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Abstract: The automated analysis of pool game videos presents significant challenges due to com- 7 
plex object interactions, precise rule requirements, and event-driven game dynamics that traditional 8 
computer vision approaches struggle to address effectively. This research introduces TCGA-Pool, a 9 
novel video analytics framework specifically designed for comprehensive 9-ball pool game under- 10 
standing through advanced object attention mechanisms and temporal context modeling. Our ap- 11 
proach addresses the critical gap in automated cue sports analysis by focusing on three essential 12 
classification tasks: Clear shot detection (successful ball potting without fouls), win condition iden- 13 
tification (game-ending scenarios), and potted balls counting (accurate enumeration of successfully 14 
pocketed balls). The proposed framework leverages a Temporal Context-Gated Attention (TCGA) 15 
mechanism that dynamically focuses on salient game elements while incorporating sequential de- 16 
pendencies inherent in pool game sequences. Through comprehensive evaluation on a dataset com- 17 
prising 58,078 annotated video frames from diverse 9-ball pool scenarios, our TCGA-Pool frame- 18 
work demonstrates substantial improvements over existing video analysis methods, achieve accu- 19 
racy gains of 4.7%, 3.2%, and 6.2% for clear shot detection, win condition identification, and potted 20 
ball counting tasks, respectively. The framework maintains computational efficiency with only 21 
27.3M parameters and 13.9G FLOPs, making it suitable for real-time applications. Our contributions 22 
include the introduction of domain-specific object attention mechanisms, the development of adap- 23 
tive temporal modeling strategies for cue sports, and the implementation of a practical real-time 24 
system for automated pool game monitoring. This work establishes a foundation for intelligent 25 
sports analytics in precision-based games and demonstrates the effectiveness of specialized deep 26 
learning approaches for complex temporal video understanding tasks.  27 

Keywords: Video Analytics, Pool Game, Object Attention, Frame Classification, Sports Video Anal- 28 
ysis 29 
 30 

1. Introduction 31 

1.1 Problem Statement and Motivation 32 
The proliferation of video content and advances in computer vision have opened 33 

new frontiers for automated sports analysis, presenting both opportunities and challenges 34 
for understanding complex game dynamics [33, 45]. Among various sports domains, cue 35 
sports such as pool, billiards, and snooker represent particularly challenging scenarios for 36 
automated analysis due to the intricate rules, fast-paced ball movements, and the need for 37 
precise event detection [30, 21]. The fundamental problem addressed in this research is 38 
the lack of specialized video analytics frameworks capable of accurately understanding 39 
and analyzing 9-ball pool game sequences in real-time, which limits the development of 40 
automated coaching systems, performance analytics, and interactive gaming applications. 41 

Pool games, particularly 9-ball pool, present unique analytical challenges that distin- 42 
guish them from conventional sports video analysis. The game requires tracking multiple 43 
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small objects (balls) simultaneously, understanding complex collision dynamics, and rec- 44 
ognizing subtle game state transitions that determine critical events such as successful 45 
shots, fouls, and game ending conditions [22, 17]. Traditional computer vision approaches 46 
often struggle with these requirements due to occlusion issues, varying lighting condi- 47 
tions, and the need for temporal context to understand game progression [28, 29]. 48 
 Recent developments in Multimodal Large Language Models (MLLMs) have 49 
demonstrated remarkable capabilities in video understanding tasks, ranging from action 50 
recognition to temporal event localization [23, 43]. However, the existing general-purpose 51 
video analysis methods fail to address the unique challenges of pool game analysis, in- 52 
cluding: (1) The need to track multiple small, similar objects (balls) simultaneously under 53 
varying lighting conditions, (2) Understanding complex collision dynamics and occlusion 54 
patterns during ball interactions, (3) Recognizing subtle game state transitions that deter- 55 
mine critical events such as successful shots and fouls, and (4) Processing temporal se- 56 
quences with event-driven importance patterns rather than uniform temporal significance 57 
[22, 17, 28, 29]. 58 

