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Abstract: Traffic accident prediction is essential for improving road safety and optimizing intelli- 8 
gent transportation systems. However, deep learning models often struggle with distribution shifts 9 
and class imbalance, leading to degraded performance in real-world applications. The existing 10 
Transformer-based models, despite their ability to capture long-term dependencies, lack mecha- 11 
nisms to adapt dynamically to new environments. In this paper, we introduce Test-Time Training 12 
(TTT) as a strategy to enhance Transformer-based accident prediction by allowing the model to re- 13 
fine its parameters during inference through a self-supervised auxiliary task. To further improve 14 
performance, Adaptive Memory Layer (AML), Feature Pyramid Network (FPN), Class-Balanced 15 
Attention (CBA), and Focal Loss are incorporated, addressing challenges related to long-term de- 16 
pendencies, multi-scale feature extraction, and imbalanced accident severity classifications. Our ex- 17 
perimental results demonstrate that the proposed TTT-Enhanced Transformer outperforms stand- 18 
ard Transformers and LSTMs, achieving higher accuracy, recall, and F1-score, particularly for se- 19 
vere accidents (Level 3 & 4), which are historically difficult to predict due to data imbalance. Con- 20 
fusion matrix and ROC curve confirm that TTT significantly reduces misclassification errors and 21 
enhances prediction reliability. These findings highlight the potential of TTT-Enhanced Transformer 22 
in mitigating real-world challenges in traffic accident prediction, improving model adaptability un- 23 
der shifting data distributions and class imbalances. 24 
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 27 
 28 

1. Introduction 29 

Traffic accidents remain a critical public safety concern, resulting in significant hu- 30 
man and economic losses worldwide. According to the World Health Organization 31 
(WHO), more than 1.35 million people lose their lives in road accidents annually, with 32 
economic damages exceeding $800 billion in the United States alone. The increasing com- 33 
plexity of urban transportation systems, driven by rising population densities, evolving 34 
infrastructure, and unpredictable human behavior, necessitates advanced, data-driven 35 
solutions for improving traffic safety. Deep learning models, particularly Transformer ar- 36 
chitectures, have demonstrated remarkable performance in modeling sequential data[1– 37 
3], However, their effectiveness in real-world applications is often hindered by 38 
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distribution shifts and class imbalance, two fundamental challenges that degrade predic- 39 
tion reliability[4,5]. 40 

Most existing traffic accident prediction models are trained on static datasets and 41 
struggle to generalize when deployed in dynamic, real-world scenarios. As a result, their 42 
predictions deteriorate under distribution shifts, where unseen environmental conditions 43 
lead to significant accuracy degradation. To address this, Test-Time Training (TTT) has 44 
been introduced, enabling Transformer-based models to dynamically refine their parame- 45 
ters during inference using self-supervised auxiliary tasks[6]. This approach has shown 46 
success in various applications, such as handwritten document recognition, where an aux- 47 
iliary branch continuously updates model parameters for enhanced adaptability[7]. Recent 48 
advancements like Test-Time Self-Training (TeST) have further improved test-time adap- 49 
tation by employing a student-teacher framework, allowing models to learn robust and 50 
invariant representations under distribution shifts[8]. Comprehensive studies have em- 51 
phasized the significance of TTT for handling such shifts across multiple domains[9].   52 

Traffic accident prediction models often struggle with class imbalance, where severe 53 
but infrequent accidents are underrepresented in training data, leading to biased predic- 54 
tions that favor more common, less severe events while failing to recognize high-risk sce- 55 
narios[5,10]. An analysis of the dataset in this paper reveals a highly skewed long-tail dis- 56 
tribution of accident severity, as illustrated in Figure 1. The data shows that moderate acci- 57 
dents (Level 2) constitute 79.6% of all cases, whereas severe accidents (Level 4) represent 58 
only 2.6%. The maximum-to-minimum imbalance ratio reaches 93.2:1, highlighting the ex- 59 
treme disparity between frequent minor incidents and rare but critical severe accidents. 60 
This imbalance causes conventional models to prioritize majority classes, resulting in poor 61 
recall and frequent misclassification of severe accidents—the most critical category for traf- 62 
fic safety interventions[11,12]. Addressing this issue requires models that can adapt to the 63 
underlying distribution shifts while ensuring fair representation of minority accident 64 
types. 65 

