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Abstract 

In this thesis, we explore the adaptation of large language models (LLMs) for 

structured time-series forecasting, focusing on predicting table tennis serve landing points. 

Traditional time-series models rely on specialized architectures, while LLMs are 

inherently designed for textual data processing, posing challenges in numerical sequence 

modeling. To address this, we introduce ChatPPG, a multi-modal framework that 

integrates time-series data into LLMs through structured embeddings, cross-modal 

attention, and parameter-efficient fine-tuning (i.e., LoRA). Our findings demonstrate that 

alignment-based approaches significantly enhance forecasting accuracy compared to 

prompting-based methods, with DeepSeek-R1-Distill-Qwen-1.5B achieving the lowest 

MSE (0.432) and MAE (0.441). However, our study also highlights a trade-off between 

accuracy and inference efficiency, as prompting-based methods introduce excessive 

latency, making them impractical for real-time applications. Ablation experiments further 

validate the importance of multi-modal feature alignment, interleaved embedding fusion 

(IEF), and domain-informed prompting, showing that their removal leads to substantial 

performance degradation. In this thesis, we extend the application of foundation models 

beyond natural language processing, establishing a scalable and computationally efficient 

framework for integrating LLMs into structured forecasting tasks. Our future research 

directions include the development of a fully end-to-end multi-modal sports analytics 

system, leveraging real-time vision models for spatiotemporal reasoning, as well as the 

exploration of generative models like stable diffusion for stochastic time-series 

forecasting. These advancements aim to enhance automated match analysis and 

intelligent coaching applications, further bridging AI, computer vision, and predictive 

modeling in sports analytics.  
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Chapter 1 

Introduction 

 

 

This chapter introduces the research motivation, objectives, 

and significance of adapting LLMs for structured time-series 

forecasting, specifically in table tennis serve landing point 

prediction. 
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1.1 Background and Motivation 

Recent advancements in computer vision and deep learning have significantly enhanced 

the ability to extract structured information from real-time sports competitions. In our previous 

study, we leveraged YOLO-based vision models to capture essential match data from real-time 

table tennis games (Yang et al., 2024; Dong et al., 2024). This included player movement 

patterns, serve violations and their causes, serve stroke classifications (forehand/backhand), 

ball trajectory, and spin types (topspin/backspin). Additionally, the study implemented video 

segmentation techniques, enabling the extraction of the number of rallies per match and player 

win/loss statistics. While these foundational insights provided valuable match analytics, they 

primarily focused on descriptive statistics and basic event detection, lacking deeper tactical and 

strategic analysis of player behaviors. 

To further advance table tennis strategy modeling, it is crucial to analyze opponent shot 

selection patterns and adaptive play strategies (Bian et al., 2024; Poolton et al., 2006). During 

a match, professional players dynamically adjust their strategies based on the strengths and 

weaknesses of their opponents, and each rally’s outcome influences their psychological state 

and decision-making (Raab et al., 2005). The ability to accurately anticipate an opponent’s 

serve placement is particularly vital, as it not only reduces defensive pressure but also disrupts 

the opponent’s confidence, which can be a decisive factor in high-stakes competitions. This 

study explores the potential of LLMs for time-series forecasting, using table tennis serve 

landing point prediction as a test case. By assessing how well LLMs can integrate sequential 

patterns from past serves, we aim to determine the extent to which pre-trained foundation 

models can enhance predictive performance in sports analytics. 

The rapid progress of foundation models in natural language processing (NLP) and 

computer vision has introduced novel perspectives on multi-modal learning (Radford et al., 

2021; Li et al., 2023). Notably, the development of multi-modal vision models has provided 

new insights into time-series research (Kim et al., 2021; Wu et al., 2023). While one promising 

avenue involves training a foundation model specifically for time-series forecasting, this 

approach faces significant challenges due to the lack of large-scale time-series datasets 

comparable to those in NLP and video analysis (Zhang et al., 2024; Zeng et al., 2022). An 
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alternative approach, which has gained traction, focuses on adapting pre-trained foundation 

models by aligning time-series data with existing LLM architectures through data alignment 

and fine-tuning (Cao et al., 2024; Liang et al., 2024). This study follows the latter approach, 

investigating whether pre-trained LLMs can enhance time-series forecasting performance 

through strategic data alignment and domain-specific adaptation (Jin et al., 2024; Wolff et al., 

2025). By bridging LLMs with structured sequential modeling, we aim to evaluate their 

effectiveness in predicting table tennis serve landing points, ultimately assessing the feasibility 

of leveraging large-scale language models for structured numerical forecasting tasks. 

1.2 Research Questions 

The integration of LLMs with structured time-series forecasting represents an emerging 

research direction, particularly in domains such as sports analytics, where sequential 

dependencies and strategic decision-making play a critical role (Ferrara, 2024; Liu et al., 2025). 

While prior studies have demonstrated the effectiveness of computer vision models in 

extracting fundamental table tennis match data—including player movement, serve violations, 

stroke classification, ball trajectory, and spin type—they primarily focus on descriptive analysis 

rather than predictive strategy modeling (Bian et al., 2024; Dong & Yan, 2024; Zhou et al., 

2023). Given the dynamic nature of table tennis, where players continuously adapt their 

strategies based on opponent tendencies and rally outcomes, the ability to anticipate serve 

placement can be a crucial factor in gaining a competitive advantage (Raab et al., 2005; Poolton 

et al., 2006; Martin et al., 2021). In this study, we explore whether LLMs can enhance time-

series forecasting by addressing the following research questions: 

Question 1. How can LLMs be effectively adapted for time-series forecasting in table 

tennis serve prediction? 

While LLMs have demonstrated strong capabilities in natural language understanding and 

multi-modal learning, their applicability to structured numerical forecasting tasks remains an 

open challenge (Radford et al., 2021; Ahsan et al., 2024). Traditional time-series models rely 

on domain-specific architectures (e.g., LSTMs, Transformers) trained explicitly on structured 

sequences, whereas LLMs are pre-trained primarily on textual data (Yu et al., 2019; Zeng et al., 
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2022).  This raises the question of how to effectively align numerical time-series features with 

LLM representations to facilitate accurate serve landing point prediction. We investigate 

whether multi-modal integration strategies, such as cross-attention mechanisms and structured 

prompt engineering, can enable LLMs to capture temporal dependencies and improve 

sequential forecasting performance in a high-speed, competitive sports environment. 

Question 2. What are the trade-offs between accuracy and computational efficiency when 

integrating LLMs with time-series forecasting models? 

Despite their ability to generalize across diverse tasks, LLMs are computationally 

expensive, making their real-time applicability in table tennis match analytics a critical concern 

(Dettmers et al., 2023; Liu et al., 2025).  While alignment-based approaches—which map 

time-series data directly into LLM embeddings via attention mechanisms—have been shown 

to improve predictive accuracy, they must also be evaluated in terms of computational 

feasibility (Cao et al., 2024; Wolff et al., 2025). The inference speed of an LLM-based 

forecasting system is particularly important in real-time match analysis, where delays in serve 

anticipation could negate competitive advantages (Jin et al., 2024; Zhang et al., 2024). This 

study compares the computational trade-offs between prompt-based LLM adaptations and 

alignment-based fine-tuning methods, assessing whether performance gains justify the 

increased inference cost and whether parameter-efficient tuning strategies can mitigate 

computational constraints. 

Question 3. Which architectural components contribute most to enhancing LLM-based 

serve landing prediction, and how does multi-modal alignment impact forecasting 

performance? 

To optimize the fusion of structured numerical data with pre-trained LLMs, this study 

systematically evaluates the impact of different architectural choices on predictive accuracy. 

Specifically, we investigate how feature-wise modeling (channel independence), frequency-

aware prompting (Fourier frequency prompts), embedding alignment (interleaved embedding 

fusion), and parameter-efficient fine-tuning (LoRA) influence the model’s ability to capture 

sequential shot dynamics (Dettmers et al., 2023; Pan et al., 2024). Through a controlled ablation 

study, we examine whether removing key components (e.g., interleaved embedding fusion, 
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domain-specific prompts, LoRA fine-tuning, and flatten projection layers) leads to significant 

performance degradation, thereby identifying the most essential mechanisms for aligning 

LLMs with structured sequential forecasting tasks. 

Question 4. Are generic prompting strategies insufficient for numerical sequence 

modeling? 

While LLMs have demonstrated their ability to handle text-based reasoning tasks 

effectively, their direct applicability to structured numerical forecasting remains questionable 

(Radford et al., 2021; Ahsan et al., 2024). Generic prompting strategies, which rely on text-

based task descriptions without structured numerical alignment, may not be sufficient to 

capture complex temporal dependencies (Zeng et al., 2022; Zhang et al., 2024). This study 

investigates whether structured embeddings, cross-attention mechanisms, and feature-aware 

prompts are necessary for bridging the gap between textual pre-training and numerical 

sequence modeling. 

By addressing these research questions, this study seeks to provide empirical insights into 

the feasibility of adapting LLMs for structured time-series forecasting. The findings will 

contribute to a deeper understanding of how large-scale pre-trained models can be leveraged 

beyond traditional NLP applications, expanding their utility into sports analytics and real-time 

decision-making in competitive environments. 

1.3 Contributions 

In this thesis, we present a novel exploration of large language model (LLM) adaptation 

for structured time-series forecasting, specifically in the domain of table tennis serve landing 

point prediction. By integrating multi-modal alignment strategies with parameter-efficient fine-

tuning techniques, this research provides empirical insights into the effectiveness of LLMs in 

numerical sequence modeling. 

First, we introduce ChatPPG, a multi-modal forecasting framework that aligns time-series 

shot data with LLM-generated representations through cross-attention mechanisms and 

structured embedding fusion. Experimental results demonstrate that alignment-based 

approaches significantly outperform prompt-based methods, confirming that directly encoding 
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time-series sequences within LLM embeddings enhances forecasting accuracy. 

Second, we conduct a comprehensive inference efficiency analysis, revealing a trade-off 

between model complexity and real-time feasibility. While larger, fine-tuned LLMs yield 

superior accuracy, they introduce higher computational costs, underscoring the necessity of 

scalable tuning strategies such as LoRA. 

Furthermore, a detailed ablation study identifies interleaved embedding fusion and 

domain-aware prompting as critical components for LLM-based time-series learning, 

establishing best practices for integrating foundation models into structured numerical 

forecasting tasks. 

Finally, this study reinforces the effectiveness of multi-modal latent space alignment, 

demonstrating its powerful capability in bridging structured numerical data with LLM 

representations. The results provide strong empirical support for the potential of leveraging 

existing foundation models beyond their original NLP applications, boosting confidence in the 

feasibility of extracting and utilizing pre-trained LLM knowledge for structured forecasting 

tasks. These findings further validate the industry’s growing interest in multi-modal learning, 

highlighting the viability of harnessing large-scale pre-trained models for time-series analysis. 

1.4 Objectives of This Report 

The objective of this thesis is to explore the feasibility of leveraging LLMs for in-depth 

analysis and prediction of motion data in table tennis, beyond their conventional applications 

in NLP-based dialogue systems and athlete training decision support. While LLMs have 

demonstrated remarkable capabilities in natural language understanding and multi-modal 

processing, their potential in structured numerical forecasting remains underexplored. This 

study aims to assess whether pre-trained foundation models can be effectively adapted to 

process and predict sequential shot patterns in competitive table tennis matches, thereby 

expanding their utility beyond traditional textual reasoning. 

