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Abstract: This paper aims to enhance the effectiveness of table tennis coaching and player’s perfor- 7 
mance analysis through human action recognition by using deep learning. In the field of video anal- 8 
ysis, human action recognition has emerged as a highly researched area. Beyond post-session anal- 9 
ysis, it has the potential for real-time applications, such as providing instant feedback or comparing 10 
ideal motions with actual player movements. However, the complexity of human actions presents 11 
significant challenges. To address these issues, in this paper, we combine the latest computer vision 12 
and deep learning algorithms to accurately identify and classify a few strokes in human action 13 
recognition. Throughout in-depth review of the existing methods, we develop a high-precision of- 14 
fline method for player’s action recognition. Our experimental results show that the proposed 15 
method achieves an average accuracy of 99.85% in recognizing six distinct table tennis actions based 16 
on our own dataset. 17 

Keywords: Table tennis; Human action recognition; Deep learning; Computer vision 18 
 19 

1. Introduction 20 
Human action recognition in sports video analysis has become a critical issue in com- 21 

puter vision and deep learning. This field is crucial for recognizing specific athletic ac- 22 
tions, facilitating performance analysis, creating highlight videos, and assisting coaches. 23 

Human action recognition in table tennis has challenges due to the speed of ball and 24 
human actions, subtle differences between strokes, the need for precise detection and 25 
recognition in quick-moving sports [1-3]. Handcrafted feature-based methods in conven- 26 
tional machine learning have limitations in classifying human actions in sports. This foun- 27 
dation led to further innovations, including the Inflated 3D ConvNet (I3D) in 2017, which 28 
extended 2D CNN architectures along the temporal dimension and proved effective on 29 
large-scale action datasets like Kinetics [4]. To address these challenges, we propose the 30 
methods by using the state-of-the-art methods in computer vision and deep learning, fo- 31 
cusing on Transformer models to accurately recognize human actions in table tennis 32 
games [5]. 33 

This research project aims to develop a method capable of identifying specific strokes 34 
in table tennis. Consecutive video frames of players’ actions are analyzed to ensure accu- 35 
rate classification, providing efficient post-session feedback for coaching purposes. 36 

Another key aspect of this method is the use of Google MediaPipe platform for pose 37 
estimation from pre-recorded videos [6]. We utilize the platform for human pose estima- 38 
tion due to its ability to precisely detect key joints of a human body, which are essential 39 
for accurately identifying player’s actions in table tennis games. By tracking these key 40 
points across multiple frames, our methods are able to recognize subtle variations be- 41 
tween player’s actions, such as forehand drive and smash. 42 

The players and coaches in table tennis games need detailed insights into perfor- 43 
mance after games, which requires software that can accurately classify human actions 44 
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and efficiently handle recorded videos. The proposed method copes with these challenges 45 
by integrating Transformer models and MediaPipe platform, especially for human pose 46 
estimation, delivering precise action recognition from recorded videos, enabling coaches 47 
to provide detailed feedback after the matches [7]. 48 

Additionally, using MediaPipe for pose estimation provides valuable feedback. By 49 
accurately detecting the key joints, it assists us in analyzing player’s actions, offering in- 50 
sights into specific performance. The platform ensures smooth and accurate analysis of 51 
sport videos, further enhancing practical applications. 52 

This research work contributes to the field of human action recognition in table tennis 53 
by utilizing a Transformer-based approach combined with pose estimation, the accurate 54 
and efficient method for human action recognition is offered for timely feedback after the 55 
games. The adaptability and accuracy make it suitable not only for table tennis but also 56 
for other quick-moving sports that require detailed motion analysis. 57 

In this paper, we will introduce the related work in Section 2. Our methods are de- 58 
picted in Section 3. The experimental results are demonstrated in Section 4. The conclusion 59 
will be drawn in Section 5. 60 

2. Related Work 61 
Human action recognition in sport games has gained significant attention, particu- 62 

larly in quick-moving sports like table tennis, where fine-grained actions are difficult to 63 
be captured. Deep learning, especially with Transformer architectures, has led to signifi- 64 
cant advancements in recognizing and classifying human actions with better accuracy, 65 
compared to conventional methods in machine learning with handcrafted features [8]. 66 

Conventional machine methods for human action recognition in sports relied heavily 67 
on handcrafted features [9]. These approaches often employed motion and appearance 68 
descriptors, such as space-time interest points (STIPs) and dense trajectories [10]. While 69 
being effective, these methods were less adaptive and reliable in sport games where hu- 70 
man actions are rapid, subtle, and often similar. In response to these constraints, early 71 
deep learning models like 3D convolutional neural networks were developed to capture 72 
both spatial and temporal features [11]. Table tennis, with player’s dynamic movements, 73 
shows a particular challenge due to the fine distinctions between different actions. 74 