Previous studies address this challenge using Recurrent Neural Networks (RNNs) 66 
and Long Short-Term Memory (LSTM) networks, which improved temporal modeling but 67 
suffered from vanishing gradient issues and failed to capture long-range dependencies 68 
effectively[13]. The emergence of Transformer models revolutionized sequence modeling 69 
by leveraging self-attention mechanisms, enabling better long-term dependency modeling 70 
compared to RNNs and LSTMs[2,14]. However, even Transformer-based models remain 71 
vulnerable to class imbalance, leading to biased predictions toward frequent accident cat- 72 
egories[5,11,15]. 73 

Recent advancements in self-supervised learning and adaptive training have pro- 74 
vided promising solutions for mitigating both distribution shifts and class imbal- 75 
ance[5,6,16]. TTT, along with techniques such as meta-learning and continual learning, has 76 
shown potential in enhancing model generalization. While prior research has validated 77 
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TTT’s effectiveness in structured environments, its capability in real-time traffic accident 78 
prediction remains underexplored[16–18]. The existing models struggle to differentiate be- 79 
tween severe and minor accidents due to imbalanced training data, leading to overconfi- 80 
dence in frequent classes and poor generalization to rare but critical cases[5,11,15]. 81 

 82 

Figure 1. Distribution of accident severity levels in our dataset 83 

To address these challenges, in this paper, we introduce TTT as the core adaptation 84 
mechanism in a Transformer-based framework for traffic accident prediction. TTT dynam- 85 
ically refines model parameters during inference, enabling the model to mitigate distribu- 86 
tion shifts and improve real-time adaptability. To further enhance predictive performance, 87 
in this paper, we integrate Adaptive Memory Layer (AML), Feature Pyramid Network 88 
(FPN), Class-Balanced Attention (CBA), and Focal Loss into a Transformer-based TTT 89 
framework for traffic accident prediction. AML enhances the model’s ability to retain long- 90 
term dependencies[19,20], while FPN improves multiscale feature extraction[21,22]. CBA 91 
and Focal Loss are designed to mitigate class imbalance, ensuring that severe accidents 92 
receive adequate representation during model training[15,23]. Our experimental results 93 
confirm that combining TTT with imbalance-aware learning strategies significantly im- 94 
proves accident severity classification, particularly for rare but high-risk cases. 95 

2. Materials and Methods 96 

This paper follows a structured methodology to develop a scalable and adaptive traf- 97 
fic accident prediction framework. The workflow integrates deep learning models to en- 98 
hance predictive performance. The following subsections detail the research design, data 99 
processing pipeline, model architecture, training procedures, evaluation metrics, and ab- 100 
lation studies conducted to assess the impact of different model components. 101 

2.1. Data Collection 102 
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The dataset, sourced from Kaggle (DOI: 10.34740/kaggle/ds/199387, available at: 103 
https://www.kaggle.com/datasets/sobhanmoosavi/us-accidents/data), comprises traffic 104 
accident records from 49 states across the United States, spanning the years 2016 to 2023. 105 
A subset of 500,000 records was selected for model training and evaluation, including me- 106 
teorological conditions, traffic density, road types, and accident severity. Accident sever- 107 
ity, the target variable, is categorized into four levels: minor (minimal impact), moderate 108 
(traffic delays without major disruption), severe (significant congestion and possible inju- 109 
ries), and extreme (major disruptions with serious injuries or fatalities). As illustrated in 110 
Figure 1, the dataset exhibits a highly imbalanced distribution, where moderate accidents 111 
dominate, while severe and extreme cases are significantly underrepresented. This prede- 112 
fined classification serves as the foundation for training models to distinguish varying 113 
levels of accident severity. 114 

2.2. Data Preprocessing 115 

A structured data pre-processing pipeline was developed to ensure consistency and 116 
enhance predictive performance. The features with more than 30% missing values were 117 
removed, while those with lower missing rates were imputed using mean or median 118 
values. To improve feature representation, temporal attributes such as hour, 119 
weekday/weekend, and seasonality were extracted to capture variations in accident risk, 120 
while geospatial factors, including proximity to highways, intersections, and traffic 121 
signals, were incorporated to identify accident hotspots. Interaction terms, such as 122 
temperature-visibility and humidity-wind speed, were introduced to account for 123 
environmental dependencies. Numerical attributes were standardized using Min-Max 124 
Scaling, and categorical variables, including weather conditions and accident locations, 125 
were encoded using one-hot encoding to prevent artificial ordinal relationships. 126 
Additionally, composite features, such as traffic density and weather impact scores, were 127 
derived to better capture patterns associated with accident severity. The complete pre- 128 
processing workflow, covering data cleaning, feature engineering, standardization, and 129 
class balancing, is illustrated in Figure 2. 130 

