomy in resource-constrained robots. Frontiers in Robotics and AI

109. Song, C., He, L., Yan, W., Nand, P. (2019) An improved selective facial extraction model for
age estimation. IEEE IVCNZ.

110. Sutton, R., Barto, A. (2018) Reinforcement Learning: An Introduction (2nd edition). MIT
Press

111. Tang, S., Yan, W. (2024) Utilizing RT-DETR model for fruit calorie estimation from digital
images. Information 15 (8), 469.

112. Tokunaga, S., Premachandra, C., Premachandra, H. W. H., Kawanaka, H., Sumathipala, S.,
Sudantha, B. S. (2021). Autonomous spiral motion by a small-type robot on an obstacle-
available surface. Micromachines, 12(4), 375.

113. Vaswani, A. et al. (2017) Attention is all you need. The Conference on Neural Information
Processing Systems (NIPS), USA.

114. Vedaldi, A., Lenc, K. (2015). MatConvNet: Convolutional neural networks for MATLAB.
ACM International Conference on Multimedia (pp. 689–692).

115. Veit, A., Wilber, M. J., Belongie, S. (2016). Residual networks behave like ensembles of
relatively shallow networks. Advances in Neural Information Processing Systems (pp. 550–
558).

116. Wang, H. (2018) Real-Time Face Detection and Recognition Based on Deep Learning. Mas-
ter’s Thesis, Auckland University of Technology.

117. Wang, H., Yan, W. (2022) Face detection and recognition from distance based on deep
learning. Aiding Forensic Investigation Through Deep Learning and Machine Learning, IGI
Global.

118. Webb, S. (2018) Deep learning for biology. Nature, 554: 555 – 557
119. Weiss, G. (2013). Multiagent Systems (2nd ed.). Cambridge, MA: MIT Press.
120. Xia, Y. Nguyen, M., Yan, W. (2023) Kiwifruit counting using KiwiDetector and KiwiTracker.

Intelligent Systems, 629–640.
121. Xiao, B., Nguyen, M., Yan, W. (2023) Apple ripeness identification from digital images using

transformer. Multimedia Tools and Applications.
122. Xiao, B., Nguyen, M., Yan, W. (2023) Fruit ripeness identification using transformers. Ap-

plied Intelligence.
123. Xing, J., Yan, W. (2021) Traffic sign recognition using guided image filtering, Springer ISGV

(pp.85-99).
124. Xu, G., Yan, W. (2023) Facial emotion recognition using ensemble learning. Deep Learning,

Reinforcement Learning, and the Rise of Intelligent Systems.
125. Yan, W., Kankanhalli, M. (2002) Detection and removal of lighting & shaking artifacts in

home videos. ACM International Conference on Multimedia, 107-116.
126. Yan, W., Ding, W., Qi, D. (2001) Rational many-knot spline interpolating curves and sur-

faces. Journal of Image and Graphics 6 (6), 568-572.
127. Yan, W., Qi, D. (1999) Many-knot spline interpolating curves and their applications in font

design. Computer Aided Drafting, Design and Manufacturing 9 (1), 1-8.

30 1 Introduction to Robotic Vision

128. Yan, W., Ding, W., Qi, D. (2001) Rational many-knot spline interpolating curves and sur-
faces. Journal of Image and Graphics 6 (6), 568-572.

129. Yan, W., Kankanhalli, M. (2009) Cross-modal approach for Karaoke artefacts correction.
Handbook of Multimedia for Digital Entertainment and Arts, 197-218.

130. Yan, W. (2019) Introduction to Intelligent Surveillance: Surveillance Data Capture, Trans-
mission, and Analytics (3rd Edition), Springer.

131. Yan, W. (2023) Computational Methods for Deep Learning: Theory, Algorithms, and Imple-
mentations (2nd Edition). Springer.

132. Yang, G., Nguyen, M., Yan, W., Li, X. (2025) Foul detection for table tennis serves using
deep learning. Electronics, 14(1), 27

133. Yang, G. (2025) ChatPPG: Multi-Modal Alignment of Large Language Models for Time-
Series Forecasting in Table Tennis. Master’s Thesis, Auckland University of Technology, New
Zealand.

134. Yang, Y., Kim, D., Choi, D. (2023). Ball tracking and trajectory prediction system for tennis
robots. Journal of Computational Design and Engineering, 10(3), 1176–1184.

135. Yin, S., Fu, C., Zhao, S., Li, K., Sun, X., Xu, T., Chen, E. (2024). A survey on multimodal
large language models. National Science Review.

136. Zhang, Y., Zhao, Y., Xiong, R., Wang, Y., Wang, J., Chu, J. (2014). Spin observation and
trajectory prediction of a ping-pong ball. IEEE International Conference on Robotics and
Automation (ICRA), 4108–4114.

137. Zhang, Z. (2000) A flexible new technique for camera calibration. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 21(11): 1330- 1334.

138. Zhao, H., Xu, S., Yan, W., Xu, D. (2025) Design and optimization of target detection and 3D
localization models for intelligent muskmelon pollination robots. Horticulturae, 11(8), 905.

139. Zhao, Y., Wu, J., Zhu, Y., Yu, H., Xiong, R. (2017). A learning framework towards real-
time detection and localization of a ball for robotic table tennis system. IEEE International
Conference on Real-Time Computing and Robotics (RCAR), 97–102.

140. Zheng, A., Yan, W. (2024) Attention-based multimodal fusion model for breast cancer pre-
diction. ICONIP.

141. Zhu, Y. Yan, W. (2022) Traffic sign recognition based on deep learning. Multimedia Tools
and Applications, 81: 17779–17791

Chapter 2
Robotics

Abstract

In this chapter, a variety of robots and their operations will be detailed, this includes
mobile robots and humanoid robots as well as robotic navigation and localization.
Correspondingly, MATLAB automatic driving toolbox will be illustrated. Our goal
is to equip cameras on mobile robots and acquire the dynamic images reflecting the
scene. In this chapter, a variety of robots such as arm-type robots, robotic kinetics,
robotic dynamics, and robotic control are taken into account. The significance of
this chapter is that the problems of robotic control are resolved by using the avail-
able visual information and knowledge. The manipulator and the end-effector(s) of
robots are controlled within 3D space.

31

32 2 Robotics

2.1 Mobile Vehicles

Mobile robots are a class of automobile machines, they are able to move through
the designated space [23]. The robots will select the best path [33, 35] to reach
its destination, it may encounter challenges such as obstacles that might block its
way or having an incomplete map, or no map at all [82]. The necessary maps will
be dynamically created or updated when the environment changes. The generated
maps will be applied to direct the robots where to go. One straightforward strategy
is to have simplified perception of the world and react to what is sensed.

Sensing means we make actively use of sensors. Once the robots with sensors
move from side to side, it quickly acquires information about its surroundings. That
is the way how robots acquire the environmental information. An alternative way
is to create a map of its environment and plan a path from the starting point to the
destination. This space will be scanned with SLAM algorithm (i.e., Simultaneous
Localization and Mapping [65, 71]). Based on the map with scene understanding, a
path is needed to be planned. Thus, we choose which path is the best and the shortest
one for the robot to reach the destination.

The free-range mobile robots and wheeled robots typically make use of the fixed
infrastructure for guidance, such as bicycle. Bicycles have pedal and handlebar basi-
cally as shown in Fig.2.1. Generally, the robot’s velocity is controlled like a bicycle
to be proportional to the distance from the point (x,y)∈R2 to the goal (x∗,y∗)∈R2,

Fig. 2.1: A bike and the forces to the ground in red arrows

v∗ = Kv

√
(x∗− x)2 +(y∗− y)2,Kv ∈R,v∗ ∈R (2.1)

With the relative angle,

θ
∗ = tan−1(

y∗− y
x∗− x

),θ ∗ ∈R (2.2)

2.1 Mobile Vehicles 33

By using a proportional controller as shown in Fig.2.2,

γ = Kh(θ
∗−θ),0 < Kh ∈R,γ ∈R (2.3)

where Kv and Kh are the constants.

Fig. 2.2: A proportional controller and its radii

Most people have the experience riding a bicycle or know how it operates. The
pedals of a bike are the source where the power is from. The handlebar is adopted
to control where the direction will be. While moving slowly, the handlebar of bike
should have an angle to support the moving. Especially, the direction is altered. At
this time, the handlebar and the pedals should keep the angle. Given a fixed angle,
the bicycle will remain the balance and keep going further. Hence, the unmanned
bicycle was designed and implemented, the bicycle can be run automatically. The
gyroscope is installed on the robot to keep the balance and direction. If the bicycle
is working in the proper direction, it can be driven smoothly and stably. Thus, the
bike is possible to be controlled remotely, batteries will provide energy and power.
A simple proportional controller turns the steering wheel so as to drive the robot
toward the destination. The proportional controller adjusts the steering angle, which
drives the robot following the straight line,

αd =−Kd ·d,0 < Kd ∈R (2.4)

where Kd is a constant.

d =
(a,b,c) · (x,y,1)⊤√

a2 +b2
,a2 +b2 ̸= 0,d ∈R (2.5)

34 2 Robotics

This proportional controller is distinct from the mechanical system of bicycle.
Basically, a bicycle has two wheels, one is in front, the other is at the back. But for
this pair of controllers, which has four wheels, if the direction is changed, the four
wheels will be turned in various directions. Hence, mobile robots follow the two
radii. Following a straight line, two controllers are required to adjust the steering.
One controller steers the robot to minimize the robot’s normal distance from the
straight line. Two controllers are required to adjust steering. One controller steered
the robots to keep the balance and distance from the straight line. This trailer will
be operated and run along the straight line [55]. The second controller adjusts the
heading angle or orientation, controls the vehicle to be parallel to the straight line.
The two controllers must jointly work together, control the robots to move forward.
But the problem is how to make use of computers to guide robots from the starting
point to the end point.

ax+by+ c = 0 (2.6)

where a,b,c ∈R are constants.

θ
∗ = tan−1(−b

a
),a ̸= 0,θ ∗ ∈R (2.7)

The Ackermann steering geometry[44] is a geometric arrangement of linkages
in the steering of a car or other vehicles designed to solve the problem of wheels
on inside and outside of a turn needing to trace out circles of different radii. Exact
Ackermann geometry is only valid at low speeds or tight turns. At high speeds,
tire slip angles must be considered; therefore, approximate Ackermann geometry or
dynamic steering models are employed.

2.2 Humanoid Robots

A humanoid robot as shown in Fig. 2.3 is a robot resembling human body in shape.
In general, humanoid robots have a torso as shown in Fig. 2.4, including a head,
two arms, and two legs, though a few humanoid robots may replicate only a part
of human body. Androids are humanoid robots to aesthetically resemble humans. A
few robots have wheels, the feet are wheeled [95]. A logo of Android mobile system
is a robot. The android, the original name or original meaning is a robot.

Sensors sense the position, orientation, and speed of humanoid’s body and joints,
along with internal values. Actuators are the motors responsible for motion in
robots. In robots, most of the joints are equipped with motors. The motors take
advantage of torque to control arms, allowing them to rise or lower, so do the legs.
For example, if we hold a weighty object on air, a group of motors are working
together to keep pose of the object. By using motors, the controller gives a force to
control the pose, that is called payload. In robots, the motors control the position
and orientation of an arm. In total, a torso has 24 degrees of freedom (DoF) after
added all dimensions of axes together. Pertaining to the number of axes, a torso has

2.2 Humanoid Robots 35

Fig. 2.3: A humanoid robot

Fig. 2.4: A torso of human body and its joints

36 2 Robotics

multiple rotational axes and translational axes. If a computer is employed for con-
trolling robots, the motors in each joint should be exactly controlled for rotational
and translational operations.

Google MediaPipe is a computer vision software that is able to capture 33
key points of human body as shown in Fig. 2.5. Our human body includes head,
arms, legs and feet before a camera, the 33 points could be detected in real
time [91, 90, 18, 29]. Correspondingly, the angles between any two links could
be utilized to control the torso of robots. Hence, we take use of these features for
robotic control via human pose detection and recognition. Therefore, the key issue
is how to automatically map these points to a humanoid robot so as to save our
operating time. The robotic vision should have the ability to resolve this mapping
problem through robot operating system (ROS) and visual servoing.

Fig. 2.5: An example of Google MediaPipe software for capturing human pose

2.3 Navigation 37

2.3 Navigation

2.3.1 Automata

A robot is a goal-oriented machine that is able to sense, plan, and act, like in-
sects [59]. Insects, such as moth, butterfly, and bird follow Charles Darwin’s the-
ory of evolution. Particularly in winter time, birds usually fly to the north because
the north in the southern hemisphere is warm [36], vice versa. This movement is
triggered by factors like changing day length, temperature, and food availability.
Birds fully take advantage of a plethora of cues to navigate, including the Sun, the
Moon, stars, the Earth’s magnetic field, and landmarks. Robots are inspired and
learned from this bird migration or seasonal movements. The simple class of robots
are known as Brandenburg robots. That is a class of goal-oriented robots, they are
characterized by using direct connections between sensors and motors.

When light rays are emitted from the Sun or the Moon, when human moves from
one place to another at night, the location of the Moon or stars in sky are utilized
for positioning. Most of insects also need position of the Moon in night. While
the insects are moving toward the destination, they always retain and withhold the
angle toward the direction of light rays like moths. Hence, the path is called moth
curve [87].

Fig. 2.6: A moth would like to fly along a curve that is perpendicular to ray direction,
thus, it is called moth curve. A Braitenberg robot is to move along the moth curve.

Because robots need take actions, they have their own behaviors. The behav-
ioral robots essentially are automata [14]. In computer science, automata is called
Finite State Machine (FSM). The automata [42] is a system which serves us well.
For example, the simple automata is a computer operating system, like Microsoft
Windows, Linux or MacOS. In computer control or machine intelligence, the au-
tomata is always needed. The reason why the robot is much intelligent is that au-
tomata is smart, it simply reacts to the actions within the environment. A simple
automata shares the ability to sense when they are in proximity to an obstacle. The
automata [42] includes a FSM and other logic between sensors and motors. The

38 2 Robotics

simple robot performs goal seeking in the presence of non-drivable areas or obsta-
cles [82].

Initially, robots do not know the environment well, but after iterative interactions,
they acquire the lore from environment, understand the surroundings, they gradually
become familiar with the scene. If robots deeply understand logical relationships in
the scene, the robots cannot move from one place to another due to the existing
obstacles. Hence, robots have the ability to avoid obstacles [13]. If robots under-
stand the updated maps well, they move toward the correct direction. Automata has
memory, a robot is able to be operated in correct way like the automata.

The central issue of robot navigation is path planning [57]. If such a map is
available, robots need to make a reasonable plan how to leave current place or how
to return starting place. The key to achieve the best path is to explore this map. The
Google map for navigation needs the starting point in a plan to get the destination.
The best way is to have a Google map, which instructs us the orientation of roads,
traffic congestion, bridges, and obstacles, etc.

A simple and computer-friendly representation is the occupancy grid [30], the
memory is required to hold the occupancy. We segment a map into regions. The
memory is required, which stores the grids. The robot is operated in a grid world
which occupies one grid cell. The robot does not have any non-holonomic con-
straints that can move to any neighboring grid cells each time. It is able to determine
the position of a robot on the plane. The robot is able to compute the path it will take.
The holonomic way of robots is based on global view. A sophisticated planner might
consider kinematics and dynamics of a robot and avoid paths that involve turns. In
a map, the derivable regions or obstacles are presented as polygons, comprising of
a list of vertices or edges. This is potentially a compact format, but determining po-
tential collisions between robots and obstacles [82]. This navigation algorithm has
exploited its global view of the world, through exhaustive computations so as to
find the shortest path. Like riding bus or train, we need pay the fare within one zone
as shown in Fig.2.7. The robot does not have any holistic constraints to arrive any
neighboring grid cells. That’s the reason why robots need understand the scene so
that the robots can travel from one cell to another.

In a plan, if a robot already occupies one place or cell, the robot is able to follow
the map and compute the path it will follow. This is called holistic plan. A robot can
proceed moving from any places to where it decides to go by following instructions,
the navigation algorithm has explored global view of this world. If a robot would like
to seek the shortest path by using a map, the map keeps offering optimal solutions
for the robot. The traffic on the dynamic map is being updated in real time. Robots
have the ability to quickly find the states of the planned roads [64]. The best part of
this algorithm is the computational cost from the starting point to the destination.
The cost is the crucial factor for making holistic decision for a robot.

A fairly complex planning problem has been converted into one that can be han-
dled by using a Braitenberg-class robot. This makes local decisions based on the
distance to the goal [57]. Brandenburg robot is an elemental one, a local decision is
needed to make. A robot thus need think of the neighbors and reach to the next grid
cell. The penalty for achieving the optimal path is computational cost. The roadmap

2.3 Navigation 39

Fig. 2.7: A bus and train fare zone

methods provide an effective means to find the paths in large maps that greatly re-
duce computational costs. Suppose a robot has a slew of ways to leave, firstly it
needs to make local decision. The mobile robots have equipped with feet or wheels.
Along with well-designed direction, the robot can quickly attain the destination [17].

2.3.2 D* Algorithm

D* algorithm (pronounced “D star”) was designed for resolving path planning prob-
lems [39, 80], where a robot will be navigated to the given destination in unknown
terrain [76]. D* algorithm and its variants have been widely employed for mobile
robot and autonomous vehicle navigation [55]. The algorithm supports computa-
tionally cheap and incremental re-planning ways for small changes in a map [77]. It
generalizes the occupancy grid to a cost map, the map represents the cost of travers-
ing each cell in the horizontal or vertical direction [30].

40 2 Robotics

Algorithm 2: D* path planning algorithm
Input: Start node sstart , Goal node sgoal , Grid map with initial cost estimates
Output: Path from sstart to sgoal

1 Initialize open list with sgoal ;
2 Set g(sgoal)← 0, rhs(sgoal)← 0;
3 foreach state s ̸= sgoal do
4 g(s)← ∞, rhs(s)← ∞;

5 ComputeKey(sgoal);
6 while open list is not empty and (key(sstart) > key(top) or

rhs(sstart) ̸= g(sstart)) do
7 s← state with smallest key in open list;
8 if g(s)> rhs(s) then
9 g(s)← rhs(s);

10 remove s from open list;
11 foreach predecessor s′ of s do
12 UpdateVertex(s′);

13 else
14 g(s)← ∞;
15 foreach predecessor s′ of s and s itself do
16 UpdateVertex(s′);

17 Function UpdateVertex(s):
18 if s ̸= sgoal then
19 rhs(s)←mins′∈Succ(s)(g(s′)+ c(s,s′));

20 remove s from open list;
21 if g(s) ̸= rhs(s) then
22 insert s into open list with key ComputeKey(s);

23 Function ComputeKey(s):
24 return [min(g(s),rhs(s))+h(sstart ,s),min(g(s),rhs(s))];

D* algorithm was designed for planning with a minor change [57]. If the given
map has a puny change, the robot can quickly react to the change. This is a respon-
sible way to minimize the total cost of a travel. The algorithm supports incremental
re-planning. That means, it is possible to have a new plan because of environmental
changes. D* algorithm allows updates to the map at any time while a robot is mov-
ing. After re-planning, the robot simply positions to a adjacent cell with the lowest
cost which ensures the continuity of motions. The pseudocode is shown in Algo-
rithm (2). While a robot is shifting, the map will be dynamically updated as we are
driving a car using Google road map.

Google road map will automatically presents the dynamic routine path for a
driver. Similarly, if a robot deviates to a wrong way, the navigation map could
quickly check the routine; if the robot averts somewhere nearby, the map can quickly
guide the bot to go back. After re-planning, the bot simply adjusts the cell with

2.3 Navigation 41

the lowest cost, which ensure that the continuity holds even if the plan has been
changed. The plan change will not impact final destination. Thus, the cost should be
reduced as much as possible.

2.3.3 Voronoi Diagram

In mathematics, a Voronoi diagram is a partition of a plane into regions close to
each of a given set of objects [12]. The map is segmented into multiple regions.
Subsequently, a robot need decide where the best direction is, how the bot will move
to the next region in the created Voronoi roadmap. In MATLAB, a Voronoi diagram
is based on distance to a specific set of points. An example of Voronoi diagram is
shown in Fig. 2.8.

Fig. 2.8: An example of Voronoi diagram and Delaunay triangulation

The skeleton of this free space is a network of adjacent cells, no more than one
cell thick. The skeleton is a free space, indicated by using white cells. The white
markers show that the skeleton of free space is networked. The skeleton with obsta-
cles is overlaid in red, the junction points are marked in blue. Regarding the distance
of obstacles, pixel values correspond to the distance of the nearest obstacle. Usually,
Voronoi diagram is triangle-based. Because the triangle is basic, once all of them are
obtained, the centers are connected together. Thus, a graph is created. The graph ba-
sically shows the information of links. The roadmap with junctions will be marked

42 2 Robotics

in blue. If a region has an obstacle, it is marked in red. If there is a junction between
two regions, it is marked in blue. Regarding the distance between the two regions,
the Voronoi diagram can save calculations. For calculating the distance, norms L0,
L1, L2, Lp and L∞ are employed for a vector V. More generally, we have p-norm
in functional analysis,

∥V∥p = (
n

∑
i=1

xp
i)

1
p (2.8)

where xi ∈R, i = 1,2, · · · ,n ∈R is the component of an n-dimensional vector V,
p = 0,1,2,3, · · · ,∞. Most of time, we make use of norms L2 (Euclidean distance),
which indicate the distance from one place to another as shown in eq.(2.9).

∥V∥2 = (
n

∑
i=1

x2
i)

1
2 (2.9)

An interesting distance is Manhattan distance which is block-based. Manhattan
distance, Taxicab distance, or block distance is an (L1) metric applied to determine
the distance between two points in a grid-like path [60] as shown in eq.(2.10).

∥V∥1 =
n

∑
i=1
|x|i (2.10)

An example of Voronoi-based robot path planning[26] is shown in Algorithm.(3),
the corresponding result is shown in Fig.2.9.

Algorithm 3: Voronoi-based robot path planning
Input: Set of obstacle points O = {o1,o2, . . . ,on}, start point s, goal point g
Output: Path from s to g avoiding obstacles

1 Compute Voronoi diagram V from obstacle points O
2 Extract finite Voronoi edges E from V
3 Add s and g to the diagram as additional nodes
4 Connect s and g to nearest Voronoi vertices or edges
5 Construct a graph G = (V,E) from Voronoi edges and added connections
6 Use Dijkstra’s or A* algorithm to find shortest path from s to g in G
7 return Safe path from s to g along Voronoi edges

2.3.4 PRM: Probability-Based Method

A probabilistic roadmap (PRM) [46] is a network of possible paths in a given
roadmap based on free and occupied spaces. This probability-based method reduces
computational costs by using probability sampling. Sampling means only a portion
of samples are selected randomly.

The PRM algorithm takes advantage of a network of connected nodes to find an
obstacle-free path from a starting point to the end. Increasing the nodes allows for

2.3 Navigation 43

Fig. 2.9: An example of Voronoi-based path planning in python. The dash line in
green shows the path for robot navigation.

more direct and correct path, but adds more computational time or execution time.
Because of the random placement of points, the path is not always direct or efficient.
Using a small number of nodes can make paths worse, and restricts the ability to
find a complete path. The advantage of PRM is that a few of relative points need
to be tested to affirm that the points and the paths between them are obstacle free.
Each edge of the graph has an associated cost which is the distance between the
two nodes. The color of a node indicates which component it belongs to and which
component is assigned a unique color. The pseudocode of PRM algorithm is shown
in Algorithm (4).

44 2 Robotics

Algorithm 4: Probabilistic roadmap (PRM) for robot navigation
Input: Start state qstart, goal state qgoal, number of samples N
Output: Path from qstart to qgoal

1 Learning Phase (Roadmap Construction):
2 Initialize empty graph G = (V,E);
3 for i = 1 to N do
4 Sample a random collision-free configuration qrand;
5 V ←V ∪{qrand};
6 foreach neighbor qnear in k nearest neighbors of qrand in V do
7 if Path(qrand,qnear) is collision-free then
8 E← E ∪{(qrand,qnear)};

9 Query Phase:
10 Add qstart and qgoal to V ;
11 Connect qstart and qgoal to nearest neighbors using same method as above;
12 Use Dijkstra’s or A* to find a path from qstart to qgoal in G;
13 if a valid path is found then
14 return path;

15 else
16 return failure (no path found);

Traversal across the roadmap involves searching toward the neighboring node
which has the lowest cost, that is closest to the goal. The process is repeated till the
node in a graph closest to the goal is reached. The important trade-off in achieving
computational efficiency is to use randomly sampling. Each graph has an associ-
ated cost. The color node indicates which component it belongs to. If the distance
from two different places is calculated, the planner can select samples and create a
network consisting of disjoints.

The underlying random sampling of free space means that a distinct graph is cre-
ated each time while the planner is being started up, resulting in various paths and
lengths. The planner can fail by creating a network consisting of disjoint compo-
nents. The long narrow gaps between the obstacles are unlikely to be exploited be-
cause the probability of randomly-chosen points that lie along the gaps is extremely
low. We need multiple samples along these long narrow gaps.

MATLAB provides an example for PRM algorithm as shown in Fig.2.10. In
MATLAB, a probabilistic roadmap (PRM) is a network graph of possible paths
in a given map based on free and occupied spaces. The algorithm takes advantage
of the network with the connected nodes to find an obstacle-free path from the start
to an end location. In this MATLAB example, a small number of nodes are created
in roadmap. Increasing the number of nodes will enhance the efficiency of path by
giving more feasible paths. The PRM algorithm recalculates the node placement and
generates a new network of nodes.

2.3 Navigation 45

Fig. 2.10: An example of PRM algorithm

2.3.5 RRT: Rapid-Exploring Random Tree

Another algorithms for this map planning is to rapid-exploring random tree (RRT) [1].
The RRT algorithm easily deals with various obstacles and differential constraints.
Compared with other algorithms, RRT method works fast, which has less cost. This
is feasible to control orientation of a robot, where it is positioned [45]. The pseu-
docode is shown in Algorithm (5). If we start seeking the initial parameters, this
is computed with the inputs that move the robot from the existing points to others.
Given a starting point, robots quickly walk along the map to get another point. This
is a repeated process with multiple attempts, the inputs with the best performance
are chosen.

46 2 Robotics

Algorithm 5: Rapidly-exploring random tree (RRT)
Input: Start state xstart , Goal region Xgoal , Obstacle space Xobs, Maximum

iterations N
Output: Path from xstart to goal, if found

1 Initialize tree T with root node xstart
2 for i← 1 to N do
3 Sample random state xrand from X
4 xnearest ← Nearest neighbor to xrand in T
5 xnew← Steer(xnearest ,xrand)
6 if ObstacleFree(xnearest ,xnew) then
7 Add xnew to T with an edge from xnearest
8 if xnew ∈Xgoal then
9 return Path from xstart to xnew

10 return Failure: No path found within N iterations

The RRT algorithm is computed for the model with a velocity, steering angle,
integration period, and initial configuration. The algorithm is to compute the control
input that moves the robot from an existing point in the graph. The RRT algorithm
makes use of a kinematic model to create paths which are feasible to move. The
algorithm takes into account of the orientation of the robot as well as its position.
An example is shown in Fig. 2.11. The random number generator is reset to ensure
reproducible results. The path is planned from the starting point to the destination.

Fig. 2.11: An example of RRT algorithm

2.3 Navigation 47

2.3.6 Dead Reckoning

In navigation, dead reckoning is the process of calculating the current position of
a moving object by using a previously determined position, and incorporating es-
timates of speed, heading angles (or direction or course), and elapsed time. The
estimation of current ship location is based on previous speed, direction, and time
of travel, in case a ship misses its direction during voyage on sea [69].

Location estimation by using dead reckoning is based on robot position and the
estimated distance traveled. Sectioning is the way of estimation of position by mea-
suring the bearing angles of known landmarks. Triangulation (Surveying) is the es-
timation of position by measuring the bearing angles to the unknown point from
each of the landmarks [22]. Fig. 2.12 shows triangulation for surveying calculation.
When a ship passed the location point A, B, and C, we are able to calculate the
distance h from the object point O to the directed straight line

−→
AC.

Fig. 2.12: A triangulation for surveying

l = 11 + l2 (2.11)

where l, l1, l2 ∈R

tan(α) =
h
l1
, l1 ̸= 0 (2.12)

tan(β) =
h
l2
, l2 ̸= 0 (2.13)

l = h(
cos(α)

sin(α)
+

cos(β)
sin(β)

) = h
sin(α +β)

sin(α)sin(β)
,α ̸= 0,β ̸= 0. (2.14)

h = l
sin(α)sin(β)
sin(α +β)

. (2.15)

In computer science, dead reckoning refers to navigating an array of data by
using indexes based on location. Computer vision is employed to visual odometry

48 2 Robotics

with observations of the world. Most platforms have proprietary motion control
systems that accept motion commands from users (speed and direction) and report
odometry information. An odometer is a sensor that is able to measure the distance
traveled, typically by measuring the angular rotation of robot wheels. The direction
of traveling can be measured by using an electronic compass, the change in heading
angles can be calculated by using a gyroscope or differential odometry.

Originally, dead reckoning is a method to estimate location that is for the ship
voyage. The dead reckoning is an estimation based on a coastline to speed up the
action at time. From a voyage perspective, previously estimated GPS signals are not
reliable. GPS signals are extremely weak sometimes which can lead to jam. Suppose
a ship is traveling along seashore, the ship captain need calculate the distance from
the reckon. Given a fixed distance, the captain should keep the bearing angle. Thus,
the ship will make an excursion and cannot loss its way.

The dead reckoning calculates the new position (x′,y′)∈R2 by using the current
position (x,y)∈R2, velocity v, heading angle θ , and time step ∆ t. This assumes the
robot moves in a straight line with a constant speed and direction. The pseudoscope
for dead reckoning algorithm is shown in Algorithm (6). The code in Python and
the corresponding results are shown in Fig.2.13 and Fig.2.14.{

x′ = x+ v · cos(θ)∆ t
y′ = y+ v · cos(θ)∆ t (2.16)

where x,y,x′,y′,θ ,∆ t ∈R.

Algorithm 6: Dead reckoning for robot localization
Input: Initial position (x0,y0), initial orientation θ0, velocity v, angular

velocity ω , time step ∆ t, number of steps N
Output: Estimated trajectory {(xt ,yt ,θt)}N

t=0
1 Initialize: x← x0, y← y0, θ ← θ0
2 Store initial state (x,y,θ)
3 for t← 1 to N do
4 x← x+ v · cos(θ) ·∆ t
5 y← y+ v · sin(θ) ·∆ t
6 θ ← θ +ω ·∆ t
7 Store state (x,y,θ)

8 return trajectory {(xt ,yt ,θt)}

2.4 Mathematics Background

Kalman filtering [93] is an iterative algorithm that updates, at each time step, the op-
timal estimate of the unknown true configuration and the uncertainty associated with
that estimate based on the previous estimate and noisy measurement. Pertaining to

2.4 Mathematics Background 49

Fig. 2.13: The code in Python for dead reckoning algorithm

Kalman filtering [43, 54], the signals follow zero mean. That means, the optimality
of Kalman filter algorithm regards that errors have a normal (Gaussian) distribution.

Kalman filtering is an iterative algorithm, which keeps updating and what each
step estimate is known. The state is associated with previous states and noise mea-
surements. The next is that how it can be implemented based on previous steps [54].
Kalman filtering allows data from various sensors to update the state[98]. Kalman
filtering provides the best estimate of where robots are. A map of locations is cre-
ated while the robot is in its expedition with landmarks. A state vector comprises
of estimated coordinates of the landmarks that have been observed as x̂. The corre-
sponding estimated covariance is P,

P(k|k) = cov[x(k)− x̂(k|k)] (2.17)

and

P(k|k−1) = cov[x(k)− x̂(k|k−1)] (2.18)

The prediction equation is

x̂(k+1|k)← x̂(k|k) (2.19)

50 2 Robotics

Fig. 2.14: The results of dead reckoning algorithm in Python

While the covariance matrix is

P(k+1|k)← P(k|k) (2.20)

The updated state estimate is

x̂(k+1|k+1)← x̂(k+1|k) (2.21)

and

P(k+1|k+1)← P(k+1|k) (2.22)

The invariant of expectation is

E[x(k)− x̂(k|k)] = E[x(k)− x̂(k|k−1)] = 0 (2.23)

That means, all estimates have a mean error of zero. This process is called pre-
diction. Given k− 1 step, the state vector is expressed as what it was estimated,
the coordinates of landmarks have been observed. The corresponding estimates are
called covariance. The covariance is square root sum. The prediction equation is like
this, one gets xk|k. We predict xk+1|k. The coherence matrix will be calculated corre-

2.4 Mathematics Background 51

spondingly. We update the states by using xk+1|k+1, given xk|k+1 to get this Xk+1|k+1.
Meanwhile, this prediction is covariance matrix which has been updated. The means
of the expectation of xk|k and expectation of xk|k−1 are all zero. This expectation is
the sum that all the variables are added together and divided by using number k,
namely, the average. Given the signals with noise, after Kalman filtering, the signals
usually have not so many changes. Figure 2.15 is an example of Kalman filtering in
1D by using Python coding. The python code is shown in Fig. 2.16. If the algorithm
is simplified, the algorithm is able to be written by using pseudocode as shown in
Algorithm(7).

Fig. 2.15: The implementation of Kalman filtering algorithm

52 2 Robotics

Fig. 2.16: The code in Python for implementing Kalman filtering algorithm

Algorithm 7: Kalman filtering algorithm (Pseudocode)
Input: Initial state estimate x̂0, initial covariance P0

State transition model F , control model B, control input u
Observation model H, process noise covariance Q, measurement noise

covariance R
Measurements {zt} for t = 1 . . .N

Output: State estimates {x̂t} and covariances {Pt}
1 Initialize: x̂← x̂0, P← P0
2 for t← 1 to N do
3 Prediction Step:
4 x̂−← F · x̂+B ·u
5 P−← F ·P ·FT +Q
6 Update Step:
7 K← P− ·HT · (H ·P− ·HT +R)−1 // Kalman Gain
8 x̂← x̂−+K · (zt −H · x̂−)
9 P← (I−K ·H) ·P−

10 Store (x̂,P)

11 return {x̂t ,Pt}

2.5 Robot Arm Kinematics 53

2.5 Robot Arm Kinematics

Given a robot, the robot is navigated to the destination with well-planned path [33,
76]. The joints of a robot inherently stand on its body [59]. If there is a bottle on
table, the camera installed on the arm needs to find where the bottle is. The end-
effector will grasp this bottle and pick up the bottle, then place to another location.
Hence, the robot can pick and place the bottle from one place to another. This oper-
ation is within robot’s payload. A small robot showcases the effects for cooking and
cleaning in 3D space. Because the given space is limited, the robot is able to takes
use of its end-effector for food security and safety[3, 4, 5, 6, 7, 8]. The arm-type
robots or robot manipulators have a static base and therefore are possible to be op-
erated within the workspace. Usually, the robot will be enclosed within a forbidden
fence. As we know, the premise is called work envelop.

Fig. 2.17: A wheeled robot is within the “envelop”.

A robot manipulates objects by using its end-effector. We make use of end-
effector to find visual object and move objects [47, 89]. A serial-link manipulator
comprises a chain of mechanical links and joints. Our human arm is working as a
joint chain. Each joint can move its outward neighboring link with respect to its in-
ward neighbor. One end of the chain, the base, is generally fixed and the other is free
to move in the space and holds a tool as the end-effector. A serial-link manipulator
comprises of a set of bodies, called links, in a chain and connected by joints [23].
Each joint has one degree of freedom (DoF) [66], either translational joint (a sliding

54 2 Robotics

joint or prismatic joint) or rotational joint (a revolute joint). The motion of a joint
alters the relative angle or position of its neighboring links [22]. The joints of most
robots are revolute because we have motors inside to take effects. Meanwhile, the
prismatic joint is moving along straight line.

Between two joints, there is a link. A link is considered as a rigid body that de-
fines the spatial relationship between two neighboring joints. The link can be spec-
ified by two parameters: Length and twist. The link offset is the distance from one
link coordinate frame to the next along an axis of the joint. The joint angle is the
rotation of one link with respect to the next joint. The truly useful robots have a task
space enabling arbitrary position and attitude of the end-effector. Hereinafter, the at-
titude refers to orientation. The task space has six spatial degrees of freedom (DoF):
Three translational and three rotational. At present, this 3+3 DoF is the standard
configuration.

In robotics, robotic kinematics applies geometry to the movement of multi-DoF
kinematic chains that form the structure of robotic systems. Robotic kinematics of-
fers force to kinematic chains. The force is governed by Newton’s second law of
motion. The relationship between the dimensions, connectivity of kinematic chains,
the position, velocity, and acceleration of each link in the robotic system. Robotic
kinematics is explored and exploded (EE), in order to plan and control movement
and to compute actuator forces and torques. The actuator is the “muscle” of robots.
There are two broad classes of robots: Serial manipulators and parallel manipula-
tors. The time derivative of the kinematics yields Jacobian matrix of robots, which
relates to linear velocity and angular velocity of the end-effector [23].