Another key objective is to investigate how individual researchers with limited 

computational resources can efficiently utilize existing large models to conduct customized, 

domain-specific research. Given the substantial computational costs associated with training 
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task-specific models from scratch, this study examines the effectiveness of parameter-efficient 

fine-tuning techniques and alignment-based data integration strategies in enabling LLMs to 

specialize in table tennis landing point prediction without requiring full-scale model retraining. 

Furthermore, this thesis provides empirical evidence supporting the continuous 

advancement of foundation models, demonstrating that modern LLMs exhibit increasingly 

robust multi-modal capabilities when aligned with structured time-series data. By validating 

the effectiveness of multi-modal fusion techniques in structured forecasting, this report 

highlights the evolving role of LLMs as powerful tools for integrating diverse modalities, 

reinforcing their practical applicability in specialized analytical domains.  

1.5 Structure of This Report 

This thesis is organized into several sections to provide a comprehensive exploration of 

LLM-based adaptation for time-series forecasting in table tennis serve landing point prediction. 

Each section systematically builds upon prior discussions, offering theoretical foundations, 

methodological details, experimental evaluations, and key findings. 

Chapter 2 presents a literature review, discussing existing approaches in time-series 

forecasting, LLM adaptation techniques, and multi-modal fusion strategies. This section 

contextualizes the research within the broader landscape of foundation model applications 

beyond NLP, emphasizing the challenges of aligning numerical sequences with pre-trained 

LLM architectures. 

Chapter 3 outlines the proposed methodology, detailing the design of ChatPPG, including 

its data preprocessing pipeline, embedding alignment strategies, attention mechanisms, and 

fine-tuning techniques such as LoRA. Additionally, the section introduces the multi-modal 

integration framework used to bridge structured time-series inputs with LLM-generated textual 

representations. 

Chapter 4 describes the experimental setup, covering dataset composition, preprocessing 

techniques, model configurations, evaluation metrics, and training procedures. This chapter 

also explains the benchmarking process across multiple LLM architectures and introduces the 

ablation study framework, which systematically evaluates the impact of key architectural 
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components. 

Chapter 5 presents the results and analysis, offering a detailed examination of model 

performance, inference efficiency, and the effectiveness of different adaptation strategies. The 

findings highlight the trade-offs between accuracy and computational cost, reinforcing the need 

for scalable LLM-based forecasting solutions. 

Chapter 6 discusses the implications of the study, addressing the research questions by 

interpreting the key results. This section also outlines practical considerations for deploying 

LLMs in structured forecasting tasks, as well as the limitations and potential avenues for future 

research. 

Finally, Chapter 7 concludes the report by summarizing the major contributions, 

emphasizing the effectiveness of multi-modal alignment for numerical sequence modeling, and 

proposing directions for further exploration, particularly in end-to-end multi-modal learning 

and real-time sports analytics. 
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Chapter 2 Related 
Work 

 

 

This chapter reviews existing research on time-series 

forecasting, LLM adaptation techniques, and multi-

modal learning, highlighting the challenges of 

aligning structured numerical data with pre-trained 

language models and the advancements in LLM-

based predictive modeling.  
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2.1 Large Language Models 

The application of LLMs in sports has rapidly gained traction, demonstrating their 

potential to analyze complex data and provide actionable insights (Xia et al., 2024). In recent 

years, LLMs have been utilized in areas such as athlete psychology assessment, match data 

summarization and tactical optimization. For example, studies have explored using LLMs to 

interpret interview data and provide psychological insights for athletes, as well as to 

automatically generate post-match reports and tactical analyses. These models have also been 

leveraged in team sports like football and basketball to evaluate and optimize strategic setups 

(Schilling et al., 2024; Held et al., 2024; Liu et al., 2025; Hu et al., 2024). However, despite 

the success in these domains, the integration of LLMs into fast-paced individual sports such as 

table tennis remains underexplored. This gap underscores the need for innovative approaches 

to harness the capabilities of LLMs to provide real-time, actionable guidance for players and 

coaches. 

Adapting LLMs to specific domains like table tennis requires efficient fine-tuning and 

integration techniques to meet the demands of real-time applications. Traditional full-

parameter fine-tuning, though effective, is resource-intensive and unsuitable for lightweight 

implementations. To address these challenges, LoRA has emerged as a practical solution, 

enabling the fine-tuning of LLMs by training only small, adaptable layers while keeping most 

parameters frozen. This approach significantly reduces computational overhead while retaining 

performance (Hu et al., 2021). Prompt engineering has proven to be a powerful tool for tailoring 

LLM outputs by designing input structures that guide the model to produce accurate and 

contextually relevant responses (Marvin et al., 2024). In parallel, model quantization—

reducing parameter precision to 8-bit or lower—has improved inference speed and reduced 

memory consumption, making LLMs more efficient for real-time scenarios (Dettmers et al., 

2023; Xiao et al., 2023). 

Traditional language models primarily focus on direct context-to-output mappings, which 

often limits their ability to perform complex reasoning or multi-step logical inference(Wu et 

al., 2025). Chain of Thought (CoT) reasoning addresses this limitation by explicitly generating 
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intermediate reasoning steps during inference, guiding the model to incrementally decompose 

problems, simulate logical progression, and construct structured solutions. This approach 

significantly enhances model interpretability and robustness, leading to improved performance 

in mathematical reasoning, commonsense question-answering, and other high-complexity 

tasks. 

As large models continue to demonstrate emergent capabilities in reasoning and planning, 

both academia and industry have begun encapsulating them as semi-autonomous or fully 

autonomous AI agents (Xi et al., 2025). By integrating LLMs with external tool interfaces, 

search engines, knowledge graphs, and robotic execution modules, these AI agents can 

iteratively perform "perception-decision-execution" cycles in open-ended environments. 

Research in this domain leverages reinforcement learning and imitation learning, enabling 

LLMs to execute multi-step autonomous decision-making and task execution in domains such 

as automated programming, task planning, and data analysis, further underscoring their 

potential in the exploration of general intelligence. 

The advancement of large-scale pre-trained models increasingly relies on interdisciplinary 

research (Cai et al., 2024). Techniques such as Mixture of Experts (MoE) and Sparse Attention 

aim to reduce the computational cost of large-scale training while improving model 

generalization. Concurrently, research efforts are focused on refining Retrieval-Augmented 

Generation (RAG) and knowledge base integration, with the goal of constructing "knowledge-

controllable" models capable of generating more accurate and interpretable responses in 

applications such as dialogue systems and information extraction (Fan et al., 2024). 

DeepSeek is an emerging innovative paradigm in large language model retrieval and 

reasoning, designed to seamlessly integrate external knowledge retrieval with multi-step 

inference capabilities (Guo et al.,2025; Liu et al., 2024). By efficiently retrieving large-scale 

unstructured data at the initial reasoning stage and incorporating chain-of-thought reasoning 

mechanisms, DeepSeek facilitates targeted filtering and correction of potential inference paths. 

This approach demonstrates promising advantages in handling long-tail complex queries and 

domain-specific challenges, such as legal analysis, medical reasoning, and scientific literature 

comprehension. As a result, DeepSeek is regarded as a successful fusion of semantic search, 
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external knowledge graphs, and structured LLM reasoning frameworks, further advancing the 

field of knowledge-enhanced language modeling. 

2.2 LLMs Backbone Time Series  

The integration of LLMs as backbones for time-series forecasting has emerged as a 

promising research direction, leveraging pre-trained foundation models to enhance structured 

numerical predictions (Jin et al., 2023; Liang et al., 2024). While traditional time-series 

methods rely on domain-specific architectures (e.g., LSTMs, Transformers), recent studies 

explore LLM-based approaches by aligning sequential numerical features with text-based 

embeddings (Zeng et al., 2022; Zhang et al., 2024). Two primary strategies have been 

investigated: training time-series foundation models from scratch, which faces challenges due 

to limited large-scale datasets (Cao et al., 2024; Wolff et al., 2025), and adapting pre-trained 

LLMs through fine-tuning and data alignment, which has demonstrated improved 

generalization (Pan et al., 2024; Rasul et al., 2023). 

Jin et al., (2024) provides an in-depth comparison of different methodologies for 

integrating LLMs with time-series data. Two primary approaches discussed are prompting and 

aligning.  

 

 

Figure 2.1 Comparison of prompting and aligning approaches for integrating LLMs with 

Time-Series data 

The aligning method for time-series modeling establishes a structured mapping between 
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numerical time-series embeddings and the semantic space of LLMs, offering a more precise 

and scalable alternative to direct text-based prompting (Jin et al., 2023; Liang et al., 2024). 

Instead of converting numerical sequences into textual descriptions, this approach trains a 

dedicated encoder to process time-series data, transforming it into an embedding representation 

that is subsequently aligned with the LLM’s text-based embedding space (Zeng et al., 2022; 

Zhang et al., 2024). This alignment enables LLMs to process structured time-series embeddings 

directly, leveraging their pre-trained language understanding capabilities for time-series 

forecasting and classification (Pan et al., 2024; Rasul et al., 2023). The pipeline involves 

segmenting the time-series into patches, converting them into an embedding space, and then 

feeding the transformed representations into an LLM backbone for further processing. 

Representative models employing this technique include GPT4TS (Cao et al., 2024), which 

utilizes GPT-2 as its backbone for forecasting and classification tasks; Time-LLM (Jin et al., 

2023), which converts time-series data into textual prototypes compatible with LLaMA-7B; 

and TEMPO (Cao et al., 2024), which decomposes time-series into trend-seasonal-residual 

components before mapping them into an LLM’s latent space.  

The key advantages of this approach include its ability to retain numerical precision, unlike 

text-based prompting methods, and its enhanced scalability, particularly for multivariate time-

series. Moreover, the alignment method supports end-to-end learning, enabling LLMs to better 

adapt to time-series patterns through specialized encoding mechanisms. However, this 

technique comes with certain computational challenges, as it is more resource-intensive than 

prompting due to the requirement for fine-tuning or contrastive learning. Additionally, aligning 

numerical and textual embeddings necessitates extra training data, increasing data 

requirements compared to direct prompting strategies. Furthermore, its implementation 

complexity is higher, as it requires specialized encoding modules and alignment mechanisms. 

Despite these limitations, the aligning method provides a structured and adaptable framework 

for integrating time-series data into LLMs, making it particularly suitable for applications 

demanding high numerical precision and structured learning paradigms. 

The prompting method for numerical time-series data reformulates raw numerical 

sequences into textual representations, enabling direct utilization of pre-trained LLMs without 
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modifying their underlying architecture (Gruver et al., 2024; Xue & Salim, 2023; Zhou et al., 

2023). By restructuring inputs into a format comprehensible to LLMs, this approach leverages 

natural language prompts to encode temporal patterns, facilitating time-series forecasting 

through linguistic constructs (Tan et al., 2025; Zhang et al., 2024). Two primary tokenization 

strategies are employed: number-agnostic tokenization and number-specific tokenization. The 

former converts numerical values into natural language descriptions, allowing models to infer 

temporal trends through textual prompts (Rasul et al., 2023; Wolff et al., 2025).  For instance, 

in a temperature forecasting task, a prompt such as "From {t1} to {tobs}, the average 

temperature of region {Um} was {xmt} degrees each day. What is the temperature going to be 

on {tobs}?" enables LLMs to interpret numerical sequences through contextual understanding. 