The emergence of attention mechanisms in deep learning has revolutionized how 59 
models process and understand visual information, particularly in scenarios requiring se- 60 
lective focus on relevant features [35, 38]. Object attention mechanisms have shown prom- 61 
ise in sports video analysis, enabling models to automatically identify and track salient 62 
elements while filtering out irrelevant background information [25, 44]. However, the ex- 63 
isting attention-based approaches have not been specifically tailored for the unique char- 64 
acteristics of pool game analysis.  65 

In this work, we address the challenge of automated pool game understanding 66 
through the development of TCGA-Pool, a novel video analytics framework that com- 67 
bines object attention mechanisms with temporal context modeling. Our approach focuses 68 
on three critical classification tasks: Identifying clear shots (successful ball potting without 69 
fouls), win conditions (game-ending scenarios), and potted balls detection (accurate 70 
counting and identification of successfully pocketed balls).  71 

The primary contributions of this research are threefold. First, we introduce the Tem- 72 
poral Context-Gated Attention (TCGA) mechanism, specifically designed to capture the 73 
temporal dependencies inherent in pool game sequences while maintaining focus on rel- 74 
evant objects within each frame. Second, we demonstrate the effectiveness of our ap- 75 
proach through com prehensive evaluation on 9-ball pool game videos, showing superior 76 
performance compared to existing video analysis methods. Third, we present the design 77 
and implementation of a real-time system application that demonstrates the practical ap- 78 
plicability of our approach for automated pool game monitoring and event logging.  79 

Our work represents a significant step forward in specialized sports video analysis, 80 
providing a foundation for more sophisticated pool game understanding. The proposed 81 
method ology not only advances the state-of-the-art in cue sports analysis but also offers 82 
insights into the broader application of attention-based models for complex temporal 83 
video understanding tasks. By bridging the gap between general video analysis tech- 84 
niques and domain-specific requirements, this research work opens new possibilities for 85 
automated sports coaching, competitive analysis, and interactive gaming applications [26, 86 
15]. 87 

1.2 Research Scope and Objectives 88 
The focus of this research project is specifically on 9-ball pool game analysis, address- 89 

ing three critical classification tasks that are fundamental to comprehensive game under- 90 
standing: Clear Shot Detection: Identifying successful ball potting events without rule vi- 91 
olations; Win Condition Identification: Recognizing game-ending scenarios and victory 92 
conditions; Potted Ball Counting: Accurate enumeration and tracking of successfully 93 
pocketed balls. 94 

 95 
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The scope of this work encompasses the development of specialized deep learning 96 
architectures, comprehensive evaluation methodologies, and practical implementation 97 
strategies for real-time pool game analysis systems. 98 

2. Related Work 99 
This section provides a comprehensive overview of the existing literature related to 100 

our work, organized into four key areas: General sports video analysis, attention mecha- 101 
nisms in computer vision, cue sports analysis, and temporal modeling in video under- 102 
standing.  103 

Sports video analysis has emerged as a prominent research domain within computer 104 
vision, driven by the increasing availability of high-quality video content and the com- 105 
mercial value of automated sports analytics [33]. Early approaches primarily focused on 106 
basic event detection and player tracking using traditional computer vision techniques 107 
[13, 40]. These methods typically relied on hand-crafted features and domain-specific heu- 108 
ristics, limiting their generalizability across different sports.  109 

The advent of deep learning has significantly transformed sports video analysis ca- 110 
pabilities. Karpathy et al. [20] demonstrated the effectiveness of convolutional neural net- 111 
works (CNNs) for large-scale video classification, laying the groundwork for more so- 112 
phisticated sports analysis systems. Subsequently, researchers have developed special- 113 
ized architectures for various sports domains, including soccer [18, 10], basketball [6, 41], 114 
and tennis [27, 1]. A key challenge in sports video analysis is the need to understand both 115 
spatial and temporal relationships within video sequences. Two-stream networks [31] ad- 116 
dressed this by separately processing spatial and temporal information, while 3D CNNs 117 
[34, 5] provided a unified framework for spatiotemporal feature learning. More recently, 118 
transformer-based architectures have shown promising results in sports video under- 119 
standing, with models like Video Transformer [3] and TimeSformer [3] achieving the 120 
state-of-the-art performance on various sports datasets. 121 

