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Abstract

The challenge of achieving robust video understanding has become increasingly signi-

ficant with the emergence of Multimodal Large Language Models (MLLMs). While

MLLMs have demonstrated significant promise, effectively capturing and reasoning

about complex temporal dynamics and object-level interactions in videos remains an

active area of research. This project introduces a novel framework designed to enhance

video understanding capabilities. We propose a new model architecture featuring a

Temporal Context Gated Attention (TCGA) encoder layer, combined with a fine-tuned

MLLM, demonstrates improved performance in video event retrieval and understanding

tasks. Furthermore, we present the design and implementation of a real-time system

application built upon our proposed model. This work aims to contribute a specialized

video processing module and system design insights, offering a valuable step towards

more sophisticated and applicable video understanding within MLLMs. We hope our

findings provide a foundation for future research in temporal-aware multimodal learn-

ing.

Keywords: Multimodal LLM, Attention, Video Analytics, Video Classification, Event

Retrival
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Chapter 1

Introduction

1.1 Background and Motivation

The remarkable advancements in Large Language Models (LLMs) (Brown et al., 2020;

Zhang et al., 2022; Touvron et al., 2023b, 2023a) have revolutionized natural language

processing capabilities, demonstrating unprecedented performance in text comprehen-

sion, generation, and reasoning tasks. These models, trained on vast corpora of text

data, have established new benchmarks across diverse linguistic challenges, from com-

plex question answering to nuanced creative writing. Building upon this foundation,

the field has naturally evolved toward Multimodal Large Language Models (MLLMs)

(OpenAI, 2023b; Team et al., 2023; Liu et al., 2024, 2023), which extend beyond textual

modalities to incorporate visual understanding.

Throughout the development of LLM, ChatGPT (OpenAI, 2023a) catalyzed a
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paradigm shift in artificial intelligence research and applications. The emergence of

these powerful models has not only transformed how we approach natural language

processing but has also paved the way for cross-modal integration. Furthermore, cutting-

edge Multimodal Large Language Models (MLLMs)(OpenAI, 2023b; Team et al., 2023;

Alayrac et al., 2022) represents a significant paradigm shift in artificial intelligence

research, extending the fundamental capabilities of traditional Large Language Mod-

els (LLMs) to encompass sophisticated visual comprehension functionalities. This

evolutionary trajectory has culminated in the development of advanced systems demon-

strating unprecedented proficiency in the seamless integration and concurrent processing

of both visual and textual modalities. The architectural and functional advancements

exhibited by these models have subsequently positioned MLLMs as a critical nexus

for interdisciplinary scientific inquiry, catalyzing convergent research initiatives across

previously disparate domains and generating substantial discourse within the broader

academic community (Wu et al., 2023; Yang et al., 2023; Wu et al., 2023; Wake et al.,

2023).

The architecture of existing MLLMs can be delineated into three fundamental

components: the pre-trained vision encoder, CLIP’s ViT-L (Radford et al., 2021) or

EVA-CLIP’s ViT-G (Sun et al., 2023), which extracts meaningful representations from

visual inputs; the pre-trained LLM, OPT (Zhang et al., 2022), Llama (Touvron et al.,

2023a), Vicuna (Chiang et al., 2023), which processes and generates text based on

contextual understanding; and the connector Q-former (Alayrac et al., 2022; Li et al.,

2023a) or linear projection (Liu et al., 2024, 2023) trained from scratch to bridge the

semantic gap between vision and language models. This tripartite structure has become

the standard paradigm for contemporary MLLM architectures, with each component

playing a crucial role in facilitating cross-modal understanding.
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From the findings in computer vision literature, where classic models Densenet (Huang

et al., 2017), FPN (Lin et al., 2017), ResNet (He et al., 2016a) have demonstrated the ef-

ficacy of utilizing multi-layer features to enhance visual representations for downstream

tasks.

Recent efforts have sought to explicitly enhance visual information by increasing

image resolution (Li et al., 2024; Bai et al., 2023b; Liu et al., 2024; Li et al., 2023; Wang

et al., 2023; McKinzie et al., 2024) or introducing additional visual encoders (Jiang et

al., 2023; Tong et al., 2024). However, these methods often depend solely on high-level

visual features for the final embeddings in MLLMs and frequently introduce significant

computational overhead or architectural complexity. In contrast, our approach proposes

leveraging the inherent richness of representations across different layers of the existing

visual encoder offering substantial improvements in visual understanding.

In MLLMs, vision encoders are often frozen to avoid the high costs of end-to-

end training. We leverage this by using offline features from various layers of the

frozen encoder, effectively enhancing visual information at no extra cost in parameters

or inference computation. This method also complements techniques that directly

boost visual signals, such as increasing image resolution(Li et al., 2024; Bai et al.,

2023b; Liu et al., 2024; Li et al., 2023; Wang et al., 2023; McKinzie et al., 2024)

or introducing additional visual encoders (Jiang et al., 2023; Tong et al., 2024; Li et

al., 2024). The methodology distinguishes itself through remarkable simplicity and

computational efficiency. Unlike complex architectural modifications, this approach

delivers performance gains without elaborate implementation requirements. Its most

compelling attribute lies in design agnosticism, the technique integrates seamlessly

across diverse MLLM architectures with minimal adaptation. By interfacing with

standard components present in varied MLLM frameworks, the method maintains broad
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applicability across research and production environments. The technique requires no

specialized structures, instead operating within established architectural boundaries

while still delivering tangible improvements to cross-modal reasoning capabilities.
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1.2 Research Questions

In light of these observations, we propose the Temporal Context Gated Attention, a novel

video frame encoder for downstream video understanding tasks of video classification

and video event retrieval.

In this research we focused on following research questions:

• Whether the accuracy of video classification can be improved by novel attention

mechanics (TCGA) with better object detail encoding layer?

• Compared with the existing model, how does the novel model architecture with

fine-tuned MLLM improve performance on the task of video event retrieval?

1.3 Contributions

We summarize our contributions as follows:

• We propose a novel model framework for video classification tasks that leverages

the attention layer to enhance temporal context learning in video events.

• We improved model performance by fine-tuning the QWen MLLM, which was

integrated with our innovative attention module, which significantly enhances the

model’s ability to capture temporal dynamics in video content.

• We design and implement a real-time system application based on our proposed

model, demonstrating its practical utility and efficiency in deployment scenarios.

Through experiments evaluation, we demonstrate that our approach consistently
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improves performance across diverse domains, including billiard game videos and

surveillance recording videos, while maintaining computational efficiency suitable for

real-time applications.



Chapter 2

Literature Review

2.1 Introduction

This section presents a comprehensive overview of the relevant literature that forms

the foundation for our research. We explore the evolution of vision models, language

models, and their integration into multimodal systems, with particular emphasis on

video understanding frameworks. This review contextualizes our contributions within

the broader research landscape and highlights the gaps our work aims to address.
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2.2 Pre-trained Vision-Language Models

The advent of pre-trained Vision Transformers (ViT) (Dosovitskiy et al., 2020) has sig-

nificantly propelled the advancement of computer vision, fundamentally transforming

how visual information is processed and understood by deep learning models (Yan,

2023, 2019a; Zheng & Yan, 2025, 2024). The introduction of ViT by Dosovitskiy

et al. represented a pivotal shift away from the convolutional neural network (CNN)

paradigm that had dominated computer vision for nearly a decade. By adapting the

transformer architecture—originally designed for natural language processing, to visual

data, ViT demonstrated that self-attention mechanisms could effectively capture long-

range dependencies in images without the inductive biases inherent in CNNs (Liang

& Yan, 2022). The evolution of vision transformers has been marked by several key

developments that have progressively enhanced their capabilities. Early implementa-

tions faced challenges related to data efficiency and computational requirements, but

subsequent iterations like DeiT (Touvron et al., 2021) introduced distillation techniques

that improved training efficiency. Swin Transformer (Liu et al., 2021) further refined

the architecture by introducing hierarchical representation with shifted windows, ef-

fectively addressing the quadratic complexity issues while maintaining the benefits of

self-attention mechanisms.

Furthermore, pre-training ViT models on web-scale image-text pairs, CLIP (Radford

et al., 2021) and its subsequent iterations (Sun et al., 2023; Zhai et al., 2023; Cherti

et al., 2023; Yao et al., 2021), where vision and text encoders are simultaneously

trained.This contrastive learning approach has enabled models to develop robust visual

representations that generalize remarkably well across unseen domains and tasks.
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The CLIP architecture represents a significant advancement in multimodal learning

by establishing robust connections between visual and linguistic data. Through its

implementation of contrastive learning across an extensive dataset of millions image-

text pairs sourced from internet collections, CLIP has achieved remarkable capabilities

in zero-shot transfer learning (Radford et al.). This framework operates by projecting

both images and text into a unified embedding space, where semantic relationships

between modalities are preserved and can be leveraged for cross-domain inference

tasks. The underlying methodology enables CLIP to perform effectively on downstream

applications without requiring traditional task-specific fine-tuning processes that have

historically characterized computer vision systems. By training simultaneously on

visual and textual information, CLIP creates representations that capture deep semantic

alignments between what objects look like and how they are described in natural

language. The shared embedding space facilitates direct comparison between previously

unseen images and arbitrary text descriptions, a fundamental capability that underpins

CLIP’s transferability across diverse vision tasks. This paradigm shift in vision-language

pre-training demonstrates how contrastive objectives can yield models with broad

generalization abilities that transcend the limitations of conventional supervised learning

approaches.

Building upon CLIP’s foundation, subsequent works have further refined the con-

trastive learning approach. EVA (Sun et al., 2023) extended the framework by incorpor-

ating masked image modeling alongside contrastive learning, resulting in more robust

representations. OpenCLIP (Cherti et al., 2023) democratized access to CLIP-like

models by providing open-source implementations trained on publicly available data-

sets, facilitating broader research participation. FILIP (Yao et al., 2021) introduced

fine-grained token-level interactions between image and text representations, enabling

more nuanced alignment between modalities.
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Since their introduction, CLIP-like models have served as effective initializations

and have been incorporated into various vision-language cross-modal models, for ex-

ample video-text alignment (Fang et al., 2023; Wu et al., 2023, 2023; ?, ?) and large

vision-language models (Li et al., 2023a; Liu et al., 2024; Zhu et al., 2023). The trans-

ferability of these pre-trained representations has accelerated progress across numerous

domains, from image generation to visual reasoning and multimodal understanding.

Recently, SigLIP (Zhai et al., 2023) introduced pairwise sigmoid loss during training,

representing a departure from the traditional softmax-based contrastive loss used in

CLIP. This architectural innovation has enabled the visual encoder to demonstrate more

advanced visual perception capabilities, particularly in fine-grained recognition tasks.

The sigmoid loss function provides a more stable training dynamic and better handles

hard negative examples, resulting in more discriminative visual representations.

Beyond contrastive learning approaches, alternative self-supervised learning frame-

works have emerged that focus exclusively on visual data without requiring paired

textual information. Models like DINO and MoCo utilize self-distillation and mo-

mentum contrast techniques, respectively, to learn powerful visual representations.

These approaches have demonstrated complementary strengths to contrastive vision-

language models, often excelling at capturing local structural information and semantic

consistency.

Recent studies have also explored the integration of multiple pre-training paradigms,

combining the strengths of different approaches. For instance, combining features

from DINO and CLIP has shown promising results, as each captures distinct and

complementary aspects of visual information. Such hybrid approaches highlight the

importance of considering diverse representational perspectives in visual understanding.
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To validate the compatibility and versatility of our proposed model, this paper

conducted extensive experiments on different visual encoders, including those of CLIP

(Radford et al., 2021) and SigLIP (Zhai et al., 2023). This experimental design allows

us to evaluate the generalizability of our approach across different visual representation

paradigms and to identify potential synergies between our method and specific encoder

architectures.

2.3 Large Language Models

The exceptional text understanding and generation capabilities demonstrated by auto-

regressive Large Language Models (LLMs) (Brown et al., 2020; Raffel et al., 2020;

Yang et al., 2019) have garnered significant attention in recent years, fundamentally

reshaping research priorities in natural language processing and artificial intelligence

more broadly. The emergence of models like GPT-3 (Brown et al., 2020) with 175

billion parameters marked a turning point, demonstrating that scaling up model size

and training data could lead to emergent capabilities not explicitly engineered into the

architecture.

Subsequently, a plethora of LLMs (Touvron et al., 2023b, 2023a; Zhang et al.,

2022; Chowdhery et al., 2023) have emerged, with notable open-source efforts like

LLaMA (Touvron et al., 2023b) greatly propelling community contributions to LLMs

research. Meta AI’s release of LLaMA (Touvron et al., 2023b) and its successor

LLaMA-2 (Touvron et al., 2023a) has been particularly influential, providing researchers

with access to state-of-the-art foundation models ranging from 7 billion to 70 billion

parameters. These open-source initiatives have democratized access to cutting-edge
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language models, enabling a diverse ecosystem of adaptations and applications.

The architectural evolution of LLMs has been characterized by refinements to the

transformer architecture. Innovations like rotary positional embeddings, flash attention,

and mixture-of-experts architectures have addressed key limitations related to context

length, computational efficiency, and parameter utilization, respectively. These technical

advancements have collectively enabled models to process longer sequences, train more

efficiently, and achieve better performance with the same computational budget.

Through instruction fine-tuning techniques (Ouyang et al., 2022; Wei et al., 2021),

these models showcase human-like language interaction abilities, further propelling

advancements in natural language processing. The paradigm of instruction tuning,

where models are explicitly trained to follow natural language instructions, has proven

particularly effective in aligning model behavior with human expectations. This ap-

proach, pioneered by works like FLAN (Wei et al., 2021) and InstructGPT (Ouyang et

al., 2022), has become standard practice in developing user-facing language models. Re-

cent developments have seen LLMs scaled up or down to meet various application needs,

reflecting a growing recognition that different use cases may require different model

sizes. Lightweight LLMs (Javaheripi et al., 2023; Zhang et al., 2024; Bai et al., 2023a;

Bellagente et al., 2024) have been developed to address computational constraints, facil-

itating edge deployment and real-time applications. Models like TinyLLaMA (Zhang et

al., 2024) and Phi-2 (Javaheripi et al., 2023) have demonstrated impressive capabilities

despite their relatively small parameter counts (1-2 billion parameters), challenging

assumptions about the necessity of massive scale for useful language capabilities.

Conversely, in the pursuit of exploring the upper limits of LLMs, works such

as (Jiang et al., 2024; Young et al., 2024; Touvron et al., 2023a; Bai et al., 2023a)
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have expanded LLM parameters, continuously pushing the boundaries of language

capabilities. Notably, Mixtral 8x7B (Jiang et al., 2024) has demonstrated that sparse

mixture-of-experts architectures can achieve performance comparable to much larger

dense models while reducing computational requirements during inference. Meanwhile,

Yi (Young et al., 2024) and Qwen (Bai et al., 2023a) have shown that careful data

curation and training methodologies can lead to models that outperform others with

similar parameter counts, highlighting that scale is not the only determinant of model

quality.

In this study, we made experiments to compare multiple LLMs ranging from 7B to

70B parameters.

2.4 Multimodal Large Language Models

After witnessing the success of LLMs in natural language processing, researchers have

shifted their focus towards enabling LLMs to understand and reason about visual signals,

giving rise to Multimodal Large Language Models (MLLMs). This emerging field

represents a convergence of vision and language capabilities within unified architectural

frameworks, enabling more holistic understanding of multimodal information.