JF =


∂ f1
∂x1

∂ f1
∂x2
· · · ∂ f1

∂xn
∂ f2
∂x1

∂ f2
∂x2
· · · ∂ f2

∂xn
· · · · · · · · · · · ·
∂ fm
∂x1

∂ fm
∂x2
· · · ∂ fm

∂xn

 (2.24)

where JF is Jacobian matrix, ∂ fi
∂x j

is the gradient of function fi, i = 1,2, . . . ,m with
j-th gradient x j, j = 1,2, · · · ,n.

The forward kinematics(FK) is often expressed in functional form with the end-
effector pose as a function of joint coordinates. The kinematics can be computed
for any serial-link manipulator irrespective of the number of joints or the types of
joints. The simple two-link robot is limited in the poses that it can achieve.

Forward Kinematics makes use of joint parameters to compute the configuration
of chain. Pertaining to human body, for example, if we touch an object [89], to deter-
mine the links starting from our feet to fingers, it is called FK. Inverse Kinematics
reverses this calculation to determine the joint parameters that achieve a desired
configuration [78, 96]. The comparison between IK and FK is shown in Fig. 2.18.

A pose may be unachievable due to singularity where the alignment of axes re-
duces the effective degrees of freedom [66]. Hence, a trajectory is choose, which
moves through a robot singularity. The singularity point could not be reached. Thus,
simulation can assist us to resolve the singularity problem. In robotics, the singular-

2.5 Robot Arm Kinematics 55

Fig. 2.18: The comparison between FK and IK

ity point problem refers to configurations of a robotic system where its mathematical
models, particularly the kinematic or dynamic equations, become undefined or de-
generate [23]. These points trigger problems such as loss of control or infinite joint
velocities, which severely limit the robot’s ability to move or perform tasks. Singu-
larity problems are especially important in robotic manipulators and robotic arms
in precision tasks, as they disrupt the robot’s ability to perform tasks accurately and
safely.

Kinematics [15] is the study of motion without considering the cause of motion.
Inverse kinematics (IK) is an example of the kinematic analysis of a constrained
system of rigid bodies, or kinematic chain. IK makes use of kinematics to determine
the motion of a robot to reach a desired position [78, 96].

The grasping end of a robot arm is designated as the end-effector. The robot
configuration is a list of joint positions within the position limits of the robot model
that do not violate any constraints. Given the desired end-effector positions, inverse
kinematics (IK) is able to determine an appropriate joint configuration for which the
end-effectors move to the target pose [78, 96].

Algorithm 8: Closed-form IK for a 2-Link Planar Arm
Input: Target coordinates (x,y), link lengths l1, l2
Output: Joint angles θ1, θ2

1 Compute d←
√

x2 + y2 // Distance to target
2 if d > l1 + l2 or d < |l1− l2| then
3 return Error: Target unreachable

4 Compute cos(θ2)←
x2+y2−l2

1−l2
2

2l1l2
5 Compute θ2← arccos(cos(θ2))
6 Compute k1← l1 + l2 cos(θ2)
7 Compute k2← l2 sin(θ2)
8 Compute θ1← arctan2(y,x)− arctan2(k2,k1)
9 return (θ1,θ2)

56 2 Robotics

Algorithm(8) shows the pseudocode of IK algorithm. Fig.2.19 displays an exam-
ple of MATLAB inverse kinematics for the simple 2D manipulator by using inverse
kinematics (IK). The manipulator of a robot is a simple 2-DoF planar manipulator
with revolute joints. A circular trajectory is created in a 2D plane which provides
points to the inverse kinematics solver. The solver calculates the joint positions to
achieve this trajectory. The robot is animated to show the robot configurations that
achieve the circular trajectory.

Fig. 2.19: MATLAB 2D path tracing with Inverse Kinematics (IK)

Fig.2.20 shows a demonstration of inverse kinematics in Python with three links.
The source code is given in Fig.2.21.

2.6 Dynamics and Control

Robot dynamics are the relationship between the forces acting on a robot and the
motion of the robot [23]. Robotics usually combines three aspects of design work to
create robot systems:

• Mechanical construction: A frame, form or shape which was designed to
achieve a particular task. The payload, gravity, weights, and materials are taken
into consideration, correspondingly. The forces and torques are the sources for
each link with the purpose of supporting robot working.

• Electrical components: The components encapsulate power to control the ma-
chinery. Electrical motors (DC or AC) are thought as the most important compo-
nent for control the robots and provide power to drive the robot working.

• Software: A program for a robot to decide when or how to conduct actions. The
important software for robot working is ROS, no matter for one robot or a swarm
of robots to coordinate working together.

2.6 Dynamics and Control 57

Fig. 2.20: A demo of Inverse Kinematics (IK) using Google Colab

Fig. 2.21: The inverse kinematics in Python

58 2 Robotics

Dynamics for robot control are related to these fundamental components:

• Electric motors: DC motors in portable robots or AC motors in industrial robots,
where electric current flows in two ways as an alternating current (AC) or direct
current (DC).

• Actuators: Actuator converts stored energy into movement, in most of time, we
make use of electric motors as the “muscle” to drive robots working.

• Sensors: Sensors provide real-time information to indicate the states of robots.
The sensors not only are applied to localization, positioning, and navigation, but
also provide temperature, air humanity, and battery states, etc.

• Manipulation: Manipulation is the control of robot’s environment through se-
lective touch or contact.

• The operation: Pick-and-place is the typical one of manipulations, basically the
pick-and-place operation is based on translations and rotations of robot compo-
nents in 3D space.

• End-effector: The device is located at the end of a robotic arm, The end-effector
was designed to interact with the environment, most of time, it will replace hu-
man hands and fingers. Although the design is not perfect, the end-effector will
be taken great values in the operation.

The interaction between human control and machine motions in the incremental
HRI (i.e., Human and Robot Interactions) is listed as:

• Teleoperation: A human controls each component and movement, correspond-
ing machine actuator is specified by the operator through wireless communica-
tions or mobile computing. The instructions will be understood and analyzed for
robot moving or working.

• Supervisory: A human specifies general moves or position changes, the machine
understands the instructions and decides specific movements of its actuators to
get the destination or location with the specified states.

• Autonomy: The operator specifies only the task, the robot manages itself to com-
pletion [14]. Usually, a series of instructions of these tasks will be thought as one
unit or package, the batch instructions will be executed till the end of these tasks.
Robots have the ability to deal with errors or mistakes during the execution.

• Full autonomy: The machine will create and complete all the tasks without hu-
man interactions [42]. The robots have the ability to deal with any problems
during the execution.

In dynamics and control of a serial-link manipulator, each link is supported by
using a reaction force and torque from the preceding link, which is subject to its
own weight as well as the reaction forces and torques from the links. We have the
joint torques and joint forces applied directly as a vector to each joint [59].

Q = M(q)q̈+C(q, q̇)q̇+G(q)+J(q)⊤ ·FExt (2.25)

where G(q) is gravity term, M(q)q̈ is inertia matrix, C(q, q̇)q̇ is centrifugal torques,
J(q)⊤ ·FExt is external force, J is Jacobian matrix of the end-effector [22]. In inverse

2.7 Applications of Robotics 59

dynamics, given the pose q, velocity q̇ and acceleration q̈, equation (2.25) is applied
to compute the required joint forces or joint torques.

2.7 Applications of Robotics

Robotics [23] encompasses robotic vision and robotic control. Robotic vision usu-
ally encapsulate camera collaboration, image formation, image processing, stereo
vision, and 3D reconstruction. The relevant content was depicted in previous sec-
tions of this book. Robotic control is taken effect through the research areas such
as machine intelligence [16, 31, 62], genetic algorithm (GA), reinforcement learn-
ing [27, 58], visual servoing, and imitation learning.

Visual servoing is quite advanced. Given a robot with its specifications and con-
figuration, the robot is expected to work effectively. Payload refers to the amount
that a robot can be lifted and carried. In the family of human robots, the members
include Android (male) and Gynoid (female), human robot has two kinds, one is
male and the other is female. Furthermore, the family has other members such as
mobile robots, arm-type robots, flying robots refer to drones [11, 67, 68].

Pertaining to arm-type robots, the Cartesian robot’s arm has three axes with
Cartesian coordinates. The tiny robots are possible to be installed in kitchens for
the facilitation of cutting fruits and preparing for a cup of coffee which may take
account of nutrition estimation [79, 83, 84].

Cartesian/Gantry robot’s arm has three prismatic joints, the axes are coincident
with a Cartesian coordinator. It has 3D prismatic, that means, the arms are working
along X , Y , and Z axes [11, 67, 68], the joints can move up and down, back and
forth, the arm-type robot is famous for its six degrees of freedom (DoF). Regarding
the number of axes, roll, pitch, and yaw operations are required for full control
of manipulator or end-effector as shown in Fig.2.22. In robotics [52], regarding
airplanes or drone systems [56], there are three rotations: Pitch, yaw, and roll around
the axes. The degree of freedom (DoF) and the number of joint points of robots are
not same [52].

The work envelope [73] refers to the region of space where a robot can work or
layout. Suppose these robots have a 3D work envelope, because a robot is made of
iron and steel, we need limit the motion of robots. In the work envelop, the robots
are moving within the limited premise.

Robot kinematics is the study of how a robot’s joints are connected and how they
relate to the robot’s spatial layout. It’s a fundamental topic in robotics [52] that takes
use of geometry to model the robot’s links of rigid bodies [23]. Kinematics is related
to the types of joints. Fig.2.23 shows a pick-and-place robot to pick up ping-pong
balls [48, 63, 91, 90, 92, 94, 97] in our building.

The compliance refers to the measure of distance or angle of a robot joint. The
speed includes angular or linear velocity. That means, the robot moves not only
transitional, but also rotational. While moving from this angle to that angle like a

60 2 Robotics

Fig. 2.22: An airplane and a helicopter: (a) The position of all three axes: Roll, pitch,
and yaw, with the right-hand rule for describing its rotations; (b) The work envelope
of a helicopter.

Fig. 2.23: A wheeled robot is picking up table-tennis balls with two cameras and
one end-effector.

2.7 Applications of Robotics 61

space shuttle, there are velocity and acceleration limits, the maximum speed over
short distance starts from zero. This process is called acceleration.

The power source includes electronic motors and hydraulics, i.e., two types of
powers. Nowadays, it is completely electronic motor-based. One of the advantages
is that electronic motors are quiet without noise.

Regarding robotic mapping, robots need a map and draw the map of the working
place automatically. Robotic navigation leads the robots from one place to another
by using map. When human communicates with robots, the robots can understand
human intentions [38]. As well known, OpenAI ChatGPT is a multimodal model
software, which showcases how many steps are needed if a task is expected to be
completed.

Robots exactly follow human instructions. The whole process may be given
through voices or talks. Given a prompt, a task or job is completed on time. Cur-
rently, all robots are based on imitation learning. If robots learn from human’s per-
formance and experience, the operation will be much standard. If there has a contest
whether human completes with robots, the outcome is that human cannot guarantee
always beating robots in future. But the robots can ensure they will win our human
sooner or later. Through a Google software MediaPipe, it shows that robots can rec-
ognize human poses [21, 20, 91, 81] and reflect the key points from human body to
the joint points of robots. Human facial emotion recognition [75, 85] can be imple-
mented by using software. Human expression of emotions encloses angry, happy,
and others [2, 61, 85].

The fundamental requirement in robotic vision [23] is to represent position and
orientation of robots in an environment. Basically, the position and orientation are
described by using its coordinates systems as shown in Fig.2.24. A coordinate
frame, or Cartesian coordinate system, is a set of orthogonal axes which intersect at
a point known as the origin. The position and orientation of a coordinate frame are
known as its pose which has shown graphically as a coordinate system [21]. Carte-
sian coordinate system is a set of axes which intersect at support node as an origin.
The origin is at the base of arm-type robots. If the system is initialized, the position
and the orientation based on the origin of the coordinate frame are known, as shown
in Fig. 2.25. That’s the reason why the coordinate system is defined and the impor-
tant characteristics of relevant tools should be considered. These characteristics are
possible to be composed or compounded together. The world coordinates will be
defined by using Affine transformation in eq.(2.26).X ′

Y ′

Z′

=

α · cos(θ) −sin(θ) ∆X
sin(θ) β · cos(θ) ∆Y

0 γ ∆Z

X
Y
Z

 (2.26)

where (∆X ,∆Y,∆Z)∈R3 is the shift, θ ∈R is the rotational angle, α ∈R, β ∈R,
and γ ∈ R are the scaling factors between two coordinate systems. This equa-
tion transforms the 3D point P = (X ,Y,Z)⊤ ∈ R3 in O1 system to the point P′ =
(X ′,Y ′,Z′)⊤ in O2 system.

62 2 Robotics

Fig. 2.24: The coordinate frame of robots in a scene. C0, C1, and C2 are camera
coordinate frames; R1 and R2 are robotic ordinate system.

Fig. 2.25: Arm-type robots and the coordinate frames, where R0 and R1 are robotic
coordinate frames on the bases.

Fig. 2.26: Affine transformation for the point P in two different coordinate systems
O1 and O2.

2.7 Applications of Robotics 63

The inverse transformation will transform the point P′ back to P. The inverse
matrix A satisfies that AA−1 = I, I is the identity matrix, and det(A) ̸= 0. The
Affine transformations are shown in Fig.2.26.

If a camera on the robot is fixed, this forms a basic relationship between the robot
and the camera. A robot system must be kept in our mind fundamentally. There
are many robots, cameras, and objects in the same environment. The occlusion of
obstacles needs to be avoided in case that one blocks another [82], the position and
orientation of the spatial object are related to a directed graph.

An alternative representation of spatial relationships is a directed graph. In an
environment, we need understand that there is a relationship between translation
and orientation. Translation means shift from one place to another, rotation refers
to rotations along X , Y , or Z axes, it is 3D-based. Between the spaces, we have a
transition matrix.

The object pose is varying as a function of time. With the difference, object pose
will have different trajectory. Trajectory, the temporal sequence of poses, smoothly
changes from an initial pose to a final pose. The trajectory is a temporary sequence
of poses from one place to another, most changes from initial pose to the final pose.
Given a starting point and the end point, between them, the rate of a change of
positions is temporal derivative,

ds
dt

= lim
∆(t)→0

∆(s)
∆(t)

(2.27)

dw
dt

= lim
∆(t)→0

∆(w)
∆(t)

(2.28)

The linear velocity is vl and angular velocity is va. Correspondingly, we have
linear acceleration al and angular acceleration aa.

vl =
ds
dt

;va =
dw
dt

(2.29)

al =
dvl

dt
;aa =

dva

dt
(2.30)

where s and w are the changes of positional translation and rotational angle.
We estimate the pose of moving objects. While the object is moving, the key

issue is that this object has velocities of translation and rotation instead of only
one kind of velocities. The velocity of a linear segment increases its duration time.
Given measurements from linear velocity and angular velocity sensors, the pose
for a moving object is estimated. As the velocity of linear segment increases, its
duration decreases and ultimately its duration would be zero. In fact, too high or too
low speed, the maximum velocity will result in an infeasible trajectory. A path is a
locus in space that leads from an initial pose to a final pose [34]. A trajectory is a
path with specified timing. An important characteristic of a trajectory in robotics is
smooth [70].

The trajectory has defined boundary conditions for position, velocity, and ac-
celeration. Smoothness means that its first few temporal derivatives are continu-

64 2 Robotics

ous. Polynomials are simple to be computed that can easily provide the required
smoothness and boundary conditions. There is a need to move smoothly along a
path through one or more intermediate or via points without stopping. The trajec-
tory has defined the boundary conditions for position, velocity, and acceleration.
That means, everything is under control.

Fundamentally, smoothness reflects that the first derivatives are existence and
continuous. Polynomials are simple to be computed that can easily unveil the re-
quired smoothness and boundary conditions [70]. The simple way to control a robot
is to harness polynomials. However, polynomials are hard to be controlled after de-
gree three for interpolating purpose [52].

f (x) = a0 +a1x+a2x2 + · · ·+anxn = a0 +
n

∑
i=1

aixi (2.31)

where an ̸= 0,ai,x ∈ R, n ∈N . There is often a need to move smoothly along a
path through one or more intermediate or via points without stopping. A trajectory
is a piece-wise curve [34, 87, 86]. These points can control the curve, the degree
cannot be greater than four.

2.8 Lab Session: Mobile Arm with MATLAB

Interactive design for a mobile manipulator with four omni-directional wheels [72]
is split into four sections:

• Define a robot and environment
• Create a task and trajectory scheduler
• Add core manipulator dynamics and design a controller
• Verify complete workflow of the robot and environment.

MATLAB provides the interactive design for mobile manipulator. The manipu-
lator provides Link1, Link2, Link3. In most of factories, we take use of the robots
to move the object from one place to another. MATLAB has such a robot, the basic
operations include:

• The first move position and the open grips
• Close the ribs, move the the position to the place,
• Approach the position, move to the place position
• Open the grip, start from here.

The robot arms move to the designed position first, open the gripper, and close
the grip. This is a standard operation of MATLAB examples, which has eight states.
The last one was to verify the completed work for a robot.

At the end of this chapter, all readers are recommended to complete the Lab
report. Please fill in the form shown in Table 2.1 after each lab session (2 hours).

An example of this lab report:

2.8 Lab Session: Mobile Arm with MATLAB 65

Table 2.1: Lab report for robotic vision

Name <First Name Last Name>
Email <firstname.lastname@mailbox>
Lab date <dd-mm-yy>
Submitted date <dd-mm-yy>
Project title Build Basic Rigid Body Tree Models
Lab objectives The objective is to demonstrate how to construct a simple robot arm

with five degrees of freedom (DoF) by using the components
of the rigid body tree robot model.

Configurations and settings <The preferences, software, hardware, platforms, tools, etc.>
Methods <The relevant scientific theories or concepts >
Workflow <The step-by-step procedure for the experiment>
Datasets <The data and materials for your experiments>
Input <image filename, size, resolution >
Output <image filename, size, resolution>
Testing steps <Functional & non-functional testing methods step by step>
Bugs or problems <The system error code, lines of the code>
Result analysis <The tables, graphs, and figures, etc.>
Conclusion/Reflection <The strengths and weaknesses, or learned from this project >
References https://au.mathworks.com/help/nav/ug/

plan-mobile-robot-paths-usingrrt.html
Appendix: <Source codes with comments and line numbers>

• Project title: Build basic rigid body tree models
• Project objectives: In order to demonstrate how to construct a simple robot arm

with five degrees of freedom (DoF) by using the components of the rigid body
tree robot model. The model constructed in this example is a typical robot arm.

• Configurations and settings: MATLAB Online
• Methods: (1) Create a rigid Body Tree robot model. (2) Create a series of link-

ages as rigid body objects. (3) Create collision objects for each rigid body with
different shapes and dimensions. (4) Add the collision bodies to the rigid body
objects. (5) Set transformations of the joint attachment between bodies. (6) Cre-
ate an object array for both the bodies and joints. (7) Visualize the robot model to
confirm the dimensions. (8) Use the interactive GUI to move the model around.
(9) View a list of the final tree information. (10) Move the interactive marker
around to test different desired gripper positions.

• Implementation steps:

1. Create Rigid Body Elements
2. Attach Joints
3. Assemble Robot
4. Interact With Robot Model

• Testing steps:

1. Verify Rigid Body Elements
2. Test Joint Connections

66 2 Robotics

3. Validate Robot Assembly
4. Interact with the Robot Model
5. Simulation and Performance Testing

• Result analysis: The output images visually validate the creation, assembly, and
interactive capabilities of the robot arm, enhancing the written descriptions and
confirming the project’s objectives have been met.

• Conclusion/Reflection: The development of a basic rigid body tree model of a
robot arm is shown by using MATLAB. The detailed step-by-step implementa-
tion and testing procedures highlight MATLAB’s capabilities for robotic model-
ing and simulation. The absence of bugs or issues indicates a robust and well-
executed experiment. Additionally, the integration of a GUI for interaction sig-
nificantly enhances the model’s practical applicability in real-world scenarios.

• Readings:
https://au.mathworks.com/help/robotics/ug/build-basic-rigid-body-tree-models.html

2.9 Exercises

Question 2.1. Why the Braitenberg vehicle is the simplest robot? What are the
features of Braitenberg vehicle?
Question 2.2. What is automata in computer science?
Question 2.3. What are the differences between Probabilistic road map and
Voronoi road map?
Question 2.4. Why Dead Reckoning algorithm is still effective in the navigation
for mobile robots?
Question 2.5. What’s the full autonomy in robotics?
Question 2.6. Regarding robotic arm, how many degree of freedom (DoF) of
each joint at most has?
Question 2.7. What is the relationship between Forward Kinematics (FK) and
Inverse Kinematics (IK)?
Question 2.8. How many number of axes is suitable for a humanoid robot?
Question 2.9. What are the differences between the number of axes and degree
of freedom (DoF)?

References

1. Adiyatov, O., Varol, H. (2017) A novel RRT-based algorithm for motion planning in Dynamic
environments. IEEE International Conference on Mechatronics and Automation (ICMA),
1416-1421.

2. Alexander, R. (2022) Human Facial Emotion Recognition from Digital Images Using Deep
Learning. Master’s Thesis, Auckland University of Technology, New Zealand.

References 67

3. Al-Sarayreh, M., Reis, M., Yan, W., Klette, R. (2017) Detection of adulteration in red meat
species using hyperspectral imaging. Pacific-Rim Symposium on Image and Video Technol-
ogy pp.182-196

4. Al-Sarayreh, M., Reis, M., Yan, W., Klette, R. (2018) Detection of red-meat adulteration by
deep spectral–spatial features in hyperspectral images. Journal of Imaging, 4 (5), 63.

5. Al-Sarayreh, M., Reis, M., Yan, W., Klette, R. (2019) Deep spectral-spatial features of snap-
shot hyperspectral images for red-meat classification. International Conference on Image and
Vision Computing New Zealand.

6. Al-Sarayreh, M., Reis, M., Yan, W., Klette, R. (2019) A sequential CNN approach for foreign
object detection in hyperspectral images. International Conference on Information, Commu-
nications and Signal.

7. Al-Sarayreha, M., Reis, M., Yan, W., Klette, R. (2020) Potential of deep learning and snapshot
hyperspectral imaging for classification of species in meat. Food Control.

8. Al-Sarayreha, M. (2020) Hyperspectral Imaging and Deep Learning for Food Safety. PhD
Thesis. Auckland University of Technology, New Zealand.

9. An, N. (2020) Anomalies Detection and Tracking Using Siamese Neural Networks. Master’s
Thesis, Auckland University of Technology, New Zealand.

10. An, N., Yan, W. (2021) Multitarget tracking using Siamese neural networks. ACM Transac-
tions on Multimedia Computing, Communications, and Applications, 17(pp 1—16).

11. Arnold, R. D., Yamaguchi, H., Tanaka, T. (2018). Search and rescue with autonomous flying
robots through behavior-based cooperative intelligence. Journal of International Humanitar-
ian Action, 3(1), 18.

12. Aurenhammer, F., Klein, R., Lee, D. (2013). Voronoi Diagrams and Delaunay Triangulations.
World Scientific.

13. Azevedo, F., Cardoso, J. S., Ferreira, A., Fernandes, T., Moreira, M., Campos, L. (2021).
Efficient Reactive Obstacle Avoidance Using Spirals for Escape. Drones, 5(2).

14. Bedini, S. (1964). The role of automata in the history of technology. Technology and Culture.
5(1): 24–42

15. Beggs, J. (1983). Kinematics. Taylor & Francis.
16. Bengio, Y., Lecun, Y., Hinton, G. (2021) Deep Learning for AI. Communications of the ACM,

64(7), 58–65.
17. Bouzoualegh, S., Guechi, E.-H., Kelaiaia, R. (2019). Model predictive control of a

differential-drive mobile robot. Acta Universitatis Sapientiae, Electrical and Mechanical En-
gineering, 10(1), 20–41.

18. Çabuk, V. U., Kubilay Şavkan, A., Kahraman, R., Karaduman, F., Kırıl, O., Sezer, V. (2018).
Design and control of a tennis ball collector robot. International Conference on Control En-
gineering and Information Technology (CEIT).

19. Cao, X. (2021) Pose Estimation of Swimmers from Digital Images Using Deep Learning.
Master’s Thesis, Auckland University of Technology, New Zealand.

20. Cao, X. and Yan, W. (2022) Pose estimation for swimmers in video surveillance. Multimedia
Tools and Applications, Springer.

21. Chen, Z., Yan, W. (2023) Real-time pose recognition for billiard player using deep learning.
Deep Learning, Reinforcement Learning and the Rise of Intelligent Systems, pp.188-208,
Chapter 10, IGI Global.

22. Choset, H., Hutchinson, S., Lynch, K. et al (2005). Principles of Robot Motion: Theory, Al-
gorithms, and Implementation. MIT Press.

23. Corke, P. Robotics, Vision and Control (2nd Edition), Springer Nature.
24. Chatfield, C. (2004) The Analysis of Time Series: An Introduction, Chapman & Hall/CRC.
25. Chatzis, S. P., Kosmopoulos, D. I. (2011). A variational Bayesian methodology for hidden

Markov models utilizing student’s-t mixtures. Pattern Recognition, 44(2), 295 – 306.
26. Cormen, T., Leiserson, C., Rivest, R., Stein, C. (2022) Introduction to Algorithms (fourth

edition). MIT Press, USA.
27. Dabney, W., et al. (2020) A distributional code for value in dopamine-based reinforcement

learning. Nature, 577: 671–675

68 2 Robotics

28. Dai, J., Li, Y., He, K., Sun, J. (2016). R-FCN: Object detection via region-based fully convo-
lutional networks. Advances in Neural Information Processing Systems (pp. 379 – 387).

29. Dong, K., Yan, W. (2024) Player performance analysis in table tennis through human action
recognition. Computers, 13(12), 332.

30. Elfes, A. (1989). Using occupancy grids for mobile robot perception and navigation. Com-
puter, 22(6), 46–57.

31. Ertel, W. (2019) Introduction to Artificial Intelligence. Springer International Publishing.
32. Farfade, S. S., Saberian, M. J., Li, L. J. (2015). Multi-view face detection using deep convo-

lutional neural networks. International Conference on Multimedia Retrieval (pp. 643 – 650).
33. Farin, G. (1993) Curves and Surfaces for Computer-Aided Geometric Design: A Practical

Guide (Third Edition), Academic Press.
34. Farin, G. (1997). Curves and Surfaces for Computer-Aided Geometric Design. Elsevier. ISBN

978-0-12-249054-5.
35. Farin, G. (2002). Curves and Surfaces for CAGD: A Practical Guide (5th ed.). Morgan Kauf-

mann.
36. Fraenkel, G. S., and Gunn, D.L. (1961). The Orientation of Animals. Kineses, Taxes and

Compass Reactions. Dover Publications
37. Fu, R., Zhang, Z. and Li, L. (2016). Using LSTM and GRU neural network methods for traffic

flow prediction. Youth Academic Annual Conference of Chinese Association of Automation
(YAC).

38. Gao, X., Liu, Y., Nguyen, M., Yan, W. (2024) VICL-CLIP: Enhancing face mask detection in
context with multimodal foundation models. ICONIP.

39. Gong, X., Gao, Y., Wang, F., Zhu, D., Zhao, W., Wang, F., Liu, Y. (2024). A local path
planning algorithm for robots based on improved DWA. Electronics, 13(15)

40. Heikkila, M., Pietikainen, M. (2006). A texture-based method for modeling the background
and detecting moving objects. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 28(4), 657 – 662.

41. Hibbeler, R. (2009). Kinematics and kinetics of a particle. Engineering Mechanics: Dynamics
(12th ed.). Prentice Hall.

42. Hopcroft, J., Motwani, R., Ullman, J. (2001). Introduction to Automata Theory, Languages,
and Computation. Addison–Wesley.

43. Humpherys, J. (2012). A fresh look at the Kalman Filter. SIAM Review. 54 (4): 801–823.
44. Jonathan, V. (2021). Tech explained: Ackermann steering geometry. Racecar Engineering.
45. Kang, J., Lim, D., Choi, Y., Jang, W., Jung, J. (2021). Improved RRT-connect algorithm based

on triangular inequality for robot path planning. Sensors. 21 (2): 333.
46. Kavraki, L.E., P. Svestka, J.-C. Latombe, and M.H. Overmars. (1996) Probabilistic roadmaps

for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics
and Automation, 12(4), 566—580.

47. Klette, R. (2014) Concise Computer Vision: An Introduction into Theory and Algorithms.
Springer-Verlag London, UK.

48. Li, H., Wu, H., Lou, L., Kühnlenz, K., Ravn, O. (2012). Ping-pong robotics with high-
speed vision system. International Conference on Control Automation Robotics & Vision
(ICARCV), 106–111.

49. Liu, X. (2019) Vehicle-Related Scene Understanding Using Deep Learning. Master’s Thesis,
Auckland University of Technology, New Zealand.

50. Liu, X., Yan, W., Kasabov, N. (2020) Vehicle-related scene segmentation using CapsNets.
IEEE IVCNZ (pp. 1–6)

51. Liu, X., Yan, W. (2021) Traffic-light sign recognition using capsule network. Multimedia
Tools and Applications, 80(10), 15161-15171 (2021)

52. Lynch, K., Park, F. Modern Robotics: Mechanics, Planning, and Control. Cambridge, MA:
Cambridge University Press, 2017.

53. Lu, J. (2016) Empirical Approaches for Human Behavior Analytics. Master’s Thesis, Auck-
land University of Technology, New Zealand.

54. Maybeck, P. S. (1990). The Kalman Filter: An Introduction to Concepts. In Autonomous
Robot Vehicles (pp. 194–204). Springer.

References 69

55. Mehtab, S. (2022) Deep Neural Networks for Road Scene Perception in Autonomous Vehicles
Using LiDARs and Vision Sensors. PhD Thesis, Auckland University of Technology, New
Zealand.

56. Meng, Q., Yan, W., et al. (2025) Optimization of Sassafras tzumu leaf color quantification
with UAV RGB imaging and Sassafras-net. Information Processing in Agriculture.

57. Ming, Y., Li, Y., Zhang, Z., Yan, W. (2021) A survey of path planning algorithms for au-
tonomous vehicles. International Journal of Commercial Vehicles.

58. Mnih,V., et al. (2015) Human-level control through deep reinforcement learning. Nature, 518,
529 – 533.

59. Murphy, R. (2019). Introduction to AI Robotics (2nd ed.). Bradford Books.
60. Muscat, J. (2014) Functional Analysis, Springer.
61. Nguyen, M., Yan, W. (2023) From faces to traffic lights: A multi-scale approach for emotional

state representation. IEEE International Conference on Smart City.
62. Norvig, P., Russell, S. (2016) Artificial Intelligence: A Modern Approach (3rd Edition), Pren-

tice Hall.
63. Peng, D. (2025) Vision Perception Optimization and Adaptive Control for Resource-

Constrained Platform: A Ping-Pong Ball Pickup & Place System. Master’s Thesis, Auckland
University of Technology, New Zealand.

64. Peng, D., Yan, W. (2025) Test-time training with adaptive memory for traffic accident severity
prediction. Computers.

65. Perera, S., Barnes, N., Zelinsky, A. (2014) Exploration: Simultaneous localization and map-
ping (SLAM). Computer Vision: A Reference Guide, Springer US, pp. 268–275,

66. Phillips, J. (2007). Freedom in Machinery. Cambridge University Press.
67. Piacentini, C., Bernardini, S., Beck, J. C. (2019). Autonomous target search with multiple

coordinated UAVs. J. Artif. Int. Res., 65(1), 519–568.
68. Queralta, J. P., Raitoharju, J., Gia, T. N., Passalis, N., Westerlund, T. (2020). AutoSOS: To-

wards multi-UAV systems supporting maritime search and rescue with lightweight AI and
edge computing.

69. Rashid, H., Turuk, A. (2015) Dead reckoning localisation technique for mobile wireless sen-
sor networks. IET Wireless Sensor Systems 5(2), 87-96

70. Ravankar, A., Ravankar, A. A., Kobayashi, Y., Hoshino, Y., Peng, C.-C. (2018). Path smooth-
ing techniques in robot navigation: State-of-the-art, current and future challenges. Sensors,
18(9), 3170.

71. Se, S., et al. (2001). Vision-based mobile robot localization and mapping using scale-invariant
features. Int. Conf. on Robotics and Automation (ICRA)

72. Siegwart, R., Nourbakhsh, I., Scaramuzza, D., (2004). Introduction to Autonomous Mobile
Robots. MIT Press.

73. Singh, C. D., He, B., Fermüller, C., Metzler, C., Aloimonos, Y. (2024). Minimal perception:
Enabling autonomy in resource-constrained robots. Frontiers in Robotics and AI

74. Song, T., Huo, X., Wu, X. (2020). A two-stage method for target searching in the path plan-
ning for mobile robots. Sensors, 20(23).

75. Song, C., He, L., Yan, W., Nand, P. (2019) An improved selective facial extraction model for
age estimation. IEEE IVCNZ.

76. Stentz, A. (1994), Optimal and efficient path planning for partially-known environments. In-
ternational Conference on Robotics and Automation: 3310–3317.

77. Stentz, A. (1995), The focussed D* algorithm for real-time replanning. International Joint
Conference on Artificial Intelligence: 1652–1659.

78. Sugihara, T. (2011) Solvability-Unconcerned inverse kinematics by the Leven-
berg–Marquardt method. IEEE Transactions on Robotics, 27(5)): 984–91.

79. Tang, S., Yan, W. (2024) Utilizing RT-DETR model for fruit calorie estimation from digital
images. Information 15 (8), 469.

80. Tang, Y., Zakaria, M. A., Younas, M. (2025). Path planning trends for autonomous mobile
robot navigation: A review. Sensors, 25(4).

81. Tantiya, R. (2025) Design and Implementation of A High DoF Robot Arm. Master’s Thesis,
Auckland University of Technology, New Zealand.

70 2 Robotics

82. Tokunaga, S., Premachandra, C., Premachandra, H. W. H., Kawanaka, H., Sumathipala, S.,
Sudantha, B. S. (2021). Autonomous spiral motion by a small-type robot on an obstacle-
available surface. Micromachines, 12(4), 375.

83. Xia, Y. Nguyen, M., Yan, W. (2023) Kiwifruit counting using KiwiDetector and KiwiTracker.
Intelligent Systems, 629–640.

84. Xiao, B., Nguyen, M., Yan, W. (2023) Fruit ripeness identification using transformers. Ap-
plied Intelligence.

85. Xu, G., Yan, W. (2023) Facial emotion recognition using ensemble learning. Deep Learning,
Reinforcement Learning, and the Rise of Intelligent Systems.

86. Yan, W., Ding, W., Qi, D. (2001) Rational many-knot spline interpolating curves and surfaces.
Journal of Image and Graphics 6 (6), 568-572.

87. Yan, W., Ding, W., Qi, D. (2001) Rational many-knot spline interpolating curves and surfaces.
Journal of Image and Graphics 6 (6), 568-572.

88. Yan, W. Q. (2019). Introduction to Intelligent Surveillance: Surveillance Data Capture, Trans-
mission, and Analytics (3rd Edition). Springer.

89. Yan, W. Q. (2019). Computational Methods for Deep Learning (2nd Edition), Springer.
90. Yang, G. (2025) ChatPPG: Multi-Modal Alignment of Large Language Models for Time-

Series Forecasting in Table Tennis. Master’s Thesis, Auckland University of Technology, New
Zealand.

91. Yang, G., Nguyen, M., Yan, W., Li, X. (2025) Foul detection for table tennis serves using
deep learning. Electronics, 14(1), 27

92. Yang, Y., Kim, D., Choi, D. (2023). Ball tracking and trajectory prediction system for tennis
robots. Journal of Computational Design and Engineering, 10(3), 1176–1184.

93. Zarchan, P., Musoff, H. (2000). Fundamentals of Kalman Filtering: A Practical Approach.
American Institute of Aeronautics and Astronautics.

94. Zhang, Y., Zhao, Y., Xiong, R., Wang, Y., Wang, J., Chu, J. (2014). Spin observation and
trajectory prediction of a ping-pong ball. IEEE International Conference on Robotics and
Automation (ICRA), 4108–4114.

95. Zhao, H., Xu, S., Yan, W., Xu, D. (2025) Design and optimization of target detection and 3D
localization models for intelligent muskmelon pollination robots. Horticulturae, 11(8), 905.

96. Zhao, J., Badler, N. (1994) Inverse kinematics positioning Using nonlinear programming for
highly articulated figures. ACM Transactions on Graphics, 13(4): 313–36.

97. Zhao, Y., Wu, J., Zhu, Y., Yu, H., Xiong, R. (2017). A learning framework towards real-
time detection and localization of a ball for robotic table tennis system. IEEE International
Conference on Real-Time Computing and Robotics (RCAR), 97–102.

98. Zhou, Z., Guo, J., Zhu, Z., Guo, H. (2024). Uncalibrated visual servoing based on Kalman
filter and mixed-kernel online sequential extreme learning machine for robot manipulator.
Multimedia Tools and Applications, 83(7), 18853–18879.