Attention Mechanisms in Computer Vision Attention mechanisms have revolution 122 
ized computer vision by enabling models to selectively focus on relevant visual infor- 123 
mation while suppressing irrelevant details [35]. In the context of video analysis, attention 124 
has been applied at multiple levels: Spatial attention for focusing on important regions 125 
within frames [38], temporal attention for emphasizing critical time steps [32], and chan- 126 
nel attention for selecting informative feature dimensions [16].  127 

Spatial attention mechanisms have proven particularly elective in sports video anal- 128 
ysis, where the focus often needs to be on specific players, objects, or field regions. The 129 
Convolutional Block Attention Module (CBAM) [39] combines spatial and channel atten- 130 
tion to enhance feature representations. Similarly, the Spatial Transformer Network [19] 131 
enables learnable spatial transformations that can automatically crop and focus on rele- 132 
vant image regions.  133 

Object attention, a specialized form of spatial attention, has gained increasing im- 134 
portance in sports analysis where tracking specific objects (balls, equipment, players) is 135 
crucial [44]. Recent work has explored self-attention mechanisms for object tracking [9] 136 
and cross-attention for multi-object interaction modeling [4]. However, most existing at- 137 
tention mechanisms are designed for general-purpose applications and may not ade- 138 
quately capture the specific attention patterns required for cue sports analysis.  139 

Computer vision applications in cue sports represent a specialized but growing area 140 
of research. Early work focused on basic ball detection and tracking using traditional com- 141 
puter vision techniques [22, 11]. These approaches typically employed color-based seg- 142 
mentation and Hough transforms for circle detection, but suffered from robustness issues 143 
under varying lighting conditions and complex backgrounds.  144 

More recent advances have leveraged deep learning for improved accuracy and reli- 145 
ability. Siddiqui and Ahmad [30] proposed an automated billiard ball tracking system 146 
using YOLO based object detection combined with Kalman filtering for temporal con- 147 
sistency. Kim et al. [21] developed a comprehensive framework for billiard ball detection 148 
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and tracking, incorporating physics-based trajectory prediction to handle occlusions and 149 
improve tracking accuracy.  150 

Pool-specific analysis has received less attention compared to other billiard sports. 151 
Huang et al. [17] presented one of the few comprehensive studies on pool game analysis, 152 
focusing on shot classification and outcome prediction. However, the approach was lim- 153 
ited to simple scenarios and did not address the temporal complexity of complete game 154 
sequences. Similarly, Chen and Liu [8] developed a system for automatic pool scoring but 155 
focused primarily on ball counting rather than comprehensive game state understanding.  156 

The unique challenges of pool game analysis include: (1) the need to track multiple 157 
small, similar-looking objects simultaneously, (2) handling complex occlusions during 158 
ball collisions, (3) understanding game rules and state transitions, and (4) real-time pro- 159 
cessing requirements for live applications. These challenges necessitate specialized ap- 160 
proaches that go beyond general sports video analysis techniques. Understanding tem- 161 
poral relationships is fundamental to video analysis, particularly in sports where events 162 
unfold over time and context from previous frames is crucial for accurate interpretation 163 
[14]. Traditional approaches to temporal modeling include Recurrent Neural Networks 164 
(RNNs) and Long Short-Term Memory (LSTM) networks [12], which can capture sequen- 165 
tial dependencies but suffer from gradient vanishing problems in long sequences.  166 

More recent approaches have explored alternative temporal modeling strategies. 167 
Temporal Shift Modules [24] provide an efficient way to model temporal relationships by 168 
shifting feature channels across time dimensions. SlowFast networks [14] make use of 169 
dual-pathway architectures to capture both slow semantic changes and fast motion pat- 170 
terns. Non-local networks [38] compute attention weights across all spatial and temporal 171 
positions, enabling long-range dependency modeling.  172 