2.3. Model Architecture 131 

The proposed model extends the baseline Transformer by incorporating multi-scale 132 
feature extraction, adaptive memory, and TTT, as shown in Figure 3. It consists of four key 133 
components: Feature Pyramid Network (FPN) for capturing hierarchical traffic patterns, 134 
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Adaptive Memory Layer (AML) for retaining long-term dependencies, Class-Balanced 135 
Attention (CBA) for mitigating class imbalance, and TTT for real-time adaptation. 136 

 137 
Figure 2. Overview of the data pre-processing pipeline, detailing data cleaning, filtering, 138 

feature engineering, and balancing steps. 139 
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 140 

Figure 3. Model Architecture and Training Optimization of the TTT-Enhanced Transformer 141 
for Traffic Accident Prediction. 142 

2.3.1 Multi-Scale Representation Learning via Feature Pyramid Network (FPN) 143 

Traffic patterns exhibit hierarchical structures, where localized accident features in- 144 
teract with broader contextual influences. Standard Transformer models operate at a fixed 145 
resolution, potentially overlooking critical multi-scale dependencies. To address this limi- 146 
tation, a Feature Pyramid Network (FPN) is integrated to aggregate features across multi- 147 
ple spatial and temporal resolutions[21,24,25]. 148 
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The FPN processes input feature maps at different scales—small, medium, and 149 
large—capturing both fine-grained accident characteristics and broader traffic patterns. 150 
Given an input feature map  𝑋  at three different scales  𝑋!"#$$, 𝑋"%&'(", 𝑋$#)*%, the fused 151 
representation is computed as: 152 

𝑋+,- = 𝑊.𝑋!"#$$ +𝑊/𝑋"%&'(" +𝑊0𝑋$#)*%                               (1) 153 

where 𝑊.,𝑊/,𝑊0 are learnable attention weights. Each scale-specific feature map is pro- 154 
cessed through 1D Convolutional Layers to refine temporal dependencies, enabling the 155 
model to retain both fine-grained and high-level accident patterns. Figure 4 presents the 156 
detailed structure of the Feature Pyramid Network (FPN) used in this study. 157 

 158 
Figure 4. Schematic representation of the Feature Pyramid Network (FPN), showing the 159 

multi-scale processing pipeline, mathematical formulation, and theoretical guarantees. 160 

2.3.2 Adaptive Memory Layer (AML) for Long-Term Dependency Modeling 161 
Standard Transformers struggle to maintain long-term dependencies due to their 162 

fixed-length context windows, which is particularly problematic for traffic accident pre- 163 
diction, where past incidents influence future risks[3,19,20]. To address this, the Adaptive 164 
Memory Layer (AML) introduces an external memory module that dynamically retains 165 
and updates contextual information, ensuring that historical patterns are effectively incor- 166 
porated into inference[19,20]. At each timestep	𝑡, the memory state 𝑀!	is updated recur- 167 
sively to maintain temporal continuity: 168 

𝑀1 = 𝛾𝑀12. + (1 − 𝛾)𝑀𝐿𝑃(𝑋1)                                   (2)                            169 
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where 𝛾  is a learnable decay factor that controls the balance between retaining past 170 
memory and incorporating new information, while 𝑀𝐿𝑃(𝑋1)  is a non-linear transfor- 171 
mation extracting key accident-related features from the current input 𝑋1.  172 

𝐴AML = softmax(𝑊"𝑀1 + 𝑏)                                       (3) 173 

𝑋AML = 𝐴AML ⋅ 𝑀1                                                                          (4) 174 

where 𝑊"	and 𝑏 are trainable parameters that determine which memory components are 175 
most relevant. The attention weight 𝐴AML	selectively emphasizes critical historical pat- 176 
terns while filtering out less significant information[20]. 177 

    Unlike standard self-attention, which primarily captures short-range dependencies[3], 178 
AML explicitly maintains a dedicated memory state, ensuring that essential past infor- 179 
mation remains accessible throughout inference[19]. The learnable decay 𝛾  allows the 180 
model to adapt dynamically to traffic conditions, balancing recent and historical accident 181 
data[26,27]. This mechanism enhances the model’s ability to recognize recurring traffic 182 
patterns, improving prediction reliability, particularly in accident-prone areas where past 183 
incidents serve as crucial predictive signals. Figure 5 illustrates the structure of AML, high- 184 
lighting its three core components: Memory Representation, Multi-Head Attention for Re- 185 
trieval, and the Memory Update Mechanism[19,20,28]. 186 