Representative models employing this approach include PromptCast (Xue & Salim, 2023) and 

LLM-Time (Liang et al., 2024). 

Conversely, number-specific tokenization preserves numerical structure to maintain token 

consistency, ensuring precise numerical representation during tokenization (Wu et al., 2023; 

Sun et al., 2023).  This method spaces out digits to align with LLM tokenization constraints, 

as seen in LLM-Time and BloombergGPT (Wu et al., 2023), where sequences such as "0.123, 

1.23, 12.3, 123.0" are transformed into "1 2 3 , 1 2 3 0 , 1 2 3 0 0". The primary advantages of 

this method lie in its simplicity and computational efficiency, as it can be implemented in a 

zero-shot learning manner without requiring additional training (Cao et al., 2024; Pan et al., 

2024). 

Furthermore, its interpretability is enhanced since the outputs remain in natural language, 

making results accessible and comprehensible. However, limitations include potential loss of 

numerical precision when converting data to text, inefficiencies when dealing with high-

dimensional multivariate time-series (as each feature must be converted into text separately), 

and challenges in long-term forecasting, given that LLMs are not inherently optimized for 

numerical sequence modeling (Zeng et al., 2022; Jin et al., 2023). Despite these constraints, 

this prompting-based approach presents a promising direction for integrating LLMs into time-

series forecasting tasks while maintaining generalizability and interpretability (Tang et al., 

2025). 
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2.3 Multimodal Alignment in Time Series Models 

Time-LLM (Jin et al., 2023) employs a combination of Reversible Instance Normalization 

(RevIN) and Channel-Shared Patching to adapt pre-trained LLMs for time-series forecasting 

without modifying their underlying architecture. The preprocessing pipeline first applies global 

instance normalization to the multivariate time-series data 𝑋 ∈ ℝ!×#, mitigating issues related 

to distribution shift and enhancing model stability. Subsequently, the entire time-series 

sequence is partitioned into patches, where each patch consists of multiple time steps and is 

linearly projected into the LLM's word embedding space to achieve modality alignment. This 

strategy leverages LLMs' cross-modal modeling capabilities, improving generalization in time-

series forecasting while reducing training resource requirements. However, Time-LLM 

employs a Channel-Shared Patching mechanism, meaning that all variables share the same 

patch structure, without channel-independent processing. This design may lead to information 

entanglement between channels, potentially hindering the model's ability to learn independent 

feature patterns across variables. Additionally, Patch Reprogramming relies on linear 

projection to map time-series data into the LLM embedding space, which could result in loss 

of fine-grained temporal features, limiting the model's capacity to capture complex temporal 

dependencies. Compared to channel-independent patching mechanisms such as PatchTST (Nie 

et al., 2022), Time-LLM demonstrates advantages in tasks where variables exhibit strong 

interdependencies, such as financial market prediction and IoT sensor analytics. However, in 

scenarios where variables maintain higher independence, such as meteorological forecasting 

or multi-sensor measurements, the lack of explicit channel interaction modeling may 

necessitate additional feature separation techniques to enhance predictive performance. 

PatchTST (Nie et al., 2022) employs a channel-independent and patch-based segmentation 

approach for time-series modeling, significantly improving computational efficiency and 

generalization in long-horizon forecasting. The core principle of PatchTST is to decompose 

multivariate time-series data into independent univariate sequences, where each channel 

undergoes instance normalization separately before being segmented into fixed-length patches 

of size 𝑃  with a stride of 𝑆 . This approach reduces the computational burden on the 
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Transformer model by decreasing the number of input tokens, allowing the model to focus on 

longer historical contexts, thereby enhancing its ability to capture long-term dependencies in 

time-series forecasting. Additionally, the patching mechanism significantly reduces the 

quadratic computational complexity of self-attention from 𝑂(𝐿$) to 𝑂((𝐿/𝑆)$), making it 

particularly advantageous in resource-constrained environments.  Despite its strengths, 

PatchTST also has certain limitations. First, due to its channel-independent processing, the 

model does not explicitly capture inter-channel dependencies, which may lead to the loss of 

feature correlations in multivariate time-series forecasting. Second, since patch segmentation 

is performed with a fixed stride 𝑆, it may introduce temporal discretization effects, potentially 

hindering the model’s ability to capture fine-grained temporal patterns. Additionally, the 

padding mechanism used to ensure patch consistency could introduce unnecessary noise in 

shorter time-series sequences, thereby affecting predictive accuracy.  

AutoTimes (Liu et al., 2024) employs a sliding window and tokenization approach for 

time-series segmentation, where fixed-length windows 𝑆 are directly applied to partition the 

time-series data. By incorporating text embeddings, this method enhances the LLM's ability to 

understand temporal patterns, allowing each window to serve as an input token for 

autoregressive modeling within the Transformer layers. The primary advantage of AutoTimes 

lies in its direct utilization of LLMs for time-series modeling, enabling the model to fully 

leverage the representational power of pre-trained language models. Additionally, this method 

eliminates the need for complex feature engineering, simplifying the preprocessing pipeline 

and making it more accessible for general-purpose time-series tasks. However, AutoTimes has 

certain limitations. First, it does not explicitly decompose time-series data into trend, seasonal, 

and residual components, which may hinder the model’s ability to learn long-term trends or 

capture short-period oscillations. Additionally, all channels share the same LLM processing 

pipeline, meaning that distinct features are not independently modeled, potentially leading to 

inter-channel information entanglement and reduced prediction accuracy. Moreover, since this 

method relies on fixed-length patch segmentation without patch alignment, the computational 

complexity of the Transformer remains 𝑂(𝐿$) , limiting its scalability for extremely long 

time-series sequences. 
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TEMPO (Cao et al., 2024) employs a Trend-Seasonal-Residual (TSR) decomposition, 

normalization, and patching strategy to enhance the stability and generalization of time-series 

modeling. The methodology begins by applying Seasonal-Trend decomposition using LOESS 

(STL) to separate the original time-series into three independent components: trend (𝑋#), 

seasonal (𝑋%), and residual (𝑋&). Following decomposition, each component undergoes 

Reverse Instance Normalization, which mitigates the effects of distribution shifts and stabilizes 

the learning process. Finally, the normalized components are segmented using time-series 

patching, where each patch is of length 𝑃 with a stride 𝑆, allowing the model to capture 

longer historical dependencies while reducing computational complexity. By incorporating 

LLM-based forecasting, TEMPO is designed to simultaneously model global trends and 

localized patterns, thereby improving the stability and robustness of predictive performance. 

Despite its advantages, TEMPO has several limitations. First, it does not incorporate 

channel-independent modeling, meaning that all feature channels share the same LLM 

processing pipeline. This can lead to feature entanglement across variables, which may degrade 

the model’s ability to capture independent dependencies in multivariate time-series data. 

Additionally, STL decomposition itself incurs a computational overhead and operates under 

the assumption that time-series data can be effectively decomposed into trend, seasonal, and 

residual components—an assumption that may not hold for highly non-stationary time-series. 

Furthermore, the use of fixed-length patching with stride 𝑆 may result in the loss of fine-

grained temporal details, potentially impacting short-term forecasting accuracy. 
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Chapter 3 Methodology 

 

 

This chapter details the proposed ChatPPG framework, 

including data preprocessing, embedding alignment, multi-

modal fusion, and LoRA-based fine-tuning, demonstrating how 

LLMs are adapted for structured time-series forecasting in table 

tennis serve prediction.  
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3.1 Introduction 

ChatPPG leverages LLMs for structured time-series forecasting by integrating multi-

modal alignment, channel-independent representations, and domain-informed prompts. The 

architecture (as illustrated in figure 3.1) follows a hierarchical feature encoding strategy, 

enabling the model to capture both temporal dependencies and semantic contextualization for 

table tennis landing point prediction. 

 

 

Fig 3.1 ChatPPG: A multimodal LLM alignment framework for landing spot prediction of ball 
in table tennis 
 

By integrating patch-based feature segmentation, frequency-aware prompting, multi-head 

attention fusion, and interleaved embeddings, our model effectively aligns structured time-

series forecasting with LLMs. This approach preserves channel-wise independence, enhances 

interpretability, and leverages domain-specific linguistic cues, resulting in more accurate and 

explainable table tennis landing point predictions. 

At the data preprocessing stage, our model is inspired by PatchTST (Nie et al., 2022), 

which introduces channel independence by processing each time-series feature separately. Each 

input channel undergoes instance normalization, ensuring consistent feature scaling. The 

sequence is then segmented into fixed-length patches (Patch Slicing) to facilitate structured 
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tokenization. This patch-based approach enables the model to extract localized temporal 

patterns, which are later aligned with LLM representations through multi-head attention 

mechanisms. 

To enhance interpretability and leverage domain-specific insights, we introduce a 

"Channel Independence Prompt", which encodes statistical properties such as the dominant 

Fourier frequency for each feature. These prompts guide the LLM to understand periodic trends 

and key frequency components, improving its ability to model complex spatiotemporal 

dependencies in table tennis ball movement. 

The patch embeddings are processed using a Multi-Head Attention mechanism, which 

aligns them with LLM word embeddings derived from domain knowledge prompts. This 

attention-based fusion ensures that numerical time-series features are contextualized within the 

LLM's representation space, enabling semantic-rich forecasting. Patch embeddings extracted 

from each independent time-series channel. After that, Text prototypes generated from human 

knowledge prompts, which encode dataset descriptions, task information, and prior sports 

analytics insights, Multi-Head Attention applied to learn cross-modal dependencies between 

numerical patches and linguistic embeddings. 

By establishing these structured interactions, the model bridges numerical and textual 

modalities, facilitating more expressive time-series representations. 

To fully integrate numerical and textual features, we introduce an interleaved embedding 

strategy at the LLM input level. Instead of treating text and numerical sequences separately, 

we interleave text embeddings with patch embeddings.  

Numerical feature tokens and textual domain prompts are processed jointly within the 

transformer architecture. The model attends to both structured time-series information and 

unstructured language-based insights. LLM's contextual reasoning is leveraged to enhance 

predictive modeling, incorporating both statistical properties and expert-driven prompts. 

This structured fusion of domain knowledge and multi-channel time-series data enhances 

the model’s ability to learn fine-grained dependencies while preserving the independent nature 

of each input channel. 
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The final embeddings are processed through a pre-trained LLM, where we apply LoRA 

(Low-Rank Adaptation) on the query and key projections to enable efficient fine-tuning while 

keeping most of the model parameters frozen. The output embeddings undergo a Flatten & 

Linear Projection step to generate final landing point predictions. This hybrid approach allows 

the model to retain LLM’s strong generalization capabilities while specializing in time-series 

forecasting tasks with minimal computational overhead. 

3.2 Key Components 

Channel-Independent Normalization is applied to standardize time-series data, ensuring 

that the scale of each channel remains consistent while enhancing the model’s stability and 

generalization ability. Let the input time-series data be represented as 𝑋 ∈ ℝ'×(×#, where 𝐵 

denotes the batch size, 𝐶	represents the number of channels (variables), and 𝑇	is the time-

series length for each channel. 

