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Abstract 

This study investigates the use of deep learning for recognizing human coughing actions 

in video footage, with an emphasis on achieving reliable, real-time performance. By 

integrating human action recognition methods with advanced object detection models, 

the research aimed to build a system capable of accurately identifying coughing behavior 

under various conditions. This report also explored different training strategies and model 

configurations to optimize performance. Among the models tested, the proposed 

approach achieved the highest accuracy, reaching an F1 score of 0.926. These results 

suggest that the system is not only effective but also well-suited for potential applications 

in health monitoring and public safety, where timely and accurate detection of flu-like 

symptoms is essential. 

Keywords: Cough action recognition, Human skeleton, Key point detection, YOLO, 

Transformer, Deep learning 
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Chapter 1 

Introduction 

 

 

This chapter lays the foundation for this study and is 

structured into five key sections. It begins by outlining the 

background and motivation behind the research. This is 

followed by a clear statement of the research question 

guiding the investigation. The subsequent sections present 

the main objectives of the study, highlight its contributions, 

and conclude with an overview of the report’s structure. 
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1.1 Background and Motivation 

Managing sick leave in companies is a recurring challenge, especially due to its 

unpredictable nature. By definition, sick leave allows employees to take time off work for 

medical reasons. However, unexpected absences can disrupt workflow, particularly in small 

businesses where immediate replacements are not available. Additionally, the presence of an 

ill employee in shared workspaces can increase the risk of further infections, exacerbating 

productivity losses. For example, 75.6% of adults visited a general practitioner between 

November 2023 and the same month in 2024 (Annual Update of Key Results 2023/24, 2024). 

Given these challenges, it becomes crucial for managers and business owners to implement 

proactive strategies to ensure both employee well-being and operational efficiency.  

Infectious diseases such as influenza, COVID-19, and the common cold are generally 

believed to spread through airborne droplets released when individuals cough or sneeze. As a 

result, the early detection of these symptoms could play an important role in limiting the spread 

of illness, particularly in high-risk settings like hospitals, workplaces, and public transportation. 

In relation to this, artificial intelligence (AI) is increasingly being explored in the healthcare 

domain for its potential to analyze large volumes of medical data. This includes possible 

applications in drug development, clinical trial optimization, diagnostic support, patient 

monitoring, and personalized treatment, all of which may contribute to improved efficiency, 

greater accuracy, and better overall patient outcomes (Koski & Murphy, 2021; Saraswat et al., 

2022; Shaheen, 2021; Talati, 2023). 

Automated symptom detection is an emerging field in computer vision and artificial 

intelligence that focuses on identifying physical signs of illness, such as coughing and sneezing, 

through video-based analysis. Traditionally, symptom monitoring has relied on self-reports or 

medical examinations, which can be time-consuming, subjective, and impractical for large-

scale public health surveillance. In many cases, individuals may experience symptoms like 

coughing or sneezing but overlook their potential illness, continuing daily activities while 

unknowingly spreading infections. However, recent advancements in deep learning and video 

analysis offer the potential for real-time, automated symptom detection, reducing reliance on 

manual monitoring and improving early disease identification. 
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Human Action Recognition (HAR) is a fundamental task in computer vision that involves 

detecting, identifying, and classifying human actions from video or sensor data. Despite 

challenges related to accuracy and scalability, ongoing research continues to develop more 

robust and efficient approaches. More specifically, HAR can be described as the task of 

assigning a label to a sequence of images or video frames that corresponds to a particular human 

action or activity (Zhang et al., 2019). 

The most intuitive way to detect a cough is through sound. While traditional methods rely 

on handcrafted features like Mel Frequency Cepstral Coefficients (MFCCs) and Linear 

Predictive Codes (LPCs), these approaches often need expert tuning and don’t always work 

well across different devices or environments. Deep learning offers a more flexible alternative. 

Models like Convolutional Neural Networks (CNNs) and Residual Neural Networks (RNNs) 

can learn useful patterns directly from raw audio or spectrograms, removing the need for 

manual feature design. Turning cough sounds into spectrograms lets these models treat the 

problem like image recognition, capturing subtle details in the sound. RNNs such as Long 

Short-Term Memories (LSTMs) also help by tracking the timing and flow of a cough (Amoh 

& Odame, 2016; Hamdi et al., 2022). Cough actions can also be detected by analyzing motion-

based body movements captured through accelerometer signals, extracting time-domain 

features, and classifying them using a neural network model (Diab & Rodriguez-Villegas, 

2024). 

Developing a system capable of observing human activity and notice behaviors related to 

cold and flu symptoms can be a solution to predict potential sickness. For example, the cold 

and flu system can detect people showing signs of illness in a company and alarm the person 

in charge that the risk of the individual becoming sick or infecting others in rising. With that 

information, prevention measures can be taken to ensure the health or workers, and avoid any 

sudden diminution of productivity due to sudden sick leave. Therefore, using tools such as 

HAR in Closed-Circuit Television (CCTV) footage can solve the concerns of unforeseen sick 

people among the workforce of the enterprise.  

In many workplaces, employers are required to notify employees at least 14 days before 

directing them to take leave. However, since cold and flu symptoms typically manifest within 
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1 to 3 days, using symptom detection to preemptively send employees home would be 

ineffective. However, real-time detection can still serve as a valuable preventive measure. By 

identifying symptomatic individuals early, employers or managers can implement sanitary 

protocols, such as encouraging mask usage, increasing ventilation, providing hand sanitizers, 

or temporarily adjusting seating arrangements to minimize the risk of further transmission. 

Therefore, the motivation of this study is to provide a tool that can be used in companies to 

assist managers in decision making concerning the sanitary protocol that workers have to 

follow when a potential sick person is detected. 

1.2 Research Questions 

The aim of this research is to develop a video-based detection system that can identify cold 

and flu symptoms, specifically coughing, using deep learning models. This study will focus on 

training and evaluating YOLOv12 on a relevant dataset to assess their effectiveness in 

recognizing the coughing action in real-time video footage. The performance of both models 

will be compared using standard evaluation metrics, such as accuracy. Therefore, the main 

research questions of this report are:  

• How performant is YOLOv12 in detecting and analyzing a coughing person to achieve 

accurate real-time action analysis and recognition? 

In order to refine this research question, we can split it again: 

• How accurately can deep learning models detect coughing actions in video footage?  

• What are the main challenges in video-based symptom recognition?  

• How do different architectures compare in terms of accuracy, speed, and 

computational cost?  

• How feasible is incorporating video based human activity recognition in existing 

surveillance systems? 

Beyond model performance, this research will also examine the challenges associated with 

implementing human activity recognition in surveillance systems, including factors like 

computational efficiency, environmental variations, and privacy concerns. Additionally, an 

evaluation of the cost and feasibility of deploying such a system in real-world settings will be 
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conducted. The findings from this study aim to provide insights into the limitations of current 

approaches and suggest potential improvements for future research in vision-based action 

recognition. 