 187 

Figure 5. Adaptive Memory Layer (AML) Architecture 188 

2.3.3 Class-Balanced Attention (CBA) for Class Imbalance Mitigation 189 
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Accident severity levels exhibit a long-tail distribution (Figure 1), where severe acci- 190 
dents are significantly underrepresented[29]. Conventional Transformers tend to focus on 191 
frequent accident types, leading to biased predictions. To counteract this, this study intro- 192 
duce Class-Balanced Attention (CBA), which dynamically adjusts attention weights based 193 
on class importance[23]. For each accident class 𝑐, the attention weight is computed as: 194 

𝐴6 = :𝑒𝑥𝑝(𝑊6𝑋)>/:∑ 𝑒𝑥𝑝:𝑊7𝑋>-
78. >	 	                           (5)                 195 

where 𝑊6	is the learnable class importance weight, and 𝑁 is the total number of classes. 196 
This formulation ensures that underrepresented accident categories receive higher 197 
attention, thereby improving model robustness against class imbalance[15]. The computed 198 
attention weights 𝐴6 are then applied in the Transformer decoder to reweight accident 199 
severity predictions, ensuring that the model focuses adequately on severe accidents 200 
despite their lower occurrence. 201 

2.3.4 Test-Time Training (TTT) for Online Adaptation 202 

Deep learning models often fail to adapt to dynamic traffic conditions due to their 203 
reliance on static training data[6,16]. Traditional Transformers assume a fixed data distri- 204 
bution, making them vulnerable to distribution shifts in real-world traffic scenarios. Test- 205 
Time Training (TTT) addresses this challenge by enabling real-time model updates 206 
through an auxiliary self-supervised learning (SSL) task[8,9]. Unlike conventional models 207 
that remain unchanged after training, TTT continuously refines model parameters during 208 
inference, mitigating distribution shifts and enhancing predictive robustness[18]. The op- 209 
timization objective consists of classification loss 𝐿9: and self-supervised loss	𝐿;;<, which 210 
encourages better generalization beyond the training set[16]: 211 

𝐿=== = 𝐿9: + 𝜆𝐿;;<	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (6)  	 	 	 	 	 	 	212 

During inference, the model continuously refines its parameters based on incoming 213 
traffic data: 214 

θ1>. = θ1 − α∇?𝐿===(𝑋1)	 	 	 	                                      (7) 215 

where α is the adaptive learning rate, 𝑋1	represents the current accident data input, and 216 
𝜃  denotes the Transformer’s parameters[8]. This iterative update mechanism enables 217 
continuous adaptation to evolving traffic patterns, ensuring robustness in highly dynamic 218 
environments. To further enhance adaptability, TTT prioritizes recent accident data, 219 
adjusting feature importance weights as follows: 220 

													𝑤@
(1) = 𝑤@

(12.) + 𝜂 ⋅ ∇C𝐿@(𝑋1)                                  (8) 221 
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where 𝜂  is the learning rate for feature weight updates[16]. This ensures the model 222 
focuses on the most relevant and time-sensitive accident indicators while filtering 223 
outdated information.  224 

Additionally, TTT integrates an online memory retention mechanism, allowing the 225 
model to store and retrieve historical accident patterns[28]. By leveraging this memory, the 226 
model improves predictive accuracy in non-stationary environments where traffic risks 227 
evolve over time[24]. 228 

Figure 6 illustrates the TTT framework, detailing the interaction between self- 229 
supervised learning, online parameter updates, and memory-based adaptation. The 230 
diagram highlights how the Transformer encoder, in conjunction with a self-supervised 231 
prediction module, iteratively refines model parameters until convergence, ensuring 232 
optimal real-time adaptation [6,16]. 233 

 234 

Figure 6. TTT Framework for Online Adaptation 235 

2.3.5 Loss Function for Imbalanced Classification 236 
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In real-world accident data, severe accidents (Levels 3 & 4) are underrepresented. 237 
Traditional loss functions treat all samples equally, leading to a bias toward majority clas- 238 
ses (minor accidents)[5,11,15]. This model adopts Focal Loss, defined as: 239 