During channel-independent normalization, for each channel 𝑐 ∈ {1, … , 𝐶} and each 

sample 𝑏 ∈ {1,… , 𝐵}, the mean and standard deviation are computed as follows: 

 

𝜇),+ =
1
𝑇8𝑋),+,,

#

,-.

, 𝜎),+ = :
1
𝑇8(𝑋),+,, − 𝜇),+)$

#

,-.

+ 𝜖 

 

(3.1) 

 

where 𝜖 = 10/0	is a small constant added to prevent division by zero. The normalization is 

then applied as: 𝑋),+,,1 = 2!,#,$/3!,#
4!,#

		 This normalization process ensures that the data within 

each channel is standardized independently, with a mean of 0 and a standard deviation of 1, 

while preserving scale consistency across different channels. By maintaining uniform scaling, 

this method prevents discrepancies in variable ranges from negatively affecting model learning. 

To extract localized temporal patterns, time-series patching is employed by segmenting the 

sequence into fixed-length patches. This is controlled by the patch length 𝐿 and stride 𝑆, 

where 𝑆 = 𝐿	 represents non-overlapping segmentation, while 𝑆 < 𝐿	 or 𝑆 > 𝐿		 enables 

varying degrees of overlap or jumping segmentation, respectively, to control the degree of 

redundancy and step size in extracted data segments. 



22 
 

Given a time-series 𝑋),+,,  (for a fixed batch 𝑏	and channel 𝑐 ), patching along the 

temporal axis follows: 

𝑃),+,5 = A𝑋),+,6% , 𝑋),+,6%7., … , 𝑋),+,6%78/.B (3.2) 

where the starting index for the 𝑛-th patch is defined as: 𝑠5 = (𝑛 − 1) × 𝑆 + 1 ensuring that 

a valid patch is obtained as long as 𝑠5 + 𝐿 − 1 ≤ 𝑇	 The total number of patches 𝑃 is given 

by 𝑃 = ⌊#/8
%
⌋ + 1. 

After applying this operation, the time-series data is transformed into a four-dimensional 

tensor 𝑃 ∈ ℝ'×(×9×8 , where the third dimension 𝑃 represents the total number of patches 

extracted from each time-series, and the fourth dimension  𝐿 corresponds to the number of 

time steps contained within each patch. 

This patching process ensures that each channel retains independent normalization 

parameters 𝑃),+,5		without interference from other channels. After segmentation, each patch 

remains a localized, contiguous segment in the time domain, preparing the data for subsequent 

embedding processing and feature extraction in deep learning models.  

To maintain continuity at the sequence's end, we apply ReplicationPad1d(0, stride), which 

duplicates the last time step stride times along the time axis. For a batch sample 𝑋) the padded 

sequence length becomes 𝑇 + stride, resulting in: 𝑋
~
∈ ℝ'×!×(#7stride)where for 𝑡 ∈ {𝑇 +

1,… , 𝑇 + stride}, the values are set to the last observed time step 𝑋),5,# . This method ensures 

the preservation of temporal continuity, preventing information loss while maintaining a 

structured sequence layout for subsequent segmentation. 

 Following padding, the unfold operation is applied to segment the time dimension into 

fixed-length patches, allowing the model to learn localized temporal patterns. Using 

𝑋.unfold(𝑑𝑖𝑚 = 1,size = patch_len,step = stride), the sequence is partitioned into patches of 

size patch_len with a sliding step of stride, producing a patch-structured tensor: 

𝑋(patch) ∈ ℝ'×!×9×patch_len   where the number of patches 𝑃	 is computed as: 𝑃 =
(#7stride)/patch_len

stride
+ 1 ensuring at least one complete patch (𝑇 + stride) > patch_len . Each 

patch forms a fixed-length temporal window, shifting by stride to generate multiple overlapping 

sequences. The dimension  [𝐵, 𝑁]  is then flattened into a single dimension for efficient 
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computation, resulting in: 𝑋(reshaped) ∈ ℝ('⋅!)×9×patch_len To transform time-series segments 

into embeddings suitable for Transformer processing,   

TokenEmbedding applies a 1D convolution operation that projects patches of length 

patch_len into the model’s latent space of dimension 𝑑model. The input is structured to match 

the Conv1D format, with dimensions  (𝐵,in_channels,seq_len), where in_channels is set to 

patch_len and seq_len is set to 𝑃, allowing the model to interpret patches as separate feature 

channels. 

To align the data structure with convolutional operations, a permute operation is first 

applied to rearrange dimensions: 𝑋 ∈ ℝ'×patch_len×9  , Following 1D convolution, the 

sequence is projected into the hidden space 𝑑model, yielding: 𝑋1 ∈ ℝ'×9×>model  For a single 

time-series instance, the 1D convolution computation is expressed as: 

𝑌?,@ = 𝜎( 8 𝑊A

kernel_size

A-.

⋅ 𝑋?,@7A) 
(3.3) 

where convolution kernel size （𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 3）determines the local receptive field, 

effectively smoothing adjacent time steps. Circular padding is applied at both the beginning 

and end of the sequence to preserve the original sequence length, ensuring that the output 

maintains the same temporal dimension as the input: 𝑌 ∈ ℝ('×!)×9×>model 

In the final stage, a Dropout mechanism is employed to randomly deactivate neurons in 

the output embeddings, enhancing generalization and mitigating overfitting. During forward 

propagation, dropout is applied to the token embeddings as: 

𝑍 = Dropout(𝑌), 𝑍 ∈ ℝ('⋅!)×9×>model (3.4) 

where 𝑌	represents the token embeddings post-1D convolution, and 𝑍	is the final output after 

dropout regularization. By selectively deactivating neurons, the model becomes more robust to 

variations in input sequences, improving its ability to adapt to different time-series patterns 

while maintaining prediction accuracy. 

Given a time-series dataset 𝑑 ∈ ℝ!, where 𝑁 represents the number of observed data 

points and the sampling interval Δ𝑡	is determined by the sampling rate, a frequency domain 

analysis is performed to extract the top 𝐾	most dominant frequency components in the positive 

frequency domain. These extracted frequency components 𝑓?   are then mapped to their 
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corresponding periods 𝑇? = 1/𝑓? , forming the dominant seasonal periods that characterize the 

periodic patterns in the time-series data. Once the dominant periodic components 𝑇?   are 

obtained, they can be formatted as textual information and embedded into LLM prompts for 

improved understanding of temporal periodicity. An example prompt could be:  "The main 

periodicities are {𝑇., 𝑇$, 𝑇B, . . . }" 

By incorporating these periodic prompts, the model gains an enhanced ability to capture 

recurring patterns within the time-series data, ultimately improving its forecasting accuracy. 

The Discrete Fourier Transform (DFT) is a fundamental tool for frequency domain analysis. 

Given a time-series sequence {𝑑5}5-C!/.  of length 𝑁 , its representation in the frequency 

domain is computed as: 

𝐷A = 8𝑑5

!/.

5-C

𝑒/?$D
A
!5, 𝑘 = 0,1, … , 𝑁 − 1 

(3.5) 

where 𝐷A   represents the complex frequency spectrum coefficients, which indicate the 

contribution of different frequency components in the original signal. 

In the spectral analysis process, the frequency 𝑓A is defined as: 𝑓A =
A
!E,

		where Δ𝑡 is 

the sampling interval. To ensure accurate analysis in the positive frequency domain, only the 

first !
$
 frequency points are retained, i.e., frequencies 𝑓A > 0. 

Subsequently, the spectral magnitude |𝐷A|		is computed, and peak detection is applied to 

select the top 𝐾  dominant frequencies 𝑓?  . The corresponding dominant periods are then 

derived as 𝑇? =
.
F&
.  Finally, a set of dominant periodic components is obtained: 

𝜏
^
= {𝑇? =

1
𝑓?
∣ 𝑓? ∈ top K{𝑓 ∈ Λ7 ∣ 𝐷(𝑓)}} (3.6) 

where Λ7		 represents the positive frequency domain (𝑓 > 0). And 𝐷(𝑓)denotes the Fourier 

transform magnitude at frequency 𝑓  ( |𝐹𝐹𝑇[𝑓]| ). top K  selects the 𝐾  most dominant 

frequency components with the highest magnitudes. 

In this thesis, we set 𝐾 = 2 to extract the two most prominent periodic components. For 

instance, if the detected periods are 𝑇. = 3	and 𝑇$ = 5 , this implies that the time-series 

exhibits strong recurring patterns at periodicities of 3 and 5, which serve as critical reference 

points for time-series forecasting. 
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To enable effective interaction and alignment between time-series features and textual 

information, a cross-modal fusion (Cross-Modal Alignment) mechanism is introduced in this 

study. In the context of multi-modal time-series and text interaction, it is essential to flexibly 

embed high-dimensional information into target representations, thereby leveraging semantic 

features to enhance both the model’s expressiveness and predictive performance. 

In the proposed Cross-Attention mechanism, time-series patches are treated as Query (Q), 

while textual prototypes or prompt embeddings are used as Key (K) and Value (V). This Query-

Key-Value (QKV) attention framework facilitates efficient retrieval and reconstruction of 

target time-series information. Specifically, Query is derived from the target time-series input 

(time-series patches), while Key/Value embeddings originate from additional representations, 

such as LLM-extracted features. The attention mechanism computes the correlation between 

the time-series query and the textual embeddings using Scaled Dot-Product Attention, 

formulated as, 

𝑅 = softmax(𝛼 ⋅ (𝑄𝐾#))𝑉, 𝛼 =
1
√𝐸

 (3.7) 

 

where 𝑄	represents the query vector, 𝐾 and 𝑉denote the key and value vectors, respectively, 

𝐸 is the feature dimension, and 𝛼 is a scaling factor that stabilizes the magnitude of dot-

product operations. Through this mechanism, the model effectively reconstructs the target 

time-series representation while integrating cross-modal information from the LLM, ultimately 

enhancing the generalization capability of time-series forecasting. 

To establish cross-modal attention (Cross-Attention) for target-source alignment, we 

define the Query (Q) tensor as the target time-series input, represented as: 𝑄 ∈

ℝ'×8×I×J 		where 𝐵 denotes the batch size, 𝐿	represents the target sequence length, 𝐻	is the 

number of attention heads, and 𝐸	corresponds to the dimensionality of each key-value pair. 

Meanwhile, Key (K) and Value (V) embeddings, generated by the LLM, are formulated as  

𝐾, 𝑉 ∈ ℝ%×I×J   where 𝑆	 represents the source sequence length. To compute the 

attention scores, the scaling factor is set to 𝛼 = .
√J
	, and the Scaled Dot-Product Attention is 

expressed as: 
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𝑅),L,M,N =8 softmax(𝛼 ⋅ (𝑄),L,M,: ⋅ 𝐾6,M,:))𝑉6,M,N

%

6-.

 
(3.8) 

 

where 𝑅 ∈ ℝ'×8×I×J represents the reprogrammed feature representation (Reprogramming 

Result). This tensor is subsequently reshaped into: 𝑅 ∈ ℝ'×8×>model which serves as the final 

input representation to the model. 

The Target-Source Alignment (Reprogramming) mechanism, established through Cross-

Attention, enables the integration of time-series patches as Queries while treating LLM-

generated textual features as Key/Value embeddings. This facilitates efficient alignment and 

interaction between numerical sequences and semantic representations. By computing the 

attention matrix 𝐴	, the model effectively retrieves the most relevant semantic or contextual 

information from the source embeddings, thereby enhancing time-series forecasting 

performance. 