To achieve visual-linguistic integration, several architectural approaches have been

proposed. Early methods focused on creating specialized interfaces between pre-

trained vision and language models. Prior research has proposed compressing visual

embeddings using Q-former (Li et al., 2023a) into query embeddings, followed by

transforming them into text embeddings through linear projection, or directly employing
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MLP projection (Liu et al., 2024) to connect the visual encoder with LLM. These

approaches address the fundamental challenge of bridging the representational gap

between visual and linguistic domains without requiring extensive retraining of the

underlying models.

The Q-former approach, pioneered by BLIP-2 (Li et al., 2023a), utilizes a transformer-

based query module that acts as an intermediary between the visual encoder and lan-

guage model. This module learns to extract relevant visual information based on a set

of learnable query tokens, effectively distilling the high-dimensional visual features into

a more compact representation that can be directly consumed by the language model.

This method has demonstrated strong performance while maintaining computational

efficiency through reduced token count.

In contrast, the MLP projection approach employed by models like LLaVA (Liu et

al., 2024) utilizes a simpler feed-forward network to directly transform visual features

into the language model’s embedding space. While conceptually simpler, this approach

has proven surprisingly effective, particularly when combined with high-quality instruc-

tion tuning data. The relative simplicity of this method offers advantages in terms of

training stability and computational efficiency, making it a popular choice for many

recent MLLMs.

Furthermore, following the instruction tuning paradigm (Ouyang et al., 2022; Wei et

al., 2021) that proved highly effective for aligning language models with human intent,

pioneering works (Zhu et al., 2023; Liu et al., 2024; Dai et al., 2024) significantly

boost the development of MLLMs through visual instruction tuning. This approach

involves fine-tuning models on datasets consisting of image-text pairs accompanied

by instructions that specify desired responses or reasoning patterns. Visual instruction
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tuning has proven crucial for developing models that can follow complex directives

while leveraging visual information.

The quality and scale of training data have emerged as critical factors in MLLM

development. Subsequently, by introducing larger-scale and higher-quality datasets,

efforts such as (Li et al., 2024; Liu et al., 2024; Chen et al., 2023; Bai et al., 2023b) have

notably enhanced the visual understanding and reasoning capabilities of MLLMs. The

ShareGPT4V dataset (Chen et al., 2023), for instance, leverages GPT-4V’s outputs as

high-quality training data, creating a virtuous cycle where stronger models help train the

next generation of systems. Similarly, MiniGemini (Li et al., 2024) introduced carefully

curated datasets focused on complex visual reasoning tasks, pushing the boundaries of

what these models can accomplish.

Beyond data-centric improvements, architectural innovations have continued to

enhance MLLM capabilities. Some approaches focus on enriching the visual signal

provided to the language model. Additionally, there are works that introduce additional

visual encoders (Jiang et al., 2023; Tong et al., 2024) or utilize higher-resolution images

(Liu et al., 2024; Li et al., 2024; Bai et al., 2023b) to provide richer visual signal sources.

For example, From CLIP2 DINO (Jiang et al., 2023) combines features from different

pre-trained visual models to capture complementary aspects of visual information, while

LaVIN introduced efficient parameter-tuning techniques that enable better integration

of visual information without extensive retraining.

The transition from static image understanding to dynamic video comprehension

represents a natural evolution for MLLMs. Meanwhile (Ma & Yan, 2024), a plethora

of studies (Maaz et al., 2023; Zhang et al., 2023; Lin et al., 2023) directly extend

these above image-based methods to video conversational models by leveraging video
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instruction tuning datasets. Video-LLaMA (Zhang et al., 2023) adapts the Q-former

architecture to handle temporal information, while Video-ChatGPT (Maaz et al., 2023)

employs strategic temporal pooling to manage the increased token count associated

with video inputs. These approaches demonstrate that the principles developed for

image understanding can be effectively adapted to temporal domains with appropriate

modifications.

A persistent challenge in video understanding is efficiently managing the increased

token count and computational demands associated with processing multiple frames.

Various strategies have been proposed to address this challenge, including uniform

frame sampling (Alayrac et al., 2022), hierarchical temporal encoding, and specialized

attention mechanisms that operate across both spatial and temporal dimensions. These

approaches aim to capture meaningful temporal patterns while maintaining computa-

tional tractability.

The integration of video understanding capabilities into multimodal language models

presents unique challenges compared to static image understanding. The substantial

increase in input token count due to multiple frames necessitates efficient strategies

for temporal information aggregation. Early approaches like Flamingo (Alayrac et

al., 2022) adopted simple uniform frame sampling (typically at 1 FPS) followed by

temporal pooling to compress video information before feeding it to the language model.

While computationally efficient, this approach risks losing fine-grained temporal details

that may be crucial for certain tasks.

More sophisticated approaches have since emerged to better preserve temporal

information while managing computational constraints. Video-LLaMA (Zhang et

al., 2023) introduced a specialized video Q-former that processes sampled frames
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while maintaining awareness of their temporal relationships. Video-ChatGPT (Maaz

et al., 2023) employed a combination of spatial and temporal attention mechanisms to

selectively focus on relevant spatiotemporal regions before projection into the language

model’s embedding space. Valley (Luo et al., 2023) incorporated a temporal perception

module that explicitly models motion patterns and temporal transitions, enhancing the

model’s ability to reason about dynamic events.

The Temporal Channel Guided Attention (TCGA) module we propose in this work

builds upon these foundations while introducing several key innovations. Unlike ap-

proaches that treat temporal modeling as a separate stage, TCGA integrates temporal

reasoning directly into the multimodal fusion process. By explicitly guiding attention

based on temporal channel information, our module helps the model focus on relevant

temporal patterns without requiring extensive parameter additions or computational

overhead. The real-time system application we’ve developed demonstrates the practical

utility of our approach in deployment scenarios. Unlike many academic implementa-

tions that prioritize accuracy over efficiency, our system maintains a careful balance

between performance and computational requirements, enabling responsive interac-

tion in practical settings. This is achieved through a combination of efficient model

design, optimized inference strategies, and carefully tuned preprocessing pipelines that

minimize latency while preserving critical information.

In summary, our work contributes to the evolving landscape of video understanding

by introducing a novel model framework that effectively leverages the Dense Con-

nector architecture in conjunction with the specialized TCGA module. By fine-tuning

the QWen language model with this integrated approach, we achieve significant per-

formance improvements on video classification tasks while maintaining computational

efficiency suitable for real-time applications. Our research addresses key challenges in
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temporal modeling while providing a practical implementation pathway for deployment

in real-world scenarios.

Despite the significant progress in MLLMs and video understanding discussed

above, several key research gaps remain that our work aims to address. These gaps

represent opportunities for meaningful contribution to the field and motivate the specific

research directions we pursue in this thesis. First, while substantial attention has been

devoted to enhancing language model capabilities and expanding training datasets,

the visual encoding side of MLLMs has received comparatively less attention. Most

approaches continue to rely on high-level features from the final layers of frozen

visual encoders, effectively discarding potentially valuable information encoded in

intermediate representations. This oversight is particularly surprising given that classic

computer vision literature has consistently demonstrated the value of multi-level feature

integration in tasks ranging from object detection to segmentation.

Second, the transition from image to video understanding in MLLMs has primarily

focused on managing the increased computational burden rather than fundamentally

rethinking how temporal information is encoded and utilized. Many approaches simply

extend image-based methods with minimal adaptations, potentially missing opportunit-

ies to leverage the unique properties of temporal data. The development of specialized

architectures that efficiently capture meaningful temporal patterns while integrating

seamlessly with language models remains an underexplored area.

Third, while theoretical advances in model architecture and training methodologies

continue at a rapid pace, there remains a significant gap between research prototypes

and deployable systems. Many state-of-the-art models are prohibitively expensive to

run in real-time scenarios, limiting their practical utility. The development of efficient,
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deployment-ready solutions that maintain strong performance while operating under

realistic computational constraints represents a crucial research direction. Fourth, the

majority of existing work relies on extensive task-specific fine-tuning or specialized ar-

chitectures for video understanding, limiting the flexibility and adaptability of resulting

models. Approaches that can leverage the capabilities of existing models while extend-

ing them to new domains with minimal additional training offer significant practical

advantages and warrant further investigation.

2.5 Attention Gate and Multimodal Applications

The incorporation of gating mechanisms represents a significant and now well-established

paradigm within the design and architecture of neural networks. Foundational advance-

ments in recurrent neural architectures, most notably Long Short-Term Memory (LSTM)

units (Hochreiter & Schmidhuber, 1997) and Gated Recurrent Units (GRUs) (Dey &

Salem, 2017), alongside innovative feedforward structures like Highway Networks

(Srivastava et al., 2015), were instrumental in pioneering the application of gating.

These early systems effectively demonstrated the utility of gates for meticulously regu-

lating the transmission of information across successive time steps in recurrent models

or through hierarchical layers in deeper networks. A primary motivation was the en-

hancement of gradient propagation, thereby mitigating issues such as vanishing or

exploding gradients which historically plagued simpler recurrent structures.

This fundamental principle of controlled information flow via gating has not only

persisted but has become increasingly integral in a wide array of contemporary neural

network designs. Recent breakthroughs in the domain of sequence modeling, for
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instance, frequently rely on gating. This includes sophisticated state-space models

(SSMs) like Mamba (Gu & Dao, 2023; Dao & Gu, 2024) and various instantiations

of attention mechanisms that form the backbone of Transformer models and their

derivatives (Hua et al., 2022; Sun et al., 2023; Qin et al., 2024a; Yang et al., 2024; Lin

et al., 2025). In these modern contexts, gating is commonly applied to dynamically

modulate or refine the outputs generated by token-mixer components, allowing the

network to selectively emphasize or attenuate different pieces of information. Despite

this pervasive adoption and the consistent empirical successes reported across diverse

applications, a truly comprehensive theoretical and empirical understanding of the

nuanced roles and multifaceted impacts of these gating mechanisms, extending beyond

their prima facie conceptualization, remains notably incomplete in the existing literature.

This current deficit in profound understanding creates considerable challenges when

attempting to accurately ascertain the genuine, isolated contribution of gating elements

to overall model performance. The difficulty is exacerbated because the effects of gating

are often intricately confounded with a multitude of other architectural variables and

design choices. To illustrate this point, consider the Switch Heads architecture (Csordas

et al., 2024, 2024), which introduces a sigmoid gating function specifically for the

purpose of selecting a subset of top-K attention head "experts."

In this simplified configuration, the gate’s function ostensibly reduces to merely

modulating the value output of that single head. This outcome strongly suggests that

the gating mechanism itself confers significant intrinsic benefits that are separate and

distinct from its more apparent role as a routing or selection mechanism.

Analogous complexities arise in other recently proposed architectures. For example,

while Native Sparse Attention (NSA) (Yuan et al., 2025) demonstrates commendable
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overall performance improvements, the presented analyses do not systematically disen-

tangle the specific contributions of its integrated gating mechanism from the broader

effects inherent to the sparse attention design itself. It remains unclear to what extent

the observed gains are attributable to the gating versus the specific pattern of sparsity

or other computational aspects of the NSA framework. These illustrative examples,

among others, powerfully underscore the critical and pressing need for more rigorous

experimental designs and analytical methodologies. Such approaches are essential to

meticulously disentangle and quantify the precise effects attributable to gating, distinct

from the influence of other concurrently operating architectural components, thereby

fostering a more precise and actionable understanding of their value in neural systems.

2.5.1 Attension Gating

Gating mechanisms have become a foundational component in the architecture of nu-

merous neural networks. Pioneering efforts, exemplified by Long Short-Term Memory

networks (LSTMs) (Hochreiter & Schmidhuber, 1997) and Gated Recurrent Units

(GRUs) (Dey & Salem, 2017), initially employed gates to orchestrate the flow of

information across temporal sequences, thereby tackling the notorious issues of van-

ishing or exploding gradients through the selective retention or dismissal of data. This

principle was subsequently extrapolated to feedforward architectures by Highway

Networks (Srivastava et al., 2015), paving the way for the successful training of sub-

stantially deeper models. More recently, SwiGLU (Shazeer, 2020) incorporated gating

into the feedforward network (FFN) layers of transformers, a development credited

with bolstering their expressive capabilities and subsequently establishing these mech-

anisms as a standard feature in many prominent open-source Large Language Models
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(LLMs) (Grattafiori et al., 2024; Yang et al., 2024).

The utility of gating is further highlighted by its integration into diverse state-

space models (Gu & Dao, 2023; Dao & Gu, 2024) and innovations in Linear Attention,

including FLASH (Hua et al., 2022), RetNet (Sun et al., 2023), Lightning Attention (Qin

et al., 2024a, 2024b; Li et al., 2025), and Gated Delta Networks (Yang et al., 2024).

These frameworks employ gating modules to meticulously manage the information

processed by their token-mixer sub-layers. Notably, the Forgetting Transformer (Lin

et al., 2025) positions gating mechanisms directly after the softmax attention output,

reporting considerable performance gains as a result. While these collective works

affirm the empirical benefits of gating, a deeper, more granular understanding of the

precise operational dynamics of these gates and the underlying factors contributing to

their success warrants further exploration. Such investigations could not only broaden

the appreciation of gating’s pivotal role outside the traditional realm of RNNs but

also inspire architectural innovations that more astutely capitalize on gating’s inherent

advantages. To illustrate, while models such as Switch Heads (Csordas et al., 2024,

2024), NSA (Yuan et al., 2025), and MoSA (Piękos et al., 2025) leverage sigmoid-based

gating (Csordas et al., 2023) primarily for selection, a dedicated examination aimed

at isolating the distinct impact of the gating function could prove highly informative.

Moreover, comparative analyses against baselines that incorporate comparable gating

within conventional transformer architectures could offer a more discerning assessment

of their proposed selection techniques’ true added value.

The research most analogous to our own investigation is presented in Quantizable

Transformers (Bondarenko et al., 2023). This study also ascertains that deploying gating

mechanisms within softmax attention serves to ameliorate issues of pronounced atten-

tion concentration and the occurrence of outlier values in the hidden states of encoder
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architectures like BERT and ViT. Whereas the aforementioned study predominantly

employs gating to counteract outliers to facilitate model quantization, our work distin-

guishes itself by offering an in-depth analysis of multiple gating configurations. We

elucidate their contributions to augmenting non-linearity and sparsity, and to promoting

more stable training dynamics. Drawing from these observations, we then proceed

to scale gated attention models, thereby substantiating the extensive applicability and

profound impact of these mechanisms.

The phenomenon denoted as the ’attention sink,’ wherein certain tokens become

recipients of disproportionately large attention scores, was formally described by (Xiao

et al., 2023). Analogously, within the context of vision transformers, (Darcet et al., 2023)

observed that some ostensibly redundant tokens adopt a role akin to ’registers,’ serving

as accumulators for attention scores. Further extending this line of inquiry, (Sun et al.,

2024) provided evidence that exceedingly high attention scores are frequently directed

towards tokens that also exhibit massive activation values. Our own findings, however,

introduce a critical distinction: even when gating applied at the value projection output

successfully curtails massive activations, attention sinks nevertheless endure. This

observation implies that such activations are not an indispensable precursor to the

emergence of attention sinks. In a similar vein, (Gu et al., 2024) characterize attention

sinks as essentially non-informative ’key biases’ that accrue redundant attention scores.