𝐿Focal = −𝛼1(1 − 𝑝1)I log(𝑝1)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (9)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	      240 
 241 
where 𝛼1 is a class-dependent weighting factor, 𝑝1 is the model’s predicted proba- 242 
bility for the correct class and 𝛾 is the focusing parameter that reduces the impact of 243 
well-classified examples. 244 

2.4. Our Experiments 245 

To rigorously assess the effectiveness of the proposed TTT-Enhanced Transformer, a 246 
comprehensive experimental evaluation was conducted. The experiments compare the 247 
proposed approach against existing models, investigate the contribution of key compo- 248 
nents through ablation studies, and analyze performance using multiple evaluation met- 249 
rics[6,16,30]. 250 

2.4.1. Baseline Model Comparisons 251 

The evaluation framework includes two baseline models for comparison. The Long 252 
Short-Term Memory (LSTM) network is selected due to its ability to model temporal de- 253 
pendencies in sequential data [31–33], serving as a traditional deep learning benchmark. 254 
Additionally, the Standard Transformer is included as a direct baseline to quantify the im- 255 
provements introduced by the proposed enhancements[1,2,14]. The models are evaluated 256 
by using accuracy, precision, recall, and F1-score, which are widely used in deep learning- 257 
based traffic accident prediction[11,12]. 258 

2.4.2. Ablation Study 259 

Ablation studies were conducted to quantify the contribution of individual compo- 260 
nents by systematically removing key modules from the full TTT-Enhanced Trans- 261 
former[18,30]. The ablations include removing Test-Time Training (TTT), Adaptive 262 
Memory Layer (AML), Feature Pyramid Network (FPN), Class-Balanced Attention (CBA), 263 
and Focal Loss. Each ablation variant was trained and evaluated using the same setup as 264 
the full model to ensure fair comparisons. The results demonstrate that TTT and AML 265 
contribute most significantly to severe accident detection, while FPN, CBA, and Focal Loss 266 
provide additional performance improvements. 267 

2.4.3. Evaluation Metrics 268 

The performance of all models is assessed using multiple evaluation metrics to en- 269 
sure a comprehensive understanding of predictive capabilities[6,28]. Overall accuracy 270 
measures the proportion of correct predictions [6,34], while weighted precision accounts 271 
for class imbalance by ensuring fair performance evaluation across different accident se- 272 
verity levels[5,35]. Weighted recall evaluates the model’s ability to correctly identify se- 273 
vere accidents, adjusting for class imbalance[5,11]. The weighted F1-score, as the har- 274 
monic mean of precision and recall, ensures a balanced assessment of model performance 275 
across different severity levels[5,11]. The ROC-AUC score provides insight into the 276 
model’s discrimination ability across multiple severity categories[11,12]. A confusion 277 



 12 of 22 
 

 

matrix further analyzes classification errors and misclassifications, highlighting the chal- 278 
lenges posed by imbalanced accident severity distributions[5]. 279 

3. Results and Discussion 280 

The experimental results provide a comprehensive evaluation of the TTT-Enhanced 281 
Transformer, demonstrating its superior performance compared to traditional deep learn- 282 
ing models. The model’s effectiveness is assessed through a comparison with baseline ar- 283 
chitectures, a detailed analysis of classification accuracy across accident severity levels, 284 
and an ablation study to quantify the contributions of key components.  285 

3.1. Model Performance Comparison 286 

To assess the efficacy of this proposed approach, its performance is benchmarked 287 
against two widely used architectures: Long Short-Term Memory (LSTM) networks and 288 
the Standard Transformer. LSTM models, while effective in capturing temporal depend- 289 
encies, exhibit limitations in hierarchical feature extraction and are highly sensitive to 290 
class imbalance, often leading to the misclassification of severe accident cases[5,32]. The 291 
Standard Transformer, though equipped with enhanced sequence modeling capabilities, 292 
lacks adaptive learning mechanisms, rendering it vulnerable to distribution shifts and im- 293 
balanced class representations[3,5,17]. In contrast, the TTT-Enhanced Transformer inte- 294 
grates dynamic adaptation, memory-augmented learning, and multi-scale feature extrac- 295 
tion, resulting in substantial performance improvements across all severity levels. 296 

Table 1. Comparative Performance of LSTM, Transformer, and TTT-Enhanced Transformer. 297 