Chapter 3
Image Processing for Robotics

Abstract

In this chapter, robotic vision is elucidated from the aspects of camera calibration,
digital image formation, image processing. Starting from image formation of digital
cameras, we form the images and explore their properties, finally image process-
ing at semantic level is detailed. The significance of this chapter is that we depict
computer vision with image processing for robotics.

71

72 3 Image Processing for Robotics

3.1 Fundamentals of Image Formation

In human vision, our eyes are a type of effective sensors for object detection and
recognition, robotic navigation, obstacle avoidance, etc. [16]. Compared to our ears,
our human eyes are more critical organ which can receive over 75% information.
Cameras mimic the function of human eyes. In robotics, digital cameras are har-
nessed as robotic eyes [10], cameras are taken into account to create vision-based
competencies for robots [16]. We take into consideration of digital images to detect
and recognize objects and navigate robots within the given real world. While robots
are moving around world [27], the world is sensed by using robotic vision [16]
to obtain real reality, visual objects are sought on the images [19]. Robots armed
with vision and intelligence could greatly reduce our human labors [22], such as the
operation: Pick and place. The technological development has made this feasible
for robots to facilitate with cameras. A group of new emerging algorithms, cheap
sensors and plentiful computing power make cameras as a practical and applicable
sensor.

Vision takes its effect through natural light. Generally, electromagnetic radiation
(EMR) is classified by wavelength into radio waves, microwaves, infrared, the vis-
ible spectrum that our eyes perceive as light, ultraviolet, X-rays, and gamma rays.
The light spans the visible spectrum which is usually defined as having wavelengths
in the range of 400 — 700 nanometers (nm) as shown in Fig. 3.1. The frequencies
of infrared rays are up to 1,050 nanometers; children and young adults may perceive
ultraviolet wavelengths down to about 310 — 313 nanometers.

Fig. 3.1: The visible spectrum

Our human eyes see colors in the limited range of wavelength with visible re-
flection light and visible object. If ultraviolet (UV) and infrared rays could not be
viewed by digital cameras or robotic vision, the image will be rendered by using
visualization [28, 31]. In robot and human perception, the information such as size,
shape, and position of visual objects as well as other characteristics such as color and
texture [10] is deduced. The colors enclose binary color, grayscale color, and real
color. Binary color only has two colors: Black and white [23, 24, 25]. In grayscale
images, the intensities of red color, green color, and blue color are the same or sim-
ilar. Color and texture are thought as visual features of digital images. Nowadays,
the images from digital cameras are with real colors at retina level.

A simple pinhole is able to create an inverted-image on the wall of a darkened
room. When the sun rays pass through a hole, it will form an image on wall. In a

3.1 Fundamentals of Image Formation 73

digital camera, a glass or plastic lens forms an image by using its semiconductor
chip with an array of light sensitive devices to convert light to an image. The chips
are valuable and there are challenges to develop new chips. The process of image
formation involves a projection of the 3D world onto a 2D surface. In real world,
all objects are three dimensional, but on images, the objects are two dimensional
only. On the given images, the depth information is disappeared. It is not possible to
observe from the image whether the object is a large one in distance or a small one
which is closer to the real object. From optic physics, z-coordinate of an object and
its image are formed by using the lens law as shown in Fig. 3.2.

Fig. 3.2: The formation of images in geometry optics

1
zo

+
1
zi
=

1
f

(3.1)

where zo ∈R+, zo ̸= 0 is the distance to the object, zi ∈R+, zi ̸= 0 is the distance
to the image, and f ∈R+, f ̸= 0 is focal length of the lens. The coordinate frame of
cameras is with z-axis defining the center of the field of view (FoV). Our human eyes
usually perceive a view within the limited field. A point at the world coordinates
(X ,Y,Z) ∈R3, is projected to the image plane (x,y) ∈R2, after taken a photograph
by using eq.(3.2). {

x = f X
Z

y = f Y
Z

(3.2)

where (x,y) is pixel location on the given image, (X ,Y,Z) is a point of visual object
in 3D space, Z ̸= 0 is the depth.

74 3 Image Processing for Robotics

3.2 Camera Calibration

Regarding robotic vision [16], we set up a group of camera and gauge the 3D
space [10]. Camera calibration is a conventional way to sense and measure the 3D
world. The calibration is the process of determining the camera’s intrinsic param-
eters and the extrinsic parameters with respect to the world coordinate system. It
relies on a set of world points whose relative coordinates are obtained and whose
corresponding image-plane coordinates are also gained. Camera calibration estab-
lishes a correspondence between real-world space and image space. The intrinsic
parameters, including distortion parameters, can be harnessed to estimate the rela-
tive pose of chessboard in each image. However, classical calibration demands a 3D
target or 3D object. Hence,

[x,y,z]⊤ = R · [X ,Y,Z]⊤+T (3.3)

m′ = [x′,y′]⊤ = [x/z+ cx,y/z+ cy]
⊤ (3.4)

s ·m′ = [u,v]⊤ = [fx · x′, fy · y′]⊤ (3.5)

where R is rotation matrix, T is translation matrix, [R|T] is called rotation-translation
matrix. Hence,

s ·m′ = A · [R|T]M′ (3.6)

where (X ,Y,Z) ∈R3 is the coordinate of a 3D point in the world space; (u,v) ∈R2

is the coordinate of projection point in pixels; (cx,cy) ∈ R2 is a principal point,
namely, the image center; (fx, fy)∈R2 is the focal lengths expressed in pixel-related
units; A is a camera matrix, or a matrix of intrinsic parameters. The joint rotation-
translation matrix [R|T] is named as a matrix of extrinsic parameters. The steps of
camera calibration for correcting image distortion are listed as:

• Corner extraction
• Point ordering
• Point correspondences
• Bundle adjustments

If we have four images from four cameras, namely, images I1, I2, I3, and I4 are
from cameras C1,C2,C3, and C4, respectively, the problem is still about how to find
the parameters of cameras and parameters of 3D objects.

In the environment as shown in Fig. 3.3, no matter how the objects move or no
matter how the cameras shift, the locations are promptly acquired from the envi-
ronment. Especially in camera calibration, we should have a chessboard with grid
layout as shown in Fig. 3.4.

In camera calibration, the first step is for corner extraction. The corners are the in-
tersection between edges. A corner in an image is detected at a pixel location where
two edges of different directions intersect [17]. Corners usually lie on high-contrast

3.2 Camera Calibration 75

Fig. 3.3: A multiple cameras environment for camera calibration

Fig. 3.4: Our chessboard for camera calibration

regions of image. A corner pixel has surroundings varying from all of its near neigh-
bors in omni directions. If the corners are attained, the points are sorted in a proper
sequence. Thus, the correspondences of these corners are earned. From a robot’s
view, what our human sees is not matched with what the camera captured [32]. As
the summery, the camera calibration in pseudocode is shown in Algorithm (9).

76 3 Image Processing for Robotics

Algorithm 9: Camera calibration
Input: A set of N images of a known calibration pattern (e.g., chessboard)
Output: Camera intrinsic matrix K, distortion coefficients D, extrinsic

parameters for each image
1 for each image i = 1 to N do
2 Detect the 2D coordinates of the pattern corners in the image
3 Store the corresponding 3D world coordinates of the corners

4 Use the set of 2D-3D correspondences to estimate the camera parameters:
5 Estimate the intrinsic matrix K (focal length, principal point, skew)
6 Estimate distortion coefficients D (radial and tangential)
7 Estimate extrinsic parameters (rotation and translation for each image)

8 Optimize all parameters using nonlinear least squares (e.g.,
Levenberg–Marquardt)

9 return K, D, and the set of extrinsic parameters

3.3 Essentials of Image Processing

After camera calibration, image processing [10] will be conducted. A digital image
is a rectangular array of picture pixels. Robots always gather imperfect images of the
world with artifacts due to noise, shadow, reflection, and uneven illumination [22],
etc.. The image processing algorithms operate pixel-wise on a single image or a
pair of images, or on a group of pixels within an image [21, 29, 30]. The image
processing has two categories:

• Monadic operations: Each output pixel is based on a function of corresponding
input pixel. For example, histogram normalization only takes pixel intensities
into consideration, the results of statistics show how the values of pixels are dis-
tributed on the range from 0 to 255, the number with the same values of pixels
will be counted. In histogram normalization, all the values of histograms will be
mapped to the interval [0,1].

• Spatial operations: Each pixel in the output image is a function of all pixels in a
region surrounding the corresponding pixel in the input image, a typical example
is convolution operation [33]. The convolution is a linear spatial operation, the
kernel of convolution operation usually is a standard Gaussian distribution.

O[u,v] = ∑
(i, j)∈W

I(u+ i,v+ j)K(i, j),∀(u,v) ∈ I (3.7)

where K is the convolution kernel, W is the image window. Hence,

O = I⊗K. (3.8)

3.3 Essentials of Image Processing 77

where ⊗ is convolution operator. Gaussian kernel is symmetric:

G(x,y) =
1

2πσ2 e−
x2+y2

2σ2 (3.9)

where σ ∈R is the parameters of standard deviation.
Filters are designed to respond to a variety of edges at any arbitrary angle of

digital images. For example, Sobel kernel is considered as an image edge detector.

Gx =

+1 0 −1
+2 0 −2
+1 0 −1

∗ I (3.10)

Gy =

+1 +2 +1
0 0 0
−1 −2 −1

∗ I (3.11)

where I as the source image, Gx and Gy are two matrices which at each point contain
the horizontal and vertical derivative approximations respectively, ‘∗’ denotes 2D
convolution operation.

Canny edge detector [9] is an edge detection operator that takes use of a multi-
stage algorithm to detect a wide range of edges in images which was developed in
1986 [18]. The advantages of Canny edge detector are: (1) Detection of edge with
low error rate; (2) The point detected from the operator could accurately localize
on the center of edges. (3) The image noise should not create false edges. Gaussian
filter is employed to smooth the image in order to remove noise. A 5×5 Gaussian
filter is shown as eq.(3.12).

T5×5 =


2 4 5 4 2
4 9 12 9 4
5 12 15 12 5
4 9 12 9 4
2 4 5 4 2

 ,T = T⊤ (3.12)

Hence, the gradient and direction of edges are determined by using eq.(3.13) and
eq.(3.14).

|G|=
√

Gx
2 +Gy

2 (3.13)

where ▽G = (Gx,Gy)
⊤ is the gradient of each pixel (x,y) in image I(x,y), x =

1,2, · · · ,W and y = 1,2, · · · ,H. W ∈N and H ∈N are width and height of the
image I.

θ = atan2(Gy,Gx) (3.14)

where G is gradient magnitude, computed by using Pythagorean addition operator.
atan2(·) is the arctangent function for calculating the edge direction angle θ which
is rounded to one of four angles representing vertical, horizontal, and two diagonals,

78 3 Image Processing for Robotics

namely, 0◦, 45◦, 90◦, and 135◦. Canny detector [9] applies double threshold to de-
termine potential edges and finalizes the detection of edges by suppressing all other
edges that are weak and not connected to strong edges.

In computer vision and image processing, blob detection methods aim at detect-
ing regions in a digital image that differ in properties, such as brightness or color,
compared to surrounding regions[20]. The most popular method for blob detection
is implemented by using convolution operations. There are two main classes of blob
detectors: (1) The differential methods based on derivatives of the function with re-
spect to position. (2) The local extrema methods based on finding the local maxima
and minima of the function. Blob detection is often employed in object detection
and recognition, medical imaging, and keypoint detection.

A silhouette refers to a solid and shape-based representation of an object or sub-
ject, typically shown as a dark shape on a lighter background. A silhouette image
is represented as a solid shape of a single color which is related to image binariza-
tion in image processing[14]. The interior of a silhouette is featureless. Silhouette
sequences is applied to object tracking, shape matching, 3D reconstruction, and ac-
tion classification.

In image template matching, it is ease to find which parts of the input image are
most similar to the template[34]. Each pixel in the output image is rendered by using

O(u,v) = s(T,W) (3.15)

where T is the template, W is the window centered at (u,v) ∈ R2,u,v ∈ R in the
input image I. The function s(I1,I2) is a scalar measure that describes the similarity
of two equally-sized images I1 and I2. The difference between two images is the
sum of absolute differences (SAD) as shown in eq. (3.16) or the sum of squared
differences (SSD) as shown in eq. (3.17). These metrics are zero if the images are
identical. The similarity NCC (Normalized Cross Correlation) is calculated by using
eq. (3.18).

S = ∑
(x,y)∈I

|I1(x,y)− I2(x,y)| (3.16)

S = ∑
(x,y)∈I

|I1(x,y)− I2(x,y)|2 (3.17)

S =
∑(x,y)∈I I1(x,y) · I2(x,y)√

∑(x,y)∈I I2
1(x,y)∑(x,y)∈I I2

1(x,y)
(3.18)

3.4 Image Morphology

Image morphology is concerned with the form or shape of visual objects in an image
(Binary color) [8]. In morphological operations, eroded image is marked in blue as

3.4 Image Morphology 79

shown in Fig. 3.5. If B (Green) is completely contained by A (Red), the pixel is
retained, or else deleted.

Fig. 3.5: The erosion operation of images

In morphological operations [8], dilated image is marked in blue. Each pixel in A
(Red) with ‘1’ will be superimposed with B (Green). All pixels after superimposed
with B (Green) is encapsulated in the dilation (Blue).

Fig. 3.6: The dilation operation of images

In morphological operations, the sequence of operations, namely erosion then di-
lation, is known as opening. The sequence in the inverse order, dilation then erosion,
is the closing procedure as shown in Fig. 3.7.

Image skeletonisation extracts the center line while preserving the topology of
visual objects, as shown in Fig. 3.8. Image transformation is employed iteratively
with a variety of structuring elements to conduct operations such as skeletonisation
and linear feature detection.

Image warping is a transformation of pixel coordinates as shown in Fig. 3.9.
Mathematically, the image warping is based on bilinear interpolation. The interpo-
lation as a whole is not linear but rather quadratic in the sample location.

In image processing, bilinear interpolation[13] is employed to resample images
and textures. The algorithm is applied to map an image pixel location to a corre-
sponding point on the texture map. Assume we have the four points (i.e., top-left

80 3 Image Processing for Robotics

Fig. 3.7: The closing operation of images

Fig. 3.8: The skeletonisation operation of images

Fig. 3.9: The warping operation of images

3.5 Feature Extraction for Object Detection and Recognition 81

point, bottom-left point, top-right point, bottom-right point) of image I1: PT L, PBL,
PT R, and PBR, the other image I2 has the corresponding points: P′T L, P′BL, P′T R, and
P′BR. Hence, the correspondences are established.

Pst = t · [s ·PT R +(1− s) ·PBR]+ (1− t) · [s ·PT L +(1− s) ·PBL] (3.19)

and

P′st = t · [s ·P′T R +(1− s) ·P′BR]+ (1− t) · [s ·P′T L +(1− s) ·P′BL] (3.20)

where Pst and P′st are the corresponding points on the two images, respectively,
s ∈ [0,1], t ∈ [0,1]. Thus, we render a pixel based on the color of the other image.
The corresponding pseudocode is shown in Algorithm(10).

Algorithm 10: Bilinear interpolation for image pixel mapping
Input: Image I of size H×W , floating-point coordinate (x,y)
Output: Interpolated value v at (x,y)

1 if x < 0 or x >W −1 or y < 0 or y > H−1 then
2 return 0 ; // Out of bounds

// Compute integer neighbors
3 x1← ⌊x⌋, x2←min(x1 +1,W −1)
4 y1← ⌊y⌋, y2←min(y1 +1,H−1)
// Compute distances

5 dx← x− x1, dy← y− y1
// Fetch pixel values

6 Q11← I[y1][x1], Q21← I[y1][x2]
7 Q12← I[y2][x1], Q22← I[y2][x2]
// Interpolate horizontally

8 R1← Q11 · (1−dx)+Q21 ·dx
9 R2← Q12 · (1−dx)+Q22 ·dx
// Interpolate vertically

10 v← R1 · (1−dy)+R2 ·dy
11 return v

3.5 Feature Extraction for Object Detection and Recognition

In terms of visual features such as object size, position, and shape related to robotics,
all features could be written in vectors for computing [10], thus we have:

Bounding Box is the smallest rectangle that encloses the region, the position
of visual object. Intersection over Union (IoU), also known as Jaccard index, is a
metric to evaluate the accuracy of object detection and recognition as well as image
segmentation algorithms by measuring the overlap between predicted and ground
truth regions.

82 3 Image Processing for Robotics

Moment is a computationally cheap class of image features which describe re-
gion size and location as well as shape in invariant way. In a grayscale image with
pixel intensity I(x,y), (x,y) ∈R2, raw image moments Mi j are calculated by

Mi j = ∑
x

∑
y

xiy jI(x,y) (3.21)

If x̄ = M10
M00

and ȳ = M01
M00

, (x̄, ȳ) is the centroid, the central moments are,

Mi j = ∑
x

∑
y
(x− x̄)i(y− ȳ) jI(x,y) (3.22)

The moments are well-known for applications in image analysis, since they are
employed to derive invariants with respect to specific transformations [14]. The in-
variance is that the shape of an object is invariant to image operations such as image
translation, image rotation, and image scaling.

The typical examples of invariance are interest points and corners of images.
An interest point of image is the intersection of edges that has a high gradient in
orthogonal directions. Corners are computed from image gradients and robust to
offsets in illumination, the structure is invariant to the rotation of visual objects.
Relative positions between corners in the scenes shouldn’t change. Corners are in-
variant to scaling, orientation, and distortions. They are robust and scarcely affected
in computer vision [19].

Fig. 3.10: Hough transform

3.5 Feature Extraction for Object Detection and Recognition 83

Hough transform estimates the direction of lines by fitting the lines to the edge
pixels [11]. There are numerous lines passing through that point. If the points could
vote for these lines [12], then each possible line passing through the point would
receive one vote [7]. In Fig.(3.10), the distance is calculated from the origin to the
straight line, the slope is calculated because the two lines are perpendicular. MAT-
LAB provides Hough transform algorithm [15].

Algorithm 11: Hough transform for line detection
Input: Edge image E
Output: Detected lines in (ρ,θ) space

1 Initialize an accumulator array A[ρ,θ]← 0
2 for each edge pixel (x,y) in E do
3 for θ from 0 to 180◦ do
4 Compute ρ = x · cos(θ)+ y · sin(θ)
5 Increment A[ρ,θ]← A[ρ,θ]+1

6 Find peaks in accumulator array A[ρ,θ]
7 for each peak in A above threshold do
8 Add corresponding line (ρ,θ) to the result set

9 return Set of detected lines

Figure 3.11 shows the algorithm for line detection by using Hough Transform
in the platform OpenCV. More generally, Hough transform algorithm for line de-
tection is depicted in Algorithm (11). Figure 3.13 shows the algorithm for circle
detection [7]. The source code in Python for implementing the circle detection by
using Hough transform is shown in Fig. 3.12.

Fig. 3.11: Line detection using Hough Transform in OpenCV

84 3 Image Processing for Robotics

Fig. 3.12: The source code in Python for circle detection using Hough Transform in
OpenCV

Fig. 3.13: Circle detection using Hough Transform in OpenCV

3.7 Lab Session: Implement Camera Calibration with MATLAB 85

3.6 Image Processing with MATLAB

MATLAB image processing is a set of techniques for manipulating and analyz-
ing 2D images and 3D volumes [15]. It is employed in various industries, such
as photography, medicine, robotics, and remote sensing. MATLAB Image Process-
ing Toolbox assists us to enhance, filter, denoise, register, and segment images and
volumes with cloud computing supports. MATLAB Online is a cloud-based onlin
software, it has not the problems such as system configurations, script files copying,
and datasets moving.

In binary images, image data is stored as logical matrix, its values 0 and 1 are
interpreted as colors black and white, respectively. In indexed images, image data is
stored as numeric matrix, the elements are direct indices in a color map. In grayscale
images, image data are stored as numeric matrix, its whose elements specify inten-
sity values. In true color images, image data are stored as numeric array whose
elements are from the intensity values of one of the three color channels, i.e., Red
(R), Green(G), Blue(B).

In multispectral images and hyperspectral images [1, 2, 3, 5, 4, 6, 26], image data
is stored as an m×n× c numeric array, where c is the number of color channels. In
labeled images, the image data are stored as numeric matrix of nonnegative integers.

Regarding image dilation in MATLAB, with respect to a binary image, a pixel
is set to 1 if any of the neighboring pixels have the value 1. Pertaining to image
erosion, in a binary image, a pixel is set to 0 if any of the neighboring pixels have
the value 0. In image opening, the opening operation erodes an image and then
dilates the eroded image by using the same structuring element for both operations.
In image closing, the closing operation dilates an image and then erodes the dilated
image by using the same structuring element for both operations.

In MATLAB, camera calibration is the process of estimating camera parame-
ters by using images that contain a calibration pattern. The camera parameters are
applied to remove distortion effects from an image, measure planar objects, recon-
struct 3D scenes from multiple cameras, etc. The steps for camera calibration in
MATLAB include:

• Prepare camera and capture images for camera calibration [32].
• Add image pairs and select camera model.
• Calibrate multiple cameras.
• Evaluate the calibration results.
• Improve the calibration if necessary.
• Export the camera parameters.

3.7 Lab Session: Implement Camera Calibration with MATLAB

At the end of this chapter, we would like to recommend all readers complete the Lab
report. Please fill in the form shown in Table 3.1 after each lab session (2 hours).

86 3 Image Processing for Robotics

Table 3.1: Lab report for robotic vision

Name <First Name Last Name>
Email <firstname.lastname@mailbox>
Lab date <dd-mm-yy>
Submitted date <dd-mm-yy>
Project title Assessing and Enhancing Camera Calibration Accuracy
Lab objectives The objective is to calculate the re-projection errors

and the parameter estimation errors
Configurations and settings <The preferences, software, hardware, platforms, tools, etc.>
Methods <The relevant scientific theories or concepts >
Workflow <The step-by-step procedure for the experiment>
Datasets <The data and materials for your experiments>
Input <image filename, size, resolution >
Output <image filename, size, resolution>
Testing steps <Functional & non-functional testing methods step by step>
Bugs or problems <The system error code, lines of the code>
Result analysis <The tables, graphs, and figures, etc.>
Conclusion/Reflection <The strengths and weaknesses, or learned from this project >
References https://au.mathworks.com/help/vision/ug/

evaluating-the-accuracy-of-single-camera-calibration.html
Appendix: <Source codes with comments and line numbers>

An example of this lab report:

• Project title: Assessing and Enhancing Camera Calibration Accuracy
• Project objectives: (1) Plot the relative locations of the camera and the cali-

bration pattern (2) Calculate the re-projection errors (3) Calculate the parameter
estimation errors.

• Configurations and settings: (1) Modify calibration settings. (2) Exclude im-
ages that have high re-projection errors and re-calibrate. (3) Modify calibration
settings.

• Methods: Camera calibration is the process of estimating parameters of the cam-
era by using the images of a special calibration pattern. The parameters include
camera intrinsics, distortion coefficients, and camera extrinsics. Once a camera
is calibrated, there are multiple ways to evaluate the accuracy of the estimated
parameters: (1) Plot the relative locations of the camera and the calibration pat-
tern (2) Calculate the re-projection errors (3) Calculate the parameter estimation
errors.

• Implementation steps:

1. Capture calibration images
2. Detect calibration pattern
3. Generate world coordinates
4. Estimate camera parameters
5. Evaluate calibration accuracy
6. Re-projection errors
7. Estimation errors

References 87

8. Improve calibration

• Testing steps:

1. Check Extrinsics: Looking for logical camera and pattern positions.
2. Analyze Reprojection Errors: Ensuring errors; exclude images with high er-

rors.
3. Review Estimation Errors: Confirming errors within acceptable limits.

• Result analysis: We improve calibration accuracy, whether or not a particular
re-projection or estimation error is acceptable depends on the precision require-
ments of particular application. (1) Modify calibration settings. (2) Take more
calibration images. (3) Exclude images that have high reprojection errors and
recalibrate.

• Conclusion/Reflection: Accurate camera calibration is vital for reliable mea-
surements; regular evaluation and refinement ensure precision in computer vision
tasks.

• Readings:https://au.mathworks.com/help/vision/ug/evaluating-the-accuracy-of-single-
camera-calibration.html

3.8 Exercises

Question 3.1. What’s the relationship between camera calibration and stereo vi-
sion?
Question 3.2. Why do we study image morphology?
Question 3.3. Why robots cannot always gather imperfect images from the real
world?
Question 3.4. Why Kalman filtering essentially is a linear algorithm?
Question 3.5. In camera calibration, how many images at least we need collect?

References

1. Al-Sarayreh, M., Reis, M., Yan, W., Klette, R. (2017) Detection of adulteration in red meat
species using hyperspectral imaging. Pacific-Rim Symposium on Image and Video Technol-
ogy (pp.182-196)

2. Al-Sarayreh, M., Reis, M., Yan, W., Klette, R. (2018) Detection of red-meat adulteration by
deep spectral–spatial features in hyperspectral images. Journal of Imaging, 4 (5), 63.

3. Al-Sarayreh, M., Reis, M., Yan, W., Klette, R. (2019) Deep spectral-spatial features of snap-
shot hyperspectral images for red-meat classification. International Conference on Image and
Vision Computing New Zealand.

4. Al-Sarayreh, M., Reis, M., Yan, W., Klette, R. (2019) A sequential CNN approach for foreign
object detection in hyperspectral images. International Conference on Computer Analysis of
Images and Patterns, pp 271–283.

88 3 Image Processing for Robotics

5. Al-Sarayreha, M., Reis, M., Yan, W., Klette, R. (2020) Potential of deep learning and snap-
shot hyperspectral imaging for classification of species in meat. Food Control, Volume 117,
107332.

6. Al-Sarayreha, M. (2020) Hyperspectral Imaging and Deep Learning for Food Safety. PhD
Thesis. Auckland University of Technology, New Zealand

7. Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern
Recognition. 13 (2): 111–122.

8. Boomgaard, R., van Balen, R. (1992) Methods for fast morphological image transforms using
bitmapped binary images. Graphical Models and Image Processing 54(3), 252–58.

9. Canny, J., A. (1986) Computational approach to edge detection, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8(6):679 – 698.

10. Corke, P. Robotics, Vision and Control (2nd Edition), Springer Nature.
11. Duda, R. O., Hart, P. E.. (1972) Use of the Hough transformation to detect lines and curves in

pictures. Comm. ACM, vol. 15, pp. 11–15.
12. Fernandes, F., Oliveira, M. (2008). Real-time line detection through an improved Hough

transform voting scheme. Pattern Recognition, 41 (1): 299–314.
13. Foley, van D. (1996) Computer Graphics: Principles and Practice. Addison-Wesley (2nd ed.).
14. Gonzalez, R., Woods, R. (2001). Digital Image Processing. Prentice Hall.
15. Gonzalez, R., Woods, R., and Eddins, S. (2020) Digital Image Processing Using MATLAB.

Knoxville: Gatesmark Publishing, 2020.
16. Haralick, Robert M., and Shapiro, L. (1992) Computer and Robot Vision. Addison-Wesley

Longman Publishing Co., Inc.
17. Harris, C., Stephens, M. (1988). A combined corner and edge detector. Proceedings of the 4th

Alvey Vision Conference. pp. 147–151.
18. Hu, X. (2017) Frequency Based Texture Feature Descriptors. PhD Thesis, Auckland Univer-

sity of Technology, New Zealand.
19. Klette, R. (2014) Concise Computer Vision: An Introduction into Theory and Algorithms.

Springer-Verlag London, UK.
20. Lindeberg, T. (1993). Detecting salient blob-like image structures and their scales with a

scale-space primal sketch: A method for focus-of-attention. International Journal of Com-
puter Vision. 11 (3): 283–318.

21. Liu, Z., Yan, W., Yang, B. (2018) Image denoising based on a CNN model. International
Conference on Control, Automation and Robotics.

22. Murphy, R. (2019). Introduction to AI Robotics (2nd ed.). Bradford Books.
23. Pan, C., Yan, W. (2018) A learning-based positive feedback in salient object detection. Inter-

national Conference on Image and Vision Computing New Zealand.
24. Pan, C., Yan, W. (2020) Object detection based on saturation of visual perception. Multimedia

Tools and Applications, 79 (27-28), 19925-19944.
25. Pan, C., Liu, J., Yan, W., Zhou, Y. (2021) Salient object detection based on visual perceptual

saturation and two-stream hybrid networks. IEEE Transactions on Image Processing.
26. Reisa, M., Beersd, R., Al-Sarayreh, R., Shortenb, R., Yan, W., Saeysd, W. (2018) Chemo-

metrics and hyperspectral imaging applied to assessment of chemical, textural and structural
characteristics of meat. Meat Science, 144, pages 100-109.

27. Siegwart, R., Nourbakhsh, I., Scaramuzza, D., (2004). Introduction to Autonomous Mobile
Robots. MIT Press.

28. Wang, Y., Yan, W. (2022) Colorising grayscale CT images of human lungs using deep learning
methods. Springer Multimedia Tools and Applications, 81, pages 37805–37819.

29. Yan, W., Kankanhalli, M. (2002) Detection and removal of lighting & shaking artifacts in
home videos. ACM International Conference on Multimedia, 107-116.

30. Yan, W., Kankanhalli, M., Wang, J. (2005) Analogies-based video editing. Multimedia Sys-
tems 11 (1), 3-18.

31. Yan, W., Kankanhalli, M. (2003) Colorizing infrared home videos. International Conference
on Multimedia and Expo, Pages 97–100

32. Yan, W. Q. (2019). Introduction to Intelligent Surveillance: Surveillance Data Capture, Trans-
mission, and Analytics. Springer.

References 89

33. Yan, W. Q. (2023). Computational Methods for Deep Learning: Theory, Algorithms, and
Implementations (2nd Edition). Springer.

34. Zhao, H., Xu, S., Yan, W., Xu, D. (2025) Design and optimization of target detection and 3D
localization models for intelligent muskmelon pollination robots. Horticulturae, 11(8), 905.

Chapter 4
Stereo Vision and 3D Reconstruction

Abstract

Our living world is 3D naturally, our human beings use eyes to percept this world,
which are equivalent to stereo cameras in cyberspace. In this chapter, three concepts
are introduced with the fundamental knowledge: Stereo camera, stereo vision, and
3D reconstruction. Finally, the 3D scene is constructed by using sensors to observe
this environment. The significance of this chapter is that we reconstruct the 3D scene
and take advantage of stereo vision for probing robotic view.

91

92 4 Stereo Vision and 3D Reconstruction

4.1 Stereo Camera and Stereo Vision

In this section, how cameras is applied to capture images [31, 32] how 3D space is
understood through these images, how our human eyes watch the world, and how
the robots sense the environment using visual sensors [4].

Fig. 4.1: Fuji Film stereo camera

Figure 4.1 shows a 3D stereo camera made by Fuji film. The first digital camera
was manufactured by Sony Cooperation in 1981. It is called CCD camera, namely,
charge coupled device. By using this digital camera, the key function is to convert
natural light to pixel signals. That is the reason why CCD cameras can capture the
image from our real world. Then, it has been designed and made with color accuracy.
A right color is sensed with the CCD chips, it has not or has less coloring bias or
mistakes.

Digital camera lens has not distortion problem. Like our mobile phones, usually
our photographs are taken with an aspect ratio, usually 4:3 or 16:9. The aspect ratio
is the ratio between the width and the height of a given image [36]. This aspect ratio
is closely related to image resolution. That means, in the given image, how many
pixels along the horizontal direction and vertical direction, respectively. Currently,
a video resolution is 1,080 lines, that’s the standard 1K resolution. With the devel-
opment of video technology, we have 4K and 8K display technology because the
screen size is large enough. A large screen can display images clearly. If the resolu-
tion is low, the details of images will be lost. Previously, our TV sets are 18 inches
or 24 inches, up to date, most of them are more than 100 inches.

In color expression, the concept “bit depth” shows how many bits are adopted
to store the color values of one pixel. A pixel color usually has 256 options, the bit
depth is 8, i.e., 28 = 256. That means, we have 256 colors to be shown on an image
concurrently. Thus, the bit depth indicates the display capability of a screen [41].

Dynamic range refers to our cameras which can display various colors in a short
time. In one image, the colors may be completely white; in another image, the col-
ors may be completely dark. Thus, no matter how an image is completely white
or dark [42], the dynamic range colors can be displayed by using spectrum wave
length.

4.1 Stereo Camera and Stereo Vision 93

A digital camera may have the functions: Pan, tilt, and zoom, we call the camera
as Pan–tilt–zoom camera or PTZ camera. Panning means the direction of our camera
can point from left to right or from right to left. Naturally, the direction of our camera
can scan up or down. In surveillance, the cameras are automatically controlled by
using panning and zooming, zooming encapsulates zooming in and zooming out.
The functions of cameras are implemented in hardware [40, 41].

Digital cameras can sense the colors ranging from the visible wave length. Our
human eyes cannot see infrared rays and ultraviolet(UV) light. The images from
the UV and infrared rays can be visualized by using specific algorithms. No matter
which digital camera is utilized to take a photograph, the central projection must
be followed. If a camera is utilized to take a photograph, the pixel location on the
image will have the corresponding point in 3D space. In central projection,

xu =
f ·Xs

Zs
,yu =

f ·Ys

Zs
(4.1)

where (Xs,Ys,Zs)
⊤ ∈R3, Xs,Ys,Zs ∈R, Zs ̸= 0, is a visible point in the real world,

namely, 3D space. (xu,yu)
⊤ ∈ R2, xu,yu ∈ R is the pixel location on the image,

correspondingly, f ∈ R is the focal length. Xs ∈ R and Ys ∈ R are symmetric, in
central projection, they are the same.

Fig. 4.2: The stereo vision from stereo cameras

If a camera has two lens, this camera is called a stereo camera. Usually, there are
two images, one is the left image, the other is the right one as shown in Figure 4.2.
The two images have identical size and parallel optic axes. The two optic axes are
pointed in the same direction. The two co-planar images have the identical size, the
two lens in stereo camera have the parallel optic axes. The angle between the two
axes is zero. The two lens have the identical focal length. The two images have the
col-linear image rows, that means, the y coordinate of two corresponding pixels in
the two images should be the same.

(xuL,yuL) = (
f ·Xs

Zs
,

f ·Ys

Zs
) (4.2)

and

(xuR,yuR) = [
f · (Xs−b)

Zs
,

f ·Ys

Zs
] (4.3)

94 4 Stereo Vision and 3D Reconstruction

where b ∈ R is the base distance of the stereo system, (Xs,Ys,Zs)
⊤ is a visible

point in the world, (xu,yu) is the pixel location, (xuR,yuR) for the pixel on the right
image, (xuL,yuR)

⊤ ∈R2 for the pixel on the left image, f is the focal length. In 3D
transformation, (Xw,Yw,Zw)

⊤ ∈R3 is the coordinates of a 3D point, we have,

(Xs,Ys,Zs)
⊤ = R · [(Xw,Yw,Zw)

⊤+T] (4.4)

where R is the rotation matrix, T is the translation vector. A point (Xw,Yw,Zw)
⊤ in

the 3D scene is projected onto an image, it is visible at an image point (x,y)⊤ ∈
R2,x,y ∈R in xy coordinate system. x− xc

y− yc
f

=

 xu
yu
f

= f ·

Xs/Zs
Ys/Zs

1

 (4.5)

where (xc,yc,0)⊤ ∈R3, xc,yc ∈R is the shift to principal point in undistorted im-
age.

Intrinsic (internal) parameters enclose focal length, aspect ratio, radial distortion
parameters, scaling factors, coordinates of the principal point, etc. Extrinsic param-
eters encompass poses of camera [6], such as location and direction. In camera
calibration [2, 39, 42], epipolar geometry indicates the two cameras with associated
coordinate frames and image planes. It represents the case of two cameras simul-
taneously by viewing the same scene [40]. In the epipolar plane, a world point is
projected onto the image planes of the two cameras at two pixel coordinates respec-
tively, known as conjugate pixels. Given a point in one image, the conjugate pixels
are constrained to lie along a line in the other image.

Stereo vision is employed for estimating 3D structure from two images by us-
ing two different viewpoints with approaches: Sparse stereo and dense stereo [15].
Sparse stereo is a natural extension about feature matching and recover the world
coordinate for each corresponding point pair. Dense stereo recovers the world co-
ordinate for every pixel in the image. A stereo pair is taken by using two cameras,
generally with parallel optical axes, and separated by using a known distance re-
ferred to the camera baseline. The camera baseline means that there is a distance
between the two cameras.

For the parallel-axis camera geometry, the epipolar lines are parallel and hor-
izontal, the conjugate pixels have the same vertical coordinate. The displacement
along the horizontal epipolar line is called disparity. The disparity is an important
concept in stereo vision [37]. The epipolar constraint means that only 1D search is
needed for the corresponding point. Our search is limited in x-axis direction with the
fixed y. The design of a stereo-vision system [37] has three constraints: (1) Baseline
distance, (2) disparity search range, (3) template size.