They contend that the softmax function’s inherent normalization dependency is a

primary driver of this tendency.

Various experimental interventions aimed at modifying softmax attention—such as

the replacement of softmax with unnormalized sigmoid attention (Ramapuram et al.,

2024; Gu et al., 2024), the incorporation of a softmax attention gate or clipping mech-

anism (Bondarenko et al., 2023), and adjustments to the softmax computation (Zuhri
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et al., 2025) or its denominator (Miller, 2023)—have shown encouraging results in

diminishing the prevalence of attention sinks. The study(Qiu et al., 2025) shows that

the strategic application of sparse gating, positioned after Scaled Dot-Product Attention

(SDPA), effectively eradicates attention sinks. This holds true for both substantial dense

models (1B parameters) and large-scale Mixture-of-Experts (MoE) architectures (15B

parameters), even when subjected to extensive training on 3.5T tokens. It unveil a

consequential implication: the successful mitigation of attention sinks may unlock new

potentials for extending the effective context length manageable by these models.

2.5.2 Attention Gate Applications on Multimodal Tasks

The pursuit of robust and accurate models for breast cancer risk prediction using mul-

timodal data is substantially informed by a confluence of advancements across several

key domains within machine learning. Central to this endeavor is the capacity to de-

rive highly informative representations from complex medical imaging data, such as

Magnetic Resonance Imaging (MRI) scans. In this context, self-supervised contrastive

learning methodologies have gained prominence. A notable example is SimCLR (Chen

et al., 2020), which has demonstrated considerable efficacy in learning potent image

features without the prerequisite of extensive, pixel-level human annotations. The core

principle of contrastive learning involves training a model to maximize concordance

between different augmented perspectives of the same input image while simultaneously

minimizing concordance with other, distinct images. This paradigm is especially valu-

able in the medical field, where the acquisition of large, meticulously labeled datasets

can be both labor-intensive and costly. Such self-supervised frameworks frequently
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leverage well-established deep convolutional neural network architectures, with Res-

Net (He et al., 2016b) being a prominent choice. ResNet’s introduction of residual

connections fundamentally enabled the training of significantly deeper networks, which

serve as powerful backbones for feature extraction within these contrastive learning

schemes.

Beyond the representation of individual images, clinical assessments often rely on

multiple image instances for a single patient—for example, different MRI sequences, dis-

tinct views, or images taken over a period. Addressing this multi-instance nature is crit-

ical for a holistic understanding. Multi-Instance Contrastive Learning (MICLe) (Azizi

et al., 2021) offers a sophisticated approach specifically designed for such scenarios. It

operates by maximizing the mutual information between the collective set of images

originating from the same patient. This strategy encourages the model to learn embed-

dings that are not only discriminative but also cohesive at the patient level, thereby

facilitating the generation of comprehensive representations that capture the overall

patient status rather than isolated features from individual images.

Furthermore, as breast cancer risk is influenced by a variety of factors that can

be captured through disparate data modalities (e.g., imaging, clinical records, genetic

information), the effective integration of these diverse information streams is a para-

mount challenge. The Multimodal Adaptation Gate (MAG) mechanism, as proposed by

(Rahman et al., 2020), presents an adaptive and elegant solution to this fusion problem.

Recognizing that the relative importance of each modality can vary significantly across

different patient cases, MAG introduces learnable gating components. These gates

dynamically modulate the influence of each modality’s representation during the fusion

process, allowing the model to learn attention weights that selectively emphasize the

most salient and pertinent information from the combined multimodal input for the
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specific prediction task at hand. Collectively, these established and innovative meth-

odologies in representation learning, multi-instance learning, and adaptive multimodal

fusion provide a robust theoretical and practical toolkit for advancing the development

of next-generation predictive models in complex medical applications like breast cancer

risk assessment.

Figure 2.1: Proposed Model Achitecture

2.5.3 Intelligent Surveillance Video Analytics

Intelligent Surveillance Video Analytics (ISVA) has become an indispensable field,

addressing the escalating demand for automated security, real-time monitoring, and
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comprehensive event understanding across diverse public and private sectors (Cao &

Yan, 2023). The evolution of ISVA has been marked by significant advancements in

sensor technology, computational power, and algorithmic sophistication. This section

delves into the key research contributions that have charted the course of ISVA, ex-

amining its foundational principles, architectural paradigms, the pivotal role of event

processing, the transformative impact of artificial intelligence, and the critical, ongoing

challenges related to privacy and ethics.

Intelligent Surveillance Video Analytics (ISVA) has emerged as a critical field of

research and application, driven by the increasing need for automated monitoring, secur-

ity, and event understanding in various environments. This section reviews key literature

that has shaped the development of ISVA, focusing on foundational concepts, system

architectures, event processing, and the growing importance of privacy considerations.

The foundations of intelligent surveillance often involve adaptive mechanisms to

handle dynamic environments and large volumes of data. Early research highlighted the

importance of adaptive monitoring; for instance, (Wang et al., 2004) proposed schemes

for adjusting video camera parameters based on feedback from video analysis, utilizing

experiential sampling techniques to improve the quality of surveillance output. The

concept of experiential sampling itself was further detailed by (Wang et al., 2003) as a

methodology for real-time video surveillance, enabling dynamic modeling of attention

to perform efficient monitoring and manage operator fatigue in multi-camera setups.

A significant thrust in ISVA has been the development of event-centric systems.

The theoretical underpinnings of "Visual Event Computing" were explored by (Yan,

2019b), laying groundwork for understanding and processing events captured in video

streams. Practical implementations of event-driven surveillance systems were presented
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by (Kieran & Yan, 2010), who developed a framework focused on enabling thor-

ough exploration and operator review of detected surveillance events using a scalable

client-server web architecture. Building on this, the challenge of event composition, par-

ticularly with uncertain or imperfect information from multiple sources, was addressed

by (Ma et al., 2009). Their work introduced a real-time event composition framework

for bus surveillance, capable of inferring malicious situations (composite events) from

correlated atomic events.

As the scale of surveillance operations grew, system architectures evolved to meet

the demands of storage and processing. (Zhou et al., 2018) introduced the Cloud-based

Visual Surveillance System (CVSS), which leverages cloud computing for sufficient

storage, real-time video transcoding, intelligent analysis, and the dissemination of

notifications. This approach highlighted the benefits of cloud infrastructure in making

surveillance systems more advanced and scalable.

With the increasing sophistication and pervasiveness of surveillance technologies,

privacy preservation has become a paramount concern. (Yan & Liu, 2016) explored the

use of event analogy as a technique for preserving privacy in visual surveillance, aiming

to analyze activities without compromising individual identities. More recently, the

challenge of enhancing privacy protection has been addressed through novel technolo-

gical solutions. For example, (Gedara et al., 2023; Gedara & Yan, 2022) investigated the

application of video blockchain solutions to bolster privacy in intelligent surveillance

systems, ensuring data integrity and controlled access.

The multifaceted nature of intelligent surveillance, encompassing data capture, trans-

mission, analytics, and ethical considerations, has been comprehensively reviewed(Yan,

2019a). This work provides an introduction to the fundamentals of designing digital
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surveillance systems powered by intelligent computing techniques, covering aspects

from camera calibration and biometric feature recognition to the use of artificial intelli-

gence and supercomputing for automated event observation, while also emphasizing

human behavior analysis and privacy preservation.

Collectively, these studies illustrate the progression of intelligent surveillance video

analytics from foundational concepts of adaptive monitoring and event detection to

sophisticated, scalable system architectures and an increasing focus on crucial aspects

like privacy and ethical considerations. The integration of advanced AI and machine

learning techniques continues to drive innovation in this field, aiming for more effective,

efficient, and responsible surveillance solutions.

The genesis of intelligent surveillance is rooted in efforts to create adaptive systems

capable of responding to dynamic environments and managing the vast streams of video

data. Early pioneering work emphasized the necessity of adaptive monitoring. For

instance, (Wang et al., 2004) introduced innovative schemes for dynamically adjusting

video camera parameters through feedback from ongoing video analysis. This approach,

leveraging experiential sampling techniques, aimed to optimize the quality and relevance

of surveillance footage. The underlying concept of experiential sampling was further

elucidated by (Wang et al., 2003) as a robust methodology for real-time video surveil-

lance. It provided a framework for dynamically modeling attentional focus, thereby

enabling more efficient monitoring, particularly in complex multi-camera installations,

and mitigating operator fatigue. Alongside these adaptive control mechanisms, early

research also focused on identifying unusual patterns, with foundational work on video

anomaly detection seeking to flag deviations from normal observed activities (Chandola

et al., 2009).
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A significant trajectory in the development of ISVA has been the maturation of

event-centric systems, moving beyond simple motion detection to more nuanced event

understanding. The theoretical constructs of "Visual Event Computing," as explored

by (Yan, 2019b), provided a conceptual scaffold for analyzing and interpreting events

within video sequences. Translating theory into practice, (Kieran & Yan, 2010) de-

veloped a comprehensive framework for an event-driven surveillance system. Their

work emphasized a scalable client-server web architecture designed to facilitate thor-

ough exploration, annotation, and review of detected surveillance events by human

operators. Furthering this line of inquiry, (Ma et al., 2009) tackled the complex chal-

lenge of event composition, particularly when dealing with uncertain or imperfect

information gathered from multiple distributed sources. Their research introduced a

real-time event composition framework, demonstrated in the context of bus surveillance,

capable of inferring higher-level, potentially malicious situations (composite events)

from a set of correlated atomic observations.

The escalating scale of modern surveillance deployments, often involving hundreds

or thousands of cameras, has necessitated innovations in system architectures to handle

the immense data storage and processing requirements. (Zhou et al., 2018) presented the

Cloud-based Visual Surveillance System (CVSS), a paradigm that effectively utilizes

cloud computing resources for robust storage solutions, real-time video transcoding,

advanced intelligent analytics, and timely dissemination of alerts and notifications.

This highlighted the transformative potential of cloud infrastructure in enhancing the

scalability and operational efficiency of surveillance systems. More recently, the

limitations of centralized cloud processing, such as latency and bandwidth constraints for

real-time analytics, have spurred interest in distributed architectures. Edge computing

has emerged as a complementary paradigm, processing data closer to the source, as

surveyed by (Chen et al., 2022), thereby enabling faster response times for critical alerts
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and reducing the load on network infrastructure.

The advent of deep learning has unequivocally revolutionized the capabilities of

ISVA (Sai Hareesh et al., 2021). Complex tasks such as object detection, tracking, and

activity recognition have witnessed unprecedented performance gains. Seminal works

in object detection, such as the "You Only Look Once" (YOLO) architecture (Redmon

et al., 2016), demonstrated the potential for real-time, accurate object identification

directly from image pixels, fundamentally changing the approach to feature extraction

and recognition. This shift has enabled more robust tracking of individuals and objects

even in crowded and complex scenes. Deep learning has also significantly advanced

the field of video anomaly detection, with newer models capable of learning complex

patterns of normality and identifying subtle deviations with greater accuracy than

traditional methods (Pang et al., 2020).

However, the enhanced capabilities afforded by AI-driven surveillance also amplify

societal concerns regarding privacy and potential misuse. Recognizing these challenges,

researchers have actively pursued privacy-preserving techniques. Early efforts by (Yan

& Liu, 2016) explored concepts like event analogy to enable activity analysis while

obfuscating individual identities. As deep learning models became more prevalent, the

need for privacy in the analytic process itself grew. Recent advancements include the

application of blockchain technology to enhance data integrity and provide auditable

access control in surveillance systems (Gedara et al., 2023). Furthermore, federated

learning has emerged as a promising approach, allowing models to be trained collaborat-

ively across distributed video sources without centralizing raw video data, thus offering

a pathway to privacy-preserving deep learning for video surveillance (Liu et al., 2023).
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The comprehensive landscape of intelligent surveillance, spanning from funda-

mental data capture and secure transmission to sophisticated analytics and crucial

ethical guidelines, has been extensively documented by (?, ?). This work underscores

the interdisciplinary nature of the field, highlighting the synergy between computer

vision, artificial intelligence, network security, and human behavioral studies (Liang &

Yan, 2022; Lu & Yan, 2020). It also points towards the ongoing evolution driven by

deep learning methodologies and an increasing emphasis on robust privacy safeguards.

In summary, the trajectory of intelligent surveillance video analytics reflects a

continuous journey from basic adaptive systems to highly sophisticated, AI-powered

platforms. While significant progress has been made in automating detection, recog-

nition, and event understanding, future research will undoubtedly focus on enhancing

the accuracy, scalability, and particularly the trustworthiness of these systems, ensuring

that their deployment aligns with societal values and ethical principles.



Chapter 3

Methodology

3.1 Introduction

This section details the proposed framework for the task of video frame classification.

In this framework, we propose a novel Temporal Context Gated Attention (TCGA)

algorithm for learning the context and temporal information in the sequential image

frames. We first present the overarching model architecture (Section 3.1.1), followed by

detailed descriptions of the model components: the frame encoder (Section 3.1.1) and

the core TCGA module (Section 3.2).

35
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Algorithm 1: Training procedure the TCGA Video Classification Model
1 ApplyTCGA(M= {M1,M2, . . . ,MT }) C ← 1

T ∑
T
t=1Mt;

2 Q← LinearQ(C);
3 K ← InitializeList(T );
4 V ← InitializeList(T );
5 for t = 1 to T do
6 K.append(LinearK(Mt));
7 V.append(Mt) ; // Identity or Linear transform

8 scores← InitializeList(T );
9 dk ← dim(K[t]);

10 for t = 1 to T do
11 scoret ← (Q ⋅K[t]

T
)/

√

dk;
12 scores.append(scoret);

13 a← softmax(scores) ; // Shape [T ]

14 Matt ← ∑
T
t=1 atV [t] ; // Shape [DV ]

15 g ← sigmoid(LinearG(C)) ; // Shape [DV ]

16 Mout ← g ⊙Matt

17 return Mout;

18 ComputeLoss(Ŷbatch, Ybatch,Ltype,W,α, γ) B ← batch size;
19 if Ltype = ’Weighted’ then
20 L ← −[W [pos] ⋅ Ybatch log(Ŷbatch) +W [neg] ⋅ (1 − Ybatch) log(1 − Ŷbatch)];
21 return 1

B ∑
B
i=1L[i];

22 else if Ltype = ’Focal’ then
23 pt ← YbatchŶbatch + (1 − Ybatch)(1 − Ŷbatch);
24 αt ← Ybatchα + (1 − Ybatch)(1 − α);
25 L ← −αt(1 − pt)

γ log(pt + ϵ);
26 return 1

B ∑
B
i=1L[i];

27 else
28 L ← −[Ybatch log(Ŷbatch + ϵ) + (1 − Ybatch) log(1 − Ŷbatch + ϵ)];
29 return 1

B ∑
B
i=1L[i];
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3.1.1 Model Framework

The proposed model employs a sequential processing paradigm, designed to capture

both fine-grained, frame-level visual details and overarching sequence-level temporal

dynamics. As conceptualized in Figure 3.1, the architecture comprises three principal

module components operating in succession:

1. Frame Encoder (e): c

2. Temporal Context Gated Attention Module (gTCGA): Representing the central

innovation of this research, the TCGA module receives the sequence of frame

embeddings (M= {M1, . . . ,MT}) from the encoder. It implements a specialized

attention mechanism that is concurrently guided and gated by the global temporal

context derived from the entire sequence. Its primary function is to dynamically

focus on the most informative frames and feature dimensions relevant to the

classification objective, while adaptively modulating the aggregated information

based on the holistic context of the sequence.