1.3 Contributions 

The focus of this research project is to achieve accurate recognition and analysis of 

coughing actions in video footage using object detection methods combined with computer 

vision techniques. We propose a system that leverages an advanced object detection framework 

alongside temporal modeling to identify and interpret human actions associated with coughing. 

A real-time, efficient, and highly accurate pipeline was developed to detect and analyze 

coughing behavior in various environments. This pipeline is built upon existing state-of-the-

art models, adapted and integrated to suit the specific requirements of coughing action 

recognition. To improve the model’s accuracy and robustness, we also built a custom video 

dataset annotated with coughing people and normal people for training. By the end of this 

project, we were able to: 

• Fine-tune and adapt state-of-the-art deep learning models to accurately distinguish 

individuals performing coughing actions in both video and image data. 

• Generate reliable image and video-level inferences using the refined models to support 

real-time human action recognition. 

• Apply targeted optimization techniques to enhance model performance and improve 

classification accuracy across diverse scenarios. 

• Create a dedicated dataset of coughing actions to serve as a robust training resource 

for deep learning-based action recognition systems. 

Furthermore, all models will be evaluated and compared based on their performance 

metrics, and if possible computational resource requirements during training. This comparative 

analysis will highlight the model best suited for practical deployment, while also identifying 

the one with greater potential for future research and advanced applications. 
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1.4 Objectives of This Report 

In this report, we outline a research methodology that integrates human action recognition 

with YOLOv12, which aims to identify and people coughing in video footage. Additionally, 

we offer a comprehensive review of the contemporary literature surrounding HAR, Human 

Pose Estimation (HPE), CNNs modelling techniques. 

Subsequently, we introduce a novel HAR system which discerns a specific human action by 

detecting the action as an object from image data and translating this data into linguistic 

information suitable for processing by the models. 

Therefore, the specific objectives of this report are twofold: Firstly, to create an accurate 

dataset of coughing action in order to train deep learning models.  Secondly, to utilize this 

dataset to perform HAR in videos and images, consequently generating a model capable of 

detecting a specific human action in real-life scenarios. The development environments utilized 

for this endeavor are Python through the use of Google Colab (Colab.Google, n.d.). 

To assess the effectiveness of the proposed methodology, a comparative analysis is 

conducted between CNNs architectures and the Transformer model, with the objective of 

highlighting the distinct advantages and limitations of each approach. 
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1.5 Structure of This Report 

The description of this report is as follows: 

• Chapter 2 provides a comprehensive overview of HAR beginning with its 

foundational concepts and key datasets, and progressing to the role of deep learning 

in enhancing system performance. It concludes with a focused discussion on the 

YOLO family of models, emphasizing their real-time detection capabilities and 

potential in advancing HAR applications. 

• Chapter 3 introduces the architecture of YOLOv12, offering insight into their design 

principles and their differences to better understand how it can perform at multiple 

levels. This chapter also outlines the research methodology and experimental setup, 

concluding with a comparison of the expected outcomes. 

• Chapter 4 details the results from the experiments proposed in the methodology. It 

includes the process of data collection and the subsequent analysis, with a focus on 

visual evaluation of the results and metrics. 

• Chapter 5 provides a comprehensive analysis of the experimental findings and 

summarizes the key outcomes of the study. In addition, it critically evaluates the 

advantages and limitations of the method used. 

• Chapter 6 explores possible future research directions and strategies for improving the 

current approach. This final chapter aims to identify areas for further development and 

suggest ways to enhance the system’s performance in future applications. 
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Chapter 2 Literature 
Review 

 

 

The focus of this report is on pose capturing based 

on dynamic motion for deep learning, this chapter 

will introduce a plenty of traditional methods and the 

relevant knowledge of deep learning.  



9 
 

2.1 Introduction 

This literature review begins by exploring HAR providing an overview of its definition, 

key advantages, current limitations, and widely used datasets in the field. Following this, we 

examine how AI has been applied to HAR tasks, highlighting their strengths in spatial feature 

extraction and their role in advancing recognition accuracy. We then shift our focus to the 

YOLO framework, discussing its evolution, real-time performance capabilities, and relevance 

to HAR applications. Finally, we conclude by reflecting on the key findings and identifying 

gaps or directions for future research. 

2.2 HAR 

As the need for systems that can accurately and efficiently interpret human behavior 

continues to grow, HAR has evolved from early handcrafted approaches to deep learning 

methods that can learn patterns directly from raw data. This subsection explores how HAR has 

progressed, the challenges it still faces, and its relevance to tasks like detecting cough actions 

in visual data. 

 

HAR can play a pivotal role in modern computer vision, with a broad spectrum of 

applications spanning surveillance, healthcare, human-computer interaction, robotics, and 

sports analytics. An earlier review provides a thorough and methodologically robust synthesis 

of research in its domain, adhering to established guidelines and covering a broad temporal and 

thematic scope (Aggarwal & Ryoo, 2011). It can serve as a foundational reference for 

researchers interested in the intersection of sports sciences, human activity recognition, and 

related technological applications. Furthermore, HAR has progressed overtime, going from 

early handcrafted feature-based techniques to sophisticated deep learning frameworks that 

harness convolutional and recurrent neural networks to effectively capture both spatial 

structures and temporal dynamics (Dwivedi et al., 2024).  

 

In team sports, HAR can be used to automatically identify and analyze player actions and 
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interactions during games, enabling applications such as performance analysis, game 

summarization, highlight generation, referee decision assistance, and injury prevention. It 

involves recognizing complex, fast-paced actions often involving multiple players and objects, 

requiring advanced video understanding, temporal tracking, and multi-object detection 

capabilities (Yin et al., 2024). 

 

Another approach to HAR is with HPE, human poses can be extracted as 2D body 

landmarks using the OpenPose detector from CCTV-like videos, and these poses are processed 

to generate low- and high-level spatio-temporal features that capture body posture and 

movement dynamics. HPE could handle occlusions and missing data, enhancing robustness 

and accuracy in action recognition (Angelini et al., 2020). By capturing the spatial and temporal 

relationships of keypoints, HPE enables the identification and classification of various human 

actions, enhancing the understanding of complex movements in sports and physical exercise 

context (Badiola-Bengoa & Mendez-Zorrilla, 2021; Cao & Yan, 2024). Moreover, HPE can 

serve as a foundation for action recognition and enabling accurate analysis of human behavior 

across various applications, including healthcare and human-computer interaction (Q. Wu et 

al., 2020). 