In anaglyphs, human stereo perception of depth works well because each eye
views the scene from a unique viewpoint. The key in all 3D display to take the
images from two cameras, with a similar baseline to human eyes and present those
images to the corresponding eyes. The advantage of anaglyphs is that the images
can be printed on paper or projected onto ordinary movie film, while being viewed

4.1 Stereo Camera and Stereo Vision 95

with simple and cheap glasses. Stereo cameras are built accurately to ensure that the
optical axes of the cameras are parallel.

In robotic vision [10], a robot moves on a plane. A particular feature point lies
on the ground or the top of a doorway, such as a vacuum robot. The view is up-
ward [4, 29]. The magnitude of camera translational motion, at each time, is esti-
mated from essential matrix and the ground truth. In a camera coordinate system, the
unknown visible point (Xs,Ys,Zs)

⊤ ∈R3 is recovered by using the undistorted im-
age coordinates (xuL,yuL)

⊤ ∈R2, xuL,yuL ∈R and (xuR,yuR)
⊤ ∈R2, xuR,yuR ∈R

as input, where yuL = yuR = yu ∈R and xuR ≤ xuL, the base line distance is b > 0,
f ∈R is the unified focal length. Ultimately, we get the coordinates of a 3D point
(Xs,Ys,Zs)

⊤. Because,

Zs =
f ·Xs

xuL
=

f · (Xs−b)
xuR

(4.6)

therefore,

Xs =
b · xuL

xuL− xuR
; (4.7)

Ys =
b · yuL

yuL− yu
; (4.8)

Zs =
b · f

xuL− xuR
(4.9)

(Xs,Ys,Zs)
⊤ = (

b · xuL

xuL− xuR
,

b · yu

xuL− xuR
,

b · f
xuL− xuR

)⊤ (4.10)

where d = xuL− xuR ̸= 0,d ∈R is the disparity, b ∈R is the base distance. In the
camera coordinate system, we recover unknown visible point by using,

(Xs,Ys,Zs)
⊤ = (

b · xuL

xuL− xuR
,

b · yu

xuL− xuR
,

b · f
xuL− xuR

)⊤ (4.11)

Therefore, if d = xuL− xuR = 0, then (X ,Y,Z)⊤ is an infinity point (∞). Larger b
and f support an increase in depth level but reduce the number of pixels that have
corresponding pixels in the second image. An increase in image resolution is a way
to improve the accuracy of depth levels. Since, the XY Z system can be transformed
into the (XL,YL,ZL)

⊤ ∈R3 and (XR,YR,ZR) by translating (X − b
2 ,Y,Z)

⊤ and (X +
b
2 ,Y,Z)

⊤, XL
YL
ZL

=

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

X− b
2

Y
Z

 (4.12)

and, XR
YR
ZR

=

 cos(θ) 0 −sin(θ)
0 1 0

sin(θ) 0 cos(θ)

X + b
2

Y
Z

 (4.13)

Moreover,

96 4 Stereo Vision and 3D Reconstruction

xuL = f ·XL
ZL

,ZL ̸= 0
yuL = f ·YL

ZL
= yuR,ZL ̸= 0

xuR = f ·XR
ZR

,ZR ̸= 0
(4.14)

Stereo pairs are already geometrically rectified and pre-processed for reducing
brightness issues. Corresponding pixels are expected to be in the left and right im-
ages at the same image row. Regarding a pixel (x,y) ∈ R2 in a base image B, we
search for a corresponding pixel (x+d,y),d ∈R in the match image M, based on
the same epipolar line identified by row y. The two pixels are corresponding if they
are projections of the same point (X ,Y,Z)⊤, where d > 0 is the disparity. We ini-
tiate a search by selecting the point (x,y) in B. This defines the search interval of
point (x+d,y) in M with max(x−d,1)≤ x+d. With regard to identify correspond-
ing points, a straightforward idea is to compare neighborhoods, namely, rectangular
windows for simplicity, such as 8×8 or 16×16 around a pixel p in the image I.

• Global matching (GM): An area is approximated by using time-expensive control
structure of a stereo matcher.

• Local matching (LM): An area of influence is bounded by using fixed constant.
• Semi-global matching: We take more pixels into account than the local approach,

but not yet as much as a global approach.

The complexity of semi-global matching is between global matching and local
matching [38], The third-eye method includes mapping a reference image of a pair
of stereo camera into the pose of a third camera, measuring the similarity between
created virtual image and the actually recorded third image. The outline of the third-
eye method is:

• Record stereo data with two cameras and calculate disparities.
• Have a third calibrated camera looking into the same space as the other two

cameras [13].
• Use the calculated disparities for mapping the recorded image of the left camera

into the image plane of the third camera, create a virtual image.
• Compare the virtual image with the image recorded by using the third camera.
• If the virtual images from the third camera are basically coincide, then the stereo

matcher provides “useful” disparities [13].

By using the third-eye method, the disparity map and the depth map of the given
scene are calculated and shown in Algorithm (12).

4.1 Stereo Camera and Stereo Vision 97

Algorithm 12: The third eye stereo vision algorithm for depth estimation
Input: Rectified images IL, IC, IR (left, center, right), camera calibration

parameters
Output: Disparity map D, depth map Z

1 foreach pixel (x,y) in IC do
2 for disparity d ∈ [dmin,dmax] do
3 Compute matching cost CL← cost(IC(x,y), IL(x−d,y));
4 Compute matching cost CR← cost(IC(x,y), IR(x+d,y));
5 Aggregate cost: C(d)← wL ·CL +wR ·CR;

6 Find disparity: d∗← argmind C(d);
7 Set D(x,y)← d∗;

8 Compute depth map: Z(x,y)← f ·B
D(x,y) ;

9 return D, Z;

A point (X ,Y,Z)⊤ ∈ R3 mapped into a pixel (x,y)⊤ ∈ R2 in the left image
corresponds to a point (xT ,yT)

⊤ ∈ R2, xT ,yT ∈ R in the third image, (xT ,yT) is
expressed in terms of (x,y) by using the calibrated translation (tX , tY , tZ)⊤ ∈ R3,
tX , tY , tZ ∈R [11]. The base distance b ∈R, focal length fT ∈R, and the disparity
d > 0 are provided by using the given stereo matcher:

(XT ,YT ,ZT)
⊤ = (X− tX ,Y − tY ,Z− tZ)⊤ (4.15)

and
(xT ,yT) = fT · (

XT

ZT
,

YT

ZT
),ZT ̸= 0 (4.16)

Therefore,

(xT ,yT) = fT · (
X− tX
Z− tZ

,
Y − tY
Z− tZ

),Z ̸= tZ (4.17)

If X = b·x
d , Y = b·y

d , Z = f · b
d , d ̸= 0 then

xT = fT ·
b · x−d · tX
f ·b−d · tZ

(4.18)

and
yT = fT ·

b · y−d · tY
f ·b−d · tZ

(4.19)

where f ·b−d · tZ ̸= 0.
Let Ωt ∈R be the set of pixels that are employed for the comparison with regard

to video frames at time t ∈R. The means are µV and µT , respectively, the standard
variations are σV and σT for the virtual V (p) and third image T (p) at time t, re-
spectively. Hence, the Normalized Cross-Correlation (NCC) is calculated as shown
in eq.(4.20). The NCC is employed to compare the performance of stereo matches
based on long sequences.

98 4 Stereo Vision and 3D Reconstruction

MNCC(V,T) =
1
|Ωt | ∑

p∈Ωt

[T (p)−µT][V (p)−µV]

σT σV
. (4.20)

4.2 3D Reconstruction

The surface S known as border or frontier of the existing 3D object in the real world,
we usually have two kinds of gap-free smooth surfaces: (1) Continuous derivatives
exist (2) The existence of a neighborhood in S. The typical one is the Möbius strip
as shown in Fig.4.3, the derivatives exist everywhere.

Fig. 4.3: The smooth surface: Möbius strip

Gap-free polyhedral surfaces have two groups: (1) Discontinuities at edges (2)
The existence of a neighborhood in S. The typical one is the tetrahedron. The ex-
plicit representation of function F(·) is Z = F(X ,Y), X ,Y,Z ∈R. The equation of
a straight line is y = ax+b, a,b ∈R. The implicit representation is F(X ,Y,Z) = 0,
for the straight line, the equation is Ax+By+C = 0, A,B,C ∈R. The gradient of a
surface Z = F(X ,Y) is the vector given by

∇Z = grad(Z) = (
∂Z
∂X

,
∂Z
∂Y

) (4.21)

In the case of plane aX +bY +Z = c,

4.2 3D Reconstruction 99

n = (
∂Z
∂X

,
∂Z
∂Y

,1)⊤ = (a,b,1)⊤ (4.22)

The normalized vector is,

n◦ = (n1,n2,n3)
⊤ =

n
∥n∥2

=
(a,b,1)⊤√
a2 +b2 +1

(4.23)

Let P = (a,b,1)⊤ be the surface normal vector of a visible and illuminated sur-
face at point P,

cosα =
s⊤np

∥s⊤∥2∥np∥2
(4.24)

On one surface [7], there are numerous norm vectors. The emitted light at the
point P is scaled by,

η(P) = ρ(P) · El

π
(4.25)

where EL ∈R was defined as a light source energy, which is reflected at P uniformly
into all directions of a hemisphere.

R(P) = η(P)
s⊤np

∥s⊤∥2∥np∥2
(4.26)

where R(P)≥ 0 is the reflectance function.
Lambert’s Cosine Law is employed to render a geometric model as shown in

Fig.4.4. In this law, only norms are considered in this model [8]. There are two
kinds of surfaces, i.e., mirror surface and rough surface. These surfaces are related
to surface materials. The source code in Python for generating Fig.4.4 is shown in
Fig.4.5. The corresponding pseudocode is shown in Algorithm (13).

For an example, if the light color is C = (255,255,255), computing with the
Lambert’s Cosine Law, α = π

3 , the reflectance CR = C · cos(π

3) is obtained. The
light intensity is CR = (127.5,127.5,127.5) if the η(P) = 1.0.

Algorithm 13: Lambertian reflectance for diffuse shading

Input: Surface normal vector N⃗, light direction vector L⃗, light intensity I,
diffuse color Cd

Output: Diffuse shading color C
1 Normalize the surface normal: N⃗← N⃗

∥N⃗∥ ;

2 Normalize the light direction: L⃗← L⃗
∥⃗L∥ ;

3 Compute dot product: D← N⃗ · L⃗;
4 Clamp to non-negative: D←max(0,D);
5 Compute final color: C← I ·Cd ·D;
6 return C;

100 4 Stereo Vision and 3D Reconstruction

Fig. 4.4: A sphere rendered by using Lambert cosine law in Python

Fig. 4.5: The source code of Lambert cosine law in Python

4.3 Applications of Stereo Vision 101

4.3 Applications of Stereo Vision

Stereo vision plays a crucial role in robotic navigation[16], robotic planning, and
scene understanding, offering depth perception and 3D spatial awareness [46]. The
applications in these fields are listed as below.

4.3.1 Applications of Robot Navigation

Stereo vision [30, 31] provides depth information that helps robots deeply under-
stand the environment, make plans, design routines, and navigate effectively. The
key applications include:

In obstacle avoidance, robots can detect obstacles and estimate their distance, al-
lowing for real-time path planning in cluttered environment [28]. If a map has been
generated, the obstacle avoidance is assumed to be relatively easy. By using local-
ization and mapping (SLAM), stereo cameras contribute to 3D map generation and
aid autonomous navigation. In outdoor environments, based on scene understand-
ing, for example, stereo vision assists us to estimate road surface for safe travel.

In stereo vision [31, 32, 33, 34], the problem is human-robot interaction, it needs
to detect humans actions and their movements, it enables the interaction in shared
spaces. The principle of human-robot interaction (HRI) revolves the designing is-
sues that can effectively and safely collaborate with humans.

4.3.2 Applications in Deep Scene Understanding

The interfaces of ChatGPT (OpenAI) and Gemini (Google) have extremely attracted
our eyeballs. In the latest design, how to make use of chatbot software to control
robots is an interesting research direction. In scene understanding, the stereo vision
will set a knowledge base, it conveys robots what the environment is and how can set
up such a conversion environment by using chatbots such as Gemini or ChatGPT.
The corresponding Chain-of-Thought (CoT) is established. The outputs of chatbots
could be filtered and utilized to control agents. Furthermore, the unknown world
will be explored and understood by using conversations. Fig.4.6 shows the inter-
face of Google Gemini. From Google image search, we obtain the results as shown
in Fig.4.7. This example shows chatbots have the ability to explore much broader
content based on visual information, while search engines could not completely un-
derstand the assigned tasks.

Chatbots are distinctive from soft robots [5, 35, 43]. Soft robotics, inspired by
biology [12], concerns the design, control, and fabrication of robots composed of
compliant materials [14]. The goal of soft robotics is the design and construction
of robots with physically flexible bodies and electronics. All soft robots facilitate
an actuation system to generate reaction forces, it is admitted for movement and

102 4 Stereo Vision and 3D Reconstruction

Fig. 4.6: The interface of Chatbot: Google Gemini

Fig. 4.7: The interface of Google image search

4.4 Lab Session: Implementing Stereo Vision Systems with MATLAB 103

interaction with its environment. Soft robots are much safer for human and robot
interaction as well as for internal deployment inside a human body [1, 3] for medical
applications [44, 45].

4.3.3 Applications in Visual Object Recognition

Stereo vision enhances visual object recognition by providing 3D shape and depth
information [9], improving accuracy over 2D image processing from all aspects
or multiple views. The basic applications should include 3D object detection and
recognition [17, 18, 19, 20]. The depth assists us to differentiate objects from the
background and classify them more reliably [21, 22, 23]. An example of 3D vehicle
scene [24, 25, 26, 27] is shown in Fig. 4.8.

Fig. 4.8: The scene of 3D vehicles with depth

Another application is robotic path planning, grasping, and manipulation [28].
Robots make use of stereo vision to estimate visual distance, position, and shape for
accurate pick-and-place tasks [75]. In autonomous vehicles, stereo vision is applied
to detect pedestrians, vehicles, and road obstacles outside of the moving robots.

In augmented reality and robotics [31, 32, 33, 34], stereo vision transfers human
experience and spatial understanding to interactive AR/VR applications in real time
with the unknown world. By merging with 3D animations having the same view
angle, robotic vision will combine the real world and virtual one together.

4.4 Lab Session: Implementing Stereo Vision Systems with
MATLAB

At the end of this chapter, we would like to recommend all readers complete the Lab
report. Please fill in the form shown in Table 4.1 after each lab session (2 hours). An
example of this lab report is:

• Project title: Depth Estimation from Stereo Video
• Project objectives: The objective is to detect people and the distance to the cam-

era from a video taken with a calibrated stereo camera.
• Configurations and settings: MATLAB Online

104 4 Stereo Vision and 3D Reconstruction

Table 4.1: Lab report for robotic vision

Name <First Name Last Name>
Email <firstname.lastname@mailbox>
Lab date <dd-mm-yy>
Submitted date <dd-mm-yy>
Project title Depth Estimation from Stereo Video
Lab objectives The objective is to detect people and the distance to the camera

from a video with a calibrated stereo camera.
Configurations and settings <The preferences, software, hardware, platforms, tools, etc.>
Methods <The relevant scientific theories or concepts >
Workflow <The step-by-step procedure for the experiment>
Datasets <The data and materials for your experiments>
Input <image filename, size, resolution >
Output <image filename, size, resolution>
Testing steps <Functional & non-functional testing methods step by step>
Bugs or problems <The system error code, lines of the code>
Result analysis <The tables, graphs, and figures, etc.>
Conclusion/Reflection <The strengths and weaknesses, or learned from this project >
References https://au.mathworks.com/help/vision/ug/

evaluating-the-accuracy-of-single-camera-calibration.html
Appendix: <Source codes with comments and line numbers>

• Methods: Use of disparity map to determine 3D core coordinates corresponding
to each pixel.

• Implementation steps:

1. Stereo Camera Setup: Calibrate the camera pair.
2. Rectify Video Frames: Correct video frames for parallel alignment.
3. Compute Disparity Map: Calculate pixel disparities.
4. 3D Reconstruction: Reconstruct the scene in 3D.
5. Object Detection and Recognition: Identify objects and measure distances

• Testing steps:

1. Load the parameters of the stereo camera
2. Create video file readers and the video player
3. Read and rectify video frames
4. Compute disparity
5. Reconstruct the 3D scene
6. Detect people in the left image
7. Determine the distance of each person to the camera
8. Process the rest of the video

• Result analysis: (1) Accuracy: The system accurately estimates depth based on
the quality of the disparity map. (2) 3D Reconstruction: The 3D scene recon-
struction closely matches the real scene. (3) Object Detection and Recognition:
The system reliably detects objects and measures distances. (4) Performance:

References 105

The system’s robustness varies under various conditions (Lighting, camera an-
gles, textures).

• Conclusion/Reflection: The project demonstrates effective depth estimation,
though performance may vary based on environmental factors.

• Readings:
https://au.mathworks.com/help/vision/ug/depth-estimation-from-stereo-video.html

4.5 Exercises

Question 4.1. How to accelerate stereo matching?
Question 4.2. What are the differences by using LiDAR and computer vision for
3D reconstruction?
Question 4.3. What’s image disparity? How to calculate the disparity?
Question 4.4. In Lambert Cosine model, how can we make the algorithm more
perfect?
Question 4.5. What are the relationships between computer graphics and com-
puter vision?
Question 4.6. How to verify the depth available from the 3D reconstruction in
stereo Vision?

References

1. Abidi, H., Cianchetti, M., (2017). On intrinsic safety of soft robots. Frontiers in Robotics and
AI. 4.

2. Chen, Z., Si, X., Wu, D., Tian, F., Zheng, Z., Li, R. (2024). A novel camera calibration method
based on known rotations and translations. Computer Vision and Image Understanding, 243,
103996.

3. Cianchetti, M., Ranzani, T., Gerboni, G., et al. (2014). Soft robotics technologies to ad-
dress shortcomings in today’s minimally invasive surgery: The STIFF-FLOP approach. Soft
Robotics. 1 (2): 122–131.

4. Corke, P. Robotics, Vision and Control (2nd Edition), Springer Nature.
5. Crawford, M. (2019). Soft robots are essential for future space exploration. American Society

of Mechanical Engineers (ASME).
6. Ding, W., Tan, W., Liu, G., Zhang, H., Wang, W. (2024). Adaptive adjustment of brightness

and blur of the camera for high precision internal parameter calibration. Measurement, 231,
114637

7. Foley, van D. (1996) Computer Graphics: Principles and Practice. Addison-Wesley (2nd ed.).
8. Gonzalez, R., Woods, R., and Eddins, S. (2020) Digital Image Processing Using MATLAB.

Knoxville: Gatesmark Publishing, 2020.
9. Gu, Q., Yang, J., Kong, L., Yan, W., Klette, R. (2017) Embedded and real-time vehicle detec-

tion system for challenging on-road scenes. Optical Engineering, 56 (6), 063102.
10. Haralick, Robert M., and Shapiro, L. (1992) Computer and Robot Vision. Addison-Wesley

Longman Publishing Co., Inc.
11. Huang, W., Miao, H., Jiao, S., Miao, W., Xiao, C., Wang, Y. (2024). A planar constraint

optimization method to improve camera calibration for imperfect planar targets. Optics and
Lasers in Engineering, 180, 108273.

106 4 Stereo Vision and 3D Reconstruction

12. Kim, S., Laschi, C., Trimmer, B. (2013). Soft robotics: A bio-inspired evolution in robotics.
Trends in Biotechnology. 31 (5): 287–94.

13. Klette, R. (2014) Concise Computer Vision: An Introduction into Theory and Algorithms.
Springer-Verlag London, UK.

14. Laschi, C., Calisti, M., (2021). Soft robot reaches the deepest part of the ocean. Nature. 591
(7848): 35–36.

15. Lazaros, N., Sirakoulis, G., Gasteratos1, A. (2008). Review of stereo vision algorithms: From
software to hardware. International Journal of Optomechatronics. 2 (4): 435–462.

16. Le, R. (2022) Synthetic Data Annotation for Enhancing the Experiences of Augmented Re-
ality Application Based on Machine Learning, PhD Thesis. Auckland University of Technol-
ogy, New Zealand.

17. Liu, X. (2019) Vehicle-Related Scene Understanding Using Deep Learning. Master’s Thesis,
Auckland University of Technology, New Zealand.

18. Liu, X., Nguyen, M., Yan, W. (2019) Vehicle-related scene understanding using deep learning.
Asian Conference on Pattern Recognition Workshop, pp 61–73.

19. Liu, X., Yan, W., Kasabov, N. (2020) Vehicle-related scene segmentation using CapsNets.
International Conference on Image and Vision Computing New Zealand, pp.1-6

20. Liu, X., Yan, W. (2022) Depth estimation of traffic scenes from image sequence using deep
learning. Pacific-Rim Symposium on Image and Video Technology, pp.186-196.

21. Liu, X., Yan, W. (2022) Vehicle-related distance estimation using customized YOLOv7. In-
ternational Conference on Image and Vision Computing New Zealand (IVCNZ), 91-103.

22. Liu, X., Yan, W. Kasabov, N. (2023) Moving vehicle tracking and scene understanding: A
hybrid approach. Multimedia Tools and Applications.

23. Liu, X., Yan, W. (2024) Vehicle detection and distance estimation using improved YOLOv7
model. Deep Learning, Reinforcement Learning and the Rise of Intelligent Systems, pp.173-
187 IGI Global.

24. Mehtab, S., Yan, W. (2021) FlexiNet: Fast and accurate vehicle detection for autonomous
vehicles-2D vehicle detection using deep neural network. International Conference on Con-
trol and Computer Vision, Pages 43–49.

25. Mehtab, S., Yan, W. (2022) Flexible neural network for fast and accurate road scene percep-
tion. Multimedia Tools and Applications, 81, pages 7169–7181.

26. Mehtab, S. Yan, W., Narayanan, A. (2022) 3D vehicle detection using cheap LiDAR and
camera sensors. International Conference on Image and Vision Computing New Zealand.

27. Mehtab, S. (2022) Deep Neural Networks for Road Scene Perception in Autonomous Vehicles
Using LiDARs and Vision Sensors. PhD Thesis, Auckland University of Technology, New
Zealand.

28. Ming, Y., Li, Y., Zhang, Z., Yan, W. (2021) A survey of path planning algorithms for au-
tonomous vehicles. International Journal of Commercial Vehicles.

29. Murphy, R. (2019). Introduction to AI Robotics (2nd ed.). Bradford Books.
30. Nguyen, M., Yan, W., Gong, R., Delmas, P. (2015) Toward a real-time belief propagation

stereo reconstruction for computers, robots, and beyond. International Conference on Image
and Vision Computing New Zealand (IVCNZ).

31. Nguyen, M., Le, R., Yan, W. (2017) A personalized stereoscopic 3D gallery with virtual
reality technology on smartphone. International Conference on Image and Vision Computing
New Zealand (IVCNZ).

32. Nguyen, M., Le, H., Yan, W., Dawda, A. (2018) A vision aid for the visually impaired using
commodity dual-rear-camera smartphones. International Conference on Mechatronics and
Machine Vision.

33. Nguyen, M., Lai, P., Le, R., Yan, W. (2019) A web-based augmented reality platform using
pictorial QR code for educational purposes and beyond. ACM Symposium on Virtual Reality
Software and Technology.

34. Nguyen, M., Le, R., Yan, W. (2020) Red-green-blue augmented reality tags for retail stores.
International Conference on Advanced Concepts for Intelligent Vision Systems.

35. Rus, D., Tolley, M., (2015). Design, fabrication and control of soft robots. Nature. 521 (7553):
467–475.

References 107

36. Siegwart, R., Nourbakhsh, I., Scaramuzza, D., (2004). Introduction to Autonomous Mobile
Robots. MIT Press.

37. Steinman, S., Steinman, B., Garzia, R. (2000). Foundations of Binocular Vision: A Clinical
perspective. McGraw-Hill Medical.

38. Tychola, K. A., Tsimperidis, I., Papakostas, G. A. (2022). On 3D reconstruction using RGB-D
cameras. Digital, 2(3), 401-421.

39. Wang, J., Wan, Y. (2018). A new camera calibration method based on two vertical lines. In-
ternational Conference on Communications, Circuits and Systems (ICCCAS) (pp. 399-402).

40. Yan, W. Q. (2019). Introduction to Intelligent Surveillance: Surveillance Data Capture, Trans-
mission, and Analytics (3rd Edition). Springer.

41. Yan, W. Q. (2023). Computational Methods for Deep Learning: Theory, Algorithms, and
Implementations (2nd Edition). Springer

42. Yan, W., Kankanhalli, M. (2002) Detection and removal of lighting & shaking artifacts in
home videos. ACM International Conference on Multimedia, 107-116.

43. Yasa, O., Toshimitsu, Y., Michelis, M., Jones, L., Filippi, M., Buchner, T. Katzschmann, R.,
(2023). An overview of soft robotics. Annual Review of Control, Robotics, and Autonomous
Systems. 6 (1): 1–29.

44. Younas, F., Usman, M., Yan, W. (2022) A deep neural network ensemble framework for
colorectal polyp classification. Multimedia Tools and Applications.

45. Younas, F., Usman, A., Yan, W. (2022) A deep ensemble learning method for colorectal polyp
classification with optimized network parameters. Applied Intelligence.

46. Zhao, H., Xu, S., Yan, W., Xu, D. (2025) Design and optimization of target detection and 3D
localization models for intelligent muskmelon pollination robots. Horticulturae, 11(8), 905.

Chapter 5
Deep Learning for Robotic Vision

Abstract

Deep learning is related to a series of the state-of-the-art methods in contempo-
rary artificial intelligence. In this chapter, our deep learning methods mainly include
CNN and RNN models. In CNN models, YOLO models are especially emphasized.
While in RNN models, we stress on transformer models for time series analysis
along with LSTM. The transformer models are still large, active, and effective in
our research projects, especially the diffusion transformer models for generative AI.
In this chapter, our focus is on vision transformer (ViT) for robotic scene under-
standing. The significance of this chapter is that the state-of-the-art knowledge in
deep learning is mingled with the knowledge of robotic vision for developing au-
tonomous systems.

109

110 5 Deep Learning for Robotic Vision

5.1 Overview of Deep Learning Architectures for Vision

Deep learning offers a new way for exploring robotic vision by using the state-
of-the-art (SOTA) models such as YOLO series and transformer models [81]. The
robotic vision is not limited to object detection and recognition as well as object
tracking. The moving cameras mounted on mobile robots are able to freely select
viewpoints and sense much broader world. Hence, robots are able to understand
holistic scenes naturally. The latest developed chatbots such as ChatGPT (OpenAI),
DeepSeek (DeepSeek), Gemini (Google), Copilot (Microsoft), Qwen, etc. are be-
yond the limitations. They inspire deep scene understanding based on visual data.

Therefore, YOLO models and Transformer models only accommodate visual in-
formation and knowledge for chatbots. We thus fuse visual information and knowl-
edge for deep scene understanding. The cameras on tripods only capture a limited
scene from one view. Hence, we need move tripods and cameras back and forth for
capturing holistic view. Thus, the cameras on mobile robots overcome these short-
comings, they are able to deeply understand much wider field of view (FoV).

The chain-of-thought (CoT) is a method that allows large language models
(LLMs) to resolve a complicated problem as a series of intermediate steps before
offering the final answer [47, 68]. The CoT method improves reasoning ability by
inducing the model to answer a multistep question with a series of steps of reason-
ing. Tree-of-thoughts (ToT) generalizes the CoT to generate one or more “possible
next steps”, and executes the model on each of the possible steps by using breadth-
first search [72], or other methods of tree search.

Dify(https://docs.dify.ai/) is an open-source platform for docking AI applications
to streamline the development of generative AI solutions. Dify can create innova-
tive AI applications that solve CoT problems. ComfyUI (www.comfy.org) is an open
source and node-based program to generate images from a series of text prompts. It
makes use of free diffusion models[18] as the base with each tool being represented
by using a node. Each node has a function. The function can be applied to calcu-
late the confidence score of LLM outputs, hence controlling the ethics problems.
ComfyUI supports multiple text-to-image models.

Ollama, short for Omni-Layer Learning Language Acquisition Model, is a cutting-
edge platform designed to simplify the process of running large language models
(LLMs) on local machines. The transcripts generated from deep learning and com-
puter vision models, such as YOLO models and transformer models, will be added
into the Ollama for conversation. In the initialization stage, a group of designated
prompts will assist the system to avoid any problems related to ethics.

The LLM interface, like OpenAI ChatGPT, Google Gemini, and Microsoft Copi-
lot, escapes the simple phrase matching, it also avoids the difficulties of Google
search without proper keywords. The chatbot systems, like Qwen and DeepSeek,
accommodates a solution for answering questions and reasoning the information
from deep scene understanding from knowledge base.

Retrieval-Augmented Generation (RAG) is a method that allows large language
models (LLMs) to retrieve and incorporate additional information before generat-
ing responses [37], it minimizes the hallucination problem. RAG allows LLMs for

5.2 Convolutional Neural Networks (CNNs) and YOLO Models 111

information indexing, information retrieval, information augmentation and new in-
formation generation. RAG can be simply deployed and integrated with open source
models such as DeepSeek and Ollama on web pages. Furthermore, RAG can lower
the computational costs for running LLM-powered chatbots.

5.2 Convolutional Neural Networks (CNNs) and YOLO Models

5.2.1 CNN Models

OpenAI ChatGPT was developed based on transformer models. GPT means genera-
tive pre-trained transformer. ‘T’ refers to transformer. In this chapter, we emphasize
on Vision Transformer (ViT) and Diffusion Transformer (DiT) [28].

Deep learning is a type of machine learning approaches in which a deep learn-
ing model is trained to perform pattern classification from the end-to-end point of
view. In deep truth, deep learning is a probability-based classification method, its
performance has surpassed our human’s ability [56]. Deep learning is usually imple-
mented by using a neural network architecture. Previous artificial neural networks
are neurons-based, which were fully-connected networks, now the neural networks
are layer-based. The multiple layers network are called deep neural networks or deep
nets. The term “deep” refers to the number of layers in the layered neural networks.
While, the simple neural networks with few number of layers are called “shallow”
nets.

Conventional neural networks or ConvNets contain only a few layers, now deep
learning or deep nets can have more and many. The state-of-the-art (SOTA) methods
are to access massive sets of labeled data [3]. Because there are sufficient labeled
datasets, deep learning algorithms are easily to be implemented. Another reason is
the increased computing power (e.g., GPU, FPGA, etc.). GPU is a hardware unit
for graphics processing, e.g., NVIDIA GPUs. In matrix multiplications and vector
computations, GPUs accelerate the computations by operating on the corresponding
elements simultaneously. Parallel computing accelerates arithmetic operations in
infrastructure. A famous demo is that the picture Mona Lisa was displayed on a
big screen within one second by using GPU computing. Pre-trained models were
created by experts. Transfer learning [49] transfers parameters from one model to
another [44]. With more data samples to be added, the deep learning models will be
better regarding precision and recall in pattern classifications.

In deep learning, the end-to-end methods have been adopted. The feature map
from convolution and pooling operations with hierarchical structure has been uti-
lized. Softmax function has been deployed to the final stage of the classification.
The classification is based on probabilities, the one with the highest probability is
selected as the output of this net.

σ(z)i =
ezi

∑
K
j=1 ez j

(5.1)

112 5 Deep Learning for Robotic Vision

where σ ∈ [0,1]K is the softmax function, z = (z1,z2, · · · ,zK)
⊤ ∈ RK is the input

vector, ezi is the standard exponential function for input vector, K ∈N is the number
of classes in multiclass classifier.

Convolution operations and pooling operations are employed to extract features
in deep learning [32, 35]. We have the terms related to deep learning [31, 34]:

• Convolution puts the input through a set of convolutional filters [32].
• Pooling simplifies the output through nonlinear downsampling to reduce the

number of parameters that the network needs to be trained.
• ReLU(Rectified Linear Unit) is associated to fast and effective training by map-

ping negative values to zero and maintaining positive ones.

A fully connected layer (FC) outputs a vector of k dimensions where k is the
number of classes that the deep net is able to predict. The vector contains the prob-
abilities for each class of any images being classified. The final layer of CNN ar-
chitecture makes use of a softmax function to generate the classification output.
ConvNets are inspired from the biological structure of a visual cortex or human
vision system, it contains arrangements of simple and complex neurons. In order
to simulate a neuron, there is activation function between input and output of each
neuron. The input and output of the neuron may be a scalar or a vector. The transfer
function is the composition of activation functions by using the output of last layer
as the input of the next layer in deep nets.

Deep learning work was awarded Nobel prize in Physics. Professor Geoffrey
Hinton received the ACM Turing Award 2018 in 2019 and Novel Prize in Physics
in 2024. This work simulated the mechanism of human visual system. A light ray
travels and passes through our iris, and left the impression on our retina. These
cells are stimulated based on the subregions of a visual field, i.e., receptive field.
Receptive field is a region of the original image corresponding to a pixel on the
feature map. Our left eye is linked to right half brain, meanwhile, our right eye is
connected to left half brain.

Feature map is the output of convolution operations in hierarchical structure [32].
A ConvNet reduces a few number of parameters with the number of connections and
shared weights. A ConvNet consists of multiple layers, such as convolutional layers,
max pooling layers or average pooling layers, and fully connected layers [32].

The input layer defines the size of inputs of a convolutional neural network and
contains raw values of the input. Among all deep learning models, we have visible
layer (input layer or output layer), invisible layers or latent layers. A convolutional
layer consists of neurons that connect to subregions of the inputs or the outputs
of the layer, it extracts the features localized by these regions. A set of weights
are related to a filter or a kernel, the filter moves along the input image vertically
and horizontally and repeats the same computation. Batch normalization normal-
izes the activation and gradients propagating through a neural network, it makes
network training as an easier optimization problem [12, 38]. Basically, it refers to
normalization of output between 0 and 1 [33]. In the context of artificial neural net-
works [23, 42], a ReLU function is a typical activation function [12]. The ReLU
function performs a threshold operation to each element.

5.2 Convolutional Neural Networks (CNNs) and YOLO Models 113

y = max(x,0) =
{

x x > 0,
0 x≤ 0. (5.2)

where x,y ∈R, x is the input to a neuron, y is the output.
Leaky ReLUs have a small and positive gradient [38] when the unit is not active.

A leaky ReLU layer multiplies input values, it allows negative inputs to “leak” into
the output.

y = max(α · x,0) = α ·max(x,0) =
{

x x > 0,
α · x x≤ 0. (5.3)

where x,y,α ∈R, 0≤ α is a constant.
Pooling operations are grouped in two categories: Max pooling and average pool-

ing. The max pooling layer returns the maximum pixel intensity of the given rect-
angular regions. The average pooling layer outputs the average pixel intensity of the
given rectangular regions. All neurons in a fully connected layer connect to all the
neurons in the previous layer [52]. This layer combines all of the features extracted
by the previous layers across the image to identify the larger patterns.

The softmax function after normalization, i.e., normalized exponential function,
is the output function. A regression output layer must follow the fully connected
layer. The default loss function for a regression layer is Mean Squared Error (MSE).
A full pass through the whole dataset is called epoch. The iteration in deep learning
is the number of batches needed to complete one epoch. What a larger learning rate
is gradually reduced during the optimization time enables smaller steps towards the
optimum value [53]. The decay function is,

wi+1 = wi +η · ∂ f (w,x)
∂w

(5.4)

where wi ∈Rn is the weight at step i∈Z +, η ∈R is the learning rate of this decay
function, f (·) is the cost function or loss function [55].

Performing validation check at regular intervals during model training can de-
termine whether the network is overfitting over the training data. Hence, training
loss and accuracy are compared. The most important concept in deep learning is
accuracy. Along with the number of iterations, accuracy has been applied as the ter-
mination condition. The termination condition is to check whether the computations
are converge or not, and decide when the iterations should be halted.

5.2.2 YOLO Models

YOLO is a single neural network that predicts bounding boxes and class probabil-
ities directly from full images [54]. The bounding boxes refer to object position.
YOLO is trained based on full images that directly optimizes model performance.
The class probabilities refer to the output class label. YOLO models adopt the en-

114 5 Deep Learning for Robotic Vision

tire image during training and testing time so that it encodes contextual informa-
tion of all classes. YOLO models segment the input image into grids [8], typically
3× 3 or 5× 5. Each grid cell predicts the bounding boxes and confidence scores
for those objects. The confidence scores refer to the test process with ground truth.
Each bounding box consists of five parameters x,y,w,h ∈R and confidence c ∈R
in percentage. Each grid cell is harnessed to predict conditional class probabilities,
usually 3× 3 or 5× 5. YOLO predicts what objects present and where they are.
A single convolutional network simultaneously estimates multiple bounding boxes
and class probabilities for those boxes.

YOLO is highly generalizable which is less likely to break down when applied
to new domains or unexpected inputs. It is fast and makes use of regression with 45
frames per second. In the YOLO model, a picture is segmented into 7× 7 blocks;
visual objects with confidence and coordinates are detected in each block. YOLOv2
makes use of anchor boxes to detect visual objects in an image. In order to find an-
chor boxes, Intersection over Union (IoU) is harnessed to predict the objectiveness
score which is calculated by using eq.(5.5).