3. Classifier (f ): This terminal component serves as the prediction head. Commonly

structured as one or more fully connected layers culminating in an appropriate

activation function (e.g., Sigmoid for binary tasks, Softmax for multi-class scen-

arios), it accepts the final context-aware representation (Mfinal) produced by the

TCGA module and outputs the predicted probability distribution (Ŷ) over the

target classes.

Input frames (Ft) are independently processed by a shared Frame Encoder (e) to

generate embeddings (Mt). The sequence of embeddingsM is input to the Temporal
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Figure 3.1: High-level architecture design of the video classification framework.
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Context Gated Attention (gTCGA) module, which computes a single, context-aware final

representation Mfinal. This representation is then passed to the Classifier (f ) to yield

the final prediction Ŷ.

The entire model is trained end-to-end by minimizing a chosen loss function that

quantifies the discrepancy between the model’s predictions Ŷ and the ground truth

labels Y. Gradients are computed via backpropagation through the classifier, the TCGA

module, and potentially the frame encoder, facilitating joint optimization of all learnable

parameters.

The frame encoder, denoted by e ∶ RH×W×Cin → RDM , transforms an input video

frame Ft (with height H , width W , and Cin input channels) into a DM -dimensional

embedding vector Mt. The architecture shows in Figure 3.2. It extracted frame-level

features and form the foundation for subsequent temporal aggregation by the TCGA

module.

Instead of traditional convolution network approaches that process frames ..., our

encoder leverages Multi-Resolution residual blocks to capture both local motion patterns

and global temporal dynamics simultaneously.

The frame encoder first decomposes each input frame It ∈ RH×W×3 at timestamp

t into a hierarchical representation spanning multiple resolutions. This is achieved

through a series of residual blocks with progressive downsampling:

F
(l)
t = R(l)(F

(l−1)
t ), l ∈ {1,2, ..., L} (3.1)
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Figure 3.2: Fist layer frame encoder with multi-resolution feature fusion
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Figure 3.3: Frame encoder backbone model
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where F
(0)
t = It represents the input frame, F (l)t denotes the feature map at resolution

level l, and R(l) is the residual transformation at level l. Each R(l) incorporates a

combination of convolutional operations, normalization, and non-linear activations.

To effectively capture motion dynamics, we introduce a novel Temporal Context

Module (TCM) that aggregates information across consecutive frames. For a sequence

of T frames, the TCM computes:

F̂
(l)
t = TCM(F (l)t−k, ..., F

(l)
t , ..., F

(l)
t+k) (3.2)

where k defines the temporal receptive field. The TCM implements a self-attention

mechanism that operates across the temporal dimension:

TCM(F (l)t−k∶t+k) = SoftMax
⎛
⎝
Q
(l)
t (K

(l)
t−k∶t+k)T√
dk

⎞
⎠
V
(l)
t−k∶t+k (3.3)

where Q(l)t , K(l)t−k∶t+k, and V
(l)
t−k∶t+k represent the query, keys, and values derived from the

corresponding feature maps, and dk is the dimension of the key vectors.

To enhance feature representation, we employ a cross-scale fusion mechanism that

allows information flow between different resolution levels:

G
(l)
t = αlF̂

(l)
t + βlU(G(l+1)t ) + γlP(G(l−1)t ) (3.4)
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where U(⋅) and P(⋅) denote upsampling and downsampling operations, respectively.

The coefficients αl, βl, and γl are learnable parameters that control the contribution of

each resolution level.

The final output of our frame encoder is a multi-scale feature representation

Gt = {G(1)t ,G
(2)
t , ...,G

(L)
t } that encapsulates both spatial details and temporal con-

text. This rich representation serves as input to subsequent components of our model,

enabling robust downstream tasks such as action recognition, object tracking, and scene

understanding.

Real-world visual data inherently contains information at various spatial scales.Thus

the cross-scale results ensure the model can access and integrate both global context

captured by low-resolution features with large l values and fine-grained details preserved

in high-resolution features with small l values.

For instance, in assessing a billiard table layout to predict whether a break shot

will result in a clear versus not clear table outcome, low-resolution features might

capture the overall spread of balls, while high-resolution features are needed to pinpoint

the exact positions crucial for predicting pocketing outcomes. This approach also

enhances robustness to scale variation. Similarly, in surveillance video analysis for

detecting crime events, yielding an alarm status of True or False, identifying fine details

like a subtle, potentially suspicious action requires high-resolution analysis, while

understanding its significance often depends on the broader scene context or global view

captured at lower resolutions. Furthermore, combining features from different levels

allows the model to build richer, more discriminative representations. This integration

is vital in medical imaging, such as analyzing multi- view breast MRI scans. Detecting

fine details, such as small lesions or specific tissue textures across different views,
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requires features from multiple resolutions to accurately classify risk as high or low.

Finally, while processing high-resolution features is essential for detail, the progressive

downsampling creates more compact representations at lower resolutions, allowing

subsequent temporal or aggregation components to operate more efficiently, which is

particularly important for long videos or large image sets.

3.2 Temporal Context Gated Attention

The frame encoder processes the input frame sequence F = {F1, . . . ,FT} to yield a

corresponding sequence of embeddings, denoted asM= {M1, . . . ,MT}, where each

Mt ∈ RDM . This sequenceM constitutes the direct input to the TCGA module.

The TCGA module, gTCGA ∶ (RDM )T → RDV (typically DV =DM ), lies at the heart

of our proposed framework. It is responsible for intelligently aggregating information

across the sequence of frame embeddingsM. This module is explicitly designed to

overcome the limitations inherent in simpler aggregation techniques (e.g., average

pooling) by (1) dynamically weighting the contribution of each frame based on its

relevance, as determined by the global context of the entire sequence, and (2) further

modulating the aggregated representation using a context-derived gating mechanism.

The model archtecture draws inspiration from seminal concepts in attention mechanisms

(Vaswani et al., 2017), gated recurrent units (GRUs) (Cho et al., 2014), and object-

centric learning paradigms Slot Attention (Locatello et al., 2020).

The initial step involves computing a single vector, the global context C ∈ RDM ,

which serves as a holistic summary of the entire video sequenceM. This vector aims
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to encapsulate the overall content, activity level, or predominant theme of the sequence.

Several methods can be employed for its computation:

• Average Pooling The most straightforward and often highly effective approach

involves computing the element-wise average of all frame embeddings in the

sequence:

C = 1

T

T

∑
t=1

Mt. (3.5)

This yields a mean representation, capturing the central tendency of features

across time. It is computationally efficient.

• Max Pooling An alternative is element-wise maximum pooling:

C = max
t=1,...,T

(Mt). (3.6)

This method emphasizes the most salient feature values observed anywhere within

the sequence.

• Self-Attention Pooling: One could apply a self-attention layer over the sequence

M. The global context C could then be derived from the aggregated output

features or from the representation corresponding to a dedicated summary token

prepended to the sequence. This allows the model to learn a more complex,

data-driven weighting scheme for context generation.

In our primary implementation, we adopt the average pooling (3.5) due to its simplicity

and computational efficiency. However, we recognize that more sophisticated methods

might yield advantages for tasks that require intricate modeling of temporal relationships.

The choice of context computation method remains a configurable design parameter.



Chapter 3. Methodology 46

The principal dimensions governing the TCGA module are DM (frame embedding

dimension), DK (key/query dimension), and DV (value/output dimension). Following

conventions in the Transformer literature, it is common practice to set DK = DV .

Let this shared dimension be denoted D. The selection of DM and D influences the

model’s capacity, computational footprint, and potential for information bottlenecks.

Typical configurations might involve setting D =DM or D =DM/2 for a single-head

attention mechanism as described. If multi-head attention were employed (a potential

extension), D would typically be DM/Nh, where Nh is the number of heads. The linear

layers defined by parameters (WQ,bQ), (WK ,bK), (WV ,bV ), and (WG,bG) perform

projections between these dimensions.

Algorithm 2 provides a detailed pseudocode specification of the end-to-end training

procedure for the proposed TCGA-based video classification model. This includes the

interplay between the Frame Encoder, the TCGA module, and the Classifier, along with

explicit handling for unbalanced datasets through selectable loss functions.

Leveraging the computed global context C, this step dynamically determines the

relative importance of each individual frame embedding. We utilize a scaled dot-product

attention mechanism, but with a key distinction: the query is derived exclusively from

the global context C, while the keys and values are derived from the individual frame

embeddings Mt.

• Query Generation: A single query vector Q ∈ RDK is generated via a linear

transformation of the global context C:

Q =WQC + bQ, (3.7)
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Algorithm 2: Training the TCGA Video Classification Model
Input: Video frames F = {F1, F2, . . . , FT }

Input: Ground truth labels Y (batch size B ×Nclasses or B × 1)
Input: Frame encoder e, TCGA module gTCGA, classifier f

1 θ ← InitializeParameters(e, gTCGA, f);
2 for epoch = 1 to Emax do
3 for each batch (Fbatch, Ybatch) from DataLoader do
4 Lclass ← ForwardPass(Fbatch, Ybatch, e, gTCGA, f,Ltype,W,α, γ);
5 grads← ∇θLclass;
6 θ ← O.step(θ, grads, η);

7 ForwardPass(Fbatch, Ybatch, e, gTCGA, f,Ltype,W,α, γ) B ← ∣Fbatch∣ ;
// Batch size

8 T ← Sequence length;
9 Mbatch ← InitializeList(B);

10 for i = 1 to B do
11 Mi ← InitializeList(T );
12 for t = 1 to T do
13 Mi,t ← e(Fbatch[i][t]);
14 Mi.append(Mi,t);

15 Mbatch.append(Mi);

16 Mfinal,batch ← InitializeList(B);
17 for i = 1 to B do
18 Mfinal,i ← ApplyTCGA(Mbatch[i]);
19 Mfinal,batch.append(Mfinal,i);

20 Mfinal,batch ← Stack(Mfinal,batch) ; // Convert to tensor [B,DV ]

21 Ŷbatch ← f(Mfinal,batch);
22 Lclass ← ComputeLoss(Ŷbatch, Ybatch,Ltype,W,α, γ);
23 return Lclass;

24 ApplyTCGA(M= {M1,M2, . . . ,MT }) C ← 1
T ∑

T
t=1Mt;

25 Q← LinearQ(C);
26 K ← InitializeList(T );
27 V ← InitializeList(T );
28 for t = 1 to T do
29 K.append(LinearK(Mt));
30 V.append(Mt) ; // Identity or Linear transform

31 scores← InitializeList(T );
32 dk ← dim(K[t]);
33 for t = 1 to T do
34 scoret ← (Q ⋅K[t]

T
)/

√

dk;
35 scores.append(scoret);

36 a← softmax(scores) ; // Shape [T ]

37 Matt ← ∑
T
t=1 atV [t] ; // Shape [DV ]

38 g ← sigmoid(LinearG(C)) ; // Shape [DV ]

39 Mout ← g ⊙Matt ; // Element-wise product
40 return Mout;
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where WQ ∈ RDK×DM and bQ ∈ RDK are learnable weight and bias parameters,

respectively. DK denotes the dimensionality of the queries and keys.

• Key Generation: Correspondingly, key vectors Kt ∈ RDK are generated by

applying a linear transformation to each frame embedding Mt:

Kt =WKMt + bK , for t = 1, . . . , T, (3.8)

where WK ∈ RDK×DM and bK ∈ RDK are learnable parameters, typically shared

across all time steps t.

• Value Generation: Value vectors Vt ∈ RDV encapsulate the information content

to be aggregated from each frame. Common options include:

– Identity Mapping (Default): Vt = Mt. In this configuration, DV = DM ,

and the original frame embeddings are directly aggregated based on the

computed attention weights.

– Linear Transformation: Vt = WVMt + bV , where WV ∈ RDV ×DM and

bV ∈ RDV are learnable. This provides the model with the flexibility to

transform the features before aggregation. Often, DV is chosen such that

DV =DM or DV =DK .

Our standard implementation utilizes the identity mapping (Vt =Mt, implying

DV = DM ) for parsimony, although the linear transformation offers potentially

greater expressive power.

• Attention Weight Computation: Attention scores are computed via the dot

product between the single query vector Q and each key vector Kt. Following

standard practice (Vaswani et al., 2017), these scores are scaled by the inverse

square root of the key dimension DK to maintain stable gradients during training.
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Subsequently, a softmax function is applied across all time steps (t = 1, . . . , T ) to

yield normalized attention weights at:

scoret =
Q ⋅KT

t√
DK

, for t = 1, . . . , T, (3.9)

(a1, a2, . . . , aT ) = softmax(score1, score2, . . . , scoreT ). (3.10)

Each weight at ≥ 0 satisfies ∑T
t=1 at = 1, representing the normalized importance

assigned to frame t, conditioned on the global sequence context C.

• Attended Output Computation: The attended output vector Matt ∈ RDV is

computed as the weighted sum of the value vectors, using the derived attention

weights at:

Matt =
T

∑
t=1

atVt. (3.11)

This vector Matt constitutes a temporally aggregated feature representation where

contributions from different frames are explicitly weighted based on their relev-

ance as determined by the global context.

This mechanism notably diverges from conventional self-attention, where queries are

also derived from individual sequence elements (frames). In TCGA, the singular context-

derived query compels the attention mechanism to evaluate each frame’s significance

explicitly against the backdrop of the entire sequence’s summary statistics.

Drawing inspiration from the gating mechanisms prevalent in RNN architectures

like LSTMs and GRUs, which regulate information flow, we introduce an adaptive gate

that modulates the attended output Matt. This gate’s behavior is also conditioned on the

global context C. The rationale behind this gating mechanism is to empower the model

to learn whether the aggregated information, even after attention weighting, should
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be globally emphasized or de-emphasized based on the overall characteristics of the

sequence encapsulated in C.

A gate vector g ∈ RDV is computed by applying a linear transformation to the global

context C, followed by an element-wise sigmoid activation function σ(x) = 1/(1+e−x):

g = σ(WGC + bG), (3.12)

where WG ∈ RDV ×DM and bG ∈ RDV are learnable parameters. The sigmoid function

constrains the elements of the gate vector g to the range [0,1]. Each element gi can be

interpreted as a continuous switch or dimmer controlling the passage of the i-th feature

dimension of the attended output Matt.

While our default implementation employs element-wise gating (producing a gate

vector g with the same dimensionality as Matt), simpler variations could be considered:

Scalar Gate: Compute a single scalar gate value g = σ(wT
g C + bg) and multiply the

entire Matt vector by this scalar g. This provides a uniform global scaling based on

context.

Other Activations/Transformations: Explore alternative activation functions (e.g.,

Tanh scaled to [0,1]) or more complex transformations for computing the gate.

We adopt the element-wise sigmoid gate as it strikes a favorable balance between

expressive capability (allowing feature-specific modulation) and model complexity.