Transformer-based architectures have also been adapted for temporal video model- 173 
ing. The Video Vision Transformer (ViViT) [2] extends the Vision Transformer to video 174 
by modeling spatial and temporal tokens jointly. The Temporal Segment Networks (TSN) 175 
[36] sample sparse temporal segments to reduce computational complexity while main- 176 
taining temporal understanding.  177 

In the context of sports video analysis, temporal modeling is particularly important 178 
for understanding game flow, predicting outcomes, and detecting complex events that 179 
span multiple frames. However, the existing temporal modeling approaches often assume 180 
uniform importance across time steps, which may not be optimal for sports scenarios 181 
where a number of moments (e.g., critical plays, scoring events) are significantly more 182 
important than others.  183 

While significant progress has been made in sports video analysis, a few gaps remain 184 
in the current literature. First, the existing work focuses on popular team sports, with lim- 185 
ited attention to cue sports like pool and billiards. Second, the existing attention mecha- 186 
nisms are typically designed for general-purpose applications and may not capture the 187 
specific attention patterns required for understanding complex object interactions in cue 188 
sports. Third, temporal modeling approaches often treat all time steps equally, failing to 189 
adapt to the event-driven nature of sports where the moments carry disproportionate im- 190 
portance.  191 

Our work addresses these gaps by introducing a specialized framework for pool 192 
game analysis that combines object-focused attention with adaptive temporal modeling. 193 
The proposed TCGA mechanism is specifically designed to handle the unique challenges 194 
of cue sports while providing the temporal context necessary for accurate game state un- 195 
derstanding. 196 

3. Material and Methodology 197 

3.1 Datasets 198 
We constructed a comprehensive dataset of 9-ball pool game videos combining sam- 199 

ples from the billiard benchmark [42] and custom collected footage. The dataset includes 200 
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58,078 annotated video frames covering diverse scenarios with varying lighting condi- 201 
tions, camera angles, and player skill levels. Each frame is meticulously annotated with 202 
ground truth labels for our three target classifications: 203 

Clear shots: 12,847 positive samples, 45,231 negative samples 204 
Win conditions: 3,456 positive samples, 54,622 negative samples 205 
Potted balls: Multi-class labels with counts ranging from 0 to 9 balls 206 
The significant imbalance in win conditions data reflects the natural occurrence pat- 207 

tern in 9-ball pool games, where win conditions represent relatively rare but critical events 208 
compared to regular gameplay moments. This imbalance necessitates specialized training 209 
strategies and evaluation metrics to ensure robust model performance. 210 

3.2  Proposed TCGA-Pool Architecture 211 
The proposed model employs a sequential processing paradigm, designed to capture 212 

both fine-grained, frame-level visual details and overarching sequence-level temporal dy- 213 
namics. As conceptualized in Figure 1, the architecture comprises of three principal mod- 214 
ule components operating in succession:  215 

(1) Frame Encoder (e): The frame encoder serves as the foundation of our architec- 216 
ture, transforming input video frames into meaningful feature representations. 217 
Formally defined as ec: R (H×W×Cin) → R(DM), the encoder converts an input video 218 
frame Fωt (with height H, width W, and Cin input channels) into a DM-dimensional 219 
embedding vector Mωt. 220 
Architecture Design: The frame encoder utilizes a ResNet-50 backbone pre- 221 
trained on ImageNet, modified with additional convolutional layers for domain- 222 
specific feature extraction. The architecture incorporates multi-resolution feature 223 
fusion as shown in Figure 2, enabling the capture of both local ball details and 224 
global table context. The encoder processes frames independently, generating a 225 
sequence of embeddings M = {Mω1, ..., MωT} that serve as input to the temporal 226 
modeling component. 227 
Feature Extraction Strategy: The encoder implements a hierarchical feature ex- 228 
traction approach, combining low-level visual features (edges, colors, textures) 229 
essential for ball detection with high-level semantic features necessary for under- 230 
standing game context. Batch normalization and dropout layers are incorporated 231 
to improve training stability and generalization performance. 232 