IoU =
|A∩B|
|A∪B|

∈ [0,1] (5.5)

where A is the region of ground truth and B is the detected region of visual object.
A∩B is the intersection between region A and region B. A∪B is the union of region
A and region B. | · | is the area of the region of the given image.

Anchor box offset is to refine the anchor box. Class probability is to predict
the class label assigned to each anchor box. Anchor boxes are a set of predefined
bounding boxes. Each anchor box is tiled across the image. The use of anchor boxes
enables a network to detect multiple objects, visual objects with multiple scales, and
the overlapping objects. The advantages of using anchor boxes are that anchor boxes
eliminate the need to scan an image with a sliding window, it computes a prediction
at every potential position. The use of anchor boxes replaces and drastically reduces
the cost of the sliding windows. Through anchor boxes, visual object detectors are
designed with three stages, namely, object detection, feature encoding, and pattern
classification.

YOLOv3 improves upon YOLOv2 by adding object detection at multiple scales
so as to detect smaller objects. The loss function of YOLOv3 is separated into mean
squared error for bounding box regression, while binary cross entropy is employed
for visual object classification, it improves the detection accuracy [10]. YOLOv3
detector utilizes anchor boxes to have better initial priors and predict the boxes
accurately.

YOLOv4 is a one-stage object detection network that is composed of three parts:
Backbone, neck, and head. The backbone of YOLOv4 network acts as the feature
extraction network that computes feature maps from the input images. The neck
connects the backbone and the head, it is composed of a spatial pyramid pooling
(SPP) module and a path aggregation network (PAN). The head processes the ag-
gregated features and predicts the bounding boxes, objectness scores, and classifi-

5.2 Convolutional Neural Networks (CNNs) and YOLO Models 115

cation scores. MATLAB provides the Deep Learning Toolbox including YOLOv1
to YOLOv4 models with source codes [65].

YOLOv5 [77] was developed in the base framework with the objective of reduc-
ing the complexity and improving the performance of the network. This constitutes
a benchmark with the aim of improving the implementability. The YOLO network
partitions the input image into a grid of cells. The grid cells are employed to pre-
dict bounding boxes, each of the cells contains a target. In essence, the output of
YOLOv5 comprises predictive information for each grid cell. This encompasses the
parameters like class predictions with the bounding boxes of each grid cell.

During the evolution of YOLO series [69], YOLOv6 [16], YOLOv7 [66] and
YOLOv8 [26] have promoted industrial applications. YOLOv6 combines processes
such as EfficientRep, self-distillation [80], and advanced quantification. It provides a
deployable network with customizable architecture, effectively balances computing
accuracy and speed. YOLOv7 is an enhanced version of YOLOv6. YOLOv7 [66]
focuses on the training process and introduces strategies such as reparameterization
modules and model scaling. YOLOv8 [26] was evolved from YOLOv5. Together,
these releases showcase significant advances in the performance and efficiency of
object detection.

YOLOv9 [45] has taken significant advances in the field of object detection by
using deep learning. The proposed concept of programmable gradient information
(PGI) was employed to cope with the variations required for deep neural networks
with multiple goals. YOLOv10 introduces an approach to real-time object detec-
tion, addressing both the post-processing and model architecture deficiencies found
in previous YOLO versions. By eliminating non-maximum suppression (NMS) and
optimizing various model components, YOLOv10 achieves the performance with
significantly reduced computational overhead. YOLOv11 [6, 74, 76] was selected
for its high efficiency in detecting small and fast-moving objects, it is suitable for
identifying a small object in each frame. In order to optimize YOLOv11 for the spe-
cific challenges, a plethora of modifications were implemented to improve its accu-
racy in detecting small objects. YOLOv12 is based on the attention-centric YOLO
framework that matches the speed of previous CNN-based ones while harnessing
the performance benefits of attention mechanisms [61]. YOLOv13 is an accurate
and lightweight object detector with a hypergraph-based Adaptive correlation En-
hancement (HyperACE) mechanism that achieves efficient global cross-location and
cross-scale feature fusion.

In CNNs [58], there are the exploding gradient problems and the vanishing gradi-
ent problems [7, 20] due to the uncertain existence of gradients or derivatives of the
loss surfaces [24, 38]. RNNs including LSTM and Transformer models are thought
as one of the solutions to resolve these problems.

116 5 Deep Learning for Robotic Vision

5.3 RNNs, Transformers, and Multimodal Approaches

5.3.1 RNNs

RNNs are a family of artificial neural networks for processing sequential data, which
is a dynamical system [9]. It is possible to use the same transition function with the
same parameters at every time step. LSTM is a model for long short-term memory,
the model can be lasted for a long period of time [58]. An LSTM unit consists
of four gates: Input gate, cell, forget gate, and output gate. LSTM is well-suited
to classify, process, and predict time series given time lags of unknown size and
duration between important events. It is the same with CNNs, but it has memory
cells. The cells store a value of state, for either long or short time periods. LSTM
gates compute an output by using the logistic function, see eq.(5.6).

f (x) =
1

1+ ex ,x ∈R (5.6)

The advantage of LSTM model is that LSTM was developed to deal with the
exploding and vanishing gradient problems [7, 33]. An LSTM network is a type of
RNN models that can learn long-term dependencies between time steps of sequence
data. A sequence input layer inputs sequence or time series data into the network. An
LSTM layer learns long-term dependencies between time steps of sequence data. To
predict class labels, the network ends with a fully connected layer, a softmax layer,
and a classification output layer. It is as same as CNN models, but it has memory.

OpenAI GPT models refer to Generative Pre-trained Transformer (GPT), GPT
shows how a generative model of language is able to acquire knowledge and pro-
cess long-range dependencies by pre-training on a diverse corpus with long stretches
of contiguous text [11, 51, 70, 71]. The famous software such as Microsoft Power-
Point provided real-time translation between two languages by using transformer
models [40, 57]. Transformer is a deep learning model, it makes use of the mech-
anism of self-attention, deferentially weighting the significance of each part of the
input data. Transformer is based solely on attention mechanisms, dispensing with
recurrence and convolutions entirely [64]. Transformers were introduced in 2017
by Google Brain for NLP problems, so as to replace RNN models (LSTM). Google
BERT model refers to Bidirectional Encoder Representations from Transformers
(BERT), BERT was pre-trained based on two tasks: (1) Language modeling; (2)
The next sentence prediction [73].

Recently, DeepSeek [1] has been developed, which was funded by the Chinese
hedge fund High-Flyer in 2023. DeepSeek’s success has been described as “up-
ending AI”. DeepSeek-R1 provides responses comparable to other contemporary
large language models. The training cost was reported to be significantly lower than
other LLMs. This breakthrough in reducing expenses while increasing efficiency
and maintaining the model’s performance in AI industry sent “shockwaves” through
the market. The release history of DeepSeek is listed as:

• January 2025: DeepSeek chatbot.

5.3 RNNs, Transformers, and Multimodal Approaches 117

• December 2024: The base model DeepSeek-V3-Base and the chat model DeepSeek-
V3.

• June 2024: DeepSeek-Coder V2.
• April 2024: DeepSeek-Math models: Base, Instruct, and RL.
• January 2024: DeepSeek-MoE models (Base and Chat).
• November 2023: DeepSeek-LLM.
• November 2023: DeepSeek Coder.

DeepSeek-R1 improves model reasoning capabilities by using pure reinforce-
ment learning (RL). It explores the potential of LLMs without any supervised
data, focusing on the self-evolution through a pure reinforcement learning pro-
cess. DeepSeek-R1 incorporates a small amount of cold-start data and a multi-stage
training pipeline, after collecting thousands of cold-start data to conduct fine-tuning
operations on the DeepSeek-V3-Base model. After the fine-tuning operations, the
checkbot underwent an additional reinforcement learning process by taking into
account of prompts from all scenarios [79]. DeepSeek directly applies reinforce-
ment learning to the base model without relying on supervised fine-tuning opera-
tions (SFT).

In deep learning, fine-tuning is a method of transferring knowledge [73], the
parameters of a pre-trained neural network model are trained based on new data.
Low-rank adaptation (LoRA) algorithm is an adapter-based method for efficiently
compressing large models. If a matrix An×n has n× n elements, n ∈ N , it will
be decomposed into the multiplication of two smaller matrices Bn×m and Cm×n,
m ∈N ,

An×n = Bn×m ·Cm×n (5.7)

where m satisfies n× n ≥ n×m+m× n, matrix B and matrix C are expected to
have less elements in total than that of matrix A. Therefore, matrix A is replaced in
fine-tuning process by using B ·C. The pseudocode of LoRA method is shown in
Algorithm (14).

118 5 Deep Learning for Robotic Vision

Algorithm 14: Low-rank adaptation (LoRA) for compressing large models

Input : Pre-trained model with weight matrix W0 ∈Rd×k

Training data D = {(xi,yi)}N
i=1

Rank r, learning rate η

Output: Fine-tuned model with adapted weights

1 Initialize A ∈Rd×r, B ∈Rr×k such that W =W0 +∆W, where ∆W = A ·B
2 Initialize A and B randomly, freeze W0
3 foreach mini-batch (x,y) in D do
4 Forward pass using W =W0 +A ·B
5 Compute loss L (x,y;W)
6 Backpropagate gradients w.r.t. A and B
7 Update A← A−η ·∇AL
8 Update B← B−η ·∇BL

9 return W0 +A ·B as the adapted weight matrix

The reasoning patterns of larger models can be distilled into smaller mod-
els [1, 80]. DeepSeek conducted compressing operations on a few dense models, the
distilled smaller dense models perform exceptionally well. DeepSeek-R1 applies re-
inforcement learning method starting from a checkpoint fine tuned with thousands
of long Chain-of-Thought (CoT) examples [63]. It distills the reasoning capability
from large spare model to small dense models. The reasoning capabilities are sig-
nificantly improved through large-scale reinforcement learning. The performance is
further enhanced with the inclusion of a small amount of cold-start data.

In DeepSeek, the integration of reward signals and diverse data enables us to train
a model that excels in reasoning. In machine learning, distillation is the process of
transferring knowledge from a large model or teacher model to a smaller one [80] or
student model. Distilling more powerful models into smaller ones yields excellent
results. The distillation strategies are both economical and effective.

The strategies in deep learning for model simplifications usually comprise of
model pruning and model quantization including model distillation. The main task
of model quantization is to convert high-precision floating-point numbers of the
parameters of neural networks into low-precision numbers. The quantization meth-
ods reduce the size of the given models, thereby they diminish memory consump-
tion. The increase of the speed on processors is capable of performing faster low-
precision calculations.

5.3.2 Vision Transformers

Vision transformer models are trained for image classification in supervised learn-
ing with labels. The labels are related to image sequence. Transformers could not
be generalized well when trained on insufficient amounts of data. In vision trans-
former (ViT), an image is treated as a sequence of patches, it is processed by using

5.3 RNNs, Transformers, and Multimodal Approaches 119

a standard transformer encoder. The first layer of ViT projects the flattened patches
into a lower-dimensional space. Flattened means the rows will be linked together.
After the projection, a position embedding is added to patch representations. Self-
attention allows ViT to integrate information across the entire image in the lowest
layers. Transformers show impressive performance from the scalability and self-
supervised pre-training. Image inpainting and image outpainting are two examples
of the scalability. ViT matches or exceeds the state-of-the-art on image datasets, but
relatively cheap to be pre-trained. MATLAB has developed the ViT example.

In the field of machine learning [2, 25], a confusion matrix is a specific table
layout that allows visualization of the performance of an algorithm, typically a su-
pervised learning one; in unsupervised learning, it is usually called as a matching
matrix.

5.3.3 Diffusion Transformers

In machine learning, diffusion models [22] are a class of latent variable generative
models. The goal of diffusion models is to learn a diffusion process, it generates
the probability distribution of a given dataset. The diffusion models are employed
to image denoising, inpainting, superresolution, and image generation.

Diffusion models train a neural network to sequentially denoise images blurred
with Gaussian noise. The model is trained to reverse the process of adding noise to
an image. After the training, the diffusion models are employed for image genera-
tion by starting with an image composed of random noise. Diffusion models can be
applied to perform upscaling. Cascading diffusion model stacks multiple diffusion
models one after another. The famous software DALL·E 2 is a cascaded diffusion
model, it generates images from text.

A new group of diffusion models are explored based on transformer architec-
ture. The scalability of Diffusion Transformers (DiT) is analyzed through the lens
of forward pass complexity as measured by using Gflops. DiTs with higher Gflops
consistently have lower FID (Fréchet Inception Distance) [14], through increasing
transformer depth/width or increasing the number of input tokens. The diffusion
models are well-poised to benefit by inheriting best practices and training recipes
from other domains, as well as retaining favorable properties. The attributes include
scalability, robustness, and efficiency. DiTs [50] adhere to the best practices of Vi-
sion Transformers (ViTs). They are more effective for visual recognition than tradi-
tional convolutional neural networks. There is a strong correlation between the net-
work complexity (measured by Gflops) and sample quality (measured by FID [14]).

Transformers have replaced domain specific architectures across natural lan-
guage, machine vision, reinforcement learning [79], and meta-learning [36]. Trans-
formers have been explored in Denoising Diffusion Probabilistic Models (DDPMs)
to synthesize non-spatial data; e.g., to generate CLIP image embeddings in DALL·E
2. Gaussian diffusion model adopts a forward noising process, it gradually applies
noise to real data x0 ∈R,

120 5 Deep Learning for Robotic Vision

q(xt |x0) = N [xt ;
√

αtx0,(1−αt)I] (5.8)

where αt ∈R is hyperparameter, xt =
√

αtx0 +
√
(1−αt)εt , εt ∼N (0,I).

Diffusion models are trained to learn the reverse process,

pθ (xt−1|xt) = N [µθ (xt),Σθ (xt)] (5.9)

where deep neural networks are employed to predict pθ ∈ [0,1] ∈R.
In order to train diffusion models with a learned reverse process, we have ε(θ)

with Lsimple

Lsimple(θ) = ∥εθ (xt)− εt∥2
2 (5.10)

We train ∑θ with the full L (θ).

L (θ) =−p(x0|x1)+∑
t

DKL[q∗(xt−1|xt ,x0)∥pθ (xt−1|xt)] (5.11)

Once pθ ∈ [0,1] ∈R is trained, new images are sampled by initializing xtmax ∼
N (0,I) and sampling xt−1 ∼ pθ (xt−1,xt). By interpreting the output of diffusion
models as the score function, the DDPM sampling procedure is guided to sample x
with p(x|c) ∈ [0,1] by using

ε̂θ (xt ,c)
∆
= εθ (xt ,φ)+ s ·▽x log[p(c|x)] (5.12)

where

p(c|x) · p(x) = p(x|c) · p(c) (5.13)

and

log[p(c|x)] ∝ log[p(x|c)]− log[p(x)] (5.14)

Hence,
▽x log[p(c|x)] ∝▽x log[p(x|c)]−▽x log[p(x)] (5.15)

The DDPM sampling procedure is guided to sample x with p(x|c) ∈ [0,1] ∈R+

by using

ε̂θ (xt ,c)
∆
= εθ (xt ,φ)+ s ·▽x log[p(c|x)] (5.16)

Simply,

ε̂θ (xt ,c) ∝ εθ (xt ,φ)+ s · [εθ (xt ,c)− εθ (xt ,φ)] (5.17)

ε̂θ (xt ,c) ∝ (1− s)εθ (xt ,φ)+ s · εθ (xt ,c),s≥ 0 (5.18)

ε̂θ (xt ,c) ∝

 εθ (xt ,c), s = 1
εθ (xt ,φ), s = 0
εθ (xt ,φ), c = φ

(5.19)

5.3 RNNs, Transformers, and Multimodal Approaches 121

A diffusion model is trained with the representations z = E(x). New images can
be generated by sampling a representation z and subsequently decoding it to an
image x = D(z). DiT is based on Vision Transformer (ViT) architecture, it is op-
erated on sequences of patches. A smaller patch size results in a longer sequence
length. “Patchify” converts the spatial input into a sequence of tokens. The num-
ber of tokens created by patchify is determined by the patch size. The input tokens
are processed by using a sequence of transformer blocks. The transformer block
is modified to include an additional multi-head cross attention layer following the
multi-head self-attention block. The complete DiT design space is patch size, trans-
former block architecture, and model size. Scaling the transformer backbone yields
better generative models across all model sizes and patch sizes. The scaling perfor-
mance is measured by using Fréchet Inception Distance (FID), the standard metric
for evaluating generative models of images. In mathematics, Fréchet distance [14]
is a measure of similarity between curves that takes into account the location and
ordering of the points along the curves. FID is a metric to assess the quality of
images created by using a generative model. For two multidimensional Gaussian
distributions N (µ,Σ) and N (µ ′,Σ ′),

dF [N (µ,Σ),N (µ ′,Σ ′)] = ∥µ−µ
′∥2 + tr[Σ +Σ

′−2(ΣΣ
′)

1
2] (5.20)

Inception Score (IS) is an algorithm to assess the quality of images created by
using a generative image model. Inception score only evaluates the distribution of
generated images, the FID compares the distribution of generated images with the
distribution of a set of real images (“ground truth”).

IS(Pgen,Pdis) = exp[Ex∼PgenDKL(Pgen,Pdis)] (5.21)

DKL(Pgen,Pdis) = DKL[Pdis(·|x)∥Ex∼PgenPdis(·|x)] (5.22)

Scaling the transformer backbone yields better generative models across all
model sizes and patch sizes. Increasing model size and decreasing patch size yield
considerably improved diffusion models. Larger DiT models take use of large com-
putes more efficiently. Scaling both model size and the number of tokens yields
notable improvements in visual quality. Diffusion Transformers (DiTs) inherit the
excellent scaling properties of the transformer model[78, 43], the DiT model can be
distilled by using the pseudocode supplied in Algorithm(15).

122 5 Deep Learning for Robotic Vision

Algorithm 15: Distillation algorithm for DiT model
Input: Teacher model T , Student model S, dataset D, noise scheduler βt ,

loss weights α , β

Output: Trained student model S
1 foreach epoch e in 1 . . .E do
2 foreach batch x in D do

// Sample random timestep and noise
3 t ∼U {1,Tmax}
4 ε ∼N (0, I)

// Noisy input according to diffusion process
5 x̃t ←

√
ᾱt · x+

√
1− ᾱt · ε

// Teacher prediction (no gradient)
6 ε̂T ← T (x̃t , t)

// Student prediction
7 ε̂S← S(x̃t , t)

// Compute distillation loss

8 LKD←∥ε̂S− ε̂T∥2
2

// Compute ground-truth denoising loss

9 LGT←∥ε̂S− ε∥2
2

// Total loss
10 L← α ·LKD +β ·LGT

// Backpropagation and update
11 Backpropagate L and update S

12 return S

5.4 Lab Session: Training a Vision Model with MATLAB

At the end of this chapter, we would like to recommend all readers complete the Lab
report. Please fill in the form shown in Table 5.1 and submit it timely after each lab
session (2 hours).

An example of this lab report:

• Project title: Vision Transformer for Image Classification
• Project objectives: The objective of using transfer learning with a pre-trained

Vision Transformer (ViT) is to enhance image classification by adapting a model
trained on large datasets to a new task, improving accuracy and reducing training
time through fine-tuning on specific data.

• Configurations and settings: MATLAB Online
• Methods: ViT is a neural network model that uses the transformer architecture

to encode image inputs into feature vectors. The network consists of two main
components: Backbone and Head. The pre-trained ViT network has learned a
strong feature representation for images.

5.4 Lab Session: Training a Vision Model with MATLAB 123

Table 5.1: Lab report for robotic vision

Name <First Name Last Name>
Email <firstname.lastname@mailbox>
Lab date <dd-mm-yy>
Submitted date <dd-mm-yy>
Project title Vision Transformer for Image Classification
Lab objectives The objective is to detect people and the distance to the camera

from a video with a calibrated stereo camera.
Configurations and settings <The preferences, software, hardware, platforms, tools, etc.>
Methods <The relevant scientific theories or concepts >
Workflow <The step-by-step procedure for the experiment>
Datasets <The data and materials for your experiments>
Input <image filename, size, resolution >
Output <image filename, size, resolution>
Testing steps <Functional & non-functional testing methods step by step>
Bugs or problems <The system error code, lines of the code>
Result analysis <The tables, graphs, and figures, etc.>
Conclusion/Reflection <The strengths and weaknesses, or learned from this project >
References https://au.mathworks.com/help/vision/ug/

evaluating-the-accuracy-of-single-camera-calibration.html
Appendix: <Source codes with comments and line numbers>

• Datasets: The flowers data set has a size of about 218 MB and contains 3670
images of flowers belonging to five classes: Daisy, Dandelion, Rose, Sunflower,
and Tulip.

• Implementation steps:

1. Load a pre-trained ViT network by using the vision transformer function.
2. Download and extract the training data
3. Replace the classification head with a new one that maps the extracted features

to prediction scores for the new set of classes in order to train the neural
network to classify images across those classes.

4. Specify the training options.
5. Train the neural network by using the trainnet function.
6. Evaluate the accuracy of the network by using the test data.
7. Make predictions using the test data.
8. Use the trained neural network to make a prediction using the first image in

the test data.

• Testing steps:

1. Make predictions using the test data.
2. To convert the prediction scores to class labels, use the onehotdecode function.
3. Use the trained neural network to make a prediction by using the first image

in the test data.

124 5 Deep Learning for Robotic Vision

• Result analysis: The output images visually validate the creation, assembly, and
interactive capabilities of the robot arm, enhancing the written descriptions and
confirming the project’s objectives have been met.

• Conclusion/Reflection: The ViT model demonstrates efficient adaptation for
image classification tasks with reduced training time and improved accuracy,
proving effective for complex vision applications through transfer learning and
data augmentation. Readings:https://au.mathworks.com/help/vision/ug/transfer-
learning-using-pretrained-vit-network.html

5.5 Exercises

Question 5.1. Can YOLOs detect small visual objects?
Question 5.2. In deep learning, how to select a suitable algorithm for object
detection? What balance should we take into consideration?
Question 5.3. Why Transformers are better than other deep learning methods?
Question 5.4. How to simplify a large Transformer model in deep learning?
Question 5.5. What are the differences between model pruning and model distil-
lation in deep learning?

References

1. An, W., Bi, X., Chen, G., et al. (2024). Fire-flyer AI-HPC: A cost-effective software-hardware
co-design for deep learning. International Conference for High Performance Computing, Net-
working, Storage and Analysis. IEEE. pp. 1–23.

2. Alpaydin, E. (2009). Introduction to Machine Learning, MIT Press.
3. Badrinarayanan, V., Handa, A., Cipolla, R. (2017). SegNet: A deep convolutional encoder-

decoder architecture for robust semantic pixel-wise labelling. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 39(12): 2481 – 2495.

4. Bengio, Y., Simard, P., Frasconi, P. (1994). Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157 – 166.

5. Bengio, Y., Lecun, Y., Hinton, G. (2021) Deep Learning for AI. Communications of the ACM,
64(7), 58–65.

6. Çabuk, V. U., Kubilay Şavkan, A., Kahraman, R., Karaduman, F., Kırıl, O., Sezer, V. (2018).
Design and control of a tennis ball collector robot. International Conference on Control En-
gineering and Information Technology (CEIT).

7. Caruana, R., Lawrence, S., Giles, C. L. (2001). Overfitting in neural nets: Backpropagation,
conjugate gradient, and early stopping. In Advances in Neural Information Processing Sys-
tems (pp. 402 – 408).

8. Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A. L. (2018). DeepLab: Se-
mantic image segmentation with deep convolutional nets, atrous convolution, and fully con-
nected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4), 834–
848.

9. Collobert, R., Weston, J. (2008). A unified architecture for natural language processing: Deep
neural networks with multitask learning. International Conference on Machine Learning (pp.
160 – 167).

References 125

10. Cover, T., Thomas, J. (1991) Elements of Information Theory, John Wiley & Sons, Inc.
11. Dosovitskiy, A., et al. (2021) An image is worth 16×16 words: Transformers for image recog-

nition at scale. International Conference on Learning Representations.
12. Dunne, R. A., Campbell, N. A. (1997). On the pairing of the softmax activation and cross-

entropy penalty functions and the derivation of the softmax activation function. Aust. Conf.
on the Neural Networks (Vol. 181, pp. 185).

13. Ertel, W. (2019) Introduction to Artificial Intelligence. Springer International Publishing.
14. Dowson, D., Landau, B. (1982) The Fréchet distance between multivariate normal distribu-

tions. Journal of Multivariate Analysis. 12 (3): 450–455.
15. Gao, X., Liu, Y., Nguyen, M., Yan, W. (2024) VICL-CLIP: Enhancing face mask detection in

context with multimodal foundation models. BICONIP’24
16. Gao, X., Nguyen, M., Yan, W. (2024) HFM-YOLO: A novel lightweight and high-speed ob-

ject detection model. Optimization, Machine Learning, and Fuzzy Logic: Theory, Algorithms,
and Applications. IGI Global

17. Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep Learning, MIT Press.
18. Guo, Y., et al. (2024). AnimateDiff: Animate your personalized text-to-image diffusion mod-

els without specific tuning. International Conference on Learning Representations.
19. He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual learning for image recognition.

IEEE CVPR (pp. 770 – 778).
20. He, K., Zhang, X., Ren, S., Sun, J. (2016). Identity mappings in deep residual networks.

European Conference on Computer Vision (pp. 630 – 645).
21. Hinton, G., Osindero, S., Teh, Y. W. (2006). A fast learning algorithm for deep belief nets.

Neural Computation, 18(7), 1527 – 1554.
22. Ho, J., Jain, A., Abbeel, P. (2020) Denoising diffusion probabilistic models. Advances in

Neural Information Processing Systems.
23. Hopfield, J. J. (1988). Artificial neural networks. IEEE Circuits and Devices (Magazine), 4(5),

3–10.
24. Huang, G., Liu, Z., Weinberger, K. Q., van der Maaten, L. (2017). Densely connected convo-

lutional networks. In IEEE CVPR (Vol. 1, No. 2, pp. 3).
25. Jordan, M. I., Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects.

Science, 349(6245), 255–260.
26. Ju, R. Y., Cai, W. (2023). Fracture detection in pediatric wrist trauma X-ray images using

YOLOv8 algorithm. Scientific Reports, 13(1), 20077.
27. Kim, J., Jun, J., Zhang, B. (2018) Bilinear attention networks. International Conference on

Neural Information Processing Systems (pp. 1571–1581)
28. Klette, R. (2014) Concise Computer Vision: An Introduction into Theory and Algorithms.

Springer-Verlag London, U.K.
29. Kriegeskorte, N. (2015). Deep neural networks: A new framework for modelling biological

vision and brain information processing. Annual Review of Vision Science (pp. 417–446).
30. Krizhevsky, A., Sutskever, I, Hinton, G. (2017) ImageNet classification with deep convolu-

tional neural networks. Communications of the ACM, 60 (6), 84 – 90.
31. LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., Jackel, L. D.

(1989). Backpropagation applied to handwritten zip code recognition. Neural Computation,
1(4), 541 – 551.

32. LeCun, Y., Bengio, Y. (1995). Convolutional networks for images, speech, and time series.
The Handbook of Brain Theory and Neural Networks, 3361(10).

33. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11), 2278 – 2324.

34. LeCun, Y., Bengio, Y., Hinton, G. (2015) Deep learning. Nature, 521: 436 – 444.
35. Lee, C. Y., Gallagher, P. W., Tu, Z. (2016). Generalizing pooling functions in convolutional

neural networks: Mixed, gated, and tree. Artificial Intelligence and Statistics, 464 – 472.
36. Lemke, C., Budka, M., Gabrys, B., (2013). Metalearning: A survey of trends and technolo-

gies. Artificial Intelligence Review. 44 (1): 117–130.
37. Lewis, P. et al. (2020). Retrieval-augmented generation for knowledge-intensive NLP tasks.

Advances in Neural Information Processing Systems.

126 5 Deep Learning for Robotic Vision

38. Li, X. (2018) Preconditioned stochastic gradient descent. IEEE Transactions on Neural Net-
works and Learning Systems, 29(5): 1454 – 1466.

39. Littman, M. (2015). Reinforcement learning improves behavior from evaluative feedback.
Nature, 521: 445 – 451.

40. Liu, Y., Nand, P., Hossain, A., Nguyen, M., Yan, W. (2023) Sign language recognition from
digital videos using feature pyramid network with detection Transformer. Multimedia Tools
and Applications.

41. Luo, Z., Nguyen, M., Yan, W. (2022) Kayak and sailboat detection based on the improved
YOLO with Transformer. ACM ICCCV.

42. MacKay, D. (2003). Hopfield networks. Information Theory, Inference and Learning Algo-
rithms, pp. 508.

43. Meng, C., Rombach, R., Gao, R., Kingma, D., Ermon,S., Ho, J. Salimans, T. (2023) On
distillation of guided diffusion models. IEEE CVPR.

44. Meznar, S., Lavrac, N., Skrlj, B. (2021) Transfer learning for node regression applied to
spreading prediction. arXiv:2104.00088.

45. Mi, Z., Yan, W. (2024) Strawberry ripeness detection using deep learning models. Big Data
Cognition and Computing, 8(8), 92

46. Mnih,V., et al. (2015) Human-level control through deep reinforcement learning. Nature, 518,
529 – 533.

47. Montti, R. (2022). Google’s chain of thought prompting can boost today’s best algorithms.
Search Engine Journal.

48. Norvig, P., Russell, S. (2016). Artificial Intelligence: A Modern Approach (3rd Edition), Pren-
tice Hall.

49. Pan, S. and Yang, Q. (2010) A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering, 22(10):1345 – 1359

50. Peebles, W., Xie, S. (2023) Scalable diffusion models with transformers. IEEE ICCV.
51. Qi, J., Nguyen, M., Yan, W. (2022) Small visual object detection in smart waste classifica-

tion using Transformers with deep learning. International Conference on Image and Vision
Computing New Zealand (IVCNZ).

52. Ramsauer, H., et al. (2021). Hopfield networks is all you need. International Conference on
Learning Representations.

53. Rao, S. (2009). Engineering Optimization: Theory and Practice (4-th Edition, ISBN: 978-0-
470-18352-6)

54. Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016). You only look once: Unified, real-
time object detection. IEEE CVPR (pp. 779 – 788).

55. Rumelhart, D.E., Hinton, G.E., Williams, R.J. (1986). Learning representations by backprop-
agating errors. Nature, 323(6088), 533–536.

56. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Berg, A. C. (2015). Im-
ageNet large scale visual recognition challenge. International Journal of Computer Vision,
115(3), 211–252.

57. Sarikaya, R., Hinton, G. E., Deoras, A. (2014). Application of deep belief networks for natural
language understanding. IEEE/ACM Transactions on Audio, Speech, and Language Process-
ing, 22(4), 778–784.

58. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks,
61, 85–117.

59. Sun, X., Gu, J., Sun, H. (2021) Research progress of zero-shot learning. Applied Intelligence
51, 3600–3614

60. Sutton, R., Barto, A. (2018) Reinforcement Learning: An Introduction (2nd edition). MIT
Press

61. Tian, Y., Ye, Q., Doermann, D. (2025) YOLOv12: Attention-centric real-time object detec-
tors. https://arxiv.org/abs/2502.12524.

62. Tu, W., Deng, W., Gedeon, T. (2024) A closer look at the robustness of contrastive language-
image pre-training (CLIP). Advances in Neural Information Processing Systems.

References 127

63. Vallayil, M., Nand, P., Yan, W., Allende-Cid, H. (2025) CARAG: A context-aware retrieval
framework for fact verification, integrating local and global perspectives of explainable AI.
Applied Sciences.

64. Vaswani, A. et al. (2017) Attention is all you need. The Conference on Neural Information
Processing Systems (NIPS), USA.

65. Vedaldi, A., Lenc, K. (2015). MatConvNet: Convolutional neural networks for MATLAB.
ACM International Conference on Multimedia (pp. 689–692).

66. Wang, C. Y., Bochkovskiy, A., Liao, H. Y. M. (2023). YOLOv7: Trainable bag-of-freebies
sets new state-of-the-art for real-time object detectors. IEEE/CVF Conference on Computer
Vision and Pattern Recognition (pp. 7464-7475).

67. Webb, S. (2018) Deep learning for biology. Nature, 554: 555 – 557
68. Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q., Zhou, D.

(2022). Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems.

69. Xia, Y., Nguyen, M., Yan, W. (2024) An improved YOLO algorithm for Kiwifruit detection.
Optimization, Machine Learning, and Fuzzy Logic: Theory, Algorithms, and Applications.
IGI Global.

70. Xiao, B., Nguyen, M., Yan, W. (2023) Apple ripeness identification from digital images us-
ing transformers. Multimedia Tools and Applications, Springer Science and Business Media
LLC.

71. Xiao, B., Nguyen, M., Yan, W. (2023) Fruit ripeness identification using transformers. Ap-
plied Intelligence, Springer Science and Business Media LLC.

72. Yan, W. Q. (2019). Introduction to Intelligent Surveillance: Surveillance Data Capture, Trans-
mission, and Analytics (3rd Edition). Springer.

73. Yan, W. Q. (2023). Computational Methods for Deep Learning: Theory, Algorithms, and
Implementations (2nd Edition). Springer

74. Yang, G., Nguyen, M., Yan, W., Li, X. (2025) Foul detection for table tennis serves using
deep learning. Electronics, 14(1), 27.

75. G Yang, M Nguyen, X Li, W Yan Precise ball detection in table tennis games using deep
learning and stereo vision. Encyclopedia of Modern Artificial Intelligence, GIG Global.

76. Yang, G. (2025) ChatPPG: Multi-Modal Alignment of Large Language Models for Time-
Series Forecasting in Table Tennis. Master’s Thesis, Auckland University of Technology, New
Zealand.

77. Yang, X., Zhao, W., Wang, Y., Yan, W., Li, Y. (2024) Lightweight and efficient deep learning
models for fruit detection in orchards. Nature Scientific Reports, 14, 26086.

78. Zhang, Y., Long, J., Li, C. (2025) Knowledge distillation for object detection with diffusion
model. Neurocomputing, 636, 130019.

79. Zhu, D., Li, T., Ho, D., Wang, C., Meng, M. Q.-H. (2018). Deep reinforcement learning
supervised autonomous exploration in office environments. IEEE International Conference
on Robotics and Automation (ICRA), 7548–7555.

80. Zhu, W., Peng, B., Yan, W. (2024) Dual knowledge distillation on multiview pseudo labels for
unsupervised person re-identification. IEEE Transactions on Multimedia, 26 (7359 - 7371).

81. Zhao, H., Xu, S., Yan, W., Xu, D. (2025) Design and optimization of target detection and 3D
localization models for intelligent muskmelon pollination robots. Horticulturae, 11(8), 905.

Chapter 6
Robotic Perception and Intelligence

Abstract

In this chapter, starting from machine intelligence and genetic algorithm (GA), our
depiction expounds how to measure the intelligence of robots by using Turing test.
Following this, our focus is on reinforcement learning, especially deep Q-learning
and imitation learning such as inverse reinforcement learning (IRL) for robotic per-
ception and autonomous systems. The significance of this chapter is to measure the
intelligence of robots and deliver the knowledge how to train robots in operations to
reach the level of human intelligence.

129

130 6 Robotic Perception and Intelligence

6.1 Perception

In robotics, we acquire visual information of holistic scenes from our percep-
tion [54] by using sensors. The sensors include digital cameras, microphones, and
other instruments, the data is collected from our perceptible environment. With fus-
ing information from multiple channels of sensors on robots, our observations are
employed for robotic path planning [30], navigation, scene understanding, and ob-
stacle avoidance[66].

LiDAR, namely, Light Detection and Ranging, or Laser Imaging, Detection, and
Ranging, is a method for determining ranges by targeting an object or a surface with
a laser, measuring the time for the reflected light to the receiver [24, 29]. LiDAR
harnesses ultraviolet, visible, or near infrared light to image objects. The method
is employed for measuring distances by using a laser on a target and measuring its
reflection with a sensor. A LiDAR determines the distance of an object or a surface
by using,

d =
c · t
2

(6.1)

where c is the speed of light, d is the distance between a sensor and an object, t is
the time spent for the laser light to pass, then travel back to the detector.

A mobile robot takes use of its LiDAR system to percept our environment, under-
stand surrounding scene, construct a map, and avoid obstacles[29]. LiDAR sensors
are mounted on mobile platform, they require instrumentation to determine the res-
olution, absolute position, and orientation of robots such as Global Positioning Sys-
tem (GPS) receiver and an Inertial Measurement Unit (IMU). LiDAR could provide
the scanned 3D maps for robotic navigation and path planning [30].

Cameras provide image data to the robots for visual object detection and recog-
nition, tracking, and manipulation. Different from LiDAR systems which only pro-
vide point clouds and shape information, digital cameras offer the details of visual
objects, such as texture, color, rotations, especially for rotating objects. Recently,
Tesla cars discarded LiDAR sensors on the autonomous cars, only digital cameras
are adopted for obstacle avoidance, path planning, and driving navigation [30]. All
Tesla vehicles are equipped with computers and cameras. Hence, digital cameras on
robots are playing decisive roles in visual scene understanding and visual informa-
tion processing.