Model Overall 

Accuracy 

Weighted 

Precision 

Weighted Recall Weighted F1-Score 

LSTM 0.4798 0.82 0.47 0.55 

Transformer 0.9120 0.93 0.91 0.92 

TTT-Enhanced Transformer 0.9686 0.97 0.96 0.96 

 298 

As shown in Table 1, the TTT-Enhanced Transformer outperforms both baselines 299 
across all evaluation metrics, demonstrating a 5.65% increase in overall accuracy and a 300 
6.4% improvement in recall compared to the Standard Transformer. These improvements 301 
are particularly noteworthy in the prediction of severe accidents, where conventional mod- 302 
els frequently exhibit high false negative rates due to class imbalance. The inclusion of 303 
Focal Loss and Class-Balanced Attention (CBA) plays a crucial role in alleviating this issue 304 
by dynamically adjusting class importance weights, ensuring that underrepresented acci- 305 
dent categories receive adequate model attention. 306 

This improvement in recall performance is consistent with findings in deep learning- 307 
based accident forecasting, where class-weighted learning and adaptive training strategies 308 
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have been shown to enhance predictive accuracy for rare events[5,11,15]. Furthermore, the 309 
test-time adaptation capability of the TTT-Enhanced Transformer contributes to robust 310 
generalization across unseen traffic conditions[16,17], a key requirement for real-world de- 311 
ployments in intelligent transportation systems. 312 

Table 2. Performance Comparison on Underrepresented Severe Accident Classes 313 

Severity Level 

 

TT-Enhanced Transformer Standard Transformer LSTM 

Level 1 (Minor) 0.929 0.933 0.827 

Level 2 (Moderate) 0.974 0.924 0.428 

Level 3 (Severe) 

Level 4 (Extreme) 

0.958 

0.879 

0.862 

0.831 

0.665 

0.752 

 314 
A more granular analysis of class-wise performance confirms the effectiveness of 315 

adaptive learning mechanisms in improving prediction accuracy across all severity levels. 316 
The confusion matrix analysis, as shown in Figure 7, Figure 8, and Figure 9, illustrates the clas- 317 
sification behavior of the three models. LSTM misclassifies a significant proportion of 318 
moderate accidents (Level 2) as minor incidents, indicating its limitations in distinguishing 319 
subtle severity variations. The Standard Transformer exhibits improved classification sta- 320 
bility but still struggles in identifying severe and extreme accident cases, resulting in 321 
higher false negative rates in these categories. In contrast, the TTT-Enhanced Transformer 322 
achieves the most balanced classification, as evidenced by higher diagonal values in the 323 
confusion matrix, indicating improved accuracy across all severity levels. 324 

The comparative performance for underrepresented severe accident classes is sum- 325 
marized in Table 2. The TTT-Enhanced Transformer maintains high accuracy for minor ac- 326 
cidents (92.9%), achieves best-in-class performance for moderate accidents (97.4%), and 327 
significantly improves severe (95.8%) and extreme accident prediction (87.9%). The im- 328 
proved performance on severe accidents suggests that the integration of TTT and memory- 329 
augmented learning provides substantial advantages in handling high-risk cases. 330 

Prior studies have demonstrated that memory-aware architectures enhance long- 331 
term dependency retention, improving classification performance on underrepresented 332 
data distributions[3,28]. Additionally, TTT plays a critical role in refining predictions 333 
based on real-time environmental shifts, ensuring that severe accidents, which are often 334 
influenced by sudden changes in weather, traffic conditions, and road infrastructure, are 335 
more accurately identified [8,36]. The ability of the TTT-Enhanced Transformer to dynam- 336 
ically adjust class importance through Class-Balanced Attention further reduces misclas- 337 
sification bias, aligning with existing research on adaptive deep learning models for safety- 338 
critical applications[23,37]. 339 

The ROC-AUC analysis provides further evidence of the TTT-Enhanced Trans- 340 
former’s superior discriminatory capacity across accident severity levels as shown in Figure 341 
10. The model consistently achieves AUC scores ranging from 0.984 to 0.995, with severe 342 
and extreme accident cases reaching AUC = 0.993, indicating exceptionally strong predic- 343 
tive performance in high-risk scenarios. These results are in line with research on class- 344 
aware optimization techniques, where focal loss-based approaches have been shown to 345 
improve model discrimination power in class-imbalanced datasets[12,15]. 346 