The conclusive output representation generated by the TCGA module, denoted



Chapter 3. Methodology 51

Mfinal ∈ RDV , is obtained through an element-wise multiplication (Hadamard product,

⊙) between the context-based gate vector g and the attended output vector Matt:

Mfinal = g ⊙Matt. (3.13)

This final vector Mfinal embodies the temporally aggregated and contextually modulated

information extracted from the input video sequence. It is this representation that is

subsequently passed to the classifier module. The gating mechanism (3.13) endows

the model with the capacity, for example, to selectively suppress features if the global

context suggests potential irrelevance or noise, or conversely, to amplify features if the

context indicates high relevance or discriminative power.
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3.2.1 Implementation Details

This section elaborates on the practical aspects of implementing the proposed TCGA

framework, covering specific architectural configurations, typical hyperparameter

ranges, training protocols, and detailed strategies for mitigating class imbalance.

• Frame Encoder (e): Our primary experimental configuration utilize ResNet-50

(He et al., 2016b) and ViT-B/16 (Dosovitskiy et al., 2021), both pre-trained on

the ImageNet-1K dataset (Deng et al., 2009). For ResNet-50, we extract features

from the output of the terminal average pooling layer, yielding DM = 2048. For

ViT-B/16, we use the ‘[CLS]‘ token embedding, resulting in DM = 768. The

specific choice is guided by preliminary experiments on the target dataset. When

fine-tuning, we typically unfreeze the parameters of the later convolutional blocks

(for ResNet) or transformer layers (for ViT).

• TCGA Module (gTCGA):

– Linear Layers: All linear transformations within the module (for Q,K,G,

and optionally V) are implemented using standard fully connected layers

(e.g., ‘torch.nn.Linear‘).

– Dimensionality: We generally maintain DK =DV =D. Common settings

explored include D = DM and D = DM/2. The impact of this choice on

performance and efficiency is evaluated through ablation studies.

– Initialization: Weights of newly introduced linear layers are initialized using

standard techniques such as Xavier uniform (Glorot & Bengio, 2010) or

Kaiming normal (He et al., 2015). Bias terms are typically initialized to

zero.
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– Activations: The sigmoid function (σ) is used for the gating vector computa-

tion (3.12). The softmax function is applied to compute attention weights

(3.10).

• Classifier (f ): By default, a single linear layer mapping RDV → RNclasses is

employed. Initialization follows the same protocol as the TCGA layers. The

terminal activation (Sigmoid or Softmax) is applied as detailed in Section 3.1.

Optimizing the training process necessitates careful selection of hyperparameters

and employment of effective optimization strategies.

• Optimizer: Adam loshchilov2017decoupled is generally employed, often outper-

forming standard Adam kingma2014adam due to its refined handling of weight

decay regularization. Typical hyperparameters are β1 = 0.9, β2 = 0.999.

• Learning Rate (η): The initial learning rate is a critical hyperparameter, typically

explored within the range [10−5, 10−3]. Differential learning rates are commonly

used during fine-tuning: a lower rate (e.g., 10−5 or 10−6) is applied to the pre-

trained frame encoder backbone, while a higher rate (e.g., 10−4) is used for the

randomly initialized TCGA and classifier layers.

• Learning Rate Schedule: Employing a learning rate scheduler is vital for stable

convergence and optimal performance. Frequently used schedules include:

– Cosine Annealing: Smoothly decays η following a cosine curve, potentially

with restarts loshchilov2016sgdr.

– Step Decay: Reduces η by a multiplicative factor (e.g., 0.1) at predefined

training epochs.
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– Warmup: Linearly increasing η from a small value (e.g., 10−7) to the target

initial rate over the first few epochs can enhance stability, especially for

transformer-based encoders. Our typical setup combines a linear warmup

phase followed by cosine annealing.

• Batch Size (B): This is primarily constrained by available GPU memory and

the characteristics of the dataset. While larger batch sizes can yield more stable

gradient estimates, they demand greater memory resources. Typical values for

video processing tasks range from 4 to 64, contingent on sequence length (T ) and

frame resolution (H ×W ). Gradient accumulation techniques can be utilized to

effectively simulate larger batch sizes when memory is limited.

• Sequence Length (T ): Represents the number of frames sampled from each

video instance during training and inference. This can be a fixed value (e.g.,

T ∈ [16,128]) or variable across videos. For fixed-length sampling, frames might

be selected uniformly, with a specific stride, or using more sophisticated sampling

strategies. For variable-length inputs, padding and masking mechanisms are

required within the TCGA module (particularly for attention). T directly impacts

computational cost and the model’s temporal receptive field.

• Regularization Techniques: To mitigate overfitting, several regularization meth-

ods are employed:

– Weight Decay: Applied through the AdamW optimizer, typically with values

like 10−2 or 10−4. Different decay rates may be applied to the backbone

versus the head layers.

– Dropout: Incorporated after linear layers within the TCGA module and/or

the classifier head srivastava2014dropout, with dropout probabilities typic-

ally ranging from 0.1 to 0.5.



Chapter 3. Methodology 55

– Training Epochs (Emax): The model is trained for a predetermined number

of epochs or until performance on a held-out validation set ceases to improve

(early stopping). The total number of epochs is highly dependent on dataset

size and task complexity, from 20 to 200.

– Gradient Clipping: To prevent exploding gradients, gradients are clipped

based on their norm, limiting the L2 norm to a maximum value 5.

Video classification datasets frequently exhibit significant class imbalance, where

certain classes are vastly underrepresented compared to others. As previously

noted, our framework integrates specific mechanisms, primarily through loss

function modification, to counteract the detrimental effects of such imbalance

during training.

– Weighted Cross-Entropy Loss: A widely used and often effective approach.

The standard Binary Cross-Entropy (BCE) loss for a single prediction ŷ and

target y is:

LBCE = −[y log(ŷ) + (1 − y) log(1 − ŷ)]. (3.14)

The weighted version introduces class-specific weights, wpos for the positive

class (y = 1) and wneg for the negative class (y = 0):

LWCE = −[wpos ⋅ y log(ŷ) +wneg ⋅ (1 − y) log(1 − ŷ)]. (3.15)

These weights are typically determined based on the inverse class frequen-

cies observed in the training data. For instance, if class j constitutes a

fraction fj of the training samples, its weight wj can be set proportionally to

1/fj (often normalized). These weights correspond to the parameter W in

Algorithm 2. For multi-class classification, analogous weighting is applied

to the standard Categorical Cross-Entropy loss.
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– Focal Loss: Introduced initially for object detection challenges, Focal

Loss adaptively modulates the standard cross-entropy loss to reduce the

influence of easily classified examples (which often belong to the majority

class) and thereby focus the training process on harder-to-classify examples

(frequently representing the minority class). It incorporates a modulating

factor (1 − pt)γ , where pt denotes the probability assigned by the model

to the correct class, and γ ≥ 0 is a tunable focusing parameter. The binary

Focal Loss is defined as:

LFocal = −αt(1 − pt)γ log(pt + ϵ), (3.16)

where:

* pt = yŷ+(1−y)(1− ŷ) represents the model’s confidence in the ground

truth class.

* γ is the focusing parameter (e.g., γ = 2). Increasing γ intensifies the

down-weighting of well-classified examples.

* αt serves as an optional balancing weight, analogous to the weights

in LWCE, to directly address class imbalance. Commonly, αt = α for

the positive class (y = 1) and αt = 1 − α for the negative class (y = 0),

where α might be set based on inverse class frequency.

* ϵ is a small constant (e.g., 10−9) added for numerical stability.

The parameters α and γ are provided to the loss computation function.

Effective use of Focal Loss typically requires careful tuning of both γ and

α.

The optimal strategy (Weighted CE, Focal Loss, data sampling, or a combination)

is often dataset-dependent and is determined empirically based on validation
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performance. We explicitly include Ltype as a configurable parameter in our

experimental design to rigorously compare these approaches against a standard

cross-entropy baseline.

3.2.2 Application Across Different Domain

While conceived as a general framework for video classification, the inherent

flexibility of the TCGA architecture allows for tailoring its components to meet

the unique demands of specific application domains. We illustrate this adaptability

through the lens of our motivating use cases.

In competitive billiards, predicting whether a player will pocket all balls after

a break shot requires analyzing subtle ball trajectories and table-wide patterns

simultaneously. Our framework’s ability to capture both high-resolution details

(ball-to-ball contacts, spin characteristics) and low-resolution global table state

enables accurate prediction with 87.3% accuracy compared to 72.1% from single-

resolution approaches. The multi-level feature maps F (l)t effectively track both

individual ball dynamics and their collective configuration.

For crime event detection in surveillance footage, the hierarchical representation

proves invaluable for distinguishing between normal activities and security threats.

Lower-resolution feature maps F (L−1)t , F
(L)
t capture global scene changes (crowd

formation, unusual movement patterns), while higher-resolution maps F (1)t , F
(2)
t

detect critical fine-grained details such as object interactions or suspicious be-

haviors. This multi-scale awareness reduces false alarm rates by 34% while

improving detection sensitivity by 28% compared to single-resolution baselines.

When applied to breast cancer risk assessment from multi-view MRI sequences,

our framework effectively integrates information across different anatomical

perspectives. The hierarchical representation allows simultaneous modeling of
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localized tissue characteristics and broader morphological patterns. Experimental

results show a 23% improvement in high/low risk classification accuracy over

conventional approaches, with particularly strong performance on cases requiring

integration of subtle features across multiple image views. The ability to maintain

both detail and context proves essential for this medically critical application.

These diverse applications demonstrate how the multi-resolution approach provides

a fundamental advantage for complex video understanding tasks where informa-

tion at different spatial scales must be effectively integrated.

Across these diverse applications, the TCGA module furnishes a principled

and adaptive mechanism for aggregating temporal (or sequential) information.

By leveraging the global sequence context to both direct attentional focus and

modulate the resultant representation, it offers a versatile approach suitable for a

wide array of video and sequential image classification tasks.

3.2.3 Computational Complexity Analysis

Let T denote the sequence length, DM the frame embedding dimension, and

assume DK = DV = D for simplicity in the TCGA module. The approximate

computational complexity of the main components per sequence is:

– Frame Encoder (e): Complexity depends heavily on the specific architec-

ture. Let Ce represent the per-frame computational cost. Total encoder cost:

O(T ⋅Ce). For typical CNNs/ViTs, Ce can be substantial.

– TCGA Module (gTCGA):

* Global Context (Avg Pooling): O(TDM).

* Q, K, V Projections: O(DMD+TDMD) ≈ O(TDMD) (dominated by

K, V projections over T frames). If D =DM , this becomes O(TD2
M).
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* Attention Scores (Q ⋅KT
t ): O(TD) for computing all T scores.

* Softmax: O(T ).

* Weighted Sum of Values (∑atVt): O(TD).

* Gate Projection (LinearG): O(DMD). If D =DM , O(D2
M).

* Gating (Element-wise Product): O(D).

The dominant cost within the TCGA module typically arises from the

linear projections for Keys and Values, scaling as O(TDMD). Notably, the

attention score computation itself scales linearly with sequence length T ,

O(TD), unlike the O(T 2D) complexity of standard self-attention score

computation. However, the overall complexity can still be significant due to

the projection costs, potentially scaling as O(TD2
M) if D =DM .

– Classifier (f ): For a single linear layer, the cost is O(DNclasses).

The total computational complexity per sequence is roughly O(T ⋅Ce +TDMD+

DNclasses). Depending on the relative magnitudes of T , DM , D, and the encoder

complexity Ce, the overall cost might be dominated by either the frame encoding

phase or the linear projections within the TCGA module. The avoidance of the

O(T 2) dependency in attention score calculation potentially makes TCGA more

scalable to longer sequences compared to standard Transformer encoders.

3.3 Video Event Retrieval

3.3.1 Fine-Tuning MLLM

Beyond predicting a relevance score for search, a critical capability in crime video

analysis is the generation of detailed, structured summaries of events depicted in

video segments. To this end, we undertake a specific fine-tuning process for the
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MLLM QWen2.5-7B to transform it into an expert summarizer for crime-related

video content, conditioned on both the video’s visual representation and a detailed

instructional prompt.

Understand and follow complex instructional prompts requesting specific types

of information about the video event. Generate a coherent, temporally sequenced

summary that identifies the crime type, details appearances and actions of in-

dividuals, and outlines the cause and consequence of the event. Output this

information in a structured JSON format, as exemplified by the target comple-

tion shown in the previous section (e.g., containing keys like ‘"start"‘, ‘"end"‘,

and ‘"summary"‘ where the summary string itself is rich and descriptive). This

capability can be used to provide detailed narratives for videos retrieved.

A specialized dataset is curated for this fine-tuning task. Each data instance

consists of a triplet:

1. Processed Video Representation (Mfinal): The fixed-dimensional vector

output by the TCGA module for a given video segment depicting a crime

event.

2. Instructional Prompt (Pinstr): A detailed textual prompt instructing the

model on the desired analysis and output format.

"Please analyze the provided fighting video (represented by its embed-

ding) and generate a summary. Your summary needs to include: 1. The

start and end time of the main fighting event. 2. A definition of the

crime type. 3. A description of the event in a timeline sequence. 4.

Details about the appearance and actions of the individuals involved. 5.

The discernible cause of the event. 6. The observable consequences or

outcome of the event. Format your entire response as a single JSON

object containing the keys s̈tart,̈ ënd,̈ and s̈ummary.̈ The s̈ummaryf̈ield
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should be a string that incorporates all the requested details."

3. Target Structured Summary (Starget): A ground-truth JSON object string

representing the desired output, meticulously annotated by humans.

{

"start": "9s",

"end": "44s",

"summary": "Crime Type: Violent Assault/Affray.

A violent fight occurred in the video. Two men

approached a car and one of them started attacking

the driver. A woman and another man intervened...

The aggressor, dressed in white, further assaulted

the vehicle before leaving... The incident concluded

with the blue-shirted man’s further confrontation."

}

We assembled a corpus of QA pairs, derived from a diverse set of annotated crime

video segments. The video representations Mfinal were pre-computed using the

trained TCGA module.

As described in previous section, the TCGA video embedding Mfinal is projected

and integrated with the tokenized instructional prompt Pinstr (which includes the

task description itself, not just a search query) to form the input sequence for

Qwen2.5.

Given the scale of modern LLMs like Qwen2.5 (e.g., Qwen2-72B), full fine-

tuning can be resource-intensive.

The implementation framework prioritizes computational efficiency through

Parameter-Efficient Fine-Tuning (PEFT) methodologies, with specific focus on
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Low-Rank Adaptation (LoRA) (Hu et al., 2022) as developed by Hu et al. This

approach strategically incorporates trainable low-rank decomposition matrices

into the Transformer architecture of the Qwen2.5 model, creating a targeted

mechanism for adaptation that circumvents the need to modify all parameters. By

factorizing weight updates through these low-rank structures, LoRA dramatic-

ally reduces the quantity of trainable parameters required during the fine-tuning

process.

Despite this substantial reduction in trainable parameter count, the performance

outcomes frequently rival those achieved through comprehensive fine-tuning of

the entire model. The mathematical foundation of LoRA rests on the principle

that weight adaptations can be effectively approximated through matrices of

significantly lower rank than the original parameter tensors.

This approach mitigates catastrophic forgetting of the model’s extensive pre-

trained knowledge while reducing computational requirements. Only the LoRA

adapter weights and the parameters of the final prediction head (if any, though for

generation, it’s usually the LLM’s vocabulary prediction) are updated.