An Inertial Measurement Unit (IMU) is an electronic device, it measures and
reports a robot’s force, angular rate, and orientation of robot, by using a combi-
nation of accelerometers, gyroscopes, and magnetometers. IMUs are incorporated
into Inertial Navigation Systems (INS), they utilize the raw IMU measurements to
calculate attitude, angular rates, linear velocity, and position related to a global ref-
erence frame. In robotics, an IMU can be integrated into GPS-based automotive
navigation systems or robot tracking systems for the purposes of traffic collision
analysis [38, 39]. An IMU sensor adopts information fusion to control robots.

6.2 Robotic Intelligence 131

6.2 Robotic Intelligence

Robots have intelligence. Firstly, we shed light on logic [3], which refers to Boolean
logic in algebra. Logic only has two states: True and False, or, ‘1’ and ‘0’. The fam-
ily of logic concepts include first-order logic, fuzzy logic, predicative logic, propo-
sitional logic, etc. Computers have the ability to make smart decision [22] funda-
mentally.

Fuzzy logic is a form of many-valued logic in which the truth value of variables
may be any real number between 0 and 1. By contrast, in Boolean logic, the truth
values of variables may only be the integer value 0 or 1. Fuzzy logic is employed in
control systems to allow experts to contribute vague rules [31].

AI consists of the parts like perception or observation [35, 36, 37], learning,
presentation, and reasoning or inference. AI covers the fields of search, retrieval,
mining, and reasoning as well as path planning [30]. In AI, the topics include unin-
formed search, informed (heuristic) search, adversarial search, etc. Robots can find
the shortest path because of searching on maps.

Reasoning [61] is a verb, which conveys the understandings from the knowl-
edge what we know to infer what we do not know. Reasoning has the approaches-
based forward/ backward chaining, probabilistic reasoning, Bayes’ rule, dynamic
Bayesian networks, etc. Bayes’ rule, namely, Bayes’ theorem is related to the prior,
posterior, likelihood, and evidence. It is the base knowledge of modern machine
learning [1, 19].

p(x,y) = p(x|y)p(y) = p(y|x)p(x) ∈ [0,1] (6.2)

where x ∈R and y ∈R are events, p(x,y) ∈ [0,1] is joint probability, p(x|y) ∈ [0,1]
and p(y|x) ∈ [0,1] are conditional probabilities.

There are a number of ways to make decision [22], such as decision trees, deci-
sion networks, expert systems, sequential decision, game theory, etc. Decision tree
is a typical method to make smart decision. Typically, the decision tree is a binary
tree. The tree as one of the data structures already sorted data in order, thus the
decision tree will save our time. Based on decision trees, decision forest [22] is
considered to develop much complicated approaches for decision making.

Expert system fully harnesses or clones our human experience [31]. In robotics,
an expert system is a computer system emulating the decision-making ability of a
human expert. An expert system is divided into two subsystems: A knowledge base,
which represents facts and rules, inference engine applies the rules to the known
facts.

The nature-inspired computing refers to cellular automata, neural computations,
and evolutionary computation. More recent computations include swarm intelli-
gence [11], artificial immune systems, membrane computing, and amorphous com-
puting. In machine intelligence [10, 50, 51], there are three types of algorithms.

Physics-inspired algorithms employ basic principles of physics based on deter-
ministic principles, for example, Newton’s laws and Simulated annealing (SA) al-
gorithm. Physics-inspired machine learning takes advantage of the obtained prior

132 6 Robotic Perception and Intelligence

knowledge to train machine learning models. This means, it will need fewer sam-
ples to train the model or make the training outcomes more accurate.

In chemistry, chemical reactions are written in the form of chemical formulas
by using symbols representing chemical elements and molecules. The mechanisms
of chemical reactions are quite similar to the mechanisms of selection and varia-
tion in evolutionary algorithms, the algorithms lead to new concepts of search and
optimization algorithms.

Bio-inspired computing, short for biologically-inspired computing, is a field of
study which seeks to solve computer science problems by using models of biol-
ogy [8, 56]. Bio-inspired computing is employed to train a robot. A robot is navi-
gated in an unknown terrain. Biology-based algorithms (BBAs) are classified into
three groups: Evolutionary algorithms (EA), brain-inspired algorithms (BIA), and
swarm intelligence-based algorithms (SIA) [10].

Swarm intelligence is the collective behavior of decentralized and self-organized
systems. A swarm is made up of multiple agents [34]. The agents are able to ex-
change heuristic information in the form of local interactions.

The fundamental idea of evolutionary algorithms is based on Darwin’s theory of
evolution, it gained momentum in the late 1950s after the publication of the book
“Origin of Species” [4].

Brain-inspired computing refers to computational models and methods based on
the mechanism of human brain [23]. The goal is to enable the machine to realize
various cognitive abilities and coordination mechanisms of human beings in a brain-
inspired manner, and finally achieve or exceed human intelligence. Brain-inspired
computing has been applied to deep learning [25, 16, 44], the mechanism of our
human brain is partially harnessed in artificial neurual networks [28].

A genetic algorithm (GA) is a metaheuristic-inspired by using the process of
natural selection, GA belongs to the larger class of evolutionary algorithms (EA).
A gene is devitalized in allele. An allele is a form of genes at a particular position
(locus) on a chromosome. It is the bit of coding DNA at that place. Hence, we take
advantage of genetic algorithms in logic way to process gene information. A typical
genetic algorithm requires: (1) A genetic representation of the solution domain; (2)
A fitness function to evaluate the solution domain. The genetic algorithm (GA) has
the following steps:

• Initialization: Create an initial population.
• Evaluation: Evaluate each member of the population, and calculate a “fitness”

for the individual.
• Selection: Constantly improve populations’ overall fitness.
• Crossover: Create new individuals by combining aspects of the selected individ-

uals.
• Mutation: Add randomness into populations’ genetics.
• Repeat: Start again until a termination condition is reached.

When we repeat this process, the termination conditions are:

• A solution is found that satisfies the minimum criteria.

6.2 Robotic Intelligence 133

• A fixed number of generations reached.
• An allocated budget (e.g., computational time, etc.) reached.
• The highest ranking solution’s fitness has reached.
• A plateau no longer produces better results.
• Combinations of the above.

Algorithm 16: Genetic algorithm
Input: Fitness function f , population size N, mutation rate m, crossover rate

c, number of generations G
Output: Best individual found

// Initialize population
1 P← Randomly initialize N individuals ;
2 for g← 1 to G do

// Evaluate fitness
3 foreach i ∈ P do
4 i.fitness← f (i) ;

// Selection
5 M← Select parents from P based on fitness (e.g., tournament or roulette

wheel) ;
// Crossover

6 C← {} ; // New offspring
7 while |C|< N do
8 Select parents p1, p2 from M ;
9 if random() < c then

10 (o1,o2)← Crossover(p1, p2) ;

11 else
12 o1← p1, o2← p2 ;

13 Add o1,o2 to C ;

// Mutation
14 foreach i ∈C do
15 if random() < m then
16 Mutate(i) ;

// Create new generation (with elitism)
17 P← Best individual in P + top N−1 from C ;

18 return Best individual in P

The pseudocode for the GA algorithm is shown in Algorithm (16). The Python
code for GA algorithm is shown in Fig 6.1. The advantages of using the GA al-
gorithm are: Global optimum, without continuity requirements, without derivatives,
and without linearity limitation, etc. Based on GA algorithms, we are able to solve
the optimization problems of the weights of an artificial neural network by using loss
surfaces in deep learning [16, 25, 44]. Through using GA algorithm, it is possible
to get ride of the vanishing gradient problem and the exploding gradient problem.

134 6 Robotic Perception and Intelligence

Fig. 6.1: The Python code for GA algorithm

Traditionally, RNNs such as LSTM [5] and GRU [53] have been applied to solve
this weight optimization problem as shown in Fig.6.2.

Fig. 6.2: The GA algorithm is employed for resolving optimization problems in deep
learning.

Human has IQ (i.e., Intelligence Quotient) and EQ(i.e., Emotional Quotient) [45].
An IQ is a total score derived from a set of standardized tests or subtests designed to
assess human intelligence [34]. Raven’s progressive matrices [43] have been applied

6.2 Robotic Intelligence 135

to evaluate the IQ of an individual as shown in Fig.6.3. Recent tests are based on
WAIS-II (Wechsler Adult Intelligence Scale). In WAIS-II, two groups of tests will
be conducted: Verbal IQ and Performance IQ.

Fig. 6.3: An IQ test item in the style of a Raven’s progressive matrices test.

IQ classification is the practice of categorizing human intelligence, as mea-
sured by intelligence quotient (IQ) tests. The Wechsler Adult Intelligence Scale
(WAIS) [57] is an IQ test designed to measure intelligence and cognitive ability
in adults and older adolescents. In the latest WAIS 5 (2024) test, the FSIQ (i.e.,
Full Scale IQ) is generated from 7 subtests: Similarities, vocabulary, block design,
matrix reasoning, figure weights, digit span sequencing, and coding. The 15 ancil-
lary index scores include general ability index. The test may be administered in the
classic physical format or on a digital platform.

Turing test [7, 12] is a test of machine’s ability to exhibit intelligent behav-
ior, it is equivalent to, or indistinguishable from, that of a human [17]. ChatGPT-4
passes a rigorous Turing test, diverging from average human behavior chiefly to be
more cooperative [31]. ChatGPT is able to recognize CAPTCHA characters now,
CAPTCHA [15] stands for “Completely Automated Public Turing test to tell Com-
puters and Humans Apart”. Fig. 6.4 provides an example of CAPTCHA character
recognition by using ChatGPT.

Fig. 6.4: CAPTCHA characters recognition using ChatGPT

136 6 Robotic Perception and Intelligence

Thus, robotic intelligence is realistic [10], it is one of the new research directions,
robotic intelligence is possible to be measured by using computational methods. We
are able to use text and image pairs to measure the intelligence in multimodal way
through deep learning models [12, 60].

6.3 Reinforcement Learning for Visual Control

In 2025, Professor Andrew Barto and Professor Richard Sutton received ACM Tur-
ing Award 2024 for their contributions to Reinforcement Learning, especially for
developing the conceptual and algorithmic foundations of reinforcement learning.
Professor Barto and Professor Sutton have published the famous book [48] as the
pioneers of Reinforcement Learning. Reinforcement learning is regarded as the
cornerstone of contemporary AI such as OpenAI ChatGPT software, Qwen, and
DeepSeek software [62].

In Fig. 6.5, a vacuum robot is moving on a table, the robot can be facilitated with
various sensors without falling down from the table. In this section, the explanation
regarding how to control a robot to fulfill our tasks by using reinforcement learning
will be elucidated [31, 48].

Fig. 6.5: A robotic vision system

Reinforcement learning is a goal-directed computational approach where a com-
puter learns to perform a task by interacting with an unknown dynamic environ-
ment [33, 48]. Reinforcement learning has been applied to AlphaGo. AlphaGo is a
computer program that plays the game Go [46, 31].

6.3 Reinforcement Learning for Visual Control 137

The reinforcement learning approach [6, 16] enables computers to make a series
of decisions, maximizes cumulative reward for the task without human interven-
tion, without being explicitly programmed to achieve the tasks [25]. The aim of
reinforcement learning [26] is to train an agent to complete a task. An agent is a
robot or algorithm. Reinforcement learning [48] is working for an unknown dy-
namic environment [33].

The agent receives a sequence of observations and corresponding rewards from
the environment and sends actions to the environment. The reward is a measure of
how successful an action is with respect to completing the task. The agent contains
two components: A policy and a learning algorithm or state estimator. The policy
is a mapping that selects actions based on observations from the environment. Typ-
ically, the policy is a function approximator with tunable parameters, such as the
weights of a deep neural network. The algorithm continuously updates the policy
parameters based on action, observations, and reward. The goal of reinforcement
learning algorithm is to find an optimal policy that maximizes the cumulative re-
ward received [26, 48]. The pseudocode of PPO algorithm in reinforcement learn-
ing is shown in Algorithm (17). In summary, reinforcement learning [48] refers to
an agent learning the optimal behavior through repeated trial-and-error interactions
with the environment without human involvement [26]. The general workflow for
training an agent through reinforcement learning [48] is comprised of the following
steps:

• Formulate Problem: Define the task for the agent to learn.
• Create Environment: Define the environment within which the agent operates.
• Define Reward: Specify the reward signal that the agent uses to measure its

performance.
• Create Agent: Create the agent.
• Train Agent: Train the agent policy representation.
• Validate Agent: Evaluate the performance of the trained agent.
• Deploy Policy: Deploy the trained policy representation.

Reinforcement learning is to learn what to do - how to map situations to actions
— so as to maximize a numerical reward [26]. Reinforcement learning receives
reward, penalty, or trial error for its actions to resolve a problem. Reinforcement
learning is able to learn the best policy and maximize the total reward [62]. The
sequence of actions have the maximum cumulative reward. For each policy π ∈Π ,
there is a reward vπ(st) ∈R at state st , the optimal policy is sought,

v∗(st) = max
π

(vπ(st)),∀st

Fig. 6.6 shows an MATLAB example by using reinforcement learning to develop
a strategy for a mobile robot to avoid obstacles. The objective of reinforcement
learning is that the robot should avoid colliding into obstacles. This example shows
an occupancy map of a known environment to detect obstacles and check collisions
that the robot may make. The range sensor readings are observations, linear and
angular velocity controls are from the action [31].

138 6 Robotic Perception and Intelligence

Fig. 6.6: A mobile robot to avoid obstacles in MATLAB

Algorithm 17: PPO algorithm
Input: Initial policy parameters θ , value function parameters φ , clipping

threshold ε , learning rate η , number of iterations K
Output: Optimized policy πθ

1 for k← 1 to K do
2 Collect a set of trajectories D = {τi} by running policy πθ ;
3 Compute advantage estimates Ât using Generalized Advantage

Estimation (GAE) or other methods;
4 Compute old policy probabilities πθold(at |st) for each (st ,at) ∈D ;
5 for each epoch do
6 for each minibatch B ⊂D do
7 Compute probability ratio: rt(θ) =

πθ (at |st)
πθold (at |st)

;

8 Compute clipped objective:

LCLIP
t (θ) = min

(
rt(θ)Ât , clip(rt(θ),1− ε,1+ ε)Ât

)
9 Update policy parameters via gradient ascent:

θ ← θ +η∇θ ∑B LCLIP
t (θ);

10 Update value function parameters φ by minimizing:

LVF(φ) = ∑
B

(Vφ (st)− R̂t)
2

6.4 Imitation Learning and Inverse Reinforcement Learning 139

6.4 Imitation Learning and Inverse Reinforcement Learning

In imitation learning, the agent aims to mimic human behaviors [31]. The agent
learns from a dataset of demonstrations by an expert, typically a human. The goal is
to replicate the expert’s behavior in similar situations. When a human hand shows
sign languages, the landmarks will lead the joint motion of machine hand [49]. Like
reinforcement learning, imitation learning involves observing an expert performing
a task and learning to imitate those actions. The three steps of implementing this
algorithm are:

• Data Collection: An expert demonstrates the task to be learned. The actions and
decisions of the expert are recorded as data.

• Learning: The collected data is employed to train a deep learning model [1].
The model learns a policy – a mapping from observations of the environment to
actions.

• Evaluation: The trained model is tested in the environment to assess how well it
conducts compared to an expert. The goal is to minimize the differences between
expert’s performance and agent’s performance.

Basically, there are two approaches in imitation learning:

• Behavioral Cloning: The model is trained in a supervised learning fashion by
using state-action pairs from expert’s demonstrations. The pseudocode of behav-
ioral cloning is shown in Algorithm (18).

• Inverse Reinforcement Learning (IRL): It aims to learn the underlying reward
function that the expert seems to be maximizing. This approach can generalize
better to unseen states. The pseudocode is shown in Algorithm (19).

The challenges in imitation learning include:

• Data Quality: The quality of policy is highly dependent on the quality of demon-
strations.

• Distribution Shift Problem: The agent may encounter states that were not covered
in the demonstrations, leading to uncertain behavior.

• Scalability: Collecting expert demonstrations can be expensive and time-consuming,
especially for complex tasks.

• Generalization: The ability for the agent to generalize the learned behaviors is a
challenge, especially in dynamic and unpredictable environments [33].

MATLAB provides two examples for imitation learning. One is mobile vehicle
lane keeping, another is for flying robot control. In MATLAB, the deep neural net-
work successfully imitates the behavior of Model Predictive Controller (MPC). The
vehicle state and control trajectories for the controller and the deep neural network
closely align. Fig.6.7 shows an MATLAB example of flying robot control.

140 6 Robotic Perception and Intelligence

Fig. 6.7: Flying robot control using imitation learning

Algorithm 18: Behavior cloning algorithm in imitation learning

Input: Expert demonstration dataset D = {(si,ai)}N
i=1

Output: Policy πθ (a|s) parameterized by θ

1 Initialize policy network πθ with random weights;
2 repeat
3 Sample a mini-batch {(s j,a j)}m

j=1 from D ;
4 Compute loss: L (θ) = 1

m ∑
m
j=1 ℓ(πθ (s j),a j);

// ℓ is a suitable supervised loss function,
e.g., cross-entropy or MSE

5 Update policy parameters: θ ← θ −η∇θ L (θ);
// η is the learning rate

6 until convergence;

6.5 Federated Learning and Distributed Models 141

Algorithm 19: Inverse reinforcement learning using maximum entropy

Input: Expert demonstrations D = {τi}N
i=1, feature function φ(s), learning

rate η , number of iterations K
Output: Reward function R(s) = w⊤φ(s)

1 Initialize reward parameter vector w randomly;
2 for k← 1 to K do
3 Compute expert feature expectations: µE = 1

N ∑
N
i=1 ∑s∈τi φ(s);

4 Compute policy πw using soft value iteration under current reward
R(s) = w⊤φ(s);

5 Generate trajectories {τ̂ j}M
j=1 by rolling out policy πw;

6 Compute learner feature expectations: µπ = 1
M ∑

M
j=1 ∑s∈τ̂ j φ(s);

7 Compute gradient: g = µE −µπ ;
8 Update reward parameters: w← w+ηg;

6.5 Federated Learning and Distributed Models

Federated learning or collaborative learning [58] is a sub-field of machine learn-
ing [19], it collaborates with multiple entities or clients to train a model while en-
suring that the data remains decentralized [1]. A server sending a distributed model
to each client. Each individual client utilizes this distributed model to train a local
model with its own data set. Updates to the model are sent back to the server, the
shared model is improved during the collaborative process. Due to the decentralized
nature of clients’ data, there is no guarantee that data samples held by each client
are independently and identically distributed. Federated learning is generally con-
cerned with and motivated by issues such as data privacy, data minimization, and
data access rights [61]. The objective function for federated learning [20] is,

f (x1,x2, · · · ,xK) =
1
K

K

∑
i=1

f (xi) (6.3)

where K ∈N is the number of nodes, xi ∈R are the weights of model as viewed
by node i∈N , and f (·) is node i ’s local objective function, it describes how model
weights xi conform to node i’s local dataset. The goal of federated learning is to train
a model on all of the nodes, optimize the objective function, and achieve consensus
on xi.

The distributed learning aims at training a single model on multiple servers, a
underlying assumption is that the local datasets are independent and identically dis-
tributed. The difference between federated learning and distributed learning lies in
the properties of the local datasets. Federated learning originally aims at training on
heterogeneous datasets.

In robotics, mobile robots learned navigation over diverse environments by using
the federated learning-based method [27, 32, 65]. Federated learning is applied to

142 6 Robotic Perception and Intelligence

improve multi-robot navigation under limited bandwidth, assisting better sim-to-
real transfer. The pseudocode of federated learning algorithm is shown in Algorithm
(20).

Algorithm 20: Federated averaging algorithm
Input: Global model w0, number of rounds T , number of clients K, local

epochs E, learning rate η

Output: Trained global model wT
1 for t = 1 to T do
2 Server selects a subset of clients St ⊆ {1,2, ...,K}
3 foreach client k ∈St in parallel do
4 Client k receives global model wt−1

5 Initialize w(0)
k ← wt−1

6 for e = 1 to E do
7 Client updates w(e)

k ← w(e−1)
k −η∇Lk(w

(e−1)
k)

8 end
9 Client sends w(E)

k to server
10 end
11 Server updates model:

12 wt ← ∑k∈St
nk
n w(E)

k
13 where nk is the data size at client k, n = ∑k∈St nk

14 end

Ensemble methods [13, 55, 59, 63, 64] take use of multiple learning to obtain bet-
ter predictive performance. Ensemble learning [2] typically refers to bagging (boot-
strap aggregating), boosting [42] or stacking/blending methods to induce high vari-
ance among the base models [18]. Ensemble learning trains two or more machine
learning algorithms [19] by using specific classification or regression [14, 42]. The
algorithms are generally referred as “base models”, “base learners” or “weak learn-
ers”. Empirically, the ensembles yield better results if there is a significant diversity
among the models [41, 47].

Mixture of Experts (MoE) represents a form of ensemble learning. Each ex-
pert fi, i = 1,2 · · · ,N takes the same input x and produces output fi(x). Each
weighting function or gating function w takes input x, and produces a vector of
outputs w(x)i, i = 1,2 · · · ,N. Given an input x, the MoE produces a single out-
put: f (x) = ∑i w(x)i fi(x), i = 1,2 · · · ,N. Both the experts and the weighting func-
tion are trained by minimizing loss function, generally via gradient descent. The
model is trained by performing gradient descent on the mean-squared error loss
L = 1

N ∑k ∥yk− f (xk)∥2, k = 1,2 · · · ,N.
In deep learning, the critical goal is to reduce computing cost. In deep learning,

the output of MoE for each query may involve a few experts’ outputs. Each expert i
has an extra “expert bias” bi, i = 1,2, · · · ,N. If an expert is being neglected, then the
bias increases, and vice versa. During token assignment, each token picks the top-k
experts, but with the bias added in. The expert bias matters for picking the experts,
but not in adding up the responses from the experts.

6.6 Lab Session: Implementing Perception Algorithms with MATLAB 143

6.6 Lab Session: Implementing Perception Algorithms with
MATLAB

At the end of this chapter, we would like to recommend all readers complete the Lab
report. Please fill in the form shown in Table 6.1 after each lab session (2 hours).

Table 6.1: Lab report for robotic vision

Name <First Name Last Name>
Email <firstname.lastname@mailbox>
Lab date <dd-mm-yy>
Submitted date <dd-mm-yy>
Project title Avoid Obstacles Using Reinforcement Learning for Mobile Robots
Lab objectives The objective is to train a mobile robot by using reinforcement learning.

to avoid obstacles with a calibrated stereo camera.
Configurations and settings <The preferences, software, hardware, platforms, tools, etc.>
Methods <The relevant scientific theories or concepts >
Workflow <The step-by-step procedure for the experiment>
Datasets <The data and materials for your experiments>
Input <image filename, size, resolution >
Output <image filename, size, resolution>
Testing steps <Functional & non-functional testing methods step by step>
Bugs or problems <The system error code, lines of the code>
Result analysis <The tables, graphs, and figures, etc.>
Conclusion/Reflection <The strengths and weaknesses, or learned from this project >
References https://au.mathworks.com/help/robotics/ug/avoid-obstacles-

using-reinforcement-learning-for mobile-robots.html
Appendix: <Source codes with comments and line numbers>

An example of this lab report:

• Project title: Avoid Obstacles Using Reinforcement Learning for Mobile Robots
• Project objectives: The objective is to train a mobile robot using a reinforcement

learning algorithm to avoid obstacles. By interpreting range sensor readings, the
robot learns to control its linear and angular velocities to navigate without col-
liding in a known environment.

• Configurations and settings: MATLAB Online
• Methods: An occupancy map of a known environment was employed to generate

range sensor readings, detect obstacles, and check collisions the robot may make.
The DDPG (Deep Deterministic Policy Gradient) agent observed range sensor
readings, the linear and angular velocity controlled by using the DDPG-based
reinforcement learning algorithm.

• Implementation steps:

1. Load a map matrix representing the environment.
2. Set up the range sensor and robot parameters.
3. Visualize the map and robot positions.

144 6 Robotic Perception and Intelligence

4. Create the environment model for actions, observations, and rewards.
5. Define observation and action specifications.
6. Build and configure the DDPG agent.
7. Define the reward function.
8. Train the agent.
9. Simulate and visualize the agent’s performance.

10. Extend the model to simulate in new environments.

• Testing steps:

1. Verify rigid body elements.
2. Test joint connections.
3. Validate robot assembly.
4. Interact with the robot model.
5. Simulation and performance testing.

• Result analysis: The result analysis of the trained DDPG-based mobile robot
focuses on the robot’s ability to navigate the environment efficiently, avoid ob-
stacles, and adapt to new scenarios. Key metrics include success rate in avoiding
collisions, path efficiency, and adaptability to varied environments. Visual rep-
resentations such as trajectory plots are employed to assess performance. The
overall goal is to ensure that the robot learns optimal control strategies to avoid
obstacles.

• Conclusion/Reflection: The DDPG-based reinforcement learning model suc-
cessfully enables a mobile robot to avoid obstacles by learning optimal control
actions based on sensor readings. Through model training, the robot improves
its navigation efficiency and adaptability. The model’s performance is validated
through simulations, which showcase its ability to navigate while minimizing
collisions, this makes it as a practical solution for autonomous navigation tasks
in dynamic environments.

• Readings:https://au.mathworks.com/help/robotics/ug/avoid-obstacles-using-reinforcement-
learning-for mobile-robots.html

6.7 Exercises

Question 6.1. How to measure human IQ (Intelligence Quotient)?
Question 6.2. What are the characters of Reinforcement Learning? What’s the
relationship between Reinforcement Learning (RL) and Finite State Machine
(FSM)?
Question 6.3. How to implement imitation learning? What’s the relationship be-
tween Reinforcement Learning (RL) and Imitation Learning (IL)?
Question 6.4. How to implement inverse reinforcement learning?
Question 6.5. Why GA algorithm always can find the right solution of a given
optimization problem?

References 145

Question 6.6. What are the differences between behavior cloning and behavior
analogy?
Question 6.7. How to ensure the security of datasets during model training by
using distributed models in deep learning?

References

1. Alpaydin, E. (2009) Introduction to Machine Learning, MIT Press.
2. Andres, O., Munilla, J., Gorriz, J., et al. Ensembles of deep learning architectures for the early

diagnosis of the Alzheimer’s disease. International Journal of Neural Systems, 2016, 26(7).
3. Ayer, A. J. (2001), Language, Truth and Logic, Nature, 138 (3498).
4. Browne, J. (2007), Darwin’s Origin of Species: A Biography, Grove Press.
5. Bengio, Y., Simard, P., Frasconi, P. (1994). Learning long-term dependencies with gradient

descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157 – 166.
6. Bengio, Y., Lecun, Y., Hinton, G. (2021) Deep Learning for AI. Communications of the ACM,

64(7), 58–65.
7. Biever, C. (2023). ChatGPT broke the Turing test — the race is on for new ways to assess AI.

Nature. 619 (7971): 686–689.
8. Bird, J., Kobylarz, J., Faria, D., Ekart, A., Ribeiro, E. (2020). Cross-domain MLP and

CNN transfer learning for biological signal processing: EEG and EMG. IEEE Access, 8:
54789–54801.

9. Dosovitskiy, A., et al. (2021) An image is worth 16×16 words: Transformers for image recog-
nition at scale. International Conference on Learning Representations.

10. Ertel, W. (2019) Introduction to Artificial Intelligence. Springer International Publishing.
11. Fricke, G. M., Hecker, J. P., Griego, A. D., Tran, L. T., & Moses, M. E. (2016). A distributed

deterministic spiral search algorithm for swarms. IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), 4430–4436.

12. Gao, X., Liu, Y., Nguyen, M., Yan, W. (2024) VICL-CLIP: Enhancing face mask detection in
context with multimodal foundation models. ICONIP’24.

13. Gao, X., Nguyen, M., Yan, W. (2023) Enhancement of human face mask detection perfor-
mance by using ensemble learning models. PSIVT, 124-137.

14. Gashler, M., Giraud-Carrier, C., Martinez, T. (2008). Decision tree ensemble: Small hetero-
geneous is better than large homogeneous. International Conference on Machine Learning
and Applications, pp. 900–905.

15. George, D., et al. (2017) A generative vision model that trains with high data efficiency and
breaks text-based CAPTCHAs. Science, 358 (63–68).

16. Goodfellow, I., Bengio, Y., Courville, A. (2016) Deep Learning, MIT Press.
17. Hernandez-Orallo, J. (2000), Beyond the Turing test. Journal of Logic, Language and Infor-

mation, 9 (4): 447–466,
18. Polikar, R. (2006). Ensemble-based systems in decision making. IEEE Circuits and Systems

Magazine. 6 (3): 21–45.
19. Jordan, M. I., Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects.

Science, 349(6245), 255–260.
20. Kairouz, P. et al. (2021). Advances and open problems in federated learning. Foundations and

Trends in Machine Learning. 14 (1–2): 1–210.
21. Karimpanal, T., Bouffanais, R. (2019). Self-organizing maps for storage and transfer of

knowledge in reinforcement learning. Adaptive Behavior. 27 (2): 111–126.
22. Kontschieder, P., et al. (2015) Deep neural decision forests. IEEE ICCV.
23. Kriegeskorte, N. (2015). Deep neural networks: A new framework for modeling biological

vision and brain information processing. Annual Review of Vision Science (pp. 417–446).

146 6 Robotic Perception and Intelligence

24. Labbé, M., Michaud, F. (2019). RTAB-Map as an open-source LiDAR and visual simultane-
ous localization and mapping library for large-scale and long-term online operation. Journal
of Field Robotics, 36(2), 416–446.

25. LeCun, Y., Bengio, Y., Hinton, G. (2015) Deep learning. Nature, 521: 436 – 444.
26. Littman, M. (2015) Reinforcement learning improves behavior from evaluative feedback. Na-

ture, 521: 445 – 451.
27. Liu, B., Wang, L., Liu, M. (2019). Lifelong federated reinforcement learning: A learning

architecture for navigation in cloud robotic systems. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). pp. 1688–1695.

28. McCulloch, W. S., Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
activity. The Bulletin of Mathematical Biophysics, 5(4), 115 – 133.

29. Mehtab, S. Yan, W., Narayanan, A. (2022) 3D vehicle detection using cheap LiDAR and
camera sensors. International Conference on Image and Vision Computing New Zealand.

30. Ming, Y., Li, Y., Zhang, Z., Yan, W. (2021) A survey of path planning algorithms for au-
tonomous vehicles. International Journal of Commercial Vehicles.

31. Mnih, V., et al. (2015) Human-level control through deep reinforcement learning. Nature,
518: 529 – 533.

32. Na, S., Rouček, T., Ulrich, J., Pikman, J., Krajnı́k, T., Lennox, B., Arvin, F. (2023). Federated
reinforcement learning for collective navigation of robotic swarms. IEEE Transactions on
Cognitive and Developmental Systems. 15 (4): 1.

33. Narendra, K. S., Parthasarathy, K. (1990). Identification and control of dynamical systems
using neural networks. IEEE Transactions on Neural Networks, 1(1), 4 – 27.

34. Norvig, P., Russell, S. (2016) Artificial Intelligence: A Modern Approach (3rd Edition), Pren-
tice Hall.

35. Pan, C., Yan, W. (2018) A learning-based positive feedback in salient object detection. Inter-
national Conference on Image and Vision Computing New Zealand.

36. Pan, C., Yan, W. (2020) Object detection based on saturation of visual perception. Multimedia
Tools and Applications, 79 (27-28), 19925-19944.

37. Pan, C., Liu, J., Yan, W., Zhou, Y. (2021) Salient object detection based on visual perceptual
saturation and two-stream hybrid networks. IEEE Transactions on Image Processing.

38. Peng, D. (2025) Vision Perception Optimization and Adaptive Control for Resource-
Constrained Platform: A Ping-Pong Ball Pickup & Place System. Master’s Thesis, Auckland
University of Technology, New Zealand.

39. Peng, D., Yan, W. (2025) Test-time training with adaptive memory for traffic accident severity
prediction. Computers.

40. Proudfoot, D. (2013), Rethinking Turing’s test, The Journal of Philosophy, 110 (7): 391–411.
41. Opitz, D., Maclin, R., (1999). Popular ensemble methods: An empirical study. Journal of

Artificial Intelligence Research. 11: 169–198.
42. Rriedman, J., Hastie, T., Tibshirani, R. (2000). Additive logistic regression: A statistical view

of boosting. The Annals of Statistics, 38:2, 337–374.
43. Raven, J., Raven, J.C., Court, J.H. (2003) Manual for Raven’s Progressive Matrices and Vo-

cabulary Scales. San Antonio.
44. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks,

61, 85–117.
45. Shah, H. Warwick, K. (2009), Emotion in the Turing test: A downward trend for machines in

recent Loebner prizes. Handbook of Research on Synthetic Emotions and Sociable Robotics:
New Applications in Affective Computing and Artificial Intelligence, Information Science,
IGI.

46. Silver, D., et al. (2018). A general reinforcement learning algorithm that masters chess, shogi,
and Go through self-play. Science. 362 (6419):

47. Suk, H., Lee, S., Shen, D. (2017) Deep ensemble learning of sparse regression models for
brain disease diagnosis. Medical Image Analysis, 37:101-113.

48. Sutton, R., Barto, A. (2018) Reinforcement Learning: An Introduction (2nd edition). MIT
Press.

References 147

49. Tantiya, R. (2025) Design and Implementation of A High DoF Robot Arm. Master’s Thesis,
Auckland University of Technology, New Zealand.

50. Turing, A. (1948), Machine intelligence. The Essential Turing: The Ideas That Gave Birth to
the Computer Age, Oxford University Press.

51. Turing, A. (1950). Computing Machinery and Intelligence. Mind. 59 (236): 433–460.
52. Van Hasselt, H. (2011). Double Q-learning. Advances in Neural Information Processing Sys-

tems (pp. 2613 – 2622).
53. Vaswani, A. et al. (2017) Attention is all you need. The Conference on Neural Information

Processing Systems (NIPS), USA.
54. Wang, L., Li, R., Sun, J., Liu, X., Zhao, L., Seah, H. S., Quah, C. K., Tandianus, B. (2019).

Multi-view fusion-based 3D object detection for robot indoor scene perception. Sensors,
19(19)

55. Wang, X., Yan, W. (2020) Cross-view gait recognition through ensemble learning. Neural
Computing and Applications 32 (11), 7275-7287.

56. Webb, S. (2018) Deep learning for biology. Nature, 554: 555 – 557.
57. Wechsler, D. (1939). The Measurement of Adult Intelligence. Baltimore (MD): Williams &

Witkins.
58. Wei, J., He, J., Chen, K., Zhou, Y., Tang, Z. (2017) Collaborative filtering and deep learning

based recommendation system for cold start items. Expert Systems with Applications, 69, pp.
29-39.

59. Xu, G., Yan, W. (2023) Facial emotion recognition using ensemble learning. Deep Learning,
Reinforcement Learning, and the Rise of Intelligent Systems, pp.146-158, IGI Global.

60. Yan, W., Kankanhalli, M. (2009) Cross-modal approach for Karaoke artefacts correction.
Handbook of Multimedia for Digital Entertainment and Arts, 197-218.

61. Yan, W. Q. (2019) Introduction to Intelligent Surveillance: Surveillance Data Capture, Trans-
mission, and Analytics (3rd Edition), Springer.

62. Yan, W. Q. (2023). Computational Methods for Deep Learning: Theory, Algorithms, and
Implementations (2nd Edition). Springer.

63. Younas, F., Usman, M., Yan, W. (2023) A deep neural network ensemble framework for
colorectal polyp classification. Multimedia Tools and Applications, 82, pages 18925–18946.

64. Younas, F., Usman, A., Yan, W. (2023) A deep ensemble learning method for colorec-
tal polyp classification with optimized network parameters. Applied Intelligence, 53, pages
2410–2433.

65. Yu, X., Queralta, J., Westerlund, T. (2022). Towards lifelong federated learning in au-
tonomous mobile robots with continuous sim-to-real transfer. Procedia Computer Science.
210: 86–93.

66. Zhao, H., Xu, S., Yan, W., Xu, D. (2025) Design and optimization of target detection and 3D
localization models for intelligent muskmelon pollination robots. Horticulturae, 11(8), 905.

Chapter 7
Vision-Based Robotic Control

Abstract

Robot manipulators (i.e., robot arms) are extensively deployed in manufacturing,
packaging, and processing factories. The robot arm is linked with end-effector[50].
In this chapter, visual servoing is brought in to vision-based robot control, especially
camera retreat will lead the robot to get the destination of based on the acquired
images. The significance of this chapter is to implement robot control via robotic
vision.