Furthermore, the TTT framework enables dynamic refinement of decision bounda- 347 
ries, significantly improving sensitivity to minority class instances. The ability to achieve 348 
high true positive rates while minimizing false positives is imperative for real-world traffic 349 
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forecasting, as erroneous classification of severe accidents could lead to inadequate emer- 350 
gency response and suboptimal resource allocation[5,16]. 351 

 352 

Figure 7.  LSTM Confusion Matrix Representation for Accident Prediction 353 

 354 

 355 

                                356 
Figure 8.  Standard Transformer Confusion Matrix Representation for Accident Prediction 357 

 358 

 359 
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                                 360 
Figure 9. TTT-Enhanced Transformer Confusion Matrix Representation for Accident Prediction 361 

 362 

                                 363 

Figure 10.  ROC Curves for TTT-Enhanced model 364 

 365 

3.1.4 Computational Complexity Analysis 366 
While TTT enhances generalization, it introduces additional computational 367 

overhead. The computational complexity of a standard Transformer inference is 𝑂(𝑁/𝑑) 368 
due to the self-attention mechanism[14]. In contrast, TTT incorporates an iterative update 369 
mechanism, increasing the computational cost to 𝑂(𝑁/𝑑 + 𝑇𝑑), where T represents the 370 
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number of adaptation steps required for convergence[3]. To quantify this trade-off,  371 
define the additional inference overhead as: 372 

EC = =!!!
="#$%

− 1                                           (10) 373 

where 𝑇===	is the inference time with TTT enabled, and 𝑇J#!%	is the inference time of the 374 
baseline Transformer model. Our experimental results indicate that TTT increases 375 
inference latency by only approximately 3.3%, making it a feasible enhancement for real- 376 
time deployment[16,17]. As shown in Figure 11, inference time scales linearly with batch 377 
size for both the Baseline and TTT-Enhanced Transformers, confirming that TTT does not 378 
create significant bottlenecks. This slight increase in inference time is justified by the 379 
significant improvements in severe accident classification (Table 2, To quantify the 380 
contributions of key model components, ablation experiments were conducted by 381 
systematically removing core elements, and the performance impact is 382 
summarized in Error! Not a valid bookmark self-reference.. The results affirm that TTT is 383 
the most crucial component, with its removal leading to the most significant 384 
degradation in performance. Without TTT, the overall accuracy declines by 385 
5.65% (from 96.86% to 91.21%), severe accident recall drops by 9.51%, and the 386 
F1-score decreases by 0.08, reinforcing the role of continuous adaptation in 387 
mitigating distribution shifts [9,36]. 388 

 389 

Table 3). In real-world applications, accurate detection of high-risk accidents is far more 390 
critical than minor computational costs, as it directly impacts emergency response and 391 
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resource allocation[38,39].        392 

 393 
Figure 11. Comparison of Inference Time and Computational Overhead in TTT-Enhanced 394 

Transformers. 395 

3.2. Ablation Study and Component Contribution Analysis 396 
 397 

To quantify the contributions of key model components, ablation experiments were 398 
conducted by systematically removing core elements, and the performance impact is sum- 399 
marized in Error! Not a valid bookmark self-reference.. The results affirm that TTT is the most 400 
crucial component, with its removal leading to the most significant degradation in perfor- 401 
mance. Without TTT, the overall accuracy declines by 5.65% (from 96.86% to 91.21%), se- 402 
vere accident recall drops by 9.51%, and the F1-score decreases by 0.08, reinforcing the 403 
role of continuous adaptation in mitigating distribution shifts [9,36]. 404 
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 405 

Table 3.  Ablation Study Results 406 

Model Variant 

 

Overall Accuracy Recall (Severe) Severe & Extreme F1-score 

TTT-Enhanced Transformer 0.9686 0.958 0.91 

Without TTT 0.9121 0.862 0.83 

Without Adaptive Memory  

Without Feature Pyramid Network 

Without Class-Balanced Attention 

Without Focal Loss 

0.9688 

0.9675 

0.9677 

0.9686 

0.921 

0.918 

0.892 

0.895 

0.89 

0.87 

0.86 

0.85 

 407 
    Other model components also exert considerable influence. Class-Balanced Attention 408 
and Focal Loss contribute substantially to recall improvement for severe accidents, with 409 
their removal resulting in a 6.6% and 6.3% decline in recall, respectively. These findings 410 
support prior research demonstrating that weighted attention mechanisms enhance mi- 411 
nority class representation, effectively reducing misclassification biases in imbalanced da- 412 
tasets[5,11,23]. The Feature Pyramid Network (FPN) and Adaptive Memory Layer (AML) 413 
also exhibit a notable impact, particularly in enhancing model stability and multi-scale 414 
feature extraction. Removing FPN results in a 4.0% recall drop for severe accidents, while 415 
removing AML leads to a 3.7% decrease in recall, suggesting that hierarchical feature 416 
learning and memory-augmented processing are essential for accurate severity classifica- 417 
tion[21,25,40].    418 