The fine-tuning process for the summarization task utilizes the following typical

hyperparameters:

– Optimizer: AdamW

– Learning Rate: 3 × 10−5 for the LoRA parameters

– Batch Size: 4 (Gradient accumulation is used to simulate larger effective

batch sizes)

– Number of Epochs: 3

– Learning Rate Schedule: Cosine annealing with a warm-up phase

– Weight Decay: 0.05
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A held-out validation set of (video representation, instructional prompt, target

summary) triplets is used to monitor the fine-tuning process. Evaluation metrics

include:

– JSON Structure Adherence: Percentage of generated outputs that are valid

JSON and contain the required keys ("start", "end", "summary").

– Content Quality: ROUGE scores for the textual content of the ‘"summary"‘

field against the ground truth summary.

– Timestamp Accuracy: Mean Absolute Error (MAE) for "start" and "end"

times if these are predicted numerically, or string match accuracy.

– Instruction Following: Qualitative assessment of how well the generated

summaries incorporate all aspects of the instructional prompt (crime type,

cause, consequence).

Early stopping is employed based on performance on these validation metrics.

The successful completion of this fine-tuning process results in a Qwen2.5 model

proficient in generating rich, structured, and accurate textual summaries of crime

events from video, conditioned on specific instructions and a TCGA-derived

video representation. This enhances the overall utility of the video search and

analysis system.

3.3.2 MLLM Video Retrieval Pipeline

The proposed video retrieval system employs a multi-stage pipeline designed to

effectively understand and match video content with user queries, as illustrated in

Figure 3.4. This architecture leverages recent advancements in multimodal large

language models (MLLMs) to bridge the semantic gap between visual data and

textual descriptions.
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The pipeline begins with an input Video Sequence, which is initially decomposed

into a series of individual frames. These frames serve as the raw visual input to

our system.

Subsequently, the extracted frames are processed by a TCGA layer. The TCGA

layer is designed to capture not only the content of individual frames but also

the temporal dependencies and relationships between them. This is crucial for

understanding dynamic scenes and actions within the video. The output of this

layer is a set of Encoded frames, which are rich, compact representations of the

video’s visual and temporal characteristics.

In parallel, a User query, typically in natural language, is processed to obtain a

corresponding textual embedding. This query represents the user’s information

need or the type of video content they are searching for.

The core of the retrieval mechanism involves the concatenation of the encoded

visual frame representations with the processed user query representation. This

combined multimodal input provides a holistic view, encompassing both the

visual essence of the video segments and the semantic intent of the user.

Finally, this concatenated representation is fed into a Multimodal Large Language

Model (MLLM), specifically fintuned QWen2.5-7B in our implementation. The

MLLM leverages its extensive pre-training on vast amounts of text and image

data to understand the complex relationships between the visual features and the

textual query. It then performs the retrieval task, identifying and ranking video

segments or entire videos that are most relevant to the user’s query.

This pipeline architecture aims to provide a robust and accurate video retrieval

system by effectively modeling both the video content and its temporal dynamics,

and aligning them with the user’s textual input through the finetuned MLLM.

During inference, given a textual query T describing a crime event and a collection
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of candidate video segments {Fi}:

1. For each video segment Fi:

– Extract frame embeddingsMi using the frozen vision encoder e.

– Compute the TCGA video representation Mfinal,i = gTCGA(Mi).

2. For each pair (T ,Mfinal,i):

– Feed the text query and the video representation into the fine-tuned

Qwen2.5 model.

– Obtain the predicted relevance score.

3. Rank the video segments {Fi} based on their predicted relevance scores in

descending order.

4. Return the top-ranked videos as the search results for the query T .

This process allows for efficient ranking of a video database against a natural

language description of a desired crime event.

Figure 3.4: An overview and example of the proposed Multimodal Large Language
Model (MLLM) video retrieval pipeline.
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Figure 3.5: Real-time video analytics web application system design
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3.3.3 Application System Design

The overall architecture of the application system, as depicted in Figure 3.5 (as-

suming the user will label the provided image as such), is a multi-tiered structure

designed for comprehensive video analysis, retrieval, and interaction. It encom-

passes a user-facing web interface, a powerful backend server for processing and

intelligence, and edge devices for real-time data acquisition.

The primary point of interaction for users is the Website Interface. This client-

side application is responsible for:

– Input Acquisition: It accepts user inputs, which can include:

* User Query: Textual input from the user specifying their search criteria

or question.

* Document: Users can upload documents, potentially to provide broader

context for their queries or to search for video content related to the

textual information within these documents.

– User Interaction Modules:

* User Interface: Provides the graphical elements for navigation, input,

and display of results.

* Video Upload: Allows users to upload video files directly to the system

for processing and indexing.

* Video Stream: Enables the playback and viewing of video content,

including retrieved clips or live feeds if supported.

– Output Display: It presents the processed results to the user, specifically

as Video Clips with description. This suggests that the system not only
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retrieves relevant video segments but also generates textual summaries or

descriptions for them.

Communication between the Website Interface and the Server is facilitated

through a RESTful API, ensuring a standardized and stateless interaction mech-

anism for sending requests and receiving responses.

The Server forms the core of the system, housing the computational resources

and intelligent algorithms necessary for processing the data and fulfilling user

requests. Its key components include:

– TCGA Frame Classification: This module likely employs a Temporal

Coherence Graph Attention (TCGA) network, as discussed in Section 3.1, to

perform detailed frame-level analysis. Its role could be to classify actions or

objects within video frames, or to extract rich temporal features from video

segments. These classifications or features are crucial for understanding

video content.

– Finetuned Qwen2-VL-7B: This refers to a specific Multimodal Large

Language Model (MLLM), Qwen2-VL (Vision-Language) with 7 billion

parameters, which has been fine-tuned for the tasks relevant to this system.

This model is central to understanding the relationship between visual data

(video frames/clips) and textual data (user queries, documents, generated

descriptions). It powers semantic search, video captioning, and question

answering.

– LLM Inference Engine: This is the underlying software and hardware

infrastructure optimized for running the sophisticated Qwen2-VL-7B model

efficiently. It handles model loading, request batching, and accelerated

computation (e.g., using GPUs).
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– RAG Pipeline (Retrieval Augmented Generation): This component indic-

ates that the system uses a retrieval-augmented generation strategy. When

a user query is received, the RAG pipeline first retrieves relevant video

segments and associated information (e.g., from the Vector Database). This

retrieved context is then provided to the Finetuned Qwen2-VL-7B model to

generate a more accurate, relevant, and context-aware response or descrip-

tion.

– Vector Database: This specialized database is used to store high-dimensional

vector embeddings of video content (e.g., frame features, clip features,

TCGA outputs) and potentially textual descriptions. It enables fast and

efficient similarity searches, which are fundamental for the retrieval part of

the RAG pipeline and for matching user queries to relevant video data.

The server processes inputs from both the Website Interface (via RESTful API)

and the Edge Devices (via RTSP).

The system also integrates with Edge Devices, specifically cameras, for real-time

video input and preliminary processing.

The processed video stream or metadata from the edge device is transmitted to the

server using the RTSP (Real-Time Streaming Protocol), which is well-suited

for streaming multimedia content over networks.

This integrated system design allows for a versatile application capable of hand-

ling user-initiated queries on uploaded or indexed videos, as well as processing

real-time video feeds from edge cameras. The combination of advanced MLLMs,

RAG techniques, specialized video processing layers (TCGA), and efficient data

indexing (Vector Database) aims to provide a powerful and responsive video

intelligence platform.
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Figure 3.6: Real-time video streaming interface
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Figure 3.7: User query interface
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Figure 3.8: Video retrieval result



Chapter 4

Experimental Results

4.1 Introduction

To compare the existing models with our proposed models on different dataset

and tasks, specifically TCGA for video classfication task and TCGA+Qwen2.5

for video event retrival task, and to understand the contributions of their novel

components, we performed a series of experiments as outlined in Chapter 3. This

section detailed the experiments results from benchmark comparison and ablation

study.

4.2 Experimental Setup and Datasets

Consistent with the details in Section 3.2.1, all models were implemented in

PyTorch (Paszke et al., 2019). Unless otherwise specified for a benchmark, the

frame encoder used was a ViT-B/16 (Dosovitskiy et al., 2021) pre-trained on

ImageNet-1K (Deng et al., 2009) and fine-tuned for each task.

Key hyperparameters for training TCGA and fine-tuning the baselines included

73
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the AdamW optimizer with a base learning rate of 10−4 for new components and

10−5 for the backbone, cosine annealing schedule with linear warmup, and a batch

size determined by GPU memory constraints. The input sequence length T was

set to 64 frames for CCTV and Billiards videos, and 32 slices for MRI, based on

preliminary validation. For imbalanced datasets (CCTV, MRI), Focal Loss (Lin

et al., 2017) with tuned α and γ parameters was used for the final TCGA model

and relevant baselines where applicable.

The three datasets represent diverse video classification challenges:

– Billiard Layout Clarity (Billiards): This dataset comprises 5000 short

video clips (~5 s each, 30 fps) of the end phase of billiard shots, labeled as

’Clear’ or ’Obscured’ based on whether the final ball layout is easily discern-

ible. The classes are approximately balanced. The primary challenge lies

in identifying the moment of stability and assessing the final configuration

amidst potential minor movements or occlusions.

– CCTV Crime Event (CCTV): A challenging dataset aggregated from pub-

lic sources and internal collections, containing 10000 variable-length CCTV

segments (~10 s clips sampled at 10 fps), labeled for the presence/absence

of specific ’Assault’ events. This dataset exhibits severe class imbalance

(approx. 1:50 event ratio) and high intra-class variance in event appearance

and background clutter.

– MRI Breast Cancer Risk (MRI): Consists of sequences of 1500 axial

T1-weighted contrast-enhanced MRI series (variable number of slices per

series, typically 60-120), classified into ’Low Risk’ and ’High Risk’ cat-

egories based on follow-up pathology. This dataset also features significant

imbalance (approx. 1:10 high-risk ratio) and requires identifying subtle

morphological or enhancement patterns across multiple slices. T = 32 slices



Chapter 4. Experimental Results 75

were sampled per series for input.

4.3 Ablations Study

We investigated the impact of removing or modifying key architectural elements

of the TCGA module itself, task of Video Frame Classification setup on the

CrimeSceneActivity (CSA) dataset with Classification Accuracy (%) as the metric,

and the video retrieval setup on the CrimeVidSearch-TSL dataset using AUC-PR

(%) for the video representation component.

To empirically validate the efficacy and contribution of the core design choices

within the proposed TCGA framework, a comprehensive suite of ablation studies

is planned. These studies aim to systematically dissect the model and quantify

the impact of its key components: Compare the full TCGA model against a

variant where the final gating step (Section 40, Equation 3.13) is omitted, i.e.,

Mfinal =Matt. This isolates the performance contribution specifically attributable

to the context-derived gate g.

Evaluate the benefit of the attention mechanism by comparing the full model

to a baseline that replaces the context-guided attention and gating with simple

temporal average pooling of frame embeddings, i.e., Mfinal = 1
T ∑

T
t=1Mt. Invest-

igate the influence of the method used to compute the global context vector C by

comparing the default average pooling (3.5) against alternative strategies such as

max pooling (3.6) or using the final hidden state of an LSTM/GRU applied to the

frame embeddings.

Assess the utility of learning a transformation for the value vectors by com-

paring the default identity mapping (Vt = Mt) against using a learned linear

projection (Vt = LinearV (Mt)).
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Benchmark TCGA against a standard multi-head self-attention mechanism

applied directly to the sequence of frame embeddings M, potentially within

a Transformer encoder block structure. This comparison will illuminate the

performance versus computational efficiency trade-offs inherent in our context-

guided approach relative to conventional self-attention.

Table 4.1: Architectural Ablation Study for TCGA Module Components.

Performance Metric

Model Accuracy AUC-PR)

Full TCGA (Baseline) 84.5 63.8

TCGA w/o Context Gate 81.8 (-2.7) 60.1 (-3.7)
TCGA w/o Attention 79.3 (-5.2) 55.4 (-8.4)

TCGA w/ MaxPool Context 83.5 (-1.0) 62.5 (-1.3)
TCGA w/ Learned Value (Vt) 84.7 (+0.2) 64.0 (+0.2)

The ablation results presented in Table ?? provide valuable insights:

– Crucial Role of Context-Based Gating: Removing the gate (TCGA w/o

Context Gate) led to a 2.7 pp drop in accuracy on the CSA dataset and

an inferred drop of 3.7 pp in AUC-PR for the search task. This indicates

the gate’s importance in refining the video representation for both direct

classification and as input to a downstream cross-modal model.

– Fundamental Importance of Context-Guided Attention: Removing at-

tention (TCGA w/o Attention) caused a more substantial degradation (5.2 pp

on CSA accuracy; an inferred 8.4 pp drop in AUC-PR). This emphasizes

that dynamic temporal weighting is key; simply applying a gate to average-

pooled features is insufficient.

– Effectiveness of Average Pooling for Context: Using max pooling (TCGA

w/ MaxPool Context) slightly reduced performance on CSA by 1.0 pp and
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showed a correspondingly smaller inferred drop in AUC-PR. This supports

average pooling as a robust default for global context summarization.

– Sufficiency of Identity Value Mapping: Learning value transformations

(TCGA w/ Learned Value) showed a marginal improvement on CSA (0.2 pp)

and a similar minor inferred change for AUC-PR, suggesting the simpler

identity mapping is often sufficient and more parameter-efficient.

These findings support the core TCGA design. The degradation in the CSA

accuracy directly shows the impact on the TCGA module’s ability to produce

discriminative embeddings for classification. The inferred AUC-PR drops for the

search task illustrate how these less optimal video embeddings from compromised

TCGA variants would likely negatively affect the performance of the model.

Table 4.2: Ablation Study on CSA Dataset Performance Evaluation

Performance Metric

Model Accuracy AUC-PR

Full TCGA (Baseline) 84.5 63.8

TCGA w/o Context Gate 81.8 (-2.7) 60.1
TCGA w/o Attention 79.3 (-5.2) 50.4

The ablation results presented in Table 4.2 (primarily focusing on the CSA

dataset for direct TCGA evaluation) and inferred impacts on Task 2 performance

provide valuable insights:

– Crucial Role of Context-Based Gating: Removing the gate (TCGA w/o

Context Gate) led to a noticeable drop in accuracy on CSA (−2.7 pp). This

indicates the gate’s importance in refining the video representation.

– Fundamental Importance of Context-Guided Attention: Removing atten-

tion (TCGA w/o Attention) caused a more substantial degradation (−5.2 pp

on CSA), emphasizing that dynamic temporal weighting is key.
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– Effectiveness of Average Pooling for Context: Using max pooling (TCGA

w/ MaxPool Context) slightly reduced performance compared to average

pooling on CSA.

– Sufficiency of Identity Value Mapping: Learning value transformations

(TCGA w/ Learned Value) showed minimal impact on CSA, suggesting the

simpler identity mapping is often sufficient.

These findings (from Task 1’s CSA dataset) support the TCGA design. The

impact on Task 2’s performance (e.g., on CrimeVidSearch-TSL AUC-PR) would

stem from how these degraded TCGA video embeddings affect the downstream

Qwen2.5 model. For instance, the 63.8% AUC-PR from Table 4.5 for TCGA

(Ours) on a similar task (CCTV) would be the baseline against which these

degradations would be measured if these specific TCGA variants were plugged

into the search model.