149

150 7 Vision-Based Robotic Control

7.1 Basics of Visual Servoing

Visual servoing [11, 17] is the method of controlling a robot’s motion using real-
time feedback [31] from vision sensors to execute tasks [25, 28]. The real-time
information [14] from vision sensors like cameras [19] will control robots. Visual
servoing is a model-free approach to actuate the robot based on high-level task to
be executed. In visual servoing, the robot is instructed to move in order to align its
current task progress with the desired task and gradually reduce the errors between
the two. We have target matrix and current matrix, visual servoing is implemented
by using cameras [3, 11, 40] to control robots. Mathematically, visual servoing is to
minimize the error [17]:

e(t) = f (m(t),a)− f ∗(m(t),a) (7.1)

where e(·) ∈R is the error, t ∈R is the time, m(·) ∈R is the collection of regions
of interest in the image and a is the collection of camera intrinsic parameters and
extrinsic parameters. The function [24] f ∗(·)∈R represents the desired set of visual
features while f (·) ∈R reflects the actual features [19].

Visual features are computable vectors extracted from digital images [42], such
as corner, edge, blob, contour [41], motif, etc. Depending on the positioning of
cameras [19], visual servoing [10, 13] has two paradigms: Eye-in-hand and eye-
to-hand [29]. The eye-in-hand camera is the visual sensor mounted on a robot, the
eye-to-hand camera is applied to monitor our environment [38, 47, 48] as shown
in Fig.7.1. From the view angles of the two cameras, the visual objects and field
of view (FoV) [39] are different. What we should know is that visual information
is reliable for robot locating. However, GPS information is not reliable or weak
because in a tunnel or forest, etc., GPS information will be lost.

Fig. 7.1: The eye-to-hand camera and eye-in-hand camera on a wheeled robot

7.1 Basics of Visual Servoing 151

Visual servoing [5] is to control the pose of robot’s end-effector by using
visual features extracted from the image which contains two approaches [37]:
Position/Pose-Based Visual Servo (PBVS) and Image-Based Visual Servo (IBVS).
PBVS takes use of observed visual features, a calibrated camera and a known geo-
metric model of the target to determine the pose of target with respect to the cam-
eras [3, 19, 40]. 3D cameras are employed to detect object depth [39]. LiDAR sys-
tem is too expensive and may loss the details of visual information. IBVS omits the
pose estimation step, it adopts the image features directly. That means, the system
has data conversation from image to image. The desired camera pose with respect to
the target is defined implicitly by using the image features at the goal pose [3, 40].

PBVS usually makes use of depth cameras to obtain 3D pose/position and ori-
entation of the regions/objects of interest [39]. The error term is the Cartesian pose
difference between the two. The servoing scheme [5, 33] is to minimize it by moving
the robot around, ideally towards the final desired pose [18]. Based on the location
of visual object [39] in the image, the scheme generates the ideal grasp pose for the
end effector and converge the robot to it [50]. PBVS works with real-world poses
which needs at least a 6-DoF robot arm to successfully implement the solution with-
out getting stuck in local minima. 6-DoF is the minimum degrees of freedom with
low risk to reach object without singularity, our human body has 7-DOF at least.
PBVS makes use of robot inverse kinematics (IK) to convert Cartesian control in-
structions into joint angles of the robot [15]. The inverse kinematics means that the
end effector needs to be moved to a position first if the manipulator is required to
be moved. Other joints will be moved near to the object. Controversially, the for-
ward kinematics (FK) refers to that the foot of robots is required to move first, then
the joints will be followed till to the end-effector. The difference between inverse
kinematics and forward kinematics is the computing costs and time. The inverse
kinematics needs to compute the joint chain, thus its computing is slow [42].

Since obtaining the information regards 3D pose comprehends of the conver-
sion from camera frame to robot frame, camera calibration [18, 19] plays a critical
role in PBVS process [19]. The intrinsic parameters and extrinsic parameters of the
given cameras are related to camera calibration. Camera calibration bridges the gap
between image space and 3D object space in the real world.

Compared to PBVS [37], IBVS is to omit the pose estimation. The camera in
hand, joint controller [15], feedback, and feature extraction are the same. The in-
formation fusion step is also the same [3, 40]. IBVS extracts visual features and
formulates the errors in image plane. The desired image and the current image
are compared, the differences will be calculated. The visual servoing converges vi-
sual feature to the desired coordinates and moves the robot accordingly in image
space [33].

Visual feature extraction in IBVS is prone to camera performance, synchroniza-
tion issues, and computational requirements [42]. Cameras [19] usually have high
definition (HD) or high resolution, and high speed (i.e., frames per second). Com-
putational requirements refer to software and hardware. Hereinafter, the hardware
refers to GPUs and FPGAs, the software links to the algorithms for extracting visual
features. The synchronization means that two or many cameras [3, 40] are working

152 7 Vision-Based Robotic Control

together within the same pace, they will acquire and process the images from the
same scene [32].

The first step of IBVS is the projection of 3D object on a 2D image plane. Math-
ematically, the mapping from 3D space to 2D space is based on transformation:
x = X/Z ∈R and y = Y/Z ∈R, where Z ̸= 0, (X ,Y,Z) ∈R3 is a point location on
a 3D object, (x,y) ∈R2 is a pixel location on an image. The depth has been disap-
peared on the image. IBVS differs fundamentally from PBVS by not estimating the
relative pose of the target. The relative pose is implicit in the image features. The
pose is hidden or stored in the 2D images. IBVS is an image-to-image approach,
a kind of end-to-end approach. IBVS is a remarkably robust to vision-based robot
control [25]. IBVS is formulated to work with other image features such as corner,
straight line, circle, rectangle, etc.

7.2 Advanced Visual Servoing

A number of autonomous robot operations [26] are employed to relieve the lack
of labor problems [49]. Robots with sufficient electric power have not errors, they
can work without rests and save a vast of costs [26]. Hence, human labors could
be employed to other business or work. Visual servoing [5] is one of the most im-
portant technologies. Industries often need robots to be running at lightning-fast
speeds, visual servoing is far from achieving speedy performances [49]. Currently,
our hardware and software tools are still working slowly even with supercomputing.

Computational bottlenecks in image processing and inverse kinematics (IK) are
on using GPUs and parallel programming [10, 42]. In visual servoing [51], camera
retreat [12] refers to the cameras that need to be moved back (or “retreated”) so
as to capture an entire scene [32] or visual object [39] within the viewing frustum.
The frustum is visible area of visual scene [23, 43]. The problem of camera retreat
(moving back) is happened in an IBVS system because the object is too large or too
close. The pseudocode of camera retreat algorithm is shown in Algorithm (21).

Algorithm 21: Camera retreat algorithm
Input: Current position of camera C, target object position T , minimum

safe distance dmin, step size s
Output: Updated camera position C

1 while distance(C, T) < dmin do
// Compute direction vector from target to

camera

2 v⃗← C−T
∥C−T∥ ;

// Move camera backward by step size
3 C←C+ s · v⃗;

4 return C;

7.2 Advanced Visual Servoing 153

The camera position in 3D space is adjusted through Affine transformation such
as rotation, scaling, and translation. Relatively, the object could be moved or scaled
to match the clipping window of the image. The clipping operation refers to select
regions of an image to display. A clipped image is shown in Fig. 7.2.

(a) The full image

(b) The clipped image

Fig. 7.2: An example of camera retreat (a) The full image and (b) The clipped image

The scaling change is achieved by Z-axis translation. The XY/Z hybrid schemes
take into account of X-axis and Y -axis as one group, and Z-axis as another group.
Thus, if the movement of a robot is planned, we are able to fully utilize the two
groups to reach the destination. XY/Z-partitioned methods eliminate camera re-
treat [12] by using IBVS to control the Degrees of Freedom (DoF) while taking a
different controller for the remaining degrees of freedom [15]. It is advantageous
to select the longest line segment of trajectory or path. The longest line segment in
robot moving will save our time and energy.

For a rotated camera, the points will naturally be moved along circular arcs with
the assigned radius. The edges and corners of an object will be rotated correspond-
ingly. The desired rotational rate is obtained by using a simple proportional control
law. The proportional control law has been harnessed in the control of a bicycle or
a car with four wheels. The simplest example is a bicycle with two wheels. When a
car or bicycle is moving, all wheels should follow the proportional control law with
different radii.

If a robot is armed with cameras, visual features are projected from one or more
images [19] onto spherical image plane, and compute the control law in terms of
spherical coordinates. The spherical plane refers to the surface of 3D sphere.

154 7 Vision-Based Robotic Control

In polar coordinates, image point is denoted as (r,φ) ∈ R2, r ∈ R is the dis-
tance, r =

√
u2 + v2,u,v ∈ R, u-axis and v-axis are the image coordinates. The

angle from u-axis to a line is φ = tan−1(v
u) ∈ R, u ̸= 0. The two coordinate rep-

resentations are related to u = r cos(φ) ∈ R and v = r sin(φ) ∈ R. The world
point (X ,Y,Z)⊤,X ,Y,Z ∈ R in the camera frame is projected onto the surface
of sphere at the point (x,y,z)⊤,x,y,z ∈ R, x = X/R,y = Y/R,z = Z/R, R ∈ R,
R ̸= 0 is the distance from the camera origin to the world point. A minimal spher-
ical coordinate system comprises of the angle of colatitude θ = sin−1(y/r) ∈ R,
θ ∈ [0,π]∈R, r =

√
x2 + y2 ∈R, r ̸= 0. Thus, the feature vector is p = (θ ,φ), φ =

sin−1(z
r) ∈R. Hence, X = R · cos(θ)cos(φ), Y = R · cos(θ)sin(φ), Z = R · sin(θ),

R =
√

X2 +Y 2 +Z2.

Fig. 7.3: From cube to sphere

The space of spherical images and the space of 2D images can be transformed
mutually. The spherical mapping projects our images onto the standard sphere as
shown in Fig. 7.3. A spherical camera eliminates the need to explicitly keep visual
features in the Field of View(FoV) with both position-based visual servoing and
hybrid schemes [51]. For a spherical camera, this ambiguity is reduced. The spher-
ical cameras are independent on the FoV. In 6-axis arm-type robot, a perspective
camera with default parameters is mounted on the robot’s end effector, its axes are
aligned with the coordinate frame. This system drives the robot to the desired pose.
In mobile robot [4], a camera is mounted on a mobile robot that can be moved in a
planar environment, the visual servo controller will drive the robot until its view of
landmarks matches the desired view [5, 51].

7.3 Vision-Based Navigation and Path Planning Algorithms

Robot navigation is defined as the combination of three fundamental competences:
(1) Self-localization (2) Path planning[34] (3) Map-building and map interpretation.
Vision-based navigation or optical navigation makes use of computer vision algo-
rithms and optical sensors, this includes laser-based range finder and photometric

7.3 Vision-Based Navigation and Path Planning Algorithms 155

cameras, it extracts the visual information required to the localization in the sur-
rounding environment [47, 48].

Google and Apple have provided precise navigation and locating service in out-
door environment [46]. Image-based navigation methods attract much attention as a
powerful alternative to traditional map-based navigation. The Google Street View is
a method featured in Google Map that allows users to navigate through large scale
outdoor environment with 360 degree imagery. However, Google Street View can
not provide timely updates because it requires immense data, this method involving
a panoramic camera has not been extended due to its data collection permission.

Our early prototype [46] was able to locate current position by matching query
image in the database as shown in Fig. 7.4. If a match is found, the system roughly
figures out the position of query image based on position by using SIFT feature
detection. It can roughly locate a query image on the map by using IPM (Inverse
Perspective Mapping). Thus, it enables interactive navigation and knowledge shar-
ing among users [45]. By using QR codes with the navigation, the current location
and the shortest path to the destination are available [30].

Fig. 7.4: Precise indoor navigation without GPS information within a building

Robot localization denotes the robot’s ability to establish its own position and
orientation. Path planning [34] is effectively an extension of localization, it requires
the determination of robot’s current position and a position of a goal location, both
within the same frame of reference or coordinates system. Fig. 7.5 shows an example
of path planning within a building using reinforcement learning [48].

Self-driving vehicles will firstly make use of global path planning [34] to decide
which roads to be taken to arrive the destination. When these vehicles are on the
road, they have to be constantly adaptive to the changing environment. This is where

156 7 Vision-Based Robotic Control

local path planning methods allow the vehicle to plan a safe and fast path to the
target location.

Fig. 7.5: Precise indoor navigation and path planning without GPS information
within a building

7.4 Lab Session: Visual Servoing with MATLAB

At the end of this chapter, we would like to recommend all readers complete the Lab
report. Please fill in the form shown in Table 7.1 after each lab session (2 hours). An
example of this lab report is:

• Project title: Automated Parking Valet with ROS 2
• Project objectives: The goal of this experiment is to simulate an autonomous

parking system by using ROS (Robot Operating System) to achieve automatic
vehicle navigation, path planning, and parking operations.

• Configurations and settings:

1. MATLAB Online
2. ROS node configuration
3. ROS message topics
4. Callback function setup
5. Simulated vehicle configuration
6. Path planning and control strategy

• Methods: Initially, we upload a route plan and the specified costmap by using
the behavior planner and path analyzer. The control node is responsible for lon-
gitudinal and lateral controllers. We initialize the simulation by sending the first
velocity message and current pose message. This message causes the planner to
start the planning loop. The main loop waits for the behavioral planner to say the
vehicle reached the park position. The parking maneuver callbacks are slightly
different from the normal driving maneuver.

• Implementation steps:

7.4 Lab Session: Visual Servoing with MATLAB 157

Table 7.1: Lab report for robotic vision

Name <First Name Last Name>
Email <firstname.lastname@mailbox>
Lab date <dd-mm-yy>
Submitted date <dd-mm-yy>
Project title Automated Parking Valet with ROS 2
Lab objectives The objective is to simulate an autonomous parking system

by using ROS.
Configurations and settings <The preferences, software, hardware, platforms, tools, etc.>
Methods <The relevant scientific theories or concepts >
Workflow <The step-by-step procedure for the experiment>
Datasets <The data and materials for your experiments>
Input <image filename, size, resolution >
Output <image filename, size, resolution>
Testing steps <Functional & non-functional testing methods step by step>
Bugs or problems <The system error code, lines of the code>
Result analysis <The tables, graphs, and figures, etc.>
Conclusion/Reflection <The strengths and weaknesses, or learned from this project >
References https://au.mathworks.com/help/ros/ug/

automated-valet-using-ros2-matlab.html
Appendix: <Source codes with comments and line numbers>

1. Load a route plan and a given costmap
2. ROS initialization
3. Publisher and subscriber creation
4. Callback functions
5. Vehicle status update
6. Goal reach check
7. Visualization and simulation shutdown
8. ROS network shutdown

• Testing steps:

1. Functional testing
2. Simulation testing
3. Edge case testing
4. Parking maneuver

• Result analysis: Through visualization, the vehicle follows the planned path
without deviating or colliding with any obstacles. The path planning successfully
guided the vehicle from the starting point to the target spot.

• Conclusion/Reflection: The autonomous parking system successfully achieved
vehicle self-parking in the simulation, its effectiveness in path planning, vehicle
control, and real-time feedback is demonstrated. Through accurate path planning
and precise control commands, the vehicle was able to smoothly travel from the
starting point to the destination spot and safely stop upon arrival.

• Readings: https://au.mathworks.com/help/ros/ug/automated-valet-using-ros2-matlab.html

158 7 Vision-Based Robotic Control

7.5 Exercises

Question 7.1. What is visual servoing?
Question 7.2. What is advanced visual servoing?
Question 7.3. How to implement camera retreat?
Question 7.4. How do the current algorithms play their roles in robotic naviga-
tion, planning, and scene understanding?

References

1. Alonso, J. D., Vidal, E. R., Rotter, A., Muhlenberg, M. (2008). Lane-change decision aid
system based on motion-driven vehicle tracking. IEEE Transactions on Vehicular Technology,
57(5), 2736 – 2746.

2. Alpaydin, E. (2009) Introduction to Machine Learning, MIT Press.
3. Baek, J., Lee, E., Park, M., Seo, D. (2015). Mono-camera based side vehicle detection for

blind spot detection systems. International Conference on Ubiquitous & Future Networks
(pp. 147 – 149)

4. Bouzoualegh, S., Guechi, E.-H., Kelaiaia, R. (2019). Model predictive control of a
differential-drive mobile robot. Acta Universitatis Sapientiae, Electrical and Mechanical En-
gineering, 10(1), 20–41.

5. Cao, C. (2022) Research on a visual servoing control method based on perspective transfor-
mation under spatial constraint. Machines, 10(11), 1090.

6. Castelli, F., Michieletto, S., Ghidoni, S., Pagello, E. (2017). A machine learning-based vi-
sual servoing approach for fast robot control in industrial setting. International Journal of
Advanced Robotic Systems, 14(6), 1729881417738884.

7. Chaumette, F., Hutchinson, S. (2006). Visual servo control. I. basic approaches. IEEE
Robotics & Automation Magazine, 13(4), 82–90.

8. Chaumette, F., Hutchinson, S. (2007). Visual servo control. II. advanced approaches. IEEE
Robotics & Automation Magazine, 14(1), 109–118.

9. Chen, C.T., Chen, Y.S. (2009). Real-time approaching vehicle detection in blind-spot area. In
International IEEE Conference on Intelligence Transport System, 1.

10. Colombo, F. T., de Carvalho Fontes, J. V., da Silva, M. M. (2019). A visual servoing strategy
under limited frame rates for planar parallel kinematic machines. Journal of Intelligent &
Robotic Systems, 96(1), 95–107.

11. Cong, V. D., Hanh, L. D. (2023). A review and performance comparison of visual servoing
controls. International Journal of Intelligent Robotics and Applications, 7(1), 65–90.

12. Corke, P., Hutchinson, S. A. (2001), A new partitioned approach to image-based visual servo
control, IEEE Trans. Robot. Autom., 17 (4): 507–515.

13. Corke, P., Hutchinson, S., Gans, N.R. (2002). Partitioned image-based visual servo control:
Some new results. Sensor Based Intelligent Robots (LNCS 2238).

14. Cover, T., Thomas, J. (1991) Elements of Information Theory, John Wiley & Sons, Inc.
15. Cui, M., Liu, H., Wang, X., Liu, W. (2023). Adaptive control for simultaneous tracking and

stabilization of wheeled mobile robot with uncertainties. Journal of Intelligent & Robotic
Systems, 108(3), 46.

16. Ertel, W. (2017) Introduction to Artificial Intelligence. Springer International Publishing
17. Gans, N. R., Hu, G., Shen, J., Zhang, Y., Dixon, W. E. (2012). Adaptive visual servo control

to simultaneously stabilize image and pose error. Mechatronics, 22(4), 410–422.
18. Han, T., Zhu, H., Yu, D. (2024). Data-driven model predictive control for uncalibrated visual

servoing. Symmetry, 16(1)

References 159

19. Hane, C., Sattler, T., Pollefeys, M., Heng, L., Lee, G. H., Fraundorfer, F., Furgale, P. (2017).
3D visual perception for self-driving cars using a multi-camera system: Calibration, mapping,
localization, and obstacle detection. Image and Vision Computing, 68,14 – 27.

20. Jia, X., Hu, Z., Guan, H. (2011) A new multi-sensor platform for adaptive driving assistance
system (ADAS). In World Congress on Intelligent Control and Automation (pp.1224)

21. Jordan, M. I., Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects.
Science, 349(6245), 255–260.

22. Kasabov, N. (1996) Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engi-
neering. The MIT Press.

23. Kim, D., Choi, J., Yoo, H., Yang, U., Sohn, K. (2015). Rear obstacle detection system with
fisheye stereo camera using HCT. Expert Systems with Applications, 42, 6295 – 6305.

24. Kivinen, J., Warmuth, M. K. (1998). Relative loss bounds for multidimensional regression
problems. In Advances in Neural Information Processing Systems (pp. 287 – 293).

25. Klette, R. (2014) Concise Computer Vision: An Introduction into Theory and Algorithms.
Springer-Verlag London, UK.

26. Koch, M. (2018) Artificial intelligence is becoming natural. Cell, 173(3), 531 – 533.
27. Kontschieder, P., et al. (2015) Deep neural decision forests. ICCV.
28. Kriegeskorte, N. (2015). Deep neural networks: A new framework for modelling biological

vision and brain information processing. Annual Review of Vision Science, pp. 417–446.
29. Lalonde, M., Byrns, D., Gagnon, L., Teasdale, N., Laurendeau, D. (2007). Real-time eye blink

detection with GPU-based SIFT tracking. In Canadian Conference on Computer and Robot
Vision (pp. 481 – 487)

30. Li, J. (2014) Tour Navigation: A Cloud Based Tourist Navigation System. Master’s Thesis,
Auckland University of Technology, New Zealand.

31. Littman, M. (2015) Reinforcement learning improves behavior from evaluative feedback. Na-
ture, 521: 445 – 451.

32. Liu, X. (2023) Vehicle-Related Scene Understanding Using Deep Learning. PhD Thesis,
Auckland University of Technology, New Zealand.

33. Machkour, Z., Ortiz-Arroyo, D., Durdevic, P. (2021). Classical and deep learning based visual
servoing systems: A survey on state of the art. Journal of Intelligent & Robotic Systems,
104(1), 11.

34. Ming, Y., Li, Y., Zhang, Z., Yan, W. (2021) A survey of path planning algorithms for au-
tonomous vehicles. International Journal of Commercial Vehicles.

35. Muscat, J. (2014) Functional Analysis, Springer.
36. Norvig, P., Russell, S. (2016) Artificial Intelligence: A Modern Approach (3rd Edition), Pren-

tice Hall.
37. Peng, Y.-C., Jivani, D., Radke, R. J., Wen, J. (2020). Comparing position- and image-based

visual servoing for robotic assembly of large structures. IEEE 16th International Conference
on Automation Science and Engineering (CASE), 1608–1613.

38. Petrushin, V. A. (2005). Mining rare and frequent events in multi-camera surveillance video
using self-organizing maps. In ACM International Conference on Knowledge Discovery in
Data Mining (pp. 794 – 800)

39. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T. (2007). Robust object recognition
with cortex-like mechanisms. IEEE Transactions on PAMI, 29(3), 411–426.

40. Shen, Y., Yan, W. (2018) Blindspot monitoring using deep learning, In IEEE IVCNZ’18.
41. Shen, W., Wang, X., Wang, Y., Bai, X., Zhang, Z. (2015). DeepContour: A deep convolu-

tional feature learned by positive-sharing loss for contour detection. In IEEE Conference on
Computer Vision and Pattern Recognition (pp. 3982–3991).

42. Stoer, J., Bulirsch, R. (1991) Introduction to Numerical Analysis (Second Edition), Springer.
43. Sung, K., Shirley, P., Baer, S. (2008). Essentials of Interactive Computer Graphics: Concepts

and Implementation. CRC Press.
44. Van Hasselt, Hado (2011). Double Q-learning. Advances in Neural Information Processing

Systems. 23: 2613 – 2622.
45. Wang, L. (2012). iNavigation: An Image Based Indoor Navigation System. Master’s Thesis,

Auckland University of Technology, New Zealand.

160 7 Vision-Based Robotic Control

46. Wang, L. (2013). iNavigation: An image based indoor navigation system. Multimedia Tools
and Applications, 73, 1597–1615.

47. Yan, W. Q. (2019). Introduction to Intelligent Surveillance: Surveillance Data Capture, Trans-
mission, and Analytics (3rd Edition). Springer.

48. Yan, W. Q. (2023). Computational Methods for Deep Learning: Theory, Algorithms, and
Implementations (2nd Edition). Springer

49. Ye, Z., He, Y., Pieters, R. S., Mesman, B., Corporaal, H., Jonker, P. P. (2011). Bottlenecks
and tradeoffs in high frame rate visual servoing: A case study. IAPR Conference on Machine
Vision Applications, 55–58.

50. Zhao, H., Xu, S., Yan, W., Xu, D. (2025) Design and optimization of target detection and 3D
localization models for intelligent muskmelon pollination robots. Horticulturae, 11(8), 905.

51. Zhou, Z., Guo, J., Zhu, Z., Guo, H. (2024). Uncalibrated visual servoing based on Kalman
filter and mixed-kernel online sequential extreme learning machine for robot manipulator.
Multimedia Tools and Applications, 83(7), 18853–18879.

Chapter 8
Computational Tools for Robotic Vision

Abstract

In this chapter, we embark on Robot Operating System (ROS), it was designed as
middleware for robot instruction. The challenges of modern computing will be spelt
out, the multi-core computing and multithread computing are expounded. GPUs
are utilized to accelerate our computing for robotic vision and robotic control for
autonomous systems. Python programming is taken into account as the example to
specify the supercomputing. Another is mobile computing, the sensor data is gained
by using MATLAB. The significance of this chapter is to implement robotic vision
through mobile computing and supercomputing.

161

162 8 Computational Tools for Robotic Vision

8.1 Robot Operating System (ROS)

Robot Operating System (ROS) [10, 31] is a framework or a collection of software
libraries, it assists developers to create robotic applications. With our application
development, our data will be exported to the ROS system, ROS will be linked
to hardware automatically. ROS was designed as middleware, it provides services
such as hardware abstraction, device control, message passing between processes,
and package management.

Pertaining to modularity, ROS breaks down a complex robotic system into man-
ageable components, called as nodes. Each node performs a specific task and com-
municates with other nodes. Moreover, ROS provides a layer of abstraction between
hardware and software, our developers have not to care about the underlying hard-
ware specifics. In communications, ROS offers a flexible and efficient communi-
cation infrastructure within the same machine or across multiple machines on a
network. Regarding tools, ROS comes with a suite of powerful tools for debugging,
visualization, and simulation. With regard to package management, ROS organizes
code into packages, the code can be easily shared and reused, conveniently inte-
grated into the third-party software.

ROS 2 [38] is the second generation of the Robot Operating System (ROS), it was
designed with real-time performance. It utilizes Data Distribution Service (DDS) as
the communication framework that enables reliable, real-time, and scalable commu-
nications between distributed systems. ROS 2 puts forward the enhanced security
features, including secure communications and data encryption. The feature avoids
the risk of attacks such as man-in-the-middle, the attacks are possible to exist be-
tween ROS and robots, it ensures information security [12]. ROS 2 is better suited
for coordinating multiple robots working together (co-work). ROS accommodates
better support for multiple operating systems, including Microsoft Windows and
Apple macOS. The operating system supplies with the improved tools for testing,
debugging, and monitoring robotic systems [32, 36, 37].

MATLAB released two versions each year, namely, a and b versions. The ROS
Toolbox showcases an interface connecting MATLAB and Simulink with the Robot
Operating System (ROS and ROS 2). MATLAB has links and interface with ROS.
With the toolbox, our users are able to design a network of ROS nodes, typically, we
combine MATLAB or Simulink together to generate ROS nodes with the existing
ROS network. The toolbox includes MATLAB functions to visualize and analyze
ROS data by recording, importing, and playing back ROS files. ROS files have been
employed to multiple purposes. The toolbox verifies ROS nodes via simulation by
connecting to external robot simulators.

MATLAB accommodates an example how to park a car by using ROS, it is
called car valet. The example consists of localization, perception, planning, and in-
ference [14, 23, 24], vehicles [1, 9]. The planning method encompasses behavior
planning [26], decision making [22, 23], goal check, path planner, path smoother,
velocity profiler, etc. All robots [1, 25] are the same in operations no matter flying
in sky, moving on ground, or swimming under water, they need to be linked to ROS
system.

8.2 Modern Computing for Robotics 163

8.2 Modern Computing for Robotics

8.2.1 Supercomputing

Supercomputing refers to historically vector computers, but now parallel vector.
Vector computation is based on vectors in linear order. All elements of a vector could
be calculated simultaneously. MATLAB computing is based on vector operations.
A master computer can get all information from the distributed ones [28].

High Performance Computing (HPC) is to resolve problems via supercomputers
with fast networks and data visualization. Every year, the world top 500 computer
list, namely TOP500 list, has been updated twice since 1993. In sequential com-
puting or serial computing, the components of a program are executed step-by-step
to produce correct results. For instance, in arithmetic operations, such as addition,
subtraction, multiplication, and division will be executed in the same time, no mat-
ter which operation will be executed, the final operations are all addition-based.
Parallelism is a condition wherein multiple tasks or distributed parts of a task run
independently and simultaneously on multiple processors. As we know, OpenAI
needs a vast number of GPUs to train their GPT models.

A process is a program in execution with its own address space, memory, data
stack, etc. under one operating system. Multithread computing means there are a
number of threads, while the threads are employed for various purposes such as
matrix addition, subtraction, and multiplication, etc. The multiple threads execute
within the same process and share the same context.

The multithreading in Python is listed as Fig. 8.1. For example, Python program-
ming is conducted to implement Fork-Join model for parallel programming. In this
example, we load the libraries: Threading and time, we define the two threads: Cube
and rectangle, we join them together. The executive time is obtained after the two
threads are working together. In Fig. 8.2, the fork model is needed, after completed
each thread, the master thread will join them together. Previously, it was manually
assigned in programming time, now MATLAB system automatically finds GPU re-
sources in run time.

In Fig. 8.3, multithreading for matrix multiplication is taken into account. In the
beginning, Python libraries: Numpy and multiprocessing are loaded, two matrices
are multiplied by using inner product of vectors. The given matrix is segmented to
4×4 blocks, they are multiplied together, respectively. Finally, the results are gen-
erated as the output. The matrix multiplication is based on operation addition. No
matter how complicated the multiplication of matrices is, all arithmetic multipli-
cations are based on hardware adders. They are operating with binary numbers in
circuits of a computer system. In one second, how many the addition operations can
be carried out for the binary digits is applied to measure the computing speed of the
processor.

Regarding matrix multiplications, two matrices A = {ai j} ∈ Rn×n and B =
{bi j} ∈Rn×n are multiplied together, C = A×B = {ci j} ∈Rn×n, ai j ∈R, bi j ∈R,
ci j ∈R. The corresponding matrix will be shown as eq. (8.1),

164 8 Computational Tools for Robotic Vision

Fig. 8.1: Multithreading in Python

Fig. 8.2: Fork-Join model

ci j = ∑
k

aik×bk j, i, j,k = 1,2, · · · ,n,n ∈Z + (8.1)

In parallel computing, ci j is independent on i ∈R and j ∈R. If one element is
calculated, all elements of the matrix will be computed to completion.

8.2.2 GPU Acceleration

In robotics, we have the challenges in computing acceleration from CPUs and
GPUs. CPUs are slower, GPUs are faster. Regarding CPUs, we have multi-core

8.2 Modern Computing for Robotics 165

Fig. 8.3: Parallel computing for matrix multiplication in Python

computing or multithread computing. Graphics Processing Unit (GPU) is a rapid
way for us to train Large Language Models (LLM). Pertaining to the games like
Minecraft, GPUs will accelerate the game play.

A GPU is a specialized electronic circuit to accelerate the creation of images in
a frame buffer for output to a display device. Modern GPUs are efficient at manip-
ulating computer graphics and image processing. In a personal computer, a GPU
can be presented on a video card or embedded on the motherboard. Previously, a
picture was drawn in scan line order of pixels, which needs long time. Now GPUs
render the picture in the same time for all pixels. GPU computing is powerful for
supercomputing. Regarding the architecture of GPUs, we have graphics memory
control, graphics and computer array, unit, bus interface for communication, video
processing unit, display interface, etc., From this point view, GPUs are simple in
design.

MATLAB supports for CUDA-empowered NVIDIA GPUs, it has the ability to
run workers locally on a desktop. CUDA (i.e., Compute Unified Device Architec-
ture) was created by Nvidia in 2006, it is a parallel computing platform and appli-
cation programming interface (API) that allows software to facilitated with GPUs.
CUDA can accelerate general-purpose processing.

MATLAB offers computer cluster and grid support with MATLAB Distributed
Computing Server. MATLAB provides the interactive and batch execution of paral-
lel applications. The distributed arrays and Single Program Multiple Data (SPMD)
are constructed for large dataset handling and data-parallel algorithms.

166 8 Computational Tools for Robotic Vision

Fig. 8.4: The GPU framework

Google Colaboratory or Google Colab allows us to write and execute Python
codes in a web browser. Google Colab is adopted extensively in the machine
learning community with applications [20]. In deep learning and robotic intelli-
gence [27], transfer learning and ensemble learning as well as federated learning
and distributed learning are employed to enhance the classification ability of deep
learning models. All the models need parallel computing and GPU computing.

8.2.3 Mobile Computing for Robotics

Mobile computing means we conduct programming for mobile devices, while robots
are moving around from one place to another by using mobile communications
based on robotic vision [40]. Cloud computing for robotics is associated to mo-
bile computing. We archived data in the cloud. Multi-core processors are multiple
processors (cores) based on a single chip, such as CPUs. With regard to program-
ming, we allocate one thread for each core. The comparisons of two laptops with and
without GPUs are shown in Fig. 8.5 and Fig. 8.6. Parallel computing is simultaneous
adoption of multiple processors. The cables are needed to link different computers
together. The CPU workstation cannot move around, however, laptops can. Cluster

8.2 Modern Computing for Robotics 167

Fig. 8.5: A GPU computer

Fig. 8.6: A multicore computer

computing is hierarchical combination of commodity units to build parallel system
within a tree structure.

Wireless communications like WiFi are the must for moving robots. The cabled
connections to mobile robots are not possible. Robots need cordless communica-
tions. MATLAB offers hardware infrastructure for parallel computing as shown in
Fig.8.8 and Fig. 8.7. Thus, the mobile computing has:

• Connection: Connect to a MATLAB session running on MathWorks Cloud.
Cloud can save a huge amount of data.

168 8 Computational Tools for Robotic Vision

Fig. 8.7: MATLAB hardware configuration for GPUs

Fig. 8.8: MATLAB hardware configuration for clusters

• Acquisition: Acquire data from device sensors – like the accelerometer and GPS
– and analyze the data in MATLAB. GPS can locate robots in real time.

• Capturing: Take pictures and record video / audio for further processing and
analysis [35]. We upload multimodal data to the internet [15].

• Teaching and Learning: Mobile device is powerful and flexible for teaching
purposes [27].

MATLAB acquires data from built-in sensors [19] on mobile device and stream
sensor data directly to the MathWorks Cloud. The data includes:

• Acceleration on 3 axes (x,y,z ∈R)
• Angular velocity on 3 axes (x,y,z ∈R)
• Magnetic field on 3 axes (x,y,z ∈R)
• Orientation (azimuth, pitch, and roll) (αx,αy,αz ∈R)
• Position (latitude, longitude, altitude, horizontal accuracy, speed, and course).

The concept Course refers to bearing angle.

8.2 Modern Computing for Robotics 169

MATLAB Mobile sends all commands that were entered on the device to the
Cloud for evaluations. Autocomplete in MATLAB Mobile makes typing easier.
MATLAB Mobile displays thumbnails and larger previews when figures are cre-
ated or updated with MATLAB commands. MATLAB Mobile deletes unwanted
commands to improve scrolling performance in history.

Fig. 8.9: MATLAB mobile interface

In Fig.8.9, we list the functions of MATLAB mobile as shown in Fig.8.9(a),
the commands windows in Fig.8.9(b), the sensors in Fig.8.9(c), the examples in
Fig.8.9 (d) and the settings in Fig.8.9 (e). The example in Fig. 8.10 shows Logging
Accelerometer data from MATLAB Mobile by using MATLAB Online. It indicates
how to manipulate and visualize data from a smartphone or tablet accelerometer.

Fig. 8.10: MATLAB mobile example

170 8 Computational Tools for Robotic Vision

8.3 Tools for Parallel Computing in Robotics

The key topics and concepts in parallel algebra [18] include:
Matrix multiplication: Parallelizing matrix operations often uses the methods

like block decomposition, to distribute parts of the matrices across processors. The
pseudocode is shown in Algorithm(22).

Algorithm 22: Parallel matrix multiplication
Input: Matrix A ∈ Rm×n, Matrix B ∈ Rn×p, Number of processors P
Output: Matrix C = AB ∈ Rm×p

1 Partition matrix A row-wise into P blocks: A1,A2, ...,AP
2 Broadcast matrix B to all processors
3 foreach processor i ∈ {1,2, ...,P} in parallel do
4 Compute Ci = Ai ·B
5 end
6 Gather all Ci blocks to form the final matrix C

LU decomposition: Parallel algorithms for matrix factorization methods in solv-
ing linear systems of equations. The LU decomposition algorithm in parallel is
shown in Algorithm (23).

Algorithm 23: Parallel LU decomposition to solve linear systems
Input: Matrix A ∈ Rn×n, vector b ∈ Rn

Output: Solution vector x
1 In parallel: Compute LU decomposition A = LU
2 In parallel: Solve the system Ly = b using forward substitution
3 for i = 1 to n do

4 yi =
bi−∑

i−1
j=1 li jy j

lii
5 end
6 In parallel: Solve the system Ux = y using backward substitution
7 for i = n to 1 do
8 xi =

yi−∑
n
j=i+1 ui jx j

uii

9 end
10 return x

Eigenvalue computations: The parallelizing computations of eigenvalues and
eigenvectors are computationally intensive for large matrices. The pseudocode for
QR iteration algorithm is shown in Algorithm (24).