(2) Temporal Context Gated Attention Module (gTCGA): Representing the central 233 
innovation of this research, the TCGA module receives the sequence of frame 234 
embeddings (M = {Mω 1,…, Mω T }) from the encoder. It implements a specialized 235 
attention mechanism that is concurrently guided and gated by the global tem- 236 
poral context de rived from the entire sequence. Its primary function is to dy- 237 
namically focus on the most informative frames and feature dimensions relevant 238 
to the classification objective, while adaptively modulating the aggregated infor- 239 
mation based on the holistic context of the sequence.  240 

(3) Classifier: This terminal component serves as the prediction head. Commonly 241 
structured as one or more fully connected layers culminating in an appropriate 242 
activation function, it accepts the final context-aware representation (Mω final) 243 
produced by the TCGA module and outputs the predicted probability distribu- 244 
tion (Yω ) over the target classes.  245 
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 246 
Figure 1. High-level architecture design of the video classification framework. 247 

 248 
Input frames are independently processed by a shared Frame Encoder to generate 249 

embeddings. The sequence of embeddings M is input to the Temporal Context Gated At- 250 
tention (gTCGA) module, which computes a single, context-aware final representation 251 
Mω final. This representation is then passed to the Classifier to yield the final prediction.  252 



Computers 2024, 13, x FOR PEER REVIEW 7 of 14 
 

     253 
Figure 2. First layer frame encoder with multi-resolution feature fusion. 254 

 255 
The entire model is trained end-to-end by minimizing a chosen loss function that 256 

quantifies the discrepancy between the model’s predictions and the ground truth labels. 257 
Gradients are computed via backpropagation through the classifier, the TCGA module, 258 
and potentially the frame encoder, facilitating joint optimization of all learnable parame- 259 
ters.  260 

The frame encoder, denoted by e: RH→W→Cin → RDM , transforms an input video 261 
frame Fωt (with height H, width W, and Cin input channels) into a DM-dimensional em- 262 
bedding vector Mωt. The architecture shows in Figure 2. It extracted frame-level features 263 
and form the foundation for subsequent temporal aggregation by the TCGA module.  264 

This section presents a comprehensive evaluation of our TCGA-Pool framework, in- 265 
cluding comparisons with state-of-the-art baselines, ablation studies to validate our de- 266 
sign choices, and analysis of computational efficiency. We evaluate our approach on three 267 
critical classification tasks: clear shot detection, win condition identification, and potted 268 
balls counting.  269 

We build a comprehensive dataset of 9-ball pool game videos from billiard bench- 270 
mark [42] and custom dataset. The dataset includes diverse scenarios with varying light- 271 
ing conditions, camera angles, and player skill levels. Each video frame is annotated with 272 
ground truth labels for our three target classifications:  273 

• Clear shots: 12,847 positive samples, 45,231 negative samples  274 
• Win conditions: 3,456 positive samples, 54,622 negative samples  275 
• Potted balls: Multi-class labels with counts ranging from 0 to 9 balls The dataset is 276 

split into training (70%), validation (15%), and test (15%) sets, ensuring no overlap be- 277 
tween games across splits to prevent data leakage.  278 

Our TCGA-Pool model is implemented using PyTorch 1.12 and trained on NVIDIA 279 
RTX 3090 GPUs. We use ResNet-50 as the backbone feature extractor, pre-trained on 280 
ImageNet. The temporal window size is set to 16 frames with a stride of 8 frames. Training 281 
is performed using Adam optimizer with an initial learning rate of 1e-4, batch size of 8, 282 
and cosine annealing learning rate schedule. Data augmentation includes random hori- 283 
zontal flipping, color jittering, and temporal shifting. 284 
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 285 