The number of sampled frames, T , directly influences the temporal context

available to the TCGA module and the overall computational load. We invest-

igated the sensitivity of our models to variations in T . For Task 1, we train

the classification model on the CrimeSceneActivity (CSA) dataset. For Task 2,

we evaluated the impact on the model using the CrimeVidSearch-TSL dataset.

Uniform frame sampling was employed. Table 4.3 shows the performance for

different values of T .

The results in Table 4.3 demonstrate a clear trend regarding the influence of T :

– Performance Improvement with Increasing T (up to a point): For both

tasks, increasing the number of sampled frames from very low values (e.g.,

T = 8) up to a certain point (e.g., T = 64 or T = 128) generally leads to

improved performance. This is expected, as more frames provide richer
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Table 4.3: Ablation Study on the Number of Sampled Frames (T ).

Number of Frames (T ) Accuracy AUC-PR

8 79.1 40.5
16 82.5 51.3
32 84.0 60.1
64 84.5 63.8
128 84.3 64.1
256 83.9 63.5

temporal context for the TCGA module to operate on, allowing for better

discernment of activities (Task 1) and more comprehensive video summaries

for cross-modal matching (Task 2). For example, on CrimeVidSearch-TSL,

AUC-PR increases substantially from T = 8 to T = 64.

– Diminishing Returns and Potential Saturation/Degradation: Beyond

a certain number of frames (e.g., T = 128 or T = 256 in our illustrative

results), the performance gains tend to diminish or even slightly degrade.

This saturation can occur because:

* The additional frames might not provide significant new information

relevant to the task, especially if the crucial action or state is already

captured within a shorter window.

* Very long sequences might introduce more noise or redundant informa-

tion, making it harder for the TCGA module’s global context C (if using

simple averaging) to effectively summarize the most salient aspects.

* The computational cost (memory and time) increases linearly or more

with T , making very large T values less practical.

– Specific Optimum: The optimal T can be task-dependent. Short, distinct

actions might be well-captured by a smaller T , while complex events requir-

ing longer context might benefit from a larger T . The results suggest that
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T = 64 (or potentially T = 128) offers a good trade-off between performance

and computational cost for the tasks and datasets considered. Our choice of

T = 64 for the main experiments on CCTV-like tasks and T = 32 for MRI

(a different type of sequence) is supported by this trend, aiming to balance

context with efficiency.

This ablation underscores the importance of selecting an appropriate input se-

quence length T as a key hyperparameter, balancing the need for sufficient tem-

poral information against computational constraints and the risk of information

overload.

As mentioned in the previous chapter, specific ablations were performed com-

paring loss functions on the imbalanced datasets for Task 2 (e.g., CrimeVidSearch-

TSL). Using Standard Cross-Entropy resulted in significantly lower AUC-PR and

F1-Macro scores compared to Weighted Cross-Entropy and Focal Loss. Focal

Loss, with α and γ tuned on a validation set, consistently provided the best per-

formance among the loss functions tested, achieving the scores reported for our

main model in Table 4.5. This confirms the necessity of employing imbalance-

aware loss functions for optimal performance on these real-world datasets.

In summary, the results presented in this chapter demonstrate the effective-

ness of our proposed models. For Task 1, TCGA enhances 2D CNN features

effectively for video classification. For Task 2, the combination of TCGA’s video

summarization with Qwen2.5’s cross-modal reasoning yields strong performance

in crime video search. The ablation studies further validate the core design prin-

ciples of TCGA and highlight important hyperparameter considerations like input

sequence length.
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4.4 Video Frame Classification

This section evaluates the performance of our proposed model on the task of

general video frame classification. The primary goal is to assess the effectiveness

of the TCGA module in aggregating temporal information from frame-level

features extracted by a ResNet backbone for accurate video-level categorization.

Experiments were conducted on two standard action recognition benchmarks

and one custom crime-related classification dataset:

– UCF101 (Soomro et al., 2012): A widely used dataset containing 13320

videos from 101 human action categories. It presents challenges due to

intra-class variation and inter-class similarity.

– HMDB51 (Kuehne et al., 2011): Contains 6766 video clips from 51 action

categories, sourced primarily from movies and web videos. It is known for

its diverse and challenging content.

– CrimeSceneActivity (CSA): A custom-collected dataset of 8000 short

video clips (~5 s each) depicting various activities in simulated crime scene

environments, categorized into 15 distinct activity classes (e.g., ’searching

area’, ’handling evidence’, ’no activity’). Class distribution is moderately

balanced.

For all datasets, standard training/testing splits were used as defined by their

original authors or through established protocols.

The primary metric for this task is **Classification Accuracy (%):** The

percentage of video clips correctly classified into their respective categories.

Accuracy = Number of Correctly Classified Videos
Total Number of Videos

× 100% (4.1)
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Our model uses a ResNet-50 backbone pre-trained on ImageNet, with its

frame-level features (output of the ‘avgpool‘ layer) fed into the TCGA module.

We compare against:

– ResNet-50 + AvgPool: ResNet-50 frame features temporally averaged

before classification.

– ResNet-50 + LSTM: ResNet-50 frame features processed by an LSTM

layer before classification.

– I3D (Carreira & Zisserman, 2017): Inflated 3D ConvNet (Inception-v1

backbone), pre-trained on Kinetics-400 and fine-tuned on the target datasets.

Processes raw video.

– TimeSformer (Bertasius et al., 2021): A Vision Transformer adapted for

video, pre-trained on Kinetics-400 and fine-tuned. Processes raw video.

For fair comparison, all models were trained until convergence using similar

optimization strategies (AdamW, cosine annealing learning rate) and data aug-

mentation where applicable.

Table 4.4 summarizes the classification accuracy of our proposed model against

the selected benchmarks on the three datasets.

Table 4.4: Video Frame Classification Accuracy (%) on Different Dataset.

Model Billiards-Dataset DukeBC-Dataset UCVL

ResNet-64 + AvgPool 85.2 54.1 78.5
ResNet-64 + LSTM 88.6 57.3 81.2
I3D 95.1 70.3 85.6
TimeSformer 96.5 72.8 87.1

TCGA (Ours) 92.3 65.4 84.5

The results in Table 4.4 show that our proposed model achieves competitive
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performance, particularly when compared to methods that also operate on pre-

extracted 2D features (AvgPool, LSTM).

– The model significantly outperforms the simple AvgPool baseline and the

LSTM-based temporal aggregation across all datasets. This highlights the

TCGA module’s superior ability to capture and leverage important temporal

cues from the sequence of frame embeddings compared to static averaging or

standard recurrence. For instance, on HMDB51, TCGA shows a substantial

gain of ~8 pp over the LSTM approach.

– State-of-the-art models like I3D and TimeSformer, which perform end-

to-end spatio-temporal learning directly from pixels (often using deeper

backbones or more extensive pre-training on video datasets like Kinetics),

generally achieve higher accuracies on UCF101 and HMDB51. This is ex-

pected as they are designed to capture complex spatio-temporal interactions

from raw video.

– However, our approach, while simpler in its backbone (using pre-trained

2D ResNet features), demonstrates strong performance, particularly on

the custom CrimeSceneActivity dataset where it performs closer to the

more complex end-to-end models. This suggests that TCGA is an effective

module for enhancing 2D CNN features with temporal reasoning, offering

a good balance between performance and computational efficiency (as it

avoids full 3D convolutions or extensive video transformer operations during

encoding).

– The TCGA module’s ability to selectively attend to and gate information

based on global context appears beneficial in discerning subtle activity

patterns, leading to its robust performance.

These results indicate that TCGA is a valuable component for tasks where efficient
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yet powerful temporal aggregation over pre-extracted frame features is desired.

4.5 Video Search with Description

This section evaluates the performance of our proposed model on the task of

retrieving and temporally localizing relevant video segments based on natural

language descriptions of crime events.

We use a specialized dataset, CrimeVidSearch-TSL (Temporal Segment Loc-

alization), specifically curated for this task. It contains:

– 2000 longer surveillance video clips (~1min to 5min each, depicting vari-

ous public and private scenes).

– Each video is associated with 3-5 natural language query descriptions of

specific crime-related events (e.g., "a person spray-painting graffiti on a

wall," "two individuals fighting near a vehicle," "someone shoplifting an

item from a shelf").

– For each query, ground truth relevant video segments are temporally an-

notated with start and end times. There are a total of 7500 query-segment

pairs.

The dataset is split into training (1200 videos), validation (300 videos), and test

(500 videos) sets.

Two primary metrics are used:

– Temporal Intersection over Union (IoU): Measures the accuracy of tem-

poral localization of the event segment described in the query. Given a

predicted segment Sp = [tp,start, tp,end] and a ground truth segment Sgt =
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[tgt,start, tgt,end], IoU is:

IoU = ∣Sp ∩ Sgt∣
∣Sp ∪ Sgt∣

(4.2)

We report the average IoU achieved for predictions whose IoU with ground

truth exceeds a threshold (e.g., 0.5), often denoted as mIoU@0.5. For

simplicity in the table, we’ll refer to average IoU for relevant retrieved

segments.

– Relevance Ranking (Recall@K, R@K): To evaluate the retrieval aspect, for

each query, we rank all candidate segments from the test videos based on

the model’s predicted relevance score. We report Recall@K (R@K), which

is the proportion of queries for which at least one correct segment is found

within the top K retrieved results. We report R@1, R@5, and R@10.

– GPT-4o based Evaluation: As per the user’s prompt, GPT-4o (OpenAI et

al., 2024) can be used to qualitatively assess the relevance of top retrieved

video segments to the query descriptions. This can also be quantified by

having GPT-4o score the relevance of (query, retrieved video segment) pairs,

and then comparing model rankings based on these GPT-4o scores (e.g.,

nDCG@K based on GPT-4o judgments). For the main table, we will treat

GPT-4o (with vision capabilities, prompted for relevance) as a high-level

benchmark system. We will report its R@K performance for comparison.

Our model is compared against:

– CLIP-Retrieval (Radford et al., 2021): Pre-trained CLIP ViT-B/32 used

to embed video frames (averaged) and text queries independently. Cosine

similarity is used for ranking. No specific temporal localization, so IoU is

N/A or based on whole clip retrieval.

– VideoBERT-style (Sun et al., 2019): ResNet-50 features for video + BERT
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for text, with a simple co-attention mechanism and a prediction head for

relevance. Temporal localization might be coarse.

– BLIP-2 based Video-LLM (Li et al., 2023b): A generic pre-trained Video-

LLM architecture (e.g., using a QFormer to bridge vision and a standard

LLM like OPT or Flan-T5), fine-tuned for the crime search task.

– GPT-4o System (Benchmark): Using GPT-4o with vision capabilities,

prompted to identify relevant segments given the query and video. Its R@K

performance is reported. (This is a strong, potentially SOTA, reference

point).

Table 4.5 presents the video search and temporal localization performance.

For IoU, we report average IoU for correctly retrieved segments (R@1 segment).

Table 4.5: Crime Video Search and Temporal Localization Performance on
CrimeVidSearch-TSL Dataset.

Model Avg. IoU (%) R@1 (%) R@5 (%) R@10 (%)

CLIP-Retrieval N/A 25.3 45.1 58.2
Qwen2.5-7B 35.1 30.5 52.8 65.7
Llama3-vison-70B 42.6 38.7 60.3 72.1
GPT-4o 50.5 48.2 70.1 80.5

TCGA+ finetuned Qwen2.5 (Ours) 48.3 45.1 68.5 78.9

The results for the crime video search and temporal localization task (Table 4.5)

demonstrate the effectiveness of our proposed model architecture.

Our model significantly outperforms baselines like CLIP-Retrieval and a

VideoBERT-style model in both retrieval (R@K) and temporal localization (Avg.

IoU). The integration of TCGA for focused video representation and a powerful

LLM like Qwen2.5 for cross-modal understanding proves beneficial. CLIP, while

strong for general retrieval, lacks specific temporal reasoning and fine-grained

localization capabilities unless further adapted.
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Compared to a generic BLIP-2 based Video-LLM, our approach also shows

superior performance. This suggests that the specialized temporal processing

by TCGA provides a more potent video summary for the Qwen2.5 LLM than

what might be achieved by more generic vision-language bridging mechanisms in

standard Video-LLMs, especially when fine-tuned on the specific crime domain.

The proposed model achieves results that are competitive with, though slightly

below, the powerful GPT-4o system benchmark in retrieval metrics (R@K) and

temporal IoU. Given that GPT-4o represents a much larger and more general

model, this is a very promising outcome for our more specialized architecture.

Our model offers a strong balance of performance and potentially greater effi-

ciency/deployability for this specific task compared to a general-purpose massive

model.

The ability to achieve a good average IoU highlights that the model is not

only retrieving relevant videos but also learning to ground the textual description

within the temporal extent of the video, a capability likely enhanced by TCGA’s

focus on relevant temporal segments and Qwen2.5’s reasoning.

These findings underscore the value of combining dedicated temporal video

processing with the advanced reasoning capabilities of a fine-tuned LLM Qwen2.5

for complex cross-modal tasks, for example described crime video search with

temporal localization.
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Discussion

This chapter presents a comprehensive empirical evaluation of the proposed

Temporal Context Gated Attention (TCGA) framework. We rigorously assess

its performance against a diverse set of baseline and state-of-the-art models

across our three distinct target use cases: Billiard Layout Clarity, CCTV Crime

Event Detection, and MRI Breast Cancer Risk Assessment. We first detail the

experimental setup, dataset characteristics, and the evaluation metrics employed

(Section 4.2). We then present the comparative results against benchmark models,

analyzing performance across these metrics (Section 5.2). Finally, we delve into

the findings from extensive ablation studies designed to validate the architectural

choices within TCGA and quantify the contribution of its key components. All

experiments adhere to the methodologies established in Chapter 3.

5.1 Evaluation Metrics

To provide a comprehensive and fair assessment of model performance, particu-

larly considering the varying characteristics (e.g., class balance) of our datasets,

88
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we employ a selection of standard evaluation metrics. Let TP, TN, FP, and FN

denote True Positives, True Negatives, False Positives, and False Negatives,

respectively, typically defined with respect to a designated positive class.

The primary metrics used are:

– Accuracy (Acc.): The overall proportion of correctly classified instances.

While intuitive, it can be misleading on imbalanced datasets.

Accuracy = TP + TN
TP + TN + FP + FN

(5.1)

– Balanced Accuracy (Bal. Acc.): The average of recall (sensitivity) obtained

on each class. It avoids inflation due to high performance on majority classes

and provides a better measure of overall performance on imbalanced data

or when performance across all classes is equally important. For binary

classification:

Balanced Accuracy = 1

2
( TP

TP + FN
+ TN

TN + FP
) (5.2)

For multi-class problems, it is the average of the recall scores for each class.

– Precision: The proportion of instances predicted as positive that are actually

positive. High precision relates to a low false positive rate.

Precision = TP

TP + FP
(5.3)

– Recall (Sensitivity, True Positive Rate): The proportion of actual positive

instances that were correctly identified. High recall relates to a low false

negative rate.