 

Despite its advancements, HAR still faces numerous limitations. The recognition pipeline 

generally encompasses several interconnected stages, including data acquisition, preprocessing, 

feature extraction, temporal modeling, classification, and evaluation. Nonetheless, each of 

these stages introduces potential challenges. For instance, the complexity of HAR is 

significantly heightened by variations in camera viewpoints, subject appearances, lighting 

conditions, and occlusions (Shafizadegan et al., 2024). Another issue can appear with 

backgrounds and camera motion. Many HAR algorithms perform well in controlled indoor 

environments but struggle in outdoor or uncontrolled settings due to background noise and 

camera movements (Kong & Fu, 2022). Therefore, background clutter and dynamic scenes 

introduce noise into feature extraction, degrading recognition performance, and recent works 

have tried to address these by using skeleton models, 3D point clouds, temporal pyramids, and 
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dynamic time warping (Jegham et al., 2020; Wang et al., 2020). 

 

In conclusion, HAR refers to the automated identification and analysis of human behaviors 

from visual or sensor-based data, with the goal of interpreting and classifying actions across 

diverse contexts. This definition holds particular relevance in the present study, as it underpins 

the development of a coughing action recognition system designed to detect individuals 

exhibiting cough-like behaviors in both video footage and still images. However, previous 

studies have highlighted the limitations of HAR which have to be taken into account when 

researching and experimenting in that domain.  

2.3 HAR Datasets 

In the field of HAR, there exist various datasets. The HMDB51 dataset is a well-known 

and richly detailed resource for human action recognition, offering a total of 6,766 manually 

annotated video clips spread across 51 different action categories. Each action has at least 101 

video examples, drawn from a wide range of real-world sources such as movies, public video 

archives, and YouTube. The dataset is designed to reflect the natural complexity of human 

motion in everyday settings, making it highly valuable for training and evaluating recognition 

models. The actions are grouped into five main types: basic facial expressions (like smiling or 

laughing), facial actions involving objects (such as drinking or eating), general body 

movements (like jumping or running), body-object interactions (like playing golf or riding a 

bike), and human-to-human interactions (such as hugging or shaking hands). Each clip includes 

detailed metadata on visible body parts, camera motion, viewpoint, video quality, and number 

of actors, allowing for flexible and fine-grained analysis. All videos are standardized to 240 

pixels in height and 30 frames per second, with stabilization applied to most clips to reduce the 

impact of camera shake. With its diversity, realism, and rich annotations, HMDB51 stands as 

a strong benchmark for advancing human action recognition research (Kuehne et al., 2011).  

 

The UCF101 Dataset is one of the largest and most widely used collections for human 

action recognition, containing over 13,000 video clips across 101 action categories. These clips 
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are taken from real YouTube videos, capturing natural variations like camera movement and 

busy backgrounds, which adds realism and complexity. The actions are grouped into five main 

categories: Human-Object Interaction, Body-Motion Only, Human-Human Interaction, 

Playing Musical Instruments, and Sports. Each video runs at 25 frames per second with a 

resolution of 320×240 pixels, and most clips last just over seven seconds. This makes UCF101 

a rich and challenging dataset for developing and testing action recognition models in real-

world conditions (Soomro et al., 2012). 

 

The KTH dataset includes 2,391 video clips of 25 actors performing six different actions: 

boxing, handclapping, handwaving, jogging, running, and walking. To add diversity and 

challenge model performance, each action is recorded in four different background settings. 

This setup helps test how well recognition models can identify basic but dynamic human 

movements in varying visual environments. As a result, the KTH dataset has become a widely 

used benchmark for evaluating action recognition systems (David & Abbas, n.d.; Thi et al., 

2014). 

 

The Sneeze-Cough Dataset (BIISC) was developed to support public health research by 

focusing on detecting flu-like symptoms, especially sneezing and coughing. It features 960 

color video clips recorded from 20 participants aged between 20 and 50, with an even mix of 

men and women. Alongside the targeted flu-related actions, the dataset also includes six 

everyday background activities like drinking, using a phone, and stretching, which add useful 

variety and context. All recordings were made indoors under semi-controlled lighting, with 

each video captured at a resolution of 480×290 pixels and a frame rate of 5 frames per second. 

Each clip lasts about 15 seconds, making the dataset well-suited for training models in health-

related action recognition (Gupta et al., 2023; Thi et al., 2014). 

 

The NTU RGB+D Dataset is a large and diverse resource created for human action 

recognition. It contains more than 56,000 video samples and millions of frames collected from 

40 participants between the ages of 10 and 35. The dataset spans 60 different types of actions, 
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including everyday activities, person-to-person interactions, and health-related behaviors. All 

data was captured using the Microsoft Kinect v2 across 80 different camera viewpoints, 

providing a rich variety of angles. Each video sample includes RGB footage, depth maps, 

infrared images, and detailed 3D skeletal data showing the movement of 25 key body joints 

(Shahroudy et al., 2016). 

2.4 Artificial Intelligence and HAR 

Nowadays, machine learning can be used in many modern technologies such as voice 

assistants, recommendation systems, and spam filters. Among the classical machine learning 

models, there is the Support Vector Machine (SVM) which utilizes classification and regression 

therefore usable for HAR. For example, some methods can outperform several existing 

techniques at the time, demonstrating the effectiveness of combining local space-time 

descriptors with SVMs for action recognition tasks (Schuldt et al., 2004). 

 

Deep learning can be used in video-based human action recognition by automatically 

learning hierarchical features from raw video frames, capturing both spatial and temporal 

information through architectures like Convolutional Neural Networks (CNNs), 3D CNNs, and 

Recurrent Neural Networks (RNNs) including LSTMs. These models extract complex motion 

patterns and high-level representations from video data, enabling robust recognition of various 

human actions without manual feature engineering (D. Wu et al., 2017). Moreover, deep 

learning can be used for human action recognition by employing neural network architectures, 

such as sequential models with convolutional layers, to automatically extract features from raw 

time-domain sensor data representing human movements (Sikder et al., 2021). 

 

A notable benefit when it comes to CNNs in HAR lies in the training, and optimization of 

the models. When optimized and paired with efficient detection and tracking methods, CNNs 

become powerful tools for real-time human action recognition. This is particularly important 

in areas like surveillance, human-computer interaction, and robotics, where quick and accurate 

understanding of human behavior can make a real difference in performance and usability 
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(Archana & Hareesh, 2021).  

 

CNNs can offer the advantage of automatically learning hierarchical features directly from 

raw input data. As a result, they eliminate the reliance on handcrafted features, which are often 

tailored to specific problems and may struggle to generalize across diverse scenarios. This 

inherent capability enables CNNs to adaptively extract discriminative spatial and temporal 

patterns relevant to human actions, thereby enhancing recognition accuracy in a wide range of 

contexts. Furthermore, by extending traditional 2D CNNs to 3D CNNs, models can capture 

both spatial and temporal information simultaneously. This is crucial for HAR since actions 

are inherently dynamic and involve motion patterns over time. 3D convolutions enable the 

model to learn motion information encoded in multiple adjacent frames, enhancing the 

understanding of temporal dynamics (Ji et al., 2013; Liang & Yan, 2024). 