Additionally, Multi-Head Attention (MHA) decomposes the Key/Query/Value tensors into 

𝐻  parallel subspaces, allowing the model to simultaneously attend to multiple feature 

dimensions, thereby enhancing representation learning and improving generalization 

capabilities. 

This approach is particularly effective for time-series and textual modality fusion. When 

target embeddings represent time-series patches and source embeddings correspond to prompts, 

the target data can be effectively aligned within a shared semantic space for efficient 

information transformation. As a result, the LLM gains an improved understanding of the 

underlying structural and temporal patterns inherent in the time-series data. 

During training, the core model parameters, including 𝑊P ,𝑊Q ,𝑊R ,𝑊out	, are 

continuously updated, alongside the Dropout mechanism, to optimize the alignment between 

time-series data and LLM-generated representations. Additionally, during forward propagation, 

the input undergoes a sequence of attention mapping and weighted summation operations, 

ensuring efficient target-source interaction, ultimately leading to enhanced time-series 

forecasting accuracy. 

To interleave two sequences of equal length, 𝑃? and 𝑇?, at the index level, such that the 



27 
 

original embedding sequences of length 𝑁are combined into a new sequence of length 2𝑁. 

both embedding sets exist in the same feature dimension 𝑑, they can be formally represented 

as: 𝑃 = (𝑝C, 𝑝., … , 𝑝!/.) ∈ ℝ!×> , 𝑇 = (𝑡C, 𝑡., … , 𝑡!/.) ∈ ℝ!×>  Following the interleaving 

operation, the resulting sequence 𝑍 ∈ ℝ($!)×> must satisfy, 

 

𝑍$? = 𝑝? , 𝑍$?7. = 𝑡? , 𝑖 = 0,… ,𝑁 − 1. (3.9) 

 

This operation performs slot-wise fusion solely along the indexing dimension without 

requiring additional linear transformations or trainable parameters. In practical implementation, 

an empty tensor of shape [2𝑁, 𝑑]	is pre-allocated, where even-indexed positions are assigned 

values from 𝑃, and odd-indexed positions are assigned values from 𝑇, thereby efficiently 

completing the interleaving process. 

Once fed into an LLM, this interleaved sequence of length 2𝑁 serves as the model input, 

allowing the self-attention mechanism to facilitate fine-grained interactions between numerical 

and textual features at the lowest embedding level. 

To adapt LLMs for table tennis landing point prediction while avoiding full fine-tuning, 

this study employs Low-Rank Adaptation (LoRA) to efficiently fine-tune the model. LoRA 

enables the model to specialize in the target task while significantly reducing computational 

overhead by selectively adjusting key attention projections. 

In a standard Transformer self-attention mechanism, the Query (Q), Key (K), and Value 

(V) matrices are obtained through linear transformations of the input data 𝑋, 

𝑄 = 𝑋𝑊P , 𝐾 = 𝑋𝑊Q , 𝑉 = 𝑋𝑊R  where  𝑋 ∈ ℝ'×#×> represents the input data (batch 

size 𝐵 , time steps 𝑇 , feature dimension 𝑑 ), and 𝑊P ,𝑊Q ,𝑊R ∈ ℝ>×>  are the full-rank 

parameter matrices used in standard self-attention, with a computational complexity of 𝑂(𝑑$). 

LoRA introduces low-rank decomposition in the Query and Key projection layers (𝑄proj, 𝐾proj

), effectively reducing computation costs while preserving the expressiveness of the 

Transformer structure. Instead of updating the full-rank matrices, LoRA decomposes the 

weight matrices into base weights and low-rank incremental components, formulated as: 
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𝑊P = 𝑊P + Δ𝑊P ,𝑊Q = 𝑊Q + Δ𝑊Q ， where the low-rank updates Δ𝑊P and Δ𝑊Q are 

parameterized as: Δ𝑊P = 𝐴P𝐵P , Δ𝑊Q = 𝐴Q𝐵Q with 𝐴 and 𝐵	being low-rank matrices: 

𝐴P ∈ ℝ>×S , 𝐵P ∈ ℝS×> 					 and  𝐴Q ∈ ℝ>×S , 𝐵Q ∈ ℝS×>  By employing low-rank 

structure, LoRA reduces the computational complexity from 𝑂(𝑑$) to 𝑂(𝑑𝑟), where 𝑟 ≪ 𝑑, 

significantly improving efficiency while maintaining model representation capability. 

In the context of LLM adaptation for table tennis analysis, LoRA is applied to Query 

Projection (𝑄proj) and Key Projection (𝐾proj), enabling efficient fine-tuning without modifying 

the overall model structure. Instead of updating full LLM weights, LoRA factorizes the 

parameter updates into low-rank matrices, significantly reducing computational demands while 

allowing efficient domain adaptation for table tennis trajectory forecasting. 

By keeping most LLM parameters frozen and only adjusting key attention components, 

LoRA ensures training stability and prevents large-scale parameter shifts that may cause 

overfitting to specific player data, which is particularly important when modeling high-speed 

movements in table tennis matches. Unlike full fine-tuning, LoRA modifies only the attention 

heads, allowing seamless adaptation across different LLM architectures while preserving 

robustness across diverse table tennis datasets (e.g., professional matches vs. amateur training 

data). The updated LoRA-based Query and Key projections are:  

 

𝑄LoRA = 𝑋(𝑊P +
𝛼
𝑟 𝐴P𝐵P) 

𝐾LoRA = 𝑋(𝑊Q +
𝛼
𝑟 𝐴Q𝐵Q) 

 

(3.10) 

 

where 𝑟 = 8	is the rank of the low-rank matrices, controlling the degree of LoRA-based 

adaptation, and 𝛼 = 32	is a scaling factor that regulates LoRA’s impact. LoRA only modifies 

the Query (𝑄proj) and Key (𝐾proj) projections, leaving the Value (𝑉proj) projection unchanged. 

By integrating LoRA fine-tuning, the LLM efficiently learns and adapts to ball trajectory 

patterns and tactical strategies in table tennis matches. LoRA facilitates effective learning of 

diverse shot styles, spin types, and player-specific tactics, enhancing the model’s ability to 
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predict ball landing positions and strategic shot placement. For instance, in table tennis serve 

prediction, LoRA enables the model to learn serve trajectory variations across different players, 

improving the ability to forecast ball placement under different game conditions.  

This approach not only optimizes LLM adaptation for table tennis analytics but also 

enhances its generalization capabilities across different match conditions, allowing the model 

to efficiently capture individual player strategies and provide more precise tactical insights for 

competitive play. 

Table tennis datasets contain complex motion dynamics, incorporating diverse features 

such as spin types (Topspin, Backspin), stroke types (Forehand, Backhand), and spatial 

coordinates (Ball Position X, Y). By fine-tuning 𝑄proj and 𝐾proj via LoRA, the model learns 

critical relationships between shot characteristics and match outcomes, enabling more accurate 

predictions of successful shot placements and scoring probabilities. 

To convert high-dimensional embeddings into numerical time-series forecasts, 

corresponding to single-step or multi-step prediction with multi-channel outputs, the final time-

series semantic vectors extracted from the LLM’s output layer are first flattened and then 

processed through a linear projection layer, generating the final numerical predictions. 

In time-series modeling, the input data 𝑋  is structured as 𝑋 ∈ ℝ'×⋯×5', where 𝐵 

represents the batch size, nfn_fnf is the size of the last feature dimension, and  𝑛F，⋯ 

denotes potential intermediate dimensions. Through the FlattenHead mechanism, the data 

transformation process is defined as follows, 

𝑌
^
= Dropout(Linear(Flatten$(𝑋))). 

(3.11) 

 

where 𝐹𝑙𝑎𝑡𝑡𝑒𝑛$ represents an operation that unfolds the penultimate dimension and 

concatenates it with the last feature dimension 𝑛F, effectively restructuring the tensor. The 

Linear layer performs a mapping operation that projects the data from ℝ5' 	into ℝtarget_window, 

ensuring that the output conforms to the expected prediction window. Additionally, a Dropout 

mechanism is applied to the output, randomly deactivating a fraction of neurons to mitigate 

overfitting and enhance the model's generalization capabilities. 
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This projection ensures that the flattened input is transformed into a structured 

representation of shape 𝐵 × target_window , making it suitable for regression-based 

forecasting. Consequently, the model effectively learns target window dependencies, enabling 

robust time-series forecasting by leveraging LLM-driven embeddings for structured numerical 

prediction. 

3.3 Dataset  

The dataset used in this study comprises multi-dimensional time-series information, 

capturing key aspects of temporal attributes, technical action classification, winning probability, 

and spatial positioning. This dataset is designed to facilitate the analysis of player shot patterns 

and their influencing factors in table tennis matches, providing a quantitative foundation for 

optimizing match strategies. 

The dataset consists of six primary features, as detailed in Table 3.2.1. These features 

collectively enable a comprehensive understanding of ball landing positions, shot types, and 

point-winning dynamics, contributing to the development of predictive models for strategic 

decision-making in competitive play. 
 

Table 3.1 Table tennis dataset feature description 

Feature Description Data Type Value Range 

Time Records the match timestamp for 

time-series analysis. 

Datetime YYYY-MM-

DD 

Topspin/Backs

pin 

Indicates the type of ball spin, where 

1 represents Topspin and 0 represents 

Backspin. 

Binary {0,1} 

Forehand/Back

hand 

Indicates the type of stroke, where 1 

represents Forehand and 0 represents 

Backhand. 

Binary {0,1} 

Winning in 

First Three 

Binary indicator of whether the player 

won the point within the first three 

Binary {0,1} 
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Strokes strokes. 

Ball Position X Records the ball's horizontal landing 

position on the table (unit: cm). 

Integer [0, 152] 

Ball Position Y Records the ball's vertical landing 

position on the table (unit: cm). 

Integer [0, 140] 

 

 

To ensure robust model training and evaluation, the dataset is partitioned into training 

(70%), validation (10%), and test (20%) sets. The training set is used for model learning, the 

validation set is employed for hyperparameter tuning and generalization assessment, and the 

test set is reserved for final performance evaluation. This partitioning strategy ensures that the 

model learns under a well-balanced data distribution while maintaining an independent 

evaluation set for assessing its ability to generalize to unseen samples. 

. 
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Fig 3.2 Human knowledge prompt in ChatPPG 

 

 

 

  

Please act as an expert in data analysis and sports science to help me analyze a dataset related 
to table tennis matches. 
 
This dataset contains multiple dimensions of information, including temporal attributes, 
technical action classification, winning probability, and spatial positioning of the ball. Based 
on the detailed background knowledge provided below, please understand and analyze the 
characteristics of this data. 
 
1. Technical Background of Table Tennis 
 
Table tennis is a fast-paced competitive sport, where each rally typically involves serves, 
returns, and continuous attacks. Below are key tactical concepts:  
 
1) First Three Strokes Strategy:     
The first three strokes in a rally (serve, return, and third-ball attack) are critical in 
determining the winner of a point. Scoring within the first three strokes indicates strong 
tactical execution. 
 
2) Spin Control:     

Topspin shots are mainly used for attacking, Backspin shots are mainly used for defense 
and control. The variation in spin influences match tempo and the nature of exchanges. 