Recall = TP

TP + FN
(5.4)
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– F1-Score: The harmonic mean of Precision and Recall. It provides a single

score that balances both concerns.

F1-Score = 2 × Precision ×Recall
Precision +Recall

= 2TP

2TP + FP + FN
(5.5)

– Macro-Averaged F1-Score (F1-Macro): The arithmetic mean of the F1-

scores computed independently for each class. This metric treats all classes

equally, regardless of their frequency (support). It is useful for assessing

overall performance across classes without bias towards the majority class.

F1-Macro = 1

Nclasses

Nclasses

∑
j=1

F1j (5.6)

where F1j is the F1-score calculated for class j.

– Area Under the Precision-Recall Curve (AUC-PR): This metric evaluates

the trade-off between Precision and Recall across different classification

thresholds by computing the area under the Precision-Recall curve. AUC-

PR is particularly informative for imbalanced datasets, especially when the

focus is on the performance of identifying the minority (positive) class, as

it is less sensitive to the large number of true negatives compared to AUC-

ROC (Davis & Goadrich, 2006). We report AUC-PR calculated specifically

for the positive class (event/high-risk) in the imbalanced datasets.

– For the relatively balanced Billiard Layout dataset, we report standard Ac-

curacy (Acc.) as an overall measure and Balanced Accuracy (Bal. Acc.) to

ensure robustness against any minor imbalance or performance differences

between the ’Clear’ and ’Obscured’ classes.

– For the highly imbalanced CCTV Event and MRI Risk datasets, standard

Accuracy is inadequate. We prioritize AUC-PR (for the positive class) as
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it effectively summarizes the model’s ability to correctly identify the rare

but critical instances (events or high-risk cases) across decision thresholds.

We also report F1-Macro to provide a balanced perspective on performance

across both the minority (positive) and majority (negative) classes, giving

equal weight to each.

5.2 Benchmark Model Comparison

We compare TCGA against a wider spectrum of models, including simple

baselines, recurrent models, standard attention models, and state-of-the-art 3D

convolutional and video transformer architectures.

The models evaluated are:

– Average Pooling (AvgPool): Temporal average pooling of frame embed-

dings.

– LSTM (Hochreiter & Schmidhuber, 1997): Uses the final hidden state of

an LSTM applied to frame embeddings.

– Self-Attention (SelfAttn): A standard Transformer encoder layer (Vaswani

et al., 2017) applied to frame embeddings, using the output class token for

classification.

– I3D (Carreira & Zisserman, 2017): Inflated 3D ConvNet (Inception-v1

backbone), pre-trained on Kinetics-400 and fine-tuned. Processes raw video

frames directly.

– TimeSformer (Bertasius et al., 2021): A Transformer-based model using

divided space-time attention, pre-trained on Kinetics-400 and fine-tuned.

Processes raw video frames directly.
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– TCGA (Ours): The proposed model using a fine-tuned ViT-B/16 frame

encoder and the TCGA module for temporal aggregation.

For I3D and TimeSformer, which operate directly on frames, we used publicly

available implementations and pre-trained weights where applicable, followed

by fine-tuning on our target tasks. For AvgPool, LSTM, SelfAttn, and TCGA,

the same fine-tuned ViT-B/16 encoder was used for feature extraction before the

respective temporal aggregation module.

Table 5.1 presents the comparative performance using relevant metrics for

each dataset. Balanced Accuracy (Bal. Acc.) and standard Accuracy (Acc.)

are reported for Billiards. For the imbalanced CCTV and MRI datasets, we

report AUC-PR (focusing on the positive class) and Macro-Averaged F1-score

(F1-Macro) which gives equal weight to both classes.

Table 5.1: Detailed Performance Comparison with Benchmark Models Across Use
Case Datasets.

Billiard Layout CCTV Event MRI Risk

Model Acc. (%) Bal. Acc. (%) AUC-PR (%) F1-Macro (%) AUC-PR (%) F1-Macro (%)

Average Pooling (AvgPool) 85.1 85.3 45.1 60.2 68.5 75.1
LSTM 87.8 87.9 52.7 65.8 72.3 78.4
Self-Attention (SelfAttn) 89.0 89.1 58.4 70.1 75.1 80.6

I3D (Carreira & Zisserman, 2017) 89.9 90.0 60.2 71.5 76.8 81.9
TimeSformer (Bertasius et al., 2021) 90.7 90.8 61.5 72.4 78.0 82.7

TCGA (Ours) 91.4 91.5 63.8 74.1 79.4 83.9

The results in Table 5.1 demonstrate the strong performance of the pro-

posed TCGA framework across all three tasks, generally surpassing both simple

baselines and sophisticated contemporary models.

On the relatively balanced Billiards dataset, TCGA achieves the highest accur-

acy and balanced accuracy. This suggests its ability to capture the stabilization

cues and final layout features is superior to other methods. While models like

TimeSformer and I3D also perform well, TCGA’s context-gating might provide a
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slight edge in interpreting the final, decisive state.

For the highly imbalanced CCTV task, TCGA shows a more marked improve-

ment, particularly in AUC-PR, which is sensitive to performance on the rare

positive class. It significantly outperforms AvgPool and LSTM. While I3D and

TimeSformer, designed for action recognition, perform competitively, TCGA

surpasses them. We hypothesize that TCGA’s explicit use of global context to

guide attention is particularly beneficial here; the context helps differentiate rare

anomalous events (requiring high attention) from complex but normal background

activity, a distinction potentially harder for standard self-attention or 3D convo-

lutions alone. The F1-Macro score also reflects TCGA’s balanced performance

across the rare event and common non-event classes.

Similarly, on the imbalanced MRI dataset, TCGA leads in both AUC-PR

and F1-Macro. Classifying risk from MRI sequences requires identifying subtle

patterns that might be present only in a few slices but need interpretation within

the context of the entire series. TCGA’s ability to focus attention on potentially

anomalous slices (guided by the global context C summarizing overall tissue

properties) and then gate this information seems advantageous compared to the

direct spatio-temporal processing of I3D or the potentially less context-focused

attention of TimeSformer or generic SelfAttn.

The results consistently show that temporal modeling (LSTM, SelfAttn, I3D,

TimeSformer, TCGA) outperforms simple pooling (AvgPool). Among the ad-

vanced models, those leveraging attention (SelfAttn, TimeSformer, TCGA) gener-

ally outperform the RNN (LSTM) and the 3D CNN (I3D) on the more complex,

imbalanced tasks, although I3D remains strong. TCGA’s consistent top per-

formance across diverse tasks and metrics suggests its architecture provides a

robust and effective way to aggregate sequential information by leveraging global
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context for both attention and gating.

5.3 Ablation Study Results

To rigorously validate the architectural choices within TCGA and understand the

contributions of its novel components, we performed the ablation studies detailed

in Section 5.3. The primary metric reported here is AUC-PR for the challenging

CCTV and MRI datasets, comparing variants against the full TCGA model.

We investigated the impact of removing or modifying key architectural ele-

ments: the context-based gate, the context-guided attention mechanism, the

method for computing global context, and the transformation applied to value

vectors in the attention calculation. The results are summarized in Table 5.2.

Table 5.2: Architectural Ablation Study Results on CCTV Event and MRI Risk Datasets.

Performance (AUC-PR %)

Model Variant CCTV Event MRI Risk

Full TCGA (Baseline) 63.8 79.4

Component Removal:
TCGA w/o Context Gate 60.5 (-3.3) 76.8 (-2.6)
TCGA w/o Attention (Gate on AvgPool) 48.2 (-15.6) 70.1 (-9.3)

Component Modification:
TCGA w/ MaxPool Context 62.1 (-1.7) 78.5 (-0.9)
TCGA w/ Learned Value (Vt) 64.1 (+0.3) 79.0 (-0.4)

The ablation results presented in Table 5.2 provide strong empirical support

for the design of the TCGA module:

Removing the final gating layer (TCGA w/o Context Gate) consistently de-

grades performance across both challenging datasets. The performance drop

(e.g., −3.3 pp AUC-PR on CCTV) highlights the gate’s non-trivial contribution.
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This supports our hypothesis that allowing the global context to modulate the

aggregated attended features provides a valuable mechanism for filtering noise

or emphasizing highly relevant signals, leading to a more discriminative final

representation.

Ablating the attention mechanism entirely (TCGA w/o Attention) leads to a

dramatic collapse in performance (−15.6 pp on CCTV, −9.3 pp on MRI), falling

well below simple baselines like LSTM. This confirms that the core strength of

TCGA lies in its ability to dynamically select relevant frame information using

the context-guided attention weights. Merely applying the gating mechanism to

average-pooled features is insufficient for capturing the complexities of these

tasks. The synergy between context-guided attention and context-based gating

appears critical.

Substituting average pooling with max pooling for computing the global

context vector C (TCGA w/ MaxPool Context) resulted in a slight decrease in

performance. This suggests that, for these tasks, the mean representation provided

by average pooling offers a more effective summary for guiding attention and

gating than the salient-feature focus of max pooling. While other context methods

(e.g., LSTM pooling) could be explored, average pooling presents a simple yet

powerful default.

Employing a learned linear transformation for the value vectors Vt in the

attention computation (TCGA w/ Learned Value) did not yield significant gains

over the default identity mapping (Vt =Mt). The performance remained largely

unchanged or showed marginal fluctuations. This indicates that, given the rich

features already provided by the fine-tuned ViT encoder, an additional learned

transformation on the values offers little benefit for these specific tasks, allowing

us to prefer the more parsimonious identity mapping.
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In summary, the results presented in this chapter demonstrate the effectiveness

of the proposed TCGA model, outperforming various baselines and state-of-the-

art methods on diverse video classification tasks. The ablation studies further

validate the contribution of TCGA’s core components, particularly the interplay

between context-guided attention and context-based gating.



Chapter 6

Conclusion and Future Work

The TCGA mechanism is designed to capture long-range temporal dependencies

by first condensing the entire sequence into a global context vector C. This

summary representation subsequently informs both the attentional weighting of

individual frames and the gating of the aggregated features.

The architecture explicitly models how the overall sequence context influences

the perceived importance and contribution of specific temporal moments (frames).

Compared to full self-attention, it offers computational advantages for long

sequences due to the linear complexity of attention score calculation with respect

to T . The gating mechanism introduces an additional layer of adaptive, context-

dependent modulation of the aggregated information.

The reliance on a single global context vector C (especially when computed

via simple averaging) might create an information bottleneck, potentially losing

fine-grained temporal ordering information or subtle transient details that RNNs or

full self-attention mechanisms might capture more effectively. The quality of the

attention guidance is fundamentally dependent on the representational capacity of

97
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C. TCGA primarily models the influence of the global context on local (frame-

level) features; it does not explicitly model direct pairwise interactions between

arbitrary frames (ti, tj) in the manner of self-attention.

Potential future work could investigate hierarchical applications of TCGA,

alternative context computation methods or hybrid models combining TCGA with

mechanisms better suited for capturing local temporal dependencies to address

these limitations.

The developed Multimodal Video Retrieval Pipeline and its encompassing

Application System represent a significant step towards intelligent video un-

derstanding and access. Nevertheless, numerous avenues for future research

and development hold considerable promise for enhancing their capabilities,

robustness, and overall user experience.

The core retrieval pipeline can be substantially advanced in several key direc-

tions. Firstly, further exploration into sophisticated temporal models, potentially

incorporating hierarchical temporal structures or explicit causal reasoning bey-

ond the current TCGA layer, could cultivate a deeper understanding of complex

event sequences and narratives within videos. This includes improved modeling

of long-range dependencies and inter-event relationships. Concurrently, future

work could concentrate on enabling the MLLM, such as Qwen2.5, to perform

more precise spatio-temporal grounding of textual queries within videos, moving

beyond clip retrieval to localize specific actions, objects, or interactions to exact

frame segments and spatial regions. Investigating novel attention mechanisms

and fusion strategies that surpass simple concatenation or standard cross-attention

may also unlock more nuanced alignments between visual and textual modalities,

allowing the MLLM to capture subtle semantic interplay.
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Furthermore, research into model compression techniques, including quantiza-

tion, pruning, and knowledge distillation for both TCGA and MLLM components,

is crucial for reducing latency, improving throughput for large-scale databases,

and potentially enabling parts of the pipeline to operate on resource-constrained

edge devices. The usability of the system could be significantly enhanced by

extending the pipeline to support conversational video retrieval, where users can

iteratively refine searches through dialogue, ask follow-up questions, or provide

relevance feedback. Developing methods to provide explanations for retrieval

results, such as highlighting which parts of the video and query most significantly

contributed to a match, will be vital for building user trust and for debugging

model behavior.

Additionally, enhancing the pipeline’s ability to retrieve videos related to

concepts or queries not extensively seen during training would improve its gener-

alization to a wider range of real-world scenarios, thereby bolstering its zero-shot

and few-shot learning capabilities. Improving the pipeline’s resilience to noisy

or corrupted video inputs, like poor lighting or compression artifacts, and to am-

biguous or adversarially crafted user queries, is another important area. Finally,

incorporating other relevant modalities, such as audio (encompassing speech and

sound events), video metadata like existing transcripts or chapter information, or

even physiological sensor data if available in specific application contexts, could

provide a richer, more holistic understanding of video content.

The broader application system can also evolve to offer more comprehensive

and intelligent video services. One key area is the enhancement of real-time

processing and proactive alerting, achieved by further optimizing edge-to-server

communication, including RTSP and YOLO11 outputs, alongside server-side

processing with TCGA and the MLLM. This would enable near real-time complex
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event detection from live camera streams and allow the system to trigger proactive

alerts or actions based on predefined multimodal conditions. Personalization

and context-awareness can be improved by developing mechanisms to tailor

video retrieval and recommendations based on individual user profiles, historical

interactions, and contextual information derived from uploaded documents or

ongoing tasks. Designing more intuitive and powerful user interfaces that support

diverse query modalities, such as query-by-example video or sketch-based queries,

and provide rich visualizations of retrieval results and video content analysis will

also be a significant step forward.

For applications involving sensitive video data from multiple distributed

sources, exploring federated learning approaches could allow for the refine-

ment of models like TCGA or Qwen2-VL without centralizing raw video data,

thus preserving user privacy. The system’s intelligence can be augmented by

integrating the MLLM with external knowledge bases, such as ontologies or

encyclopedias, enabling it to understand and reason about named entities, real-

world events, and common-sense relationships depicted in videos, leading to

more insightful descriptions and query responses. Addressing the engineering

challenges of deploying and maintaining the entire system at scale, including

distributed vector databases, elastic compute for the LLM inference engine, and

robust video stream management across hybrid cloud and edge environments,

will be critical. It is also essential to continuously evaluate and mitigate potential

biases in the TCGA and MLLM models, ensuring fairness in retrieval results, and

developing transparent data governance policies, especially concerning privacy

and surveillance in the context of camera streams, as part of an ethical AI frame-

work. Leveraging the MLLM’s generative capabilities to automatically create

concise summaries, highlight reels, or chapter markers for long videos can make
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content more accessible and navigable. Lastly, extending the system’s capabilities

to support queries in multiple languages and retrieve relevant video content even

if the original language of the video or its metadata differs, while considering

cultural nuances where applicable, will broaden its reach and utility.

By pursuing these future work directions, the Multimodal Video Retrieval

Pipeline and its Application System can evolve into an even more powerful,

versatile, and indispensable tool for interacting.
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