Previous studies have utilized MobileNetV2 for efficient feature extraction and 75 
Transformer models for temporal modeling. Building upon this, we propose a dual-out- 76 
put model that combines these methods to achieve both accurate action classification and 77 
boundary detection [12]. 78 

MobileNetV2 provides efficient feature extraction with low computational costs [13]. 79 
By reducing the complexity of convolutional layers, MobileNetV2 significantly dimin- 80 
ishes computational costs and memory demands, making it particularly suitable for han- 81 
dling large volumes of video frames from labelled datasets. Accurate feature extraction 82 
from each frame is crucial in human action recognition, the visual features extracted by 83 
using MobileNetV2 ensure that subtle actions in table tennis games, such as racket rota- 84 
tion and player posture changes, are captured and identified effectively. 85 

Transformer processes the feature sequence through its self-attention mechanism, 86 
capturing both short-term and long-term dependencies. The proposed dual-output model 87 
processes the feature sequence through its self-attention mechanism, capturing both 88 
short-term and long-term dependencies. This model includes one branch for human ac- 89 
tion classification and another for action segmentation, i.e., boundary detection. By com- 90 
bining these outputs, the model achieves accurate human action classification while also 91 
identifying action boundaries in sports videos. 92 

Transformer models broke down input video frames as a series of patches, turning 93 
them into vectors, and treating them like tokens. Transformer models, like Vision Trans- 94 
former (ViT) [14] and TimeSformer [15] have significantly improved human action recog- 95 
nition tasks by effectively leveraging both spatial and temporal features [1]. These ap- 96 
proaches are particularly effective in sports involving dynamic human actions. 97 
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Swin Transformer has achieved a Top-1 accuracy exceeding 84.9% on general da- 98 
tasets like Kinetics-400 [16]. but its performance is constrained in domain-specific tasks 99 
like table tennis due to the challenges of fast-paced movements and subtle variations. In 100 
table tennis, the difficulty lies not only in the speed of the actions but also in the subtle 101 
variations. For instance, distinguishing between a forehand drive and a smash requires 102 
precise attention to the player's body movements and racket trajectory. These intricacies 103 
demand models capable of fine-grained action recognition.  104 

Our proposed method addresses these challenges by achieving human action recog- 105 
nition accuracy 96% for table tennis games, significantly outperforming general Trans- 106 
former-based models. The model combines accurate classification of human actions with 107 
action boundary detection, providing comprehensive post-action analysis based on la- 108 
beled video data. Furthermore, the algorithm processes frames at an average speed 18.3 109 
milliseconds per frame based on an NVIDIA RTX 3070 GPU. This balance between high 110 
accuracy and computational efficiency makes the model well-suited for offline coaching 111 
applications, where detailed feedback on player actions is invaluable for improving train- 112 
ing effectiveness and game strategies. Transformer-based parallel processing capabilities 113 
ensure scalability for analyzing large volumes of offline video data [17]. 114 

Combining deep learning with human body tracking is crucial for improving sports 115 
performance analysis. Transformer models, capable of classifying spatial and temporal 116 
patterns, represent a significant advancement in recognizing actions in dynamic sports 117 
like table tennis. 118 

3. Methodology 119 
The focus of our research project is on designing and developing a method for human 120 

action recognition in table tennis—a sport game known for its rapid, precise, and often 121 
subtle strokes. Inspired by the speed and intricacies of table tennis, we create a deep learn- 122 
ing model that could keep pace with the players while accurately distinguishing between 123 
various actions. By harnessing cutting-edge deep learning models, our method was de- 124 
signed to not only detect but also classify the fast motions. 125 

To enhance the effectiveness of our approach, we integrated a Transformer-based 126 
deep net for human action recognition, which ensures that our methods can respond 127 
quickly to the fast-moving actions while accommodating subtle variations of those actions 128 
that are characteristic of table tennis games. 129 

3.1. Data Collection and Augmentations 130 
To acquire visual data for this project, we recorded videos of six specific actions per- 131 

formed by players in table tennis games, we supplemented these recordings with online 132 
training videos. This approach allows us to capture human actions across various envi- 133 
ronments, while increasing the model adaptability and robustness. We collaborated with 134 
professional table tennis coaches to record our videos by using a handhold camera oper- 135 
ating at 30 frames per second (fps) from an umpire’s angle of view. This setup ensured 136 
that subtle motions of players and path of ping-pong ball were accurately recorded.  137 

Our dataset includes six types of human actions performed by two players—a coach 138 
and the author: Backhand Drive, Forehand Drive, High Toss Loop, Long Push, Short 139 
Placement, and Smash. Additionally, a "NoAction" class was added to represent moments 140 
where no specific action was performed. This class includes preparatory actions and other 141 
frames not directly related to the main actions (starting, hitting, and end frames). Each 142 
action is annotated to ensure comprehensive coverage of key frames within each action.   143 