 
3) Shot Placement Strategy:     

Analyzing the X and Y coordinates of the ball’s landing position helps identify whether 
a player prefers straight shots (small X variation) or cross-court shots (large X variation). It 
also helps determine if a player targets the opponent’s baseline (large Y values) or prefers 
short placements (small Y values). 
 
2. Your Task 
Based on the above background knowledge, please analyze this dataset, identify patterns in 
the data, and predict the next landing position of the ball. 
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3.4 Evaluations 

In this study, we employ Mean Squared Error (MSE) and Mean Absolute Error (MAE) as 

the primary evaluation metrics to assess the accuracy of our model in predicting the spatial 

position (x, y coordinates) of the table tennis ball landing points. These error metrics quantify 

the deviation between the predicted and actual values, providing insight into the model’s 

precision and robustness.   

MSE measures the mean squared difference between the predicted and actual coordinates, 

emphasizing larger errors due to the squaring operation. It is formally defined as:   
 

𝑀𝑆𝐸 =
1
𝑁'[(𝑥
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where (𝑥
^
" , 𝑦
^
") represents the model-predicted coordinates, (𝑥" , 𝑦")	denotes the ground truth 

coordinates, and 𝑁 is the total number of samples. Since MSE incorporates the squared error, 

it is more sensitive to large deviations, making it particularly suitable for identifying and 

penalizing significant prediction errors.   

In contrast, MAE calculates the average Euclidean distance between the predicted and 

actual values, providing a more interpretative measure of the model’s average prediction 

deviation. It is defined as:   
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Unlike MSE, MAE applies absolute differences instead of squared values, ensuring that 

large errors do not disproportionately influence the overall metric. Consequently, MAE is more 

robust to outliers and is better suited for assessing the model’s overall prediction stability.   

 

In this study, we use both MSE and MAE to provide a comprehensive evaluation of the 

model’s performance in table tennis landing point prediction. MSE serves as a strict error 
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measurement, highlighting cases where the model exhibits large deviations, whereas MAE 

provides a more intuitive interpretation of average prediction errors. By combining these two 

metrics, we ensure that the model is assessed from both extreme error sensitivity and general 

predictive accuracy perspectives, thereby guaranteeing its stability and generalization ability 

across different match scenarios. 

ChatPPG is evaluated across four different large language model (LLM) backbones, each 

varying in size, architecture, and pre-training methodology. These include GPT-2 (125M 

parameters), Llama-2-7B (7B parameters), Llama-3.2-1B (1.2B parameters), and DeepSeek-

R1-Distill-Qwen-1.5B (1.5B parameters). The selection of these models allows for a 

comparative analysis of ChatPPG’s performance across different model capacities, ranging 

from lightweight architectures (GPT-2) to more advanced instruction-tuned models 

(DeepSeek-R1-Distill-Qwen-1.5B). This evaluation framework ensures that the effectiveness 

of ChatPPG is assessed under varying computational constraints and generalization capabilities, 

providing insights into the scalability and adaptability of LLM-based forecasting for table 

tennis landing point prediction. 

 To optimize the model’s ability to predict table tennis ball landing points, we configure a 

set of hyperparameters that facilitate the alignment of time-series data with LLM-generated 

text representations using Multi-Head Attention (MHA) for multi-modal fusion. These 

hyperparameters govern critical aspects of attention mechanisms, sequence modeling, 

optimization, and training stability, ensuring effective learning from both structured numerical 

inputs (ball landing positions) and unstructured textual data (LLM-provided tactical insights). 

The details of these hyperparameters are presented in Table 3.3.4.  
 

Table 3.2 ChatPPG hyperparameter settings 

Hyperparameter Description Value  

 𝑑model Query projection hidden dimension 16 

 𝑛heads Number of heads in Multi-Head Attention (used for 

aligning time-series and LLM text representations) 

8 

 𝑑ff FlattenHead layer dimension 32 

Dropout Dropout rate to prevent overfitting 0.1 
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 𝑠𝑒𝑞len Length of input sequence (i.e., number of past timesteps 

observed) 

8 

 𝑙𝑎𝑏𝑒𝑙len Start token length for sequence prediction 2 

 𝑝𝑟𝑒𝑑len Length of the forecasted sequence (future timesteps to 

predict) 

4 

Factor Attention mechanism scaling factor 1 

Train epochs Number of training epochs 10 

Batch size Training batch size 32 

Eval batch size Evaluation batch size 8 

Learning rate Initial learning rate 0.0001 

Learning rate 

adjustment  

Learning rate adjustment strategy Exponential 

Decay 

Patience Early stopping patience (number of epochs) 10 

 

Our model utilizes 𝑑model = 16, which determines the size of the hidden representations 

in the query projection layer. The Multi-Head Attention Mechanism is employed with 8 heads, 

where its primary function is to align time-series data with LLM-generated text representations. 

Instead of just capturing dependencies within numerical sequences, MHA enables effective 

multi-modal fusion between structured data (previous ball landing positions) and LLM-

provided semantic cues. This cross-modal attention mechanism allows the model to extract 

contextualized landing point predictions by integrating historical shot patterns with language-

based game strategies. 

The FlattenHead layer, with a dimension of 32, processes the transformed representations 

from MHA, ensuring that both time-series features and text-based insights are effectively 

incorporated into the predictive framework. A dropout rate of 0.1 is applied to reduce 

overfitting and enhance generalization. 

For sequence modeling, we define a past sequence length of 8 timesteps  𝑠𝑒𝑞len, meaning 

the model observes the previous 8 strokes before making a prediction. Within this, 2 timesteps  

𝑙𝑎𝑏𝑒𝑙len	act as the start tokens, guiding the model’s learning process, while 4 timesteps 
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𝑝𝑟𝑒𝑑len		are forecasted as future landing points. The attention mechanism scaling factor is set 

to 1, ensuring a stable weight distribution across inputs. 

In the training process, we utilize a batch size of 32 for training and an evaluation batch 

size of 8. The model is trained for 10 epochs, with an initial learning rate of 0.0001, which is 

dynamically adjusted using an exponential decay strategy 𝑙𝑟adj. This strategy ensures that the 

learning rate adapts as training progresses, balancing optimization efficiency and model 

stability while preventing premature convergence or oscillations. we define the learning rate 

schedule as follows: 
 

𝜂, = {
𝜂C, 𝑡 < 3

𝜂C ⋅ 0.9
(,/B. ), 𝑡 ≥ 3

 
 

(3.14) 
 

where 𝜂,represents the learning rate at epoch 𝑡, 𝜂C is the initial learning rate 0.0001. During 

the first three epochs, the model maintains a fixed learning rate 𝜂Cto allow stable convergence. 

After epoch 3, the learning rate decays exponentially at a rate of 0.9 per epoch 𝜂, = 𝜂C ⋅

0.9(,/B)		,	This results in a gradual reduction of the learning rate, ensuring that early training 

phases prioritize exploration, while later phases focus on fine-tuning and convergence. 

To further enhance training stability and prevent overfitting, we employ an early stopping 

mechanism with a patience of 10 epochs. This means that if no improvement is observed in the 

validation performance for 10 consecutive epochs, training is automatically halted, preventing 

unnecessary computation and avoiding overfitting to the training data. This combination of 

exponential decay learning rate adjustment and early stopping ensures that our model achieves 

efficient learning, robust generalization, and stable convergence for table tennis landing point 

prediction. 

This multi-modal learning setup enhances the model’s predictive power by integrating 

structured time-series data with LLM-generated textual information, enabling the system to 

capture both spatial and strategic insights for table tennis landing point prediction. 

All experiments were conducted on a single workstation equipped with 10 NVIDIA RTX 

3080 GPUs, leveraging DeepSpeed and Hugging Face Accelerate for efficient multi-GPU 

distributed training. DeepSpeed optimizations enable memory-efficient LoRA fine-tuning, 
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while Accelerate seamlessly distributes computations across GPUs, ensuring scalability 

without significant latency overhead. 

This setup allows us to train LLM-based models at scale, while ensuring efficient gradient 

synchronization and parallelization across GPUs for optimized throughput. 
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Chapter 4 Results 

 

 

This chapter presents the experimental findings, evaluating 

the performance of ChatPPG across different LLMs, 

analyzing prediction accuracy, inference efficiency, and 

architectural ablations, and highlighting the trade-offs 

between model complexity and real-time applicability. 
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4.1 Analysis of LLM Adaptation  

In this thesis, evaluates the performance of different LLMs in predicting table tennis ball 

landing points using two different approaches: alignment-based approaches (ChatPPG, Time-

LLM, TEMPO, Autotimes) and a prompting-based approach (LLM-Time). The models were 

fine-tuned to adapt different LLM backbones—GPT-2, Llama-2-7B, Llama-3.2-1B, and 

DeepSeek-R1-Distill-Qwen-1.5B—and their prediction accuracy was assessed using Mean 

Squared Error (MSE) and Mean Absolute Error (MAE). The results are summarized in Table 

4.1 and visualized in the MSE and MAE comparison plots. 
 

Table 4.1 Different LLMs with time series model 

Model GPT-2 

MSE/MAE 

Llama-2-7b 

MSE/MAE 

Llama-3.2-1B 

MSE/MAE 

DeepSeek-R1-Distill-

Qwen-1.5B 

MSE/MAE 

ChatPPG(Ours) 0.512/0.522 0.503/0.514 0.475/0.493 0.432/0.441 

Time-LLM 0.562/0.577 0.549/0.563 0.524/0.531 0.472/0.485 

TEMPO 0.568/0.582 0.558/0.569 0.500/0.512 0.429/0.438 

Autotimes 0.523/0.551 0.510/0.522 0.475/0.493 0.444/0.472 

LLM-Time 0.708/0.715 0.682/0.706 0.644/0.671 0.571/0.584 
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Fig 4.1 MAE comparison of time series models on different LLMs  

 

 
Fig 4.2 MSE comparison of time series models on different LLMs 

 

From Table 4.1, it is evident that ChatPPG consistently achieves the lowest MSE and MAE 

across all LLMs, demonstrating its effectiveness in capturing spatiotemporal dependencies for 

table tennis landing point prediction. The best performance is observed when ChatPPG is 

adapted with DeepSeek-R1-Distill-Qwen-1.5B (MSE = 0.432, MAE = 0.441), which is 

highlighted in blue, reinforcing the importance of aligning structured time-series data with 
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LLM-generated text representations to enhance predictive accuracy. Across all evaluated 

models, alignment-based approaches, including ChatPPG, Time-LLM, TEMPO, and 

Autotimes, consistently outperform the prompting-based approach (LLM-Time), confirming 

that direct integration of numerical embeddings into LLMs is more effective than relying on 

textual prompting alone. The LLM-Time model exhibits significantly higher errors (MSE > 

0.64, MAE > 0.67), suggesting that prompting alone is insufficient for fine-grained time-series 

forecasting, as LLMs struggle to infer structured temporal relationships purely from textual 

input. Among the alignment-based models, TEMPO, when paired with DeepSeek-R1-Distill-

Qwen-1.5B, achieves a competitive performance (MSE = 0.429, MAE = 0.438), slightly 

surpassing ChatPPG in MSE but not in MAE, indicating that different LLM architectures may 

specialize in minimizing different aspects of forecasting error. Additionally, Llama-3.2-1B 

demonstrates superior predictive accuracy compared to GPT-2 and Llama-2-7B, suggesting 

that newer LLM architectures, particularly those optimized for instruction tuning, contribute 

positively to time-series learning by improving the model’s ability to contextualize structured 

numerical data within the LLM representation space. 