Figure 3. Frame encoder backbone model. 286 

4. Results and Evaluation 287 
We evaluate performance by using standard classification metrics:  288 

• Accuracy: Overall classification accuracy  289 
• Precision, Recall, F1-score: For each class individually  290 
• Mean Average Precision (mAP): For multi-class scenarios  291 
• Area Under ROC Curve (AUC): For binary classification tasks 292 
We compare our TCGA-Pool framework against several baseline methods, including 293 

general video understanding models and sports specific approaches adapted for pool 294 
game analysis. 295 

• TimeSformer: Transformer-based video classification  296 
• X3D: Efficient video network with progressive expansion  297 
• TCGA-Pool: Our implementation of a pool-specific CNN baseline 298 

 299 
Table 1. Performance comparison on 9-ball pool video classification tasks. 300 
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Our TCGA-Pool framework achieves significant improvements across all evaluation 302 
metrics and tasks. Notably, we observe:  303 

• Clear Shot Detection: 4.7% accuracy improvement over the best baseline (Pool CNN)  304 

• Win Condition Identification: 3.2% accuracy improvement with substantially better 305 
F1-score  306 

• Potted Ball Counting: 6.2% accuracy improvement, demonstrating the effectiveness of 307 
our attention mechanism for multi-object scenarios.  308 

We conduct comprehensive ablation studies to validate the effectiveness of each compo- 309 
nent in our TCGA-Pool framework. The studies are organized around four key aspects: 310 
Attention mechanism design, temporal modeling, architectural choices, and hyper pa- 311 
rameter sensitivity. Table 2 presents the results of systematically removing different 312 
components from our full TCGA-Pool model.  313 

Table 2. Ablation study on different components of TCGA-Pool framework. 314 

 315 

The ablation results demonstrate that each component contributes significantly to the 316 
overall performance. In object attention, it provides 6.3% accuracy improvement by focus- 317 
ing on relevant game objects. In temporal context, it adds 2.2% accuracy by incorporating 318 
temporal dependencies. In gated mechanism, it contributes 1.9% accuracy through adap- 319 
tive attention fusion. In multi-scale features, it improves robustness with 2.5% accuracy 320 
gain. We analyze different attention mechanisms to validate our design choices, compar- 321 
ing various spatial and temporal attention strategies. 322 

Table 3. Comparison of different attention mechanisms for pool game analysis 323 

 324 

 325 
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Our object attention mechanism outperforms the existing attention methods while 326 
maintaining reasonable computational complexity. The key advantage lies in its ability to 327 
focus specifically on game-relevant objects rather than generic spatial patterns. We ex- 328 
plore different architectural choices for the TCGA module, comparing various fusion 329 
strategies and gating mechanisms. The gated fusion strategy with learnable parameters 330 
provides the best balance between performance and computational efficiency. 331 

Table 3. Comparison of different TCGA architectural variants. 332 

 333 

We evaluate the computational efficiency of our TCGA-Pool framework compared 334 
to baseline methods, considering both training and inference requirements.  335 

Table 3. Computational efficiency comparison of different methods. 336 

 337 

Our TCGA-Pool framework achieves superior performance while maintaining 338 
competitive computational efficiency. The parameter size is significantly lower than 339 
transformer-based methods while achieving better accuracy.  340 

5. Discussion 341 
Our experimental results reveal important insights that extend beyond pool game 342 

analysis. The proposed object attention mechanism significantly outperforms general- 343 
purpose attention methods, achieving 87.4% accuracy compared to 83.9% for non-local 344 
attention, demonstrating the value of domain-specific attention design. The incorporation 345 
of temporal context through our gated mechanism provides substantial performance 346 
gains of 2.2% accuracy improvement, highlighting the critical role of sequential infor- 347 
mation in understanding game state transitions. Despite achieving superior performance, 348 
our framework maintains competitive computational efficiency with only 27.3M parame- 349 
ters and 13.9G FLOPs, making it suitable for real-time applications.  350 