8.3 Tools for Parallel Computing in Robotics 171

Algorithm 24: Parallel QR iteration to compute eigenvalues
Input: Matrix A ∈ Rn×n, maximum iterations T , tolerance ε

Output: Approximate eigenvalues on the diagonal of A
1 for k = 1 to T do

// Step 1: Parallel QR Decomposition
2 In parallel: compute Ak−1 = QkRk

// Step 2: Parallel matrix multiplication
3 In parallel: compute Ak = RkQk

// Step 3: Check for convergence
4 if ∥Ak−Ak−1∥< ε then
5 break
6 end
7 end
8 return Eigenvalues λi ≈ AT (i, i) for i = 1, . . . ,n

Data distribution: Efficiently distributing data (e.g., matrices, vectors) across
multiple processors to minimize communication overhead and maximize parallel
efficiency.

Sparse matrix Operations specialize parallel algorithms to handle sparse ma-
trices, which have large dimensions but few non-zero elements.

Parallel solvers: Iterative methods such as conjugate gradient or generalized
minimal residual (GMRES). A parallel GMRES (Generalized Minimal Residual)
method is an approach for solving large linear systems by using a multi-core CPU
cluster.

• BLAS (i.e., CUDA Basic Linear Algebra Subprograms) supports operations
like matrix-vector multiplication, matrix-matrix multiplication, vector addition,
scalar products and optimization [21, 33] for dense matrices.

• SOLVER provides high-performance solvers for linear systems, eigenvalue prob-
lems, and singular value decomposition (SVD) on GPUs.

• FFT (Fast Fourier Transform) offers routines for computing 1D, 2D, and 3D
FFTs (Fast Fourier Transforms) on GPUs.

• GPU-accelerated RNG library
• DNN (i.e., deep neural network library) is applied to frameworks like TensorFlow

and PyTorch to accelerate training and inference of neural networks.
• SPARSE (i.e., Sparse matrix library) accommodates routines for sparse ma-

trix computations, optimized for the efficient use of GPU memory and perfor-
mance [21].

• Tensor is a library for efficient tensor algebra [17] computations, primarily in
deep learning, physics simulations, and scientific computing.

172 8 Computational Tools for Robotic Vision

8.4 Lab Session: Working with MATLAB for ROS and
GPU-Accelerated Algorithms

At the end of this chapter, we would like to recommend all readers complete the Lab
report. Please fill in the form shown in Table 8.1 after each lab session (2 hours).

Table 8.1: Lab report for robotic vision

Name <First Name Last Name>
Email <firstname.lastname@mailbox>
Lab date <dd-mm-yy>
Submitted date <dd-mm-yy>
Project title Supercomputing and mobile computing for robotics
Lab objectives The objective is to enhance the performance of

robotics by leveraging multicore processors and GPUs
Configurations and settings <The preferences, software, hardware, platforms, tools, etc.>
Methods <The relevant scientific theories or concepts >
Workflow <The step-by-step procedure for the experiment>
Datasets <The data and materials for your experiments>
Input <image filename, size, resolution >
Output <image filename, size, resolution>
Testing steps <Functional & non-functional testing methods step by step>
Bugs or problems <The system error code, lines of the code>
Result analysis <The tables, graphs, and figures, etc.>
Conclusion/Reflection <The strengths and weaknesses, or learned from this project >
References https://au.mathworks.com/help/matlabmobile/ug/

logging-accelerometer-data.html
Appendix: <Source codes with comments and line numbers>

An example of this lab report is:

• Project title: Supercomputing and mobile computing for robotics
• Project objectives: The objective of this project is to utilize the parallel com-

puting toolbox to enhance the performance of robots by leveraging multicore
processors, GPUs, and computer clusters.

• Configurations and settings:

1. Install Python and necessary libraries (e.g., OpenCV, NumPy, TensorFlow).
2. Install MATLAB and configure MATLAB Mobile for data logging.
3. Set up Google Colab for GPU access.

• Methods: Performance can be improved by processing data simultaneously. Ma-
chines can now comprehend and analyze visual data.

• Implementation steps:

1. Use MATLAB Mobile to capture images with the mobile device camera.
2. Save images in a predefined format (e.g., JPEG).
3. Use MATLAB Mobile to log accelerometer data.

References 173

4. Save data in .CSV format for further analysis.
5. Write a Python script by using OpenCV to process and analyze captured im-

ages.
6. Utilize GPU acceleration to enhance processing speed.
7. Employ MATLAB Parallel Computing Toolbox to run multiple processes con-

currently, improving efficiency.

• Testing steps:

1. Run GPU Code: Measure execution time to assess GPU performance.
2. Benchmark GPU vs CPU: Run the same code on the CPU and compare

execution times.
3. Profile GPU Usage: Monitor GPU resource usage during execution.
4. Test with Different Dataset Sizes: Evaluate the system’s performance by

using small, medium, and large datasets.
5. Validate Output: Ensure GPU-based outputs match expected results and re-

fine code for efficiency.

• Result analysis: Parallel computing and GPU acceleration significantly im-
proved real-time data processing and matrix operations, they enhance efficiency
for robotic control.

• Conclusion/Reflection: The integration of parallel computing, GPU accelera-
tion, and mobile data acquisition proved effective for real-time robotics.

• Readings: https://au.mathworks.com/help/matlabmobile/ug/logging-accelerometer-
data.html

8.5 Exercises

Question 8.1. What are the differences between ROS 1 and ROS 2?
Question 8.2. What’s multi-core programming? How is it related to CPUs and
GPUs?
Question 8.3. Why mobile computing is closely related to robotics?
Question 8.4. Why GPUs are important in modern computing?
Question 8.5. How are programming languages taking effects in supercomput-
ing?
Question 8.6. What is the effective way to reduce the complexity of matrix mul-
tiplications?

References

1. Alonso, J. D., Vidal, E. R., Rotter, A., Muhlenberg, M. (2008). Lane-change decision aid
system based on motion-driven vehicle tracking. IEEE Transactions on Vehicular Technology,
57(5), 2736 – 2746.

174 8 Computational Tools for Robotic Vision

2. Alpaydin, E. (2009) Introduction to Machine Learning, MIT Press.
3. Baeza-Yates, R., Ribeiro-Neto, B. (2011) Modern Information Retrieval: The Concepts and

Technology Behind Search (Second Edition). Addison-Wesley, UK.
4. Banham, M. R., Katsaggelos, A. K. (1997). Digital image restoration. IEEE Signal Processing

Magazine, 14(2), 24 – 41.
5. Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine

Learning, 2(1), 1 – 127.
6. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Bengio, Y.

(2010). Theano: A CPU and GPU math compiler in Python. In Python in Science Conference
(pp. 1 – 7).

7. Bengio, Y., Courville, A., Vincent, P. (2013). Representation learning: A review and new
perspectives. IEEE Transactions on PAMI, 35(8), 1798 – 1828.

8. Chatfield, C. (2004) The Analysis of Time Series: An Introduction, Chapman & Hall/CRC.
9. Chen, C.T., Chen, Y.S. (2009). Real-time approaching vehicle detection in blind-spot area. In

International IEEE Conference on Intelligence Transport System, 1.
10. Bermudez, G., Pedro, G. D. G., Medeiros, V. S., Boaventura, T. (2024). Comparative analyses

of ROS local planners for quadrupedal locomotion: A study in real and simulated environ-
ments. In Walking Robots into Real World (pp. 294–303). Springer Nature Switzerland.

11. Clark, T. E. (2004). Can out-of-sample forecast comparisons help prevent overfitting? Journal
of Forecasting, 23(2), 115 – 139.

12. Cover, T., Thomas, J. (1991) Elements of Information Theory, John Wiley & Sons, Inc.
13. Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics

of Control, Signals and Systems, 2(4), 303 – 314.
14. Ertel, W. (2017) Introduction to Artificial Intelligence. Springer International Publishing
15. Gao, X., Liu, Y., Nguyen, M., Yan, W. (2024) VICL-CLIP: Enhancing face mask detection in

context with multimodal foundation models. ICONIP.
16. Goodfellow, I., Bengio, Y., Courville, A. (2016) Deep Learning, MIT Press.
17. Itskov, M. (2011) Tensor Algebra and Tensor Analysis for Engineers (Fourth Edition),

Springer.
18. Jacobson, N. (2009) Abstract algebra. Dover Publications (Second Edition).
19. Jia, X., Hu, Z., Guan, H. (2011) A new multi-sensor platform for adaptive driving assistance

system (ADAS). In World Congress on Intelligent Control and Automation (pp.1224)
20. Jordan, M. I., Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects.

Science, 349(6245), 255–260.
21. Ko, Y. H., Kim, K. J., Jun, C. H. (2005). A new loss function-based method for multiresponse

optimization. Journal of Quality Technology, 37(1), 50 – 59.
22. Koch, M. (2018) Artificial intelligence is becoming natural. Cell, 173(3), 531 – 533.
23. Kontschieder, P., et al. (2015) Deep neural decision forests. ICCV.
24. Kriegeskorte, N. (2015). Deep neural networks: A new framework for modelling biological

vision and brain information processing. Annual Review of Vision Science, pp. 417–446.
25. Lalonde, M., Byrns, D., Gagnon, L., Teasdale, N., Laurendeau, D. (2007). Real-time eye blink

detection with GPU-based SIFT tracking. In Canadian Conference on Computer and Robot
Vision (pp. 481 – 487)

26. Littman, M. (2015) Reinforcement learning improves behavior from evaluative feedback. Na-
ture, 521: 445 – 451.

27. Lu, H., Li, Y., Chen, M., Kim, H., Serikawa, S. (2017). Brain intelligence: Go beyond artificial
intelligence. Mobile Networks and Applications (pp. 1–8)

28. Manning, C., Raghavan, P., Schutze, H. (2008) Introduction to Information Retrieval. Cam-
bridge University Press.

29. Muscat, J. (2014) Functional Analysis, Springer.
30. Norvig, P., Russell, S. (2016) Artificial Intelligence: A Modern Approach (3rd Edition), Pren-

tice Hall.
31. Peng, D. (2025) Vision Perception Optimization and Adaptive Control for Resource-

Constrained Platform: A Ping-Pong Ball Pickup & Place System. Master’s Thesis, Auckland
University of Technology, New Zealand.

References 175

32. Petrushin, V. A. (2005). Mining rare and frequent events in multi-camera surveillance video
using self-organizing maps. In ACM International Conference on Knowledge Discovery in
Data Mining (pp. 794 – 800)

33. Rao, Singiresu (2009) Engineering Optimization: Theory and Practice (4th Edition, ISBN:
978-0-470-18352-6)

34. Sarle, W. S. (1996). Stopped training and other remedies for overfitting. Computing Science
and Statistics, pp. 352 – 360.

35. Stoer, J., Bulirsch, R. (1991) Introduction to Numerical Analysis (Second Edition), Springer.
36. Yan, W. Q. (2019). Introduction to Intelligent Surveillance: Surveillance Data Capture, Trans-

mission, and Analytics (3rd Edition). Springer.
37. Yan, W. Q. (2023). Computational Methods for Deep Learning: Theory, Algorithms, and

Implementations (2nd Edition). Springer
38. Ye, Y., Nie, Z., Liu, X., Xie, F., Li, Z., Li, P. (2023). ROS2 real-time performance optimization

and evaluation. Chinese Journal of Mechanical Engineering, 36(1), 144.
39. Zhang, Y., Li, M. (2023). Optimizing sign language recognition for low-power devices: A

comparative study of lightweight models. Sensors, 23(4), 891- 910.
40. Zhao, H., Xu, S., Yan, W., Xu, D. (2025) Design and optimization of target detection and 3D

localization models for intelligent muskmelon pollination robots. Horticulturae, 11(8), 905.

Glossary

3D reconstruction In computer vision, the creation of three-dimensional models
from a set of digital images.

Activation function In artificial neural networks, the activation function of a node
defines the output of that node given an input or set of inputs.

Camera resectioning In camera calibration, the process of estimating the param-
eters of a pinhole camera model approximating the camera that produced a given
photograph or video.

Camera retreat Camera retreat is a phenomenon that occurs in visual servoing
when a camera moves away from a target and then returns. It can cause problems
with visual servoing control tasks, such as those involving multi-joint manipulators.

Dead reckoning In navigation, dead reckoning is the process of calculating the
current position of a moving object by using a previously determined position, or fix,
and incorporating estimates of speed, heading (or direction or course), and elapsed
time.

Depth perception The ability to perceive distance to visual objects in the world by
using the visual system and visual perception.

Distillation In machine learning, distillation is the process of transferring knowl-
edge from a large model to a smaller one.

Emotional quotient The ability to perceive, use, understand, manage, and handle
emotions.

Federated learning is a sub-field of machine learning with multiple entities col-
laboratively to train a model while ensuring that the data remains decentralized.

Forward kinematics The use of kinematic equations of a robot to compute the
position of end-effector from specified values for joint parameters.

Image skeletonization A skeleton (or medial axis) representation of a shape or
binary image, computed by means of morphological operators.

177

178 Glossary

Imitation learning A paradigm in reinforcement learning, where an agent learns
to perform a task by supervised learning from expert demonstrations.

Intelligence quotient A total score derived from a set of standardised tests or sub-
tests designed to assess human intelligence.

Inverse reinforcement learning is to learn the underlying reward function that the
expert seems to be maximizing.

Inverse kinematics The mathematical process of calculating variable joint param-
eters needed to place the end of a kinematic chain.

Mobile computing In human–computer interaction, a computer is expected to be
transported during normal usage and allow for transmission of data, which can in-
clude voice and video transmissions.

Path planning A computational problem to find a sequence of valid configurations
that moves the object from source to destination.

Reinforcement learning An interdisciplinary area of machine learning and opti-
mal control concerned with how an intelligent agent should take actions in a dy-
namic environment in order to maximize a reward signal.

Robotic control The system contributes to movement of robots.

Robot end-effector The device at the end of a robotic arm, designed to interact
with the environment.

Robot operating systems ROS is an open-source robotics middleware suite.

Robot manipulator A device used to manipulate materials without direct physical
contact by the operator.

Robotic olfaction The automated simulation of the sense of smell.

Spline curve In mathematics, a spline is a function defined piecewise by polyno-
mials.

Stereo imaging A technique for creating or enhancing the illusion of depth in an
image by means of stereopsis for binocular vision.

Third-eye method Third-eye method maps a reference image of a pair of stereo
camera into the pose of a third camera, measuring the similarity between created
virtual image and the actually recorded third image.

Triangulation In trigonometry and geometry, triangulation is the process of deter-
mining the location of a point by forming triangles to the point from known points.

Turing test A test of a machine’s ability to exhibit intelligent behavior equivalent
to, or indistinguishable from, that of a human.

Visual servoing A method which makes use of feedback information extracted
from a vision sensor to control the motion of a robot.

Names in This Book

Reverend Thomas Bayes (1701 – 1761)
Andrew Barto (1948/1949 –)
John F. Canny (1958 –)
Richard Ernest Bellman (1920 – 1984)
Yoshua Bengio (1964 –)
Sergei Natanovich Bernstein (1880-1968)
Pierre Bézier (1910–1999)
Valentino Braitenberg (1926-2011)
Paul de Casteljau (1930–2022)
Maurice Fréchet (1878–1973)
Carl Friedrich Gauss (1777–1855)
David Hilbert (1862 – 1943)
Geoffrey Hinton (1947 –)
John Hopfield (1933 –)
Rudolf Emil Kálmán (1930 – 2016)
Carl Gustav Jacob Jacobi (1804 – 1851)
Reinhard Klette (1950 – 2020)
Johann Heinrich Lambert (1728 – 1777)
Yann Andre LeCun (1960 –)
David Courtenay Marr (1945 – 1980)
August Ferdinand Möbius (1960 –)
John Carlyle Raven (1902 – 1970)
Irwin Sobel (1940 –)
Isaac Jacob Schoenberg (1880 – 1968)
Richard Sutton (1957/1958 –)
Alan Turing (1912 – 1954)
Georgy Feodosevich Voronyi (1868 – 1908)
David Wechsler (1896 – 1981)

179

Index

2D manipulator, 56
3D cameras, 151
3D prismatic, 59
3D reconstruction, 59, 91

A2A, 10
Acceleration, 63, 168
Accelerometer, 169
Accelerometers, 130
Action, 137
Actions, 11
Activation function, 112
Actuator, 54
Actuator force, 54
Actuators, 34, 58
Adder, 163
Addition, 163
Affine transformation, 18, 153
Agent, 8
Agents, 101
AlexNet, 24
Allele, 132
AlphaGo, 136
Alternating current, 58
Altitude, 168
Amorphous computing, 131
Anaglyphs, 94
Anchor box, 114
Anchor box offset, 114
Androids, 34
Angular rate, 130
Angular velocity, 54, 63, 168
Animations, 103
Arithmetic operations, 111, 163
Arm-type robots, 31, 59
Artificial immune systems, 131
Artificial neural networks, 10

Aspect ratio, 92, 94
Assembly, 8
Attitude, 54, 130
Augmentation, 111
Augmented reality, 103
Autocomplete, 169
Autoencoder, 10
Automata, 37
Automatic differentiation, 24
Automatic vehicle navigation, 156
Autonomous systems, 5
Autonomy, 58
Average pooling, 112, 113
Azimuth, 168

Bézier curve, 15
Bézier curves, 17
Backbone, 114
Backward chaining, 131
Base distance, 94
Base learners, 142
Base models, 142
Baseline distance, 94
Batch normalization, 112
Bayes’ law, 22
Bayes’ rule, 22, 131
Bayes’ theorem, 22, 131
Bearing angle, 168
Behavior planner, 156
Behavior planning, 162
Behavioral cloning, 139
Behavioral robot, 37
Bernstein basis, 17
Bernstein form, 15
BERT, 116
Bidirectional encoder representations, 116
Bilinear interpolation, 79

181

182 Index

Binary color, 72
Binary cross entropy, 114
Bio-inspired computing, 132
BLAS, 171
Blob, 6, 8, 78, 150
Blob detection, 78
Block decomposition, 170
Block distance, 42
Boston Dynamics, 14
Boundary conditions, 63
Bounding box, 81, 113
Brain-inspired algorithms, 132
Bundle adjustments, 74

Camera baseline, 94
Camera calibration, 6, 71, 74, 85, 94, 151
Camera geometry, 94
Camera matrix, 74
Camera origin, 154
Camera pair, 104
Camera panning, 6
camera parameters, 85
Camera retreat, 149, 152
Camera tilting, 6
Camera zooming, 6
Canny edge detector, 77
CapsNets, 24
CAPTCHA, 135
Car valet, 162
Cartesian coordinate system, 61
Cartesian coordinates, 59
Cartesian pose, 151
Cascading diffusion model, 119
CCD camera, 92
Cell, 116
Cellular automata, 131
Central projection, 93
Chain, 53
Chain rule, 11
Chain-of-thought, 101, 110
Chatbot, 9, 101
Chatbots, 101, 110
ChatGPT, 24, 61, 101, 110, 111
ChatGPT-4, 135
Chessboard, 74
Chromosome, 132
Circle, 152
Circle detection, 83
Classification score, 115
CLIP, 119
Clipping window, 153
Closing, 79
Cloud computing, 161
Cluster computing, 167

CNNs, 24
Cold-start data, 117
Collaborative learning, 141
CompfyUI, 9
Compliance, 59
Computational cost, 38
Computing power, 9, 14
Conditional probability, 22
Confusion matrix, 119
Conic curves, 20
Contour, 6
Control law, 153
Control node, 156
Control points, 15, 17
Conventional neural networks, 111
Convex hull, 16
ConvNets, 24, 111
Convolution, 112
Convolution kernel, 76
Convolution operation, 76
Convolution operations, 112
Convolutional layer, 112
Convolutional layers, 112
Copilot, 110
Corner, 82, 150, 152
Corner extraction, 74
Cost function, 113
Cost map, 39
CoT, 101, 110, 118
Course, 168
Crossover, 132
CUDA GPUs, 111
Cumulative reward, 137
Current flows, 58
Curvature, 21

D* algorithm, 39
DA converter, 6
DALL · E, 24
DALL·E 2, 119
Darwin’s theory of evolution, 132
Data access rights, 141
Data distribution service, 162
Data minimization, 141
Data privacy, 141
Data quality, 139
DC motors, 58
DDPMs, 119
De Casteljau’s algorithm, 15
Decay function, 113
Decision forest, 131
Decision making, 131
Decision networks, 131
Decision tree, 131

Index 183

Deep deterministic policy gradient, 143
Deep learning, 5, 109
Deep learning playground, 11
Deep nets, 111
Deep Q-learning, 129
Deep scene understanding, 110
DeepSeek, 110
DeepSeek Coder, 117
DeepSeek-LLM, 117
DeepSeek-V3, 117
Demonstrations, 139
Denoising diffusion probabilistic models, 119
Dense matrices, 171
Dense stereo, 94
Depth cameras, 151
Depth estimation, 103, 105
Depth perception, 9
Derivatives, 17
Device control, 162
DFN, 12
Diffusion models, 10
Dify, 9
Dilated image, 79
Dilation, 79
Direct current, 58
Disparity, 94
Disparity map, 104
Distillation, 118
Distortion effects, 85
Distortion parameters, 74
Distributed learning, 141, 166
DiT, 24, 119
DNN, 171
DoF, 59
Downsampling, 112
Driving maneuver, 156
Drone, 59
Dynamic Bayesian networks, 131
Dynamic environment, 137
Dynamic range, 92

Edge, 6, 8, 150
Edge detector, 77
EE, 54
Eigenvalue computations, 170
Eigenvalues, 20
Eigenvectors, 20
Electric motors, 58
Electrical components, 56
Electronic compass, 48
Electronic motors, 61
End-effector, 31, 58, 59, 149
End-to-end, 111
End-to-end methods, 111

ENIAC, 11
Ensemble learning, 142, 166
Entropy, 22
Epipolar constraint, 94
Epipolar geometry, 94
Epipolar line, 94
Epipolar plane, 94
Epoch, 113
Eroded image, 78
Erosion, 79
Euclidean distance, 42
Evidence, 131
Evolutionary algorithms, 132
Evolutionary computation, 131
EXIF data, 6
Expert system, 131
Exploding gradient problem, 115
Exponential function, 113
Extrinsic parameters, 74, 94, 150
Eye-in-hand, 150
Eye-to-hand, 150

Face detection, 10
Facial emotion recognition, 61
Fast Fourier transform, 171
Feature map, 111, 112
Federated learning, 141, 166
Field of View, 73
Field of view, 154
Filters, 77
Finite State Machine, 37
First-order logic, 131
Fitness, 132
Fitness function, 132
Flattened, 119
Flying robot control, 139
Flying robots, 59
Focal length, 74, 94
Force, 130
Forget gate, 116
Forward chaining, 131
Forward kinematics, 54, 151
FoV, 110, 150
FPGA, 111
Fréchet inception distance, 119, 121
Full autonomy, 58
Full scale IQ, 135
Full self driving, 6
Fully connected layer, 112, 116
Fully connected layers, 112
Function approximator, 137
Functional analysis, 42
Fuzzy logic, 131

184 Index

GA, 59
Game theory, 131
GAN, 10, 24
Gantry, 59
Gaussian diffusion, 119
Gaussian filter, 77
Gemini, 101, 110
Generalization, 139
generation, 111
Generative pre-trained transformer, 111, 116
Genetic algorithm, 59, 129, 132
Geodesic, 21
Gflops, 119
Global matching, 96
GMRES, 171
Goal check, 162
Google Brain, 116
Google Colab, 166
Google Colaboratory, 166
Google street view, 155
GoogLeNet, 24
GPS, 130
GPS signals, 48
GPU, 9, 13, 111
GPU acceleration, 173
GPU computing, 111
GPUs, 161
Graphics memory control, 165
Graphics processing unit, 165
Grasping, 103
Grayscale color, 72
Grid cell, 38
Gripper, 64
Ground truth, 10, 114
GRU, 12
Gynoid, 59
Gyroscopes, 130

Hallucination, 10
Hardware abstraction, 162
Head, 114
Heuristic search, 131
Hidden layers, 12
Hierarchical structure, 111
High performance computing, 163
HMI, 9
Holistic plan, 38
Holistic scene, 9, 130
Holonomic constraints, 38
Holonomic way, 38
Homogeneous transformation, 19
Hough transform, 83
HRI, 23, 58, 101
Human expression of emotions, 61

Human intelligence, 134
Human interaction, 58
HVS, 14
Hydraulics, 61
Hyperspectral images, 85

I-divergence, 22
ID3, 24
Illumination, 76
Image binarization, 78
Image center, 74
Image closing, 85
Image denoising, 119
Image dilation, 85
Image distortion, 74
Image erosion, 85
Image formation, 71, 73
Image generation, 119
Image inpainting, 119
Image morphology, 78
Image opening, 85
Image outpainting, 119
Image processing, 71, 76, 152, 165
Image rotation, 82
Image scaling, 82
Image skeletonisation, 79
Image translation, 82
Image warping, 79
Image-based visual servo, 151
ImageNet, 24
Imitation learning, 59, 129, 139
IMU, 130
Inception score, 121
Indexing, 111
Information entropy, 22
Information fusion, 130
Information security, 162
Informed search, 131
Infrared rays, 72, 93
Inner product, 163
Input gate, 116
Input layer, 12, 112
INS, 130
Inspection, 8
Intelligence quotient, 134
Interest point, 82
Intersection over Union, 114
Intrinsic parameters, 74, 94, 150
Inverse kinematics, 54, 151
Inverse reinforcement learning, 129, 139
Invisible layers, 12
invisible layers, 112
Inward neighbor, 53
IoU, 81

Index 185

Jacobian matrix, 54, 58
Joint, 53
Joint angle, 54
Joint chain, 151
Joint controller, 151
Joint forces, 58
Joint probability, 22
Joint rotation-translation matrix, 74
Joint torques, 58

Kalman filtering, 48
Kinematic chains, 54
Kinematic model, 46
Kinematics, 59
Kinetics, 31
KL divergence, 22
Knot, 21
Knowledge base, 110

Labeled data, 111
Lambert’s cosine law, 99
Landmarks, 47
Large language model, 165
Latent layers, 112
Latent variable generative models, 119
Latitude, 168
Leaky ReLU, 113
Leaky ReLU function, 113
Learning rate, 113
Length, 54
LiDAR, 8, 130, 151
Likelihood, 131
Line, 152
Line detection, 83
Linear algebra, 18
Linear velocity, 54, 63, 130
Link offset, 54
Links, 53
LLM, 10, 11, 110
LLMs, 9
Local matching, 96
Location estimation, 47
Locus, 63
Logistic function, 116
Longitude, 168
LoRA, 117
Loss function, 113, 114
Low-rank adaptation, 117
LSTM, 11, 12, 24, 116
LU decomposition, 170

Möbius strip, 98
Machine intelligence, 59, 129
Machine translation, 12

Magnetic field, 168
Magnetometers, 130
Make decision, 8
Man-in-the-middle, 162
Manhattan distance, 42
Manipulation, 58, 103
Manipulator, 17, 31
Mask R-CNN, 24
Matching matrix, 119
MATLAB, 14
MATLAB Online, 85
Matrix factorization, 170
Matrix multiplication, 163
Matrix-matrix multiplication, 171
Matrix-vector multiplication, 171
Max pooling, 112, 113
Maximum cumulative reward, 137
MCP, 10
Mean squared error, 113, 114
Mechanical construction, 56
MediaPipe, 36, 61
Membrane computing, 131
Message passing, 162
Middleware, 14, 162
Mining, 131
Mixture of experts, 142
MLP, 24
Mobile camera, 6
Mobile computing, 161
Mobile robots, 32, 59
Model predictive controller, 139
MoE, 142
Moment, 82
Monadic operations, 76
Motif, 6, 150
MSE, 113
Multi-core computing, 161
Multi-stage training, 117
Multi-thread computing, 13
Multicore programming, 13
Multilayer perceptron, 11
Multiplication, 163
Multiprocessing, 163
Multispectral images, 85
Multithread computing, 161
Multithreading, 163
Mutation, 132
Mutual entropy, 22

Nautical mile, 21
Navigation, 8, 154
NCC, 97
Neck, 114
Neighboring links, 54

186 Index

Neural computation, 131
Neural Processing Unit, 14
Neurons, 10
Newton’s second law, 54
Newton’s laws, 131
NLP, 12
NMS, 115
Noise, 76
Normal vector, 99
Normalized cross-correlation, 97
NURBS, 17

Object detection and recognition, 6, 10, 13, 23,
72, 78

Object segmentation, 10
Object tracking, 6
Objectness score, 114
Observations, 137
Obstacle avoidance, 72, 130
Occupancy grid, 38, 39
Occupancy map, 143
Ollama, 9
Ollama model, 110
Open WebUI, 9
OpenAI Sora, 11
OpenCV, 83
Opening, 79
Optimal behavior, 137
Optimal policy, 137
Optimization problems, 133
Orientation, 54, 63, 168
Orthogonal matrices, 19
Output gate, 116
Output layer, 12, 112
Outward neighboring link, 53
Overfitting, 113

Package management, 162
PAN, 114
Pan, 93
Parabola, 17
Parallel algorithms, 171
Parallel alignment, 104
Parallel computing, 9, 13, 111, 166
Parallel manipulators, 54
Parallel optic axes, 93
Parallel optical axes, 94
Parallel solvers, 171
Parallelism, 163
Parking operations, 156
Patchify, 121
Path, 53, 63
Path aggregation network, 114
Path analyzer, 156

Path planner, 162
Path planning, 130, 156
Path smoother, 162
Payload, 34, 59
Pedestrians, 103
Performance IQ, 135
Perspective transformation, 19
PGI, 115
Physics simulations, 171
Pick-and-place robot, 8, 53, 103
Piece-wise curve, 64
Pitch, 59, 168
Planning, 103, 131
Point cloud, 130
Point correspondences, 74
Point ordering, 74
Polynomial, 21
Polynomials, 64
Pooling, 112
Pooling operation, 112, 113
Pose, 63
Pose estimation, 151
Pose-based visual servo, 151
Position, 168
Posterior, 131
Pre-trained models, 111
Preceding link, 58
Predicative logic, 131
Principal point, 74
Prior, 131
Prismatic joint, 54
PRM, 42
Probabilistic reasoning, 131
Probability distribution, 22
Programmable gradient information, 115
Prompt, 10
Proportional control law, 153
Proportional controller, 33
Propositional logic, 131
Pruning, 118
PTZ camera, 6, 93

QR iteration, 170
Quadratic curves, 20
Quantization, 118
Qwen, 110

R-CNN, 24
Radial distortion, 94
RAG, 10, 110
Rapid-exploring random tree, 45
Rational Bézier curve, 17
Raven’s progressive matrices, 134
RBM, 24

Index 187

Reaction force, 58
Real color, 72
Reasoning, 131
Receptive field, 112
Rectangle, 152
Rectified linear unit, 112
Recursive method, 15
Reflection, 76
Regions of interest, 150
Reinforcement learning, 11, 59, 117
Relative entropy, 22
ReLU function, 112
ResNet, 24
Retrieval, 111, 131
Revolute joint, 54
Reward, 11, 137
Riemannian manifold, 21
Rigid body, 54
RMS, 24
RNN, 12, 116
RNNs, 11
Robot arm, 149
Robot control, 149
Robot dynamics, 56
Robot manipulator, 149
Robot operating system, 156, 161, 162
Robot tracking systems, 130
Robotic control, 5, 31, 59
Robotic dynamics, 31
Robotic intelligence, 136
Robotic kinematics, 54
Robotic mapping, 61
Robotic navigation, 61, 72
Robotic vision, 161
Roll, 59, 168
ROS, 9, 14, 36, 56
ROS 2, 162
Rotation, 153
Rotation matrix, 74
Rotation-translation matrix, 74
Rotational joint, 54
RRT, 45

Scalability, 119, 139
Scalar products, 171
Scaling, 153
Scaling factors, 94
Scene understanding, 8
Search, 131
Search range, 94
sectioning, 47
Self-attention, 116
Semi-global matching, 96
Sensor fusion, 9

Sensors, 58
Sequential computing, 163
Sequential decision, 131
Serial computing, 163
Serial manipulators, 54
Serial-link manipulator, 53, 54, 58
SFT, 117
Shadow, 76
Shallow nets, 111
Shape, 6, 130
Shared weights, 112
Shortest path, 21, 38
Silhouette, 6, 8, 78
Silhouette image, 78
Simulated annealing, 131
Single program multiple data, 165
Singular value decomposition, 171
Singularity, 54
Skeleton, 8, 41
SLAM, 101
SLAM algorithm, 32
Sliding joint, 54
Slope, 20
Sobel kernel, 77
Softmax function, 111, 113
Softmax layer, 116
SOTA, 110, 111
SPARSE, 171
Sparse matrix computations, 171
Sparse matrix operations, 171
Sparse stereo, 94
Spatial operations, 76
Spatial pyramid pooling, 114
Spherical cameras, 154
Spherical coordinate system, 154
Spherical coordinates, 153
SPMD, 165
SPP, 114
Standard deviation, 77
State estimator, 137
State vector, 49
State-action pairs, 139
States, 11
Statistical distance, 22
Stereo camera, 91
Stereo matcher, 96
Stereo pair, 94
Stereo video, 103
Stereo vision, 7, 9, 91, 94
Stereopsis, 7
Structure-from-motion, 9
Student model, 118
Subtraction, 163
Sum of absolute differences, 78

188 Index

Sum of squared differences, 78
Supercomputing, 13
Supervisory, 58
Surveying, 47
SVM, 11
Swarm intelligence, 131, 132
Swarm intelligence-based algorithms, 132

Taxicab distance, 42
Teacher model, 118
Teleoperation, 58
Template matching, 78
Template size, 94
Temporal derivative, 63
Tensor, 171
Tensor algebra, 171
Tensor processing unit, 14
TensorFlow, 11
Termination condition, 113
Tetrahedron, 98
Texture, 8, 130
Third-eye method, 96
Tilt, 93
Torque, 17, 58
Torques, 54
Torso, 34
ToT, 110
Traffic collision analysis, 130
Transfer function, 112
Transfer learning, 11, 111, 166
Transformer, 11, 116
Translation, 63, 153
Translation matrix, 74
Translational joint, 53
Tree-of-thought, 110
Trial-and-error, 137
Triangulation, 47
Turing test, 129, 135
Twist, 54

Ultraviolet, 130
Uninformed search, 131
UV, 93

Vanishing gradient problem, 115
Vector addition, 171
Vector computation, 163
Vector computers, 163
Vehicle lane keeping, 139
Vehicles, 103
Velocity, 63
Velocity profiler, 162
Verbal IQ, 135
VGG, 24
Viewing frustum, 152
Visible layer, 112
Vision sensors, 150
Vision transformer, 111, 118
Vision-based navigation, 154
Visual distance, 103
Visual features, 153
Visual field, 112
Visual object recognition, 9
Visual odometry, 47
Visual servo controller, 154
Visual servoing, 36, 59, 149
ViT, 109, 118, 119
Voronoi diagram, 41
Voronoi roadmap, 41

WAIS 5, 135
WAIS-II, 135
Weak learners, 142
Wheeled robots, 32
Wireless communication, 167
Work envelop, 8, 53
Work envelope, 59

Yaw, 59
YOLO, 24, 113
YOLOv3, 114
YOLOv4, 114
YOLOv9, 115

Zero mean, 49
Zoom, 93

Short Book Description

Robotic vision represents the cutting edge of modern computing, combining arti-
ficial intelligence, deep learning, and advanced robotics to enable intelligent ma-
chines. As universities worldwide pivot from conventional machine learning to
robotic vision, this book serves as an essential guide for researchers, educators, and
students entering this transformative field.

This comprehensive resource introduces core topics such as humanoid and arm-
type robots, robotic image processing, stereo vision, 3D reconstruction, scene un-
derstanding, and vision-based control. Advanced algorithms, including Kalman fil-
ters, imitation learning, inverse reinforcement learning, diffusion transformers, and
multimodal approaches, are explored in depth. Practical applications are seamlessly
integrated with theoretical knowledge, offering lab-based exercises and discussions
to enhance hands-on learning.

Readers will gain unique insights into robotic navigation and planning, visual
servoing, federated learning, and cutting-edge techniques like the “third eye algo-
rithm” and camera retreat. Designed for accessibility, the book assumes no prerequi-
sites beyond foundational courses in machine learning and deep learning, making it
suitable for diverse audiences. With its structured learning approach and emphasis
on both foundational principles and emerging innovations, this book is an indis-
pensable tool for mastering robotic vision. Whether you aim to advance research,
develop autonomous systems, or integrate AI-driven robotics into real-world appli-
cations, this book provides the knowledge and skills to succeed.

189

Key Points of This Book

This book symmetrically delivers the content of robotic vision associated with deep
learning and robotic intelligence, in the core area of contemporary AI knowledge.
The research scientists and computer engineers will benefit from this book.

This book exactly matches with the postgraduate students’ needs in universities.
The book provides the first-hand experience of higher education teaching with the
content selected from the student’s reactions in the classes. The PG students will
benefit from the textbook without difficulties.

The peer colleagues and teachers in universities and research institutions will
benefit from the textbook, they will find the suitable teaching materials and pada-
gogies in the knowledge deliver and example lab reports of lab sessions from this
book.

191