In summary, CNNs provide a powerful framework for HAR by enabling automatic, robust, 

and scalable learning of spatiotemporal features from raw video data, supporting multimodal 

integration, and facilitating real-time applications with high accuracy and adaptability to 

complex environments. 

2.5 YOLO 

YOLO, short for You Only Look Once, is a fast and efficient object detection model that 

looks at the entire image in one go to identify and locate objects. Over the years, it has gone 

through many versions, each improving on speed, accuracy, and design. Newer models like 

YOLOv8, YOLO-NAS, and YOLOv12 bring in smarter features like attention mechanisms 

and automatic architecture search, helping them perform even better across different tasks. 

Because of this balance between speed and accuracy, YOLO is now widely used in areas like 

self-driving cars, video surveillance, robotics, and even healthcare (Kumar Thakur & Chauhan, 

2025; Sapkota et al., 2025; Terven et al., 2023; Tian et al., 2025). Another interesting usage of 

YOLO is in emotion detection within online classrooms where YOLO-based models can detect 

faces and recognize emotional states from facial expressions, facilitating real-time analysis of 

student engagement (Parambil et al., 2025). 
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In action recognition, YOLO is widely used thanks to its ability to quickly and accurately 

detect objects, making it well-suited for real-time tracking of people in dynamic scenes like 

sports or surveillance. For example, in soccer player tracking, YOLO helps identify players 

and objects from UAV footage, allowing for detailed analysis of movement and team behavior 

with strong accuracy and flexibility (Rezende et al., 2025). Another example is in security 

applications where YOLOv8 can be employed to detect suspicious human activities in 

restricted areas, offering rapid processing and high accuracy for theft detection with real-time 

alert (Reddy et al., 2025; Sai Mrudhun et al., 2024). Moreover, YOLO can extract spatial 

features from individual frames, which are then fed into an LSTM network to capture temporal 

dependencies and model the sequential dynamics of human movements, enabling robust action 

recognition even under challenging conditions like occlusions and varying illumination 

(Elnady & Abdelmunim, 2025). Instead of breaking the process into separate steps like older 

methods, YOLO uses a single neural network to handle everything at once, which makes it 

much faster compared to other detectors like SSD and EfficientDet, making it suitable for real-

time action recognition tasks (Yilmaz & Navruz, 2025). 

 

YOLO can also be used in HAR by incorporating HPE, which involves detecting key 

points in images or videos to understand body movement. By accurately identifying the 

positions and dynamics of multiple individuals' keypoints, YOLO is able to capture both spatial 

and temporal patterns that are essential for distinguishing different actions. This method 

leverages YOLO’s well-known efficiency and precision, which in turn supports effective multi-

person action recognition even in complex and rapidly changing environments (Maji et al., 

2022). In addition, the model’s fast detection speed and high accuracy make it well-suited for 

real-time applications, including deployment on platforms such as unmanned aerial vehicles 

for monitoring human activities in large or remote areas (Ding et al., 2024). Moreover, YOLO’s 

accurate object detection can also work alongside Dynamic Spatial-Temporal Modeling for 

Skeleton-based Action Recognition (DG-STGCN) by identifying relevant objects, such as tools 

in a workspace. This combination can improve the clarity and precision of action recognition, 
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particularly in complex settings like assembly lines (Hsiao et al., 2024). In fall detection, 

YOLOv8 detects human presence and, combined with pose estimation, tracks body postures to 

distinguish falls from normal activities, enabling timely alerts (G et al., 2025). Consequently, 

various actions such as standing, sitting, or engaging in sports can be classified effectively, 

even in scenarios involving multiple subjects or partial occlusions. 

 

In summary, YOLO has emerged as a highly efficient and adaptable framework for action 

recognition, offering a well-balanced combination of speed, accuracy, and flexibility. Its 

capability to simultaneously detect objects and human movements makes it particularly 

effective in complex environments such as surveillance systems, sports analytics, and 

healthcare monitoring. Moreover, the integration of human pose estimation and temporal 

modeling can further enhance YOLO’s ability to capture fine-grained human actions. 

Nonetheless, this study will focus exclusively on employing YOLO for object detection, as this 

approach is expected to deliver faster performance with lower computational overhead, making 

it more appropriate for deployment in real-world scenarios. 

2.6 Summary 

To conclude, this literature review has explored the development and significance of HAR 

highlighting its relevance in various real-world applications such as surveillance, healthcare, 

and human-computer interaction. We first outlined the fundamental principles of HAR, 

followed by an overview of the key datasets that have enabled progress in this field. Next, we 

examined the role of artificial intelligence, particularly deep learning, in improving the 

accuracy and robustness of action recognition systems. Finally, we focused on the YOLO 

family of models, emphasizing their strengths in real-time object detection and their growing 

relevance in HAR tasks. By integrating fast and efficient detection capabilities with temporal 

understanding of human motion, models like YOLO represent a promising direction for future 

research in action recognition. 
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Chapter 3 Methodology 

 

 

This chapter describes the methodology used to develop a deep 

learning-based video recognition system for detecting coughing 

and sneezing. The approach includes dataset selection, 

preprocessing steps, model architecture, training procedures, 

and evaluation metrics. 
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3.1 Dataset 

Based on previous work involving the BIISC dataset, a custom dataset has been created 

using Roboflow. The BIISC dataset videos were filmed at a 10 frames per second rate. However, 

it is noticeable that the subjects in the videos are moving slowly to attenuate movement blur. 

Horizontal flip videos were included in the original folder, but removed to lighten workload 

during manual annotation using the Roboflow tool.  

    This new dataset focuses on cough actions which are present in the videos with COUGH 

in their name. After selecting all the videos related to the cough action, a video segmentation 

was performed to collect images for the training, testing, and validation of the trained models. 

To avoid the duplication of images, an image sampling was performed using a sampling ratio 

of 1 image per second which resulted in a raw dataset containing 1823 images.  

    The annotation consisted on rectangle boxing of the subjects present on the images by 

declaring whether they were class 1 = coughing, or class 2 = normal.  

 

 

Preprocessing: 

- Auto-Orient: this preprocessing step is important for detecting human actions because 

it ensures that all input images or video frames are properly aligned, regardless of how 

they were captured. Videos recorded in different orientations or on various devices may 

appear rotated or flipped if the orientation metadata is not correctly handled. This 

misalignment can distort body posture and motion cues, leading the model to 

misinterpret actions or fail to detect them altogether. Therefore, by auto-orienting 

Dataset split Percentage Number of images 

Training 66% 1203 

Validation 26% 480 

Testing 8% 140 

Table I: Repartition of the dataset split training, validation, and testing before data 

augmentation. 
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frames before processing, the model receives consistent and correctly positioned visual 

information, improving the accuracy and reliability of human action recognition. 