DeepSeek-R1-Distill-Qwen-1.5B consistently outperforms other LLMs across all models, 

suggesting that larger, instruction-tuned LLMs exhibit superior generalization capabilities in 

time-series forecasting tasks. Furthermore, alignment-based approaches consistently 

outperform the prompting-based approach (LLM-Time), confirming that directly integrating 

time-series representations into LLM embeddings via attention mechanisms enhances 

predictive accuracy. A strong correlation is observed between MSE and MAE trends, where 

models that achieve lower MSE also tend to exhibit lower MAE, indicating that minimizing 

squared errors effectively reduces absolute deviations as well. Among the alignment-based 

models, Autotimes and Time-LLM show comparable performance across all LLMs, yet they 

consistently lag behind ChatPPG and TEMPO, suggesting that the additional temporal 

structure modeling incorporated in ChatPPG contributes to improved accuracy. In contrast, 

GPT-2 struggles the most across all models, highlighting its inherent limitations in handling 

structured numerical data for complex time-series forecasting tasks, particularly when 

compared to more recent, instruction-tuned LLM architectures. 
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The results demonstrate that alignment-based approaches are superior for time-series 

prediction in sports analytics, as mapping numerical data into LLM embeddings via structured 

attention mechanisms leads to better generalization than purely prompt-based methods. Among 

the evaluated models, larger, fine-tuned LLMs exhibit the most significant improvements, with 

DeepSeek-R1-Distill-Qwen-1.5B consistently achieving the best results, indicating that 

instruction-tuned architectures enhance predictive performance in structured numerical 

forecasting tasks. Additionally, ChatPPG shows strong adaptability across different LLM 

architectures, reinforcing its effectiveness as a method for integrating time-series forecasting 

with pre-trained LLMs while maintaining generalization across varying model capacities. In 

contrast, LLM-Time, which relies solely on prompting, struggles to learn temporal 

dependencies, confirming that structured input representations are essential for effective time-

series forecasting and that directly encoding time-series data within the LLM representation 

space yields significant performance gains. Overall, the findings highlight that aligning time-

series data with LLM-generated text embeddings significantly enhances prediction accuracy 

compared to prompt-based methods. The strong performance of ChatPPG and TEMPO, 

particularly when paired with larger, fine-tuned LLMs such as DeepSeek-R1-Distill-Qwen-

1.5B, underscores the importance of structured representation learning and LLM adaptation in 

sports analytics, providing a pathway for more accurate and interpretable predictions in table 

tennis trajectory modeling. 

4.2 Inference Performance Comparison  

In addition to evaluating accuracy, it is crucial to analyze inference efficiency, as real-time 

decision-making is an essential requirement in table tennis analytics. Table 4.2 and the 

inference time comparison plots illustrate the computational efficiency of different models 

across multiple LLM backbones (GPT-2, Llama-2-7B, Llama-3.2-1B, and DeepSeek-R1-

Distill-Qwen-1.5B) when deployed on dual RTX 3080 GPUs. 

 
Table 4.2 Inference time comparison (ms) across different LLMs on dual RTX 3080 GPUs 

Model GPT-2  Llama-2-7b Llama-3.2-1B DeepSeek-R1-Distill-
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Qwen-1.5B 

ChatPPG(Ours) 31.2 37.4 53.8 121.6 

Time-LLM 29.6 35.8 52.3 120.3 

TEMPO 31.2 37.9 54.1 122.5 

Autotimes 31.1 37.2 53.9 121.7 

LLM-Time 1362 4757 3673 3976 

 
Fig 4.3 Inference time comparison of time series models across different LLMs 
 
 

The inference time analysis reveals that ChatPPG achieves competitive computational 

efficiency while maintaining strong prediction accuracy. When evaluated with GPT-2, it 

achieves an inference time of 31.2 ms, while with Llama-3.2-1B, it reaches 53.8 ms. The 

DeepSeek-R1-Distill-Qwen-1.5B variant exhibits a longer inference time of 121.6 ms, which 

is expected given the model’s larger architecture and increased computational complexity. 

Time-LLM emerges as the fastest model, with inference times of 29.6 ms (GPT-2), 35.8 ms 

(Llama-2-7B), and 52.3 ms (Llama-3.2-1B), outperforming other alignment-based approaches 

in terms of computational speed. However, its accuracy is consistently lower than that of 

ChatPPG, indicating a trade-off between computational efficiency and predictive performance. 
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Both TEMPO and Autotimes demonstrate inference times similar to ChatPPG, suggesting that 

their attention-based alignment mechanisms introduce comparable computational overhead. In 

contrast, LLM-Time (a prompt-based approach) exhibits exceptionally high inference times, 

reaching 1362 ms with GPT-2, 4757 ms with Llama-2-7B, 3673 ms with Llama-3.2-1B, and 

3976 ms with DeepSeek-R1-Distill-Qwen-1.5B. This excessive latency is attributed to the 

inherent inefficiency of LLMs when processing numerical time-series data purely through 

textual prompting, reinforcing that alignment-based methods offer significantly greater 

computational efficiency while maintaining superior accuracy.  
 

The results highlight a trade-off between predictive accuracy and inference speed, 

particularly when evaluating models for real-time table tennis landing point prediction. 

ChatPPG effectively balances inference speed and predictive accuracy, making it a strong 

candidate for real-time applications where both performance and computational efficiency are 

critical. In contrast, Time-LLM achieves the lowest inference latency, demonstrating superior 

speed across all LLMs; however, this comes at the cost of slightly higher MSE and MAE, 

suggesting that it is better suited for speed-sensitive applications where minor accuracy trade-

offs are acceptable. Both TEMPO and Autotimes exhibit efficiency comparable to ChatPPG 

while maintaining predictive performance, but neither model significantly outperforms 

ChatPPG in accuracy or inference time, reinforcing the latter's advantage in balancing both 

aspects. On the other hand, LLM-Time is highly inefficient, exhibiting exceptionally high 

inference latency, making it impractical for real-time inference tasks despite leveraging LLM 

prompting for time-series forecasting. These findings confirm that alignment-based methods 

provide a more computationally efficient and scalable approach for structured numerical 

forecasting, whereas prompting alone is insufficient for time-sensitive applications. 

 

The inference results confirm that alignment-based approaches (ChatPPG, Time-LLM, 

TEMPO, and Autotimes) significantly outperform the prompting-based approach (LLM-Time) 

in both accuracy and computational efficiency. While Time-LLM is the fastest, ChatPPG 

provides the best balance between accuracy and inference speed, making it the most viable 

solution for real-time table tennis landing point prediction. 
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4.3 Ablation Experiment  

To assess the contribution of each component in our proposed LLM-aligned time-series 

forecasting model, we conduct an ablation study by systematically removing key components 

and evaluating their impact on performance. This helps isolate the effects of LoRA fine-tuning, 

domain prompts, channel independence, and embedding structures in the overall prediction 

architecture. The following configurations are examined: 

1) w/o LoRA 

Removes LoRA fine-tuning, keeping the pre-trained LLM entirely frozen. This tests the 

impact of task-specific adaptation on the LLM’s ability to process table tennis landing point 

sequences. 

2) w/o Freq Pro 

Eliminates the Dominant Fourier Frequency prompts from the Channel Independence 

Prompts, preventing the model from leveraging frequency-based summarization of the input 

time-series data. 

3) w/o HumKnow 

Removes human knowledge prompts, including dataset descriptions and general task 

information. This tests the necessity of explicit dataset understanding provided to the LLM. 

4) w/o IChannel 

Disables channel independence, meaning all features are treated as a single fused sequence. 

Additionally, it removes the Dominant Fourier Frequency prompt, evaluating the contribution 

of per-channel processing versus global feature fusion. 

5) w/o FltProj 

Removes the Flatten & Linear Projection layer, relying solely on linear projection of the 

LLM output embeddings into forecasted values. This assesses whether flattening structured 

outputs improves sequence forecasting. 

6) w/o IEF 

Disables interleaved embedding fusion (IEF), meaning prompt embeddings and patch 

embeddings are grouped separately instead of being interleaved. This tests whether alternating 

prompts with patches benefits multi-modal representation learning. 
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By systematically removing these components and comparing performance degradation, 

this ablation study provides insights into the importance of multi-modal alignment, frequency-

based prompts, embedding structures, and LLM fine-tuning in table tennis landing point 

forecasting. 

MSE and MAE values across different LLM backbones (GPT-2, Llama-2-7B, Llama-3.2-

1B, DeepSeek-R1-Distill-Qwen-1.5B) are summarized in Table 4.3, while the corresponding 

MAE and MSE comparison plots provide a visual representation of performance degradation. 
 

Table 4.3 Ablation experiment on ChatPPG 

Model GPT-2 

MSE/MAE 

Llama-2-7b 

MSE/MAE 

Llama-3.2-1B 

MSE/MAE 

DeepSeek-R1-Distill-

Qwen-1.5B 

MSE/MAE 

ChatPPG 0.512/0.522 0.503/0.514 0.475/0.493 0.432/0.441 

w/o LoRA 0.520/0.541 0.525/0.533 0.491/0.510 0.442/0.457 

w/o Freq Pro 0.529/0.541 0.518/0.529 0.482/0.501 0.456/0.468 

w/o HumKnow 0.591/0.598 0.581/0.593 0.553/0.569 0.511/0.527 

w/o IChannel  0.585/0.594 0.577/0.585 0.541/0.560 0.503/0.512 

w/o FltProj 0.548/0.557 0.531/0.547 0.502/0.522 0.462/0.470 

w/o IEF 0.610/0.618 0.607/0.613 0.572/0.591 0.527/0.539 
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Fig 4.4 MAE comparison of ablation experiments on different LLMs 

 

Fig 4.5 MSE comparison of ablation experiments on different LLMs 
 

The ablation study reveals the contributions of individual model components to overall 

prediction accuracy. Removing LoRA (w/o LoRA) results in a slight increase in MSE and MAE 

across all LLMs, but the degradation is not as severe as other ablations. This suggests that while 

LoRA fine-tuning improves accuracy, the core model remains functional without it, albeit with 

reduced adaptability to domain-specific data. In contrast, removing frequency prompts (w/o 

Freq Pro) leads to noticeable performance degradation, particularly for DeepSeek-R1-Distill-

Qwen-1.5B, where MAE increases from 0.441 to 0.468, indicating that Fourier-based 
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frequency prompts effectively encode temporal dependencies and enhance forecasting 

accuracy. The elimination of human knowledge prompts (w/o HumKnow) results in significant 

accuracy loss, with both MSE and MAE deteriorating across all LLMs, most notably in GPT-

2 (MAE: 0.598, MSE: 0.591) and DeepSeek-R1-Distill-Qwen-1.5B (MAE: 0.527, MSE: 

0.511). This highlights the critical role of explicit dataset descriptions and task-related prompts 

in helping LLMs contextualize structured time-series data. 

Furthermore, disabling channel independence (w/o IChannel) causes substantial 

performance degradation, as evidenced by MAE increasing to 0.560 on Llama-3.2-1B and 

0.512 on DeepSeek-R1-Distill-Qwen-1.5B. This confirms that channel-wise modeling 

significantly improves representation learning, while treating all features as a single fused 

sequence reduces the model’s ability to capture independent dependencies between features. 