3.3. Discussion 419 

This paper demonstrates that integrating TTT, memory-augmented learning, and 420 
multi-scale feature extraction significantly improves deep learning models for traffic acci- 421 
dent prediction. The TTT-Enhanced Transformer effectively mitigates distribution shifts 422 
and improves generalization in non-stationary environments, making it well-suited for 423 
real-world intelligent transportation systems, where traffic patterns evolve due to 424 
weather, infrastructure changes, and traffic fluctuations. 425 

Unlike conventional deep learning models that rely on static training data, TTT dy- 426 
namically refines model parameters during inference, ensuring improved generalization 427 
across unseen traffic conditions. The results confirm that TTT reduces misclassification 428 
rates for severe accidents by addressing distribution shifts. The challenge of class imbal- 429 
ance, which often leads to high false negative rates for severe accidents, is alleviated 430 
through Class-Balanced Attention (CBA) and Focal Loss, which increase recall for severe 431 
and extreme accidents by 9.51%, supporting prior research on class-aware deep learning 432 
for safety-critical applications. 433 

Beyond class imbalance, memory-augmented learning enhances predictive accuracy 434 
by retaining long-term dependencies in accident-prone areas. The Feature Pyramid Net- 435 
work (FPN) complements this by capturing both localized accident characteristics and 436 
broader traffic patterns, enabling more robust feature representations. These findings un- 437 
derscore the importance of combining hierarchical feature learning with adaptive 438 
memory mechanisms to improve accident forecasting performance in real-world environ- 439 
ments. 440 
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The proposed methodology extends beyond traffic accident prediction and has ap- 441 
plications in autonomous vehicle risk assessment, smart city infrastructure, and emer- 442 
gency response systems. In domains such as financial risk forecasting, medical diagnos- 443 
tics, and climate hazard modeling, where data distributions continuously evolve, the in- 444 
tegration of memory-enhanced learning and test-time adaptation can improve predictive 445 
accuracy and robustness. 446 

Although TTT introduces a slight computational overhead, empirical evaluation 447 
confirms that the 3.3% increase in inference time remains within an acceptable range for 448 
real-time deployment. The trade-off between minor computational cost and significantly 449 
improved predictive performance makes this approach practical for intelligent transpor- 450 
tation systems. The ability to refine predictions online ensures stable and reliable perfor- 451 
mance in dynamic environments without introducing significant computational burdens. 452 

4. Conclusions 453 

In this paper, we introduce the TTT-Enhanced Transformer, a deep learning frame- 454 
work designed to address distribution shifts and class imbalance in accident severity pre- 455 
diction. By integrating TTT, Adaptive Memory Layer (AML), Feature Pyramid Network 456 
(FPN), Class-Balanced Attention (CBA), and Focal Loss, the model demonstrates im- 457 
proved adaptability and predictive accuracy. The empirical results confirm its superiority 458 
over conventional LSTM and Transformer models, with a 5.65% increase in accuracy and 459 
a 6.4% improvement in recall, particularly in severe accident scenarios. The ablation study 460 
further highlights the importance of TTT, ensuring stability and generalization across var- 461 
ying traffic conditions. 462 

Future research should explore integrating real-time sensor telemetry, GPS signals, 463 
and weather data to further enhance predictive accuracy. Developing lightweight models 464 
for edge computing will enable real-time deployment in resource-constrained environ- 465 
ments. Additionally, transfer learning strategies for cross-regional adaptation could im- 466 
prove generalization across different geographic regions and traffic infrastructures, ex- 467 
panding the model’s applicability in intelligent transportation systems. 468 

The findings suggest that integrating adaptive learning mechanisms into traffic pre- 469 
diction models can enhance risk assessment and decision-making in real-world transpor- 470 
tation systems. Future research should explore multi-modal data integration, edge com- 471 
puting optimizations, and cross-regional transfer learning to further improve scalability 472 
and deployment feasibility. 473 
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