Fortunately, the dataset used to create our new dataset follow strict rules of recording 

to ensure that all the videos were filmed the same way and that the subjects performed 

the actions in a set manner. 

- Resize: This preprocessing technique was mainly used to help control computational 

cost and memory usage by reducing large, high-resolution inputs to a manageable scale 

while preserving essential features. This consistency enables more efficient training, 

better convergence, and more accurate recognition of human actions. 

 

Data augmentation: 

- Brightness: Bringing variations to the brightness of each video frame increases the 

diversity of lighting conditions the model is exposed to during training, which is 

important for recognizing actions like coughing. In real-world settings, lighting can 

vary significantly depending on the environment. For example, indoor company rooms 

versus outdoor public areas. Consequently, if the training dataset contains mostly well-

lit footage, artificially altering brightness helps the model learn to recognize the same 

action in darker or overexposed scenes, therefore improving its generalization to new 

environments. 

- Cutout: Cutout increases the robustness of the model by randomly masking out square 

regions of each video frame, forcing it to rely on a wider range of visual cues. This is 

particularly relevant when recognizing a person coughing, as parts of the body may be 

occluded in real-life footage. For instance, if a subject’s hand or face is blocked by 

another person or object, the model should still be able to detect the action based on 

remaining features like shoulder movement or body posture. Applying cutout during 

training helps the model learn to handle these kinds of partial occlusions. 

- Horizontal Flip: Flipping each video frame horizontally helps diversify the training 

data and is especially useful for recognizing actions like coughing. In real-world 

scenarios, such as sports, a player's movements can differ noticeably based on their 
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dominant hand. If most examples in the dataset show right-handed individuals coughing, 

applying horizontal flips allows the model to also learn how the action might appear 

from left-handed individuals, improving its ability to generalize. 

- Noise: Adding noise to training data can enhance the model’s ability to generalize by 

preventing overfitting and encouraging it to learn more robust, high-level features 

rather than memorizing specific patterns. This technique simulates real-world 

variability, forcing the model to become resilient to imperfections it may encounter 

during inference. As a result, it improves the model’s accuracy on unseen data by 

teaching it to focus on the essential structure of the input rather than noise-sensitive 

details. 
 

In summary, the final dataset used for the coughing action recognition model was 

derived from a selected portion of the BIISC dataset videos, which were first converted into 

image frames and then annotated using Roboflow. The annotated data was subsequently 

divided into training, validation, and testing sets. Before training, the dataset underwent 

key preprocessing steps including auto-orientation and resizing to ensure uniformity and 

compatibility with the model. Additionally, to further enhance the model's robustness, 

accuracy, and generalization capabilities, multiple data augmentation methods such as 

brightness variation, cutout, horizontal flipping, and noise addition were applied to the 

training set. The new dataset used in this research project contains 4229 images in total 

split as shown in Table II. 

 

Dataset split Percentage Number of images 

Training 85% 3609 

Validation 11% 480 

Testing 3% 140 

Table II: Repartition of the dataset across training, validation, and testing after data 

augmentation. 
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3.2 YOLOv12 Architecture 

Understanding the architecture of YOLOv12 is important because it brings together years 

of development in a design that balances high accuracy with real-time performance. Compared 

to earlier versions, YOLOv12 introduces a more advanced backbone that combines dynamic 

convolutional layers with attention mechanisms, helping the model better capture spatial and 

contextual information across different scales. YOLOv12 also utilizes refined training 

techniques like task-aligned label assignment, which together make the model more adaptable 

and precise in complex scenarios. These changes set YOLOv12 apart from its predecessors, 

making it especially valuable for tasks like human action recognition where both speed and 

accuracy are essential. 

 

As shown in Figure I, YOLOv12 has three main parts: the backbone, the neck, and the 

head. Compared to its predecessors, the architecture of YOLOv12 introduces the Residual 

 

 

Figure I: Simplified YOLOv12 architecture 
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Efficient Layer Aggregation Networks (R-ELAN) and A2C2f blocks. To summarize its 

functioning, the input which can be 640*640 images is sent to the backbone, which processes 

the data through multiple convolutional blocks, C3K2 blocks, and a A2C2f block. The 

backbone then sends the output to the neck that performs upsampling and concatenation before 

forwarding it to the head which handles the muti-layered detection. Therefore, YOLOv12 

introduces an attention-driven architecture that strikes a balance between the speed of 

traditional CNN-based models and the enhanced representational power of attention 

mechanisms which marks a significant step forward, as earlier attention-based models often 

fell short in terms of speed, limiting their practicality for real-time tasks like detecting coughing 

actions in workplace video surveillance. 

C3K2 

 

Similarly to YOLOv11, YOLOv12 employs C3K2 blocks in its backbone, an improved 

version of the earlier versions bottleneck block. This block can boost feature extraction while 

keeping the model fast and lightweight by using several small convolutions on different parts 

 

 
Figure II: Simplified representation of C2F, C3K2, and C3K blocks for comparison 



23 
 

of the feature map instead of larger ones. These features are then merged, helping the model 

stay accurate with fewer parameters than older designs like YOLOv8’s C2f blocks. The C3K2 

block expands on the simpler C3K structure by adding extra convolution layers around it and 

combining their outputs to improve feature integration even further. As a result, this design can 

allow YOLOv12 to maintain a strong balance between speed and performance, making it a 

practical choice for real-time object detection tasks.  

 To summarize, YOLOv12 brings a big improvement to real-time object detection by 

combining speed, efficiency, and accuracy through several smart design choices. It introduces 

Area Attention and R-ELAN blocks, while also using Flash Attention to reduce memory 

overhead and make attention nearly as fast as CNNs. Instead of stacking three heavy blocks in 

the backbone like older YOLO versions, it uses just one R-ELAN blocks, making optimization 

easier and speeding up inference. Additionally, the new architecture of YOLOv12 replaces 

linear layers with convolutional ones plus batch normalization to make the most of 

convolution’s speed and efficiency. This is especially useful for action recognition because 

YOLOv12 can quickly and accurately detect subtle movements, like coughing, in real time 

without slowing down or missing important details. 

 

A2C2f 
 Much like Transformers, YOLOv12 integrates attention blocks into its backbone to 

enhance feature extraction. Specifically, it extends the C2f architecture by incorporating area-

attention and A2 Block layers, which allow the model to operate in both attention and standard 

convolution modes. By doing so, it benefits from the strengths of both approaches. Attention 

mechanisms have transformed deep learning by enabling models to dynamically focus on the 

most informative parts of the input, thereby improving performance and interpretability. In the 

context of object recognition, this ability to prioritize salient regions within an image leads to 

more accurate detection and segmentation outcomes (Shen et al., 2024).  