The higher accuracy for potted ball counting compared to clear shots and win condi- 351 
tions reflects the nature of these tasks. Potted ball counting primarily requires accurate 352 
object detection and counting, which our object attention mechanism handles effectively. 353 
Clear shot detection and win condition identification require more complex rule under- 354 
standing and temporal reasoning, making them inherently more challenging. 355 

While our approach achieves significant improvements, several limitations warrant 356 
acknowledgment. Performance degradation under extreme lighting conditions and non- 357 
standard camera angles indicates sensitivity to environmental factors. Complex occlusion 358 
scenarios, particularly during ball clustering near pockets, remain challenging with 8-12% 359 
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performance reduction. The framework shows reasonable generalization to related cue 360 
sports but requires further adaptation for optimal cross-domain performance.  361 

Future research directions include incorporating multi-modal information such as 362 
audio signals and sensor data to provide richer context for game understanding. Integrat- 363 
ing physical laws of ball dynamics into the learning process could improve trajectory pre- 364 
diction accuracy. Developing frameworks that can learn from human feedback and adapt 365 
to different playing styles would enhance practical utility. Extended temporal modeling 366 
to understand game strategy and player behavior patterns could enable more sophisti- 367 
cated analytics.  368 

The implications of this work extend into practical domains including sports analyt- 369 
ics, entertainment industry applications, and educational tools for player development. 370 
Our framework enables automated collection of detailed game statistics, providing 371 
coaches and players with objective performance metrics previously requiring manual an- 372 
notation. The real-time analysis capabilities open possibilities for enhanced broadcasting 373 
experiences and interactive viewing features.  374 

The success of TCGA-Pool in pool game analysis provides a template for tackling 375 
similar challenges in other precision sports and rule-based activities. By demonstrating 376 
that domain specific approaches can substantially outperform general-purpose video 377 
analysis methods, our work contributes to the broader vision of intelligent sports analytics 378 
systems that provide real time insights and enhance the overall experience for players, 379 
coaches, and spectators.  380 

Our comprehensive evaluation shows that specialized attention mechanisms and 381 
temporal modeling can effectively address the unique challenges of cue sports under- 382 
standing. The practical implementation validates the transition from research to applica- 383 
tion, and the planned open-source release will facilitate further research in this specialized 384 
but important domain. 385 
6. Conclusions 386 

This paper presents TCGA-Pool, a novel video analytics framework specifically de- 387 
signed for understanding 9-ball pool game sequences through advanced object attention 388 
mechanisms and temporal context modeling. Our work addresses the significant gap in 389 
automated analysis of cue sports, which present unique challenges compared to tradi- 390 
tional team sports due to their complex object interactions, precise rule requirements, and 391 
event-driven nature. 392 

Our research has a few key contributions to the field of sports video analysis and 393 
computer vision. We introduced the Temporal Context-Gated Attention (TCGA) mecha- 394 
nism, which effectively combines spatial object attention with temporal context modeling 395 
specifically tailored for pool game analysis. Our comprehensive evaluation framework 396 
demonstrates significant improvements over existing video analysis methods, with accu- 397 
racy gains of 4.7%, 3.2%, and 6.2% across clear shot detection, win condition identification, 398 
and potted ball counting tasks respectively. 399 

The computational efficiency of our framework (27.3M parameters, 13.9G FLOPs) 400 
makes it suitable for real-time applications, while the specialized attention mechanisms 401 
provide superior performance compared to general-purpose video analysis methods. 402 
These results validate our hypothesis that domain-specific approaches can substantially 403 
outperform general-purpose solutions for specialized sports analysis tasks. 404 

Our future research directions include incorporating multi-modal information, inte- 405 
grating physical dynamics modeling, and extending temporal modeling capabilities for 406 
enhanced game strategy understanding. The planned open-source release will facilitate 407 
further research in this specialized but important domain, contributing to the broader vi- 408 
sion of intelligent sports analytics systems. 409 

  410 
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