Regarding visual feature extraction, we employed MobileNetV2, a lightweight archi- 144 
tecture balancing accuracy and computational efficiency. MobileNetV2 excels in extract- 145 
ing spatial features from video frames, reducing computational costs while maintaining 146 
high accuracy. The inverted residual structure and linear bottleneck layers of the model 147 
enable efficient processing of high-speed human motions, making it highly effective for 148 
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analyzing dynamic actions in table tennis. This lightweight design minimizes computa- 149 
tional complexity, ensuring accurate player performance analysis while maintaining fast 150 
processing speeds—an essential requirement for providing timely feedback during coach- 151 
ing sessions.  152 

We utilized OpenCV platform to extract video frames from the recorded videos. Each 153 
frame was resized to 224×224 pixels to match the input size required by MobileNetV2, 154 
converted from BGR to RGB, and normalized it to ensure consistency in model input. To 155 
enhance the robustness and mitigate overfitting, particularly for underrepresented clas- 156 
ses, we applied data augmentation methods such as horizontal flipping and slight rota- 157 
tion. These pre-processing steps enabled the model to detect player’s styles across differ- 158 
ent environments while also evaluating its processing capabilities, which are critical for 159 
coaching applications. 160 

All data was annotated with professional players and coaches in table tennis to en- 161 
sure that the starting, hitting and end frames were accurately labeled. We employed a 162 
two-stage review process, with initial annotations conducted by well-trained annotators 163 
and final reviews completed by professional coaches to ensure accuracy and consistency. 164 

While maintaining a balanced dataset, we collect approximately equal number of 165 
samples for each class of strokes. However, due to dynamic nature of table tennis, a few 166 
classes of human actions naturally occurred frequently.  167 

To ensure a balanced dataset, we recorded videos for each stroke class, aiming to 168 
collect a comparable amount of footages for six actions: Backhand Drive, Forehand Drive, 169 
High Toss Loop, Long Push, Short Placement, and Smash. Additionally, a "NoAction" 170 
class was included to represent moments without specific actions, such as preparation, 171 
starting, hitting, and ending phases.  172 

All videos were recorded at a consistent frame rate of 30 frames per second, resulting 173 
in a total of approximately 36,000 frames. Each action lasted approximately 15 to 23 sec- 174 
onds, depending on the speed and complexity of the movement, with a total video dura- 175 
tion of around 20 minutes. The dataset was divided into training, validation, and testing 176 
sets, with 70% frames allocated for training, and 15% for validation and testing. The vali- 177 
dation and test sets included videos performed by players excluded from the training set, 178 
ensuring independence in evaluation. 179 

 180 

 181 
Figure 1. The samples from our training dataset, showing 5 consecutive frames for each of the six 182 
player’s actions.   183 

3.2. Pose Estimation Using MediaPipe 184 
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Estimating poses is an integral component of human action recognition in table ten- 185 
nis, which is a necessary step for classifying player’s action and recognizing patterns of 186 
human actions. In this paper, MediaPipe platform was employed owing to its high accu- 187 
racy, fast performance, and ultra independence.  188 

As determined by biomechanical studies of table tennis, further processing covers 189 
the detection of key points of player’s wrist, elbow, shoulder joints, hip joints, and knee; 190 
foot ankle and head position. These key points are integral for accurately representing 191 
human actions of table tennis players.  192 

Specific key points are recorded across consecutive frames to capture the temporal 193 
characteristics of human actions, balancing computational costs with accuracy, provided 194 
key data about the temporal patterns that allows us to distinguish between human actions 195 
that might appear similar spatially but differ considerably in the temporal.  196 

3.3 Network Architecture 197 
Our proposed model for human action recognition was created to accommodate both 198 

spatial and temporal dependencies in a sequence of video frames. Our architecture makes 199 
use of MobileNetV2 for visual feature extraction while Transformer-based models handle 200 
temporal sequence, this combination has enabled us to detect 6 distinct player’s actions 201 
simultaneously while simultaneously segmenting the actions. 202 

Video data is firstly extracted by using OpenCV platform, followed by visual feature 203 
extraction via MobileNetV2. The extracted features were organized into a sequence to cap- 204 
ture the temporal dependencies essentially for accurately recognizing player’s actions in 205 
table tennis. Transformer-based models tackle the sequence for accurate human action 206 
segmentation and recognition, with built-in counting function ensuring that each instance 207 
of live play is accurately counted. For each frame 𝑡 in the video sequence, MobileNetV2 208 
extracts a 1280-dimensional feature vector as shown in Eq.(1).  209 

𝐹! = 𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡𝑉2(𝑓𝑟𝑎𝑚𝑒!). (1) 

These feature vectors capture the spatial information of the video frames. To model 
the temporal dynamics inherent in consecutive frames, the extracted feature vectors 
are organized into a sequence, as defined in eq.(2).