 This area-based attention strategy is specifically designed to reduce the computational 

burden associated with traditional self-attention, which typically suffers from quadratic 

complexity. Instead of applying attention globally across the entire feature map, Area Attention 

divides it into equal-sized, non-overlapping segments either horizontally or vertically, allowing 
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the model to limit the scope of attention and improve efficiency. For example, a feature map 

with dimensions (H, W) can be partitioned into L segments of size (H/L, W) or (H, W/L). This 

segmentation relies on a simple reshape operation, making it a more efficient solution 

compared to complex partitioning methods such as Shifted Window, Criss-Cross Attention, or 

Axial Attention (Khanam & Hussain, 2025). 

 

R-ELAN 
R-ELAN, introduced in YOLOv12, builds on the original ELAN by tackling issues like 

gradient blocking and unstable optimization, especially when attention mechanisms are 

involved. While ELAN splits output and processes them separately before merging, this can 

disrupt gradient flow and lacks a direct connection from input to output. R-ELAN solves this 

by introducing a residual shortcut that links the input to the output with a small scaling factor, 

which stabilizes training in a way similar to layer scaling used in vision transformers, but 

without the added computational burden. Instead of splitting the input, R-ELAN first adjusts 

the channel dimensions using a transition layer, then processes the entire feature map through 

subsequent blocks and merges the results into a more efficient bottleneck. Area Attention, also 

referred to as the A2 Module in YOLOv12, is a novel attention mechanism designed to improve 

the efficiency of self-attention in computer vision tasks. It works by partitioning spatial regions 

of the feature map into equal-sized, non-overlapping segments either horizontally or vertically. 

For a feature map of dimensions (H, W), it is divided into L segments of size (H/L, W) or (H, 

W/L) This new structure improves feature aggregation and model stability while keeping the 

architecture fast and lightweight (Alif & Hussain, 2025; Tian et al., 2025). Consequently, R-

ELAN can improve YOLOv12’s ability to detect coughing actions by enhancing feature 

extraction stability and efficiency, which can enable the model to capture subtle motion cues 

more accurately in real time. 

 

Conclusion 
 

In conclusion, YOLOv12 marks a major advancement in real-time object detection by 

combining the speed and efficiency of CNN-based designs with the improved feature 
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representation of attention mechanisms. Its refined architecture, centered around R-ELAN and 

A2C2f blocks, enables faster and more accurate detection, making it especially suitable for 

practical tasks such as identifying coughing actions in workplace surveillance footage. 

3.3 Evaluation Metrics 

To evaluate and compare the performance of the models used in this study, we will rely on 

key metrics such as precision in eq (2), recall in eq (3), and the F1 score in eq (4), as they offer 

complementary perspectives on detection quality. Precision reflects the proportion of correctly 

identified positive cases out of all instances the model predicted as positive, while recall 

measures the model’s ability to correctly identify all actual positive cases. Since both metrics 

are important, especially when dealing with imbalanced data, the F1 score combines them into 

a single value by calculating their harmonic mean. In addition, analyzing the F1 curve across 

different confidence thresholds allows us to observe how each model performs under various 

decision boundaries. By using this combination of metrics, we aim to ensure a fair and well-

rounded comparison that highlights both the accuracy and reliability of each model in practical 

scenarios. 

 

      	

	

 

 

P = Precision  

R = Recall 

TP = True Positives  

FP = False Positives  

FN = False Negatives 
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                      (2) 
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!"#$%

                      (3) 
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F1 = F1 score 

3.4 Fine-Tuning 

This subsection explores the fine-tuning process of YOLOv12 to determine the most 

suitable batch size and the right optimizer for detecting coughing actions in both images and 

video footage. Since these hyperparameters play a key role in shaping how the model learns 

from the data, it is important to find a balance that promotes both stability and generalization. 

Similarly, too few epochs may result in underfitting, where the model fails to capture key 

features of the coughing action, while too many can lead to overfitting and reduced 

performance on unseen footage. Through systematic experimentation and observation, this 

fine-tuning process helps adapt YOLOv12 to the specific characteristics of cough recognition 

in real-world visual contexts. 

 

Batch size 

Choosing the right batch size is crucial, as a value that is too small can result in noisy 

gradients and unstable learning, while a batch size that is too large may smooth out meaningful 

variations in the data. As shown in Table III, the model achieves its best performance with a 

batch size of eight, yielding higher scores in precision, recall, mean average precision at 0.5, 

and mean average precision across the 0.5 to 0.95 range. At the same time, it is worth noting 

Batch size Precision Recall MAP@50 MAP@50-95 

4 0.946 0.839 0.913 0.78 

8 0.911 0.915 0.962 0.831 

16 0.917 0.833 0.912 0.789 

32 0.949 0.852 0.921 0.792 

Table III: Performance comparison of YOLOv12 from validation with batch size variations 
performed on 30 epochs 

  𝐹1 = 2 "∗'
"#'

                      (4) 
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that a batch size of 32 also delivers strong results and trains significantly faster due to its larger 

size. For this reason, both batch sizes will be used in subsequent training and evaluation to 

balance performance and efficiency. 

 

Optimizer 
 

 

In YOLO, an optimizer is a training component that updates the model’s weights based on 

the loss function to improve prediction accuracy over time. Based on Table IV, Nadam showed 

a better precision and mean average precision at 0.5 than the other optimizers, but worse results 

for recall, mean average precision from 0.5 to 0.95. Stochastic Gradient Descent (SGB) achieve 

higher mean average precision from 0.5 to 0.95, while maintaining competitive values in 

precision, recall, and mean average precision at 0.5. SGB offers computational efficiency by 

using small subsets of data (mini-batches) for updates, often leading to faster convergence and 

better generalization (Ketkar, 2017). Consequently, the optimizer used for training the model 

will be SGD. 
  

 

Optimizer Precision Recall MAP@50 MAP@50-95 

ADAM 0.883 0.858 0.91 0.761 

SGD 0.909 0.904 0.939 0.809 

AdamW 0.905 0.906 0.937 0.771 

NAdam 0.925 0.894 0.945 0.789 

RAdam 0.856 0.874 0.903 0.762 

Table IV: Performance comparison of YOLOv12 from validation with different optimizers 
performed on 30 epochs with a batch size of 32 
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Chapter 4 Results 

 

 

The main content of this chapter is to collect video data and 

demonstrate the experimental results. In the end, in this 

chapter, we also discuss the limitations of this project. 
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4.1 F1 Score to Confidence Results from Training 

 

As shown in Figure III, the F1 score remains relatively stable across confidence thresholds 

from 0.1 to 0.8, whereas in Figure IV, it declines steadily over the same range. Notably, both 

figures reveal a consistent downward trend in the F1 score for coughing recognition as 

confidence increases, while the F1 score for normal recognition follows a similar pattern in 

 
Figure III: F1 to confidence graph for batch size 8 performed on 100 epochs 
 

 
Figure IV: F1 to confidence graph for batch size 32 performed on 100 epochs 
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both graphs. These findings suggest that although both models perform similarly in recognizing 

normal actions, the model trained with a batch size of 8 demonstrates greater stability in 

detecting coughing actions during training. 