The removal of the Flatten Projection layer (w/o FltProj) introduces moderate performance 

degradation, suggesting that flattening structured outputs before linear projection helps 

preserve sequence integrity and improves feature mapping. 

Among all ablations, disabling interleaved embedding fusion (w/o IEF) results in the most 

severe performance decline, with MAE increasing to 0.618 for GPT-2 and 0.539 for DeepSeek-

R1-Distill-Qwen-1.5B. This strongly indicates that alternating prompt embeddings with patch 

embeddings enhances multi-modal feature alignment, while treating them separately disrupts 

this synergy, thereby limiting the model’s ability to effectively integrate time-series and textual 

representations. These findings collectively demonstrate that multi-modal alignment, 

structured representation learning, and frequency-aware prompting are critical components in 

optimizing LLM-based time-series forecasting for table tennis landing point prediction. 
 

The ablation study highlights the key architectural components that influence the 

performance of LLM-based table tennis landing point prediction. Among these, Human 

Knowledge Prompts (HumKnow) and Interleaved Embedding Fusion (IEF) emerge as the most 

critical elements, as their removal results in the most significant performance degradation, 

demonstrating their essential role in enabling LLMs to contextualize structured numerical data 

effectively. Furthermore, Frequency Prompts (Freq Pro) and Channel Independence (IChannel) 

contribute substantially to predictive accuracy, indicating that domain-specific statistical 
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insights and feature-wise separation enhance the model’s ability to capture distinct temporal 

dependencies. 

While LoRA fine-tuning provides additional performance gains, its removal does not 

drastically degrade accuracy, suggesting that pre-trained LLM representations remain highly 

effective even without extensive task-specific adaptation. In contrast, Flatten Projection 

(FltProj) plays a beneficial but less critical role, as its removal leads to only moderate 

performance degradation, indicating that while flattening structured outputs enhances 

representation learning, it is not an essential component of the model. Notably, multi-modal 

alignment techniques, particularly IEF, prove to be crucial, reinforcing the effectiveness of 

cross-modal fusion between time-series patches and textual prompts. These findings 

collectively emphasize that structured numerical embeddings, domain-informed prompting, 

and modality-aware integration are key to optimizing LLM-based forecasting models for sports 

analytics. 

 

It confirms that each architectural component contributes uniquely to the overall prediction 

performance of LLM-based table tennis landing point forecasting. However, the removal of 

multi-modal alignment strategies, particularly Interleaved Embedding Fusion (IEF) and 

Human Knowledge Prompts (HumKnow), results in the most severe performance degradation, 

underscoring their critical role in integrating structured numerical data with LLM-based text 

representations. These findings emphasize the necessity of feature-wise modeling, domain-

aware prompting, and embedding fusion, demonstrating that effectively aligning LLMs with 

time-series forecasting tasks requires a structured, multi-modal representation approach. The 

results further reinforce that combining explicit domain knowledge with learned numerical 

embeddings enhances predictive accuracy, providing a robust framework for applying LLM-

based models in sports analytics and structured time-series modeling. 
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Chapter 5 

Analysis and Discussions 

 

 

This chapter interprets the experimental results, 

addressing the research questions, examining the 

impact of multi-modal alignment and fine-tuning 

strategies, and discussing practical trade-offs, 

limitations, and implications for LLM-based time-series 

forecasting. 
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Question 1: How can LLMs be effectively adapted for time-series forecasting in table 

tennis serve prediction? 

Our results demonstrate that alignment-based approaches significantly outperform 

prompting-based methods, confirming that LLMs must be explicitly adapted to structured 

numerical data rather than relying solely on textual input. ChatPPG (ours), Time-LLM, 

TEMPO, and Autotimes, which integrate time-series embeddings into LLM representation 

space via attention mechanisms, achieve lower prediction errors and better generalization 

compared to the prompt-only LLM-Time model. This validates the hypothesis that LLMs 

require structured data alignment for effective numerical forecasting. 

Additionally, our findings indicate that larger, instruction-tuned LLMs improve predictive 

accuracy, with DeepSeek-R1-Distill-Qwen-1.5B achieving the best performance across all 

models. This suggests that LLMs pre-trained with multi-modal or instruction-tuned objectives 

exhibit stronger generalization capabilities for numerical sequence modeling. However, this 

performance gain comes at the cost of higher inference latency, emphasizing the trade-off 

between model complexity and real-time applicability. 

The ablation study further reinforces that multi-modal feature alignment plays a crucial 

role in optimizing LLM-based time-series forecasting. Removing structured feature 

representations, such as human knowledge prompts and interleaved embedding fusion (IEF), 

results in substantial accuracy degradation, highlighting the necessity of explicit domain 

adaptation techniques. Interestingly, LoRA fine-tuning contributes additional accuracy gains, 

but its absence does not significantly degrade performance, suggesting that task-aware feature 

encoding is more influential than full-scale LLM fine-tuning. 

 

Question 2: What are the trade-offs between accuracy and computational efficiency when 

integrating LLMs with time-series forecasting models? 

While larger LLMs yield superior predictive accuracy, they introduce increased inference 

latency, raising concerns about their suitability for real-time applications in sports analytics. 

Our inference efficiency analysis reveals a clear trade-off between model complexity and 

deployment feasibility. 
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ChatPPG achieves a balanced trade-off between accuracy and inference speed, making it 

a strong candidate for real-time deployment. Time-LLM, while computationally efficient, 

sacrifices predictive performance, making it more suitable for speed-sensitive applications 

where minor accuracy trade-offs are acceptable. Conversely, LLM-Time exhibits excessively 

high inference latency, rendering it impractical for real-time sports analytics, despite being a 

purely prompt-based method. 

These findings suggest that future deployments of LLM-based time-series forecasting 

models should prioritize both accuracy and computational constraints, ensuring that models are 

efficiently adapted without compromising real-time performance. Approaches such as 

parameter-efficient fine-tuning and hybrid embedding techniques provide promising avenues 

for maintaining predictive performance while mitigating computational costs. 

 

Question 3: Which architectural components contribute most to enhancing LLM-based 

serve landing prediction, and how does multi-modal alignment impact forecasting 

performance? 

The ablation study provides a detailed assessment of the impact of individual architectural 

components on predictive accuracy. The removal of human knowledge prompts (HumKnow) 

and interleaved embedding fusion (IEF) leads to the most severe performance degradation, 

reinforcing that explicit domain knowledge and structured embedding alignment are essential 

for LLM-based time-series learning. Frequency-aware prompts (Freq Pro) and channel-

independent modeling (IChannel) also significantly influence forecasting accuracy, indicating 

that domain-specific statistical insights and feature-wise separation enhance temporal pattern 

recognition. 

Additionally, while LoRA fine-tuning improves accuracy, its removal does not drastically 

degrade performance, suggesting that pre-trained LLM representations retain significant 

predictive capability even without task-specific adaptation. The Flatten Projection (FltProj) 

component, while beneficial, has a smaller impact than other modifications, suggesting that 

structured representation learning contributes more to performance than simple linear 

projection adjustments. 
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Collectively, these findings underscore the importance of multi-modal alignment 

techniques in optimizing LLM-driven time-series forecasting. Models that integrate time-series 

patches with structured textual representations via cross-attention mechanisms demonstrate 

superior performance, highlighting the necessity of explicit feature encoding, structured 

domain adaptation, and hybrid numerical-text integration strategies.  

 

Question 4: Are generic prompting strategies insufficient for numerical sequence 

modeling? 

The study provides strong empirical evidence that LLMs can be successfully adapted for 

structured time-series forecasting, particularly in sports analytics applications. Unlike 

traditional deep learning models that require domain-specific architectures, LLMs—when 

combined with feature-aware prompts, structured embeddings, and attention-based numerical 

alignment—can achieve competitive performance in forecasting tasks. 

The results emphasize that generic prompting strategies alone are insufficient for effective 

numerical forecasting. LLMs must be explicitly structured to process time-series data, 

leveraging multi-modal learning techniques, cross-attention mechanisms, and structured 

prompt engineering to bridge the gap between textual pre-training and numerical sequence 

modeling. These findings contribute to the growing body of research on foundation model 

adaptation, demonstrating that multi-modal fusion techniques can unlock new possibilities for 

leveraging LLMs beyond their traditional NLP applications.  
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Chapter 6 Conclusion 

and Future Work 

 

 

This chapter summarizes the key findings, reinforces the 

effectiveness of LLM-based time-series forecasting, and 

outlines future research directions, including end-to-end 

multi-modal integration and computational optimizations 

for real-time sports analytics. 
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6.1 Conclusion 

In this thesis, we investigate the feasibility of adapting LLMs for structured time-series 

forecasting, with a focus on table tennis serve landing point prediction. Through a 

comprehensive evaluation of alignment-based and prompting-based approaches, the results 

demonstrate that explicit integration of time-series embeddings into LLMs significantly 

enhances forecasting accuracy. Among the tested models, ChatPPG consistently outperforms 

alternative approaches, achieving the lowest MSE and MAE across all LLM architectures, with 

DeepSeek-R1-Distill-Qwen-1.5B yielding the best performance (MSE = 0.432, MAE = 0.441). 

The thesis also highlights a trade-off between accuracy and inference efficiency, where 

alignment-based models provide a balance between predictive performance and computational 

feasibility, while prompt-based methods (e.g., LLM-Time) exhibit excessive latency, rendering 

them impractical for real-time applications. Furthermore, the ablation study confirms that 

multi-modal feature alignment, interleaved embedding fusion (IEF), and domain-informed 

prompting are essential for optimizing LLM-based time-series forecasting, as their removal 

leads to substantial performance degradation. 

Overall, this research validates the effectiveness of multi-modal alignment techniques in 

bridging structured numerical data with LLM representations, reinforcing the potential of 

leveraging pre-trained foundation models beyond their traditional NLP applications. These 

findings contribute to the growing field of foundation model adaptation, offering a scalable and 

computationally efficient framework for integrating LLMs into structured forecasting tasks in 

sports analytics and beyond. 

6.2 Future Work 

In this thesis, we utilize the data extracted from vision models rather than implementing a 

fully end-to-end multi-modal framework. Given the advancements in computational power and 

multi-modal alignment techniques, future research could explore the development of a fully 

integrated, end-to-end multi-modal model, enabling a comprehensive AI-driven table tennis 

analytics system. Such a system would seamlessly combine visual data with LLM-based 
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reasoning, allowing for simultaneous processing of spatiotemporal patterns, strategic decision-

making, and predictive modeling, ultimately enhancing automated match analysis and 

intelligent coaching applications. 

Beyond LLM-based approaches, future research will explore the integration of other multi-

modal large models, such as Stable Diffusion, for time-series forecasting and analysis. While 

traditionally used for image generation and spatial representation learning, models like Stable 

Diffusion have shown promise in capturing complex, structured patterns across domains. 

Applying such models to time-series forecasting presents an exciting opportunity to leverage 

generative modeling techniques for predictive analytics, particularly in scenarios where 

temporal patterns exhibit strong stochasticity or uncertainty. 

By investigating how multi-modal architectures can process and align textual, numerical, 

and visual data for forecasting tasks, we aim to broaden the scope of foundation models beyond 

NLP and vision, enabling cross-domain learning and adaptive decision-making in time-series 

analytics.  
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