 

4.2 Overall Results from Training on 100 Epochs 

 

 

Figure V: Results from training YOLOv12 with batch size 8 on 100 epochs 
 

 
Figure VI: Results from training YOLOv12 with batch size 32 on 100 epochs 
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 Figures V and VI illustrate the model’s training behavior over 100 epochs. Although the 

boxing, classification, and distribution focal losses (DFL) follow similar trends during training 

for both configurations, a noticeable difference appears during validation: all three losses start 

significantly lower with the smaller batch size. This suggests that training with a batch size of 

8 may lead to better generalization for cough action detection. In contrast, the lower validation 

performance with a batch size of 32 could indicate a higher risk of overfitting. 

 Another thing we can notice is that both models are improving their precision the more 

epochs they are trained on. However, the recall, mean average precision at 0.5 and mean 

average precision from 0.5 to 0.95 all start to decrease after 50 epochs. Similarly to the 

phenomenon observed in validation losses, this pattern suggests a case of overfitting after 50 

epochs.  

4.3 Results from Validation on Image Set 

 
 
 

 

Figure VII: Validation batch with correct object labels 
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Figures VII, VIII, IX, and X demonstrate that the model is capable of identifying coughing 

actions in validation images, while also correctly recognizing instances where individuals are 

behaving normally without any visible symptoms. This indicates that the model has learned to 

distinguish between symptomatic and non-symptomatic actions to a certain degree. However, 

both versions of the model still struggle with false positives, often misclassifying normal 

behavior as coughing. This suggests that the model may be overly sensitive to certain 

movements or poses, potentially due to similarities in body posture or motion between normal 

and coughing actions. Additionally, these results also highlight a need for more refined features 

or better-balanced training data to improve the model’s discrimination ability. 

 

Figure VIII: Prediction of model trained with batch size of 8 on validation batch 
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Figure IX: Validation batch with correct object labels 
 

 

 
Figure X: Prediction of model trained with batch size of 32 on validation batch 
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Another reason the model might mistake normal actions for coughing is the poor quality 

of some images in the dataset. If the images are blurry, dark, or low in resolution, the model 

may struggle to see the small details that show someone is actually coughing, like a hand near 

the mouth or a change in facial expression. When those details are missing or unclear, the model 

might rely too much on general body posture, which can look similar in many actions. This can 

lead to mistakes, especially if parts of the body are blocked or if the image is noisy. Therefore, 

improving the image quality and using basic enhancements like sharpening or brightening 

could help the model make more accurate predictions. 
 

4.4 Video Inference 

To test the model’s performance in a real-world scenario, we applied it to video inference. 

A short video was recorded in which the subject first behaved normally and then performed a 

coughing action. This allowed us to evaluate how well the model could detect the transition 

between normal behavior and visible symptoms in a continuous video stream, rather than 

isolated images. 

 

 
Figure XI: Results obtained from the application of the trained model on a test video. 
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Figure XI shows that the model is able to detect both normal behavior and coughing actions 

in video frames that were not part of the training set. This demonstrates the model’s ability to 

generalize beyond the data it was trained on and accurately recognize coughing as a distinct 

human action in real-world footage. By successfully identifying and distinguishing coughing 

from normal behavior in previously unseen video, the model proves its potential for real-time 

action recognition, where each frame is treated as an object detection task. Consequently, these 

results highlight the effectiveness of the model in capturing subtle actions and applying them 

consistently across continuous video input. 

4.5 Comparison with Other Models 

In this subsection, we compare the performance of YOLOv12 with YOLOv8, YOLOv11, and 

RF-DETR, a real-time transformer-base architecture, by evaluating key detection metrics, 

including precision, recall, mean average precision at 0.5, and mean average precision from 

0.5 to 0.95. These metrics can provide a clear view of YOLOv12’s trained model to detect 

coughing actions accurately and consistently, allowing us to assess its strengths and limitations 

in real-time cough action recognition in video footage and images. 

 

Model Precision Recall MAP@50 MAP@50-95 F1 

YOLOv12 0.943 0.910 0.941 0.814 0.926 

YOLOv11 0.925 0.903 0.924 0.798 0.914 

YOLOv8 0.890 0.875 0.910 0.766 0.882 

RF-DETR 0.893 0.850 0.940 0.804 0.871 

Table V: Performance comparison of 4 different models on the dataset based on validation 

metrics 

The results in Table V show that YOLOv12 performs the best among the four models tested, 

with an F1 score of 0.926. It reaches the highest scores in all metrics, including a precision of 

0.943 and a recall of 0.910. These values mean that the model is both accurate when it makes 

predictions and consistent in finding most of the coughing actions. It also leads in mean average 

precisions, which shows it can correctly localize actions across different levels of overlap. 
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Overall, these results suggest that YOLOv12 is highly reliable for recognizing coughing 

behavior in our dataset. 

Just behind YOLOv12 is YOLOv11, which also gives strong results with a F1 score of 

0.914. With a precision of 0.925 and a recall of 0.903, it is only slightly lower than YOLOv12. 

Its mean average precision scores are also close, especially the mean average precision at 0.5 

(0.924). This shows that YOLOv11 is still quite effective at detecting and localizing actions, 

though not quite as consistent as YOLOv12. The small gap between the two models likely 

reflects improvements in YOLOv12’s architecture that make it more refined and stable. 

YOLOv8, on the other hand, shows the weakest performance overall with a F1 score of 

0.882. It has the lowest precision (0.890) and recall (0.875), along with the lowest mean average 

precision scores. This means it makes more mistakes when predicting and also misses more 

true coughing actions. While YOLOv8 is known for being lightweight and fast, these results 

suggest that it may not be the best choice for tasks that need higher accuracy, like action 

recognition related to health. 

Finally, RF-DETR gives mixed results, with its mean average precision scores that can be 

convincing, and the lowest F1 score overall (0.871). Its recall is the lowest at 0.850, which 

means it tends to miss more actual coughing cases. This suggests that RF-DETR can be good 

at making precise predictions when it does detect something, but it doesn’t always catch 

everything. It might be useful in combination with other models, but on its own, it may not be 

ideal if the goal is to catch every possible sign of coughing. 
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Chapter 5 

Analysis and Discussions 

 

 

This chapter presents an analysis and comparison of the 

experimental results, examining how the outcomes vary 

under different conditions. It also discusses the potential 

reasons of the results obtained from the experiment. 
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5.1 Analysis  

In summary, we combined human action recognition and deep learning to detect the 

coughing actions in videos. Firstly, an object detection dataset was created based of a bigger 

dataset containing videos of various human actions performed by a group of subjects. Then the 

model was fine-tuned on two different aspects: batch size and optimizer, to figure out a reliable, 

yet fast way to train our model. Secondly, two versions of the model were created and compared 

based on the metrics obtained from the trainings and the validations. The more promising 

model was then used for video inference on new data. The model was capable of recognizing 

the subject coughing in the video with good accuracy, which highlights its potential for future 

usage. Thirdly, after comparison with other models, YOLOv12 proved to be the most effective 

model for recognizing coughing actions in videos because it combined high accuracy with 

reliable detection across different situations. It consistently identified coughing events while 

avoiding many false positives, which shows that its predictions were both precise and thorough. 

Compared to the other models, YOLOv12 was better at locating the action within the frame 

and adapting to variations in how coughing appears. This strong performance highlights its 

potential for real-world applications, where recognizing subtle human actions, like coughing, 

needs to be both dependable and accurate. 

5.2 Discussions and Limitations 

In this study, we trained and fine-tuned the YOLOv12 model to detect coughing actions in 

both videos and images, relying on a dataset composed of annotated frames that reflect real-

world human behavior. Since coughing is often a brief and subtle action that occurs in complex 

environments with multiple people, varying lighting, and background clutter, the training 

process was carefully designed to improve YOLOv12’s ability to handle such challenges. As a 

result, the model showed notable improvements in accuracy, precision, and mean average 

precision when compared to earlier YOLO versions. Furthermore, the video inference results 

clearly demonstrate the model’s ability to perform well in realistic scenarios, reinforcing its 

practical value. Thanks to its efficient architecture, fast detection speed, and robustness under 
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difficult conditions, YOLOv12 presents a highly competitive approach for human action 

recognition, particularly in applications that require real-time analysis and cost-effective 

deployment. 

We initially considered using skeletal joints and human pose estimation to evaluate human 

posture in this system, but it was ultimately deemed unnecessary for our application. Instead 

of relying on pose comparison or joint completion assessments, we focused on a more direct 

recognition approach using object detection, which can be faster and less computationally 

heavy because it predicts bounding boxes around whole objects rather than estimating multiple 

precise keypoints for each body part, which requires more detailed processing and higher 

resolution features. By combining YOLO models with visual input, we developed an efficient 

real-time system that analyzes a person’s behavior without the need for explicit keypoint 

extraction. This method offers a streamlined and effective solution while also showcasing how 

YOLOv12 can handle visual tasks by learning patterns directly from image data, without 

depending on skeletal modeling. 

Although the proposed HAR) system demonstrates encouraging performance, it continues 

to face several limitations that hinder its effectiveness in real-world scenarios. The system 

remains vulnerable to environmental variations, as conditions such as inadequate lighting, 

background clutter, and occlusions can substantially degrade its accuracy. Furthermore, it 

encounters challenges in generalizing across different users and contexts, which restricts its 

ability to deliver consistent results beyond controlled environments. Actions that are visually 

similar or happen quickly are especially hard to distinguish, which further affects reliability. 

Real-time deployment also presents difficulties, since running these models efficiently often 

requires substantial computational resources. Moreover, building large and accurately labeled 

datasets remains a time-consuming and expensive task, adding to the overall development 

burden. Privacy concerns must also be considered, particularly in settings like healthcare or 

public spaces, and the lack of transparency in deep learning models makes it harder to explain 

or justify their decisions. Taken together, these limitations highlight the gap between current 

capabilities and the demands of real-world use. 
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Chapter 6 Conclusion 

and Future Work 

 

 

This chapter outlines the purpose and approach of the 

project, while also recommending future research paths in 

light of the experimental findings, observed limitations, 

and possible improvements his chapter, we will summarize 

the subject and method of this project and propose new 

research direction according to the result and insufficiency 

of the experiment as well as the future work. 
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6.1 Conclusion 

This study begins by reviewing existing research in human action recognition, starting 

with foundational work and gradually moving toward more recent advances in deep learning 

models such as CNNs, while also addressing the integration of human pose estimation. 

Following this, the research methodology introduces and contrasts the architecture of 

YOLOv12 with its predecessors, providing insights into its design principles and how these 

differences may influence performance. The experimental setup is described to ensure clarity 

in how the models were developed and tested. The results are then presented, including the 

process of data collection, the evaluation metrics used, and a visual analysis of the outputs. 

Finally, the study concludes by analyzing the findings in depth, drawing attention to the 

effectiveness of the proposed approach, while also discussing its limitations and suggesting 

areas for future improvement. 

In conclusion, the aim of this study was to explore the potential of deep learning for 

recognizing human coughing actions in videos, with a focus on real-time performance and 

reliability. By combining human action recognition techniques with state-of-the-art object 

detection models, the goal was to develop a system capable of accurately identifying coughing 

behavior in various conditions. Moreover, this research also aimed to evaluate different training 

strategies and model configurations to find the most effective setup. The results have shown 

that the model performed better than some other models used for comparison, with an overall 

F1 score of 0.926. As a final point, the study highlights how such a system could contribute to 

health monitoring and public safety by providing a fast and dependable way to detect coughing 

actions in real-world environments. 
 

6.2 Future Work 

In the future, this work could be extended by training the model to recognize a broader 

range of human actions, such as sneezing, yawning, or speaking. Expanding the dataset with 

more diverse video samples, featuring different people, environments, and lighting 
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conditions, would help improve the model’s generalization and adaptability to real-world 

situations. This would not only make the system more robust but also more applicable in 

various health and public safety contexts. 

Moreover, integrating temporal modeling techniques like LSTM or Temporal 

Convolutional Networks could enhance the system’s ability to understand motion over time, 

making it better at distinguishing between actions that appear visually similar in individual 

frames. In addition, future efforts could focus on optimizing the model for real-time 

performance on low-resource devices, which would support practical deployment in 

surveillance or healthcare settings. Combining video analysis with other data sources, such as 

audio or sensor input, might also improve recognition in cases where visual information is 

limited, while raising important questions around privacy and responsible use that should be 

carefully addressed. 

 Finally, this whole study could be done again but using newer state-of-the-art methods, 

especially Transformers which are a big area of focus nowadays. For example,  Transformer 

can replace recurrent and convolutional layers with multi-head self-attention mechanisms, 

enabling superior parallelization, faster training, and state-of-the-art performance in tasks like 

machine translation (Vaswani et al., 2017). Unlike CNNs, which have limited receptive fields, 

Transformers can model relationships between all patches in a video sequence globally. This is 

crucial for understanding actions that involve interactions across distant spatial or temporal 

region (Shaikh et al., 2024). Additionally, Transformers like Swin can generate hierarchical 

feature maps, enabling multi-scale modeling of actions—useful for recognizing actions at 

varying speeds or scales (Liu, Lin, et al., 2021; Liu, Ning, et al., 2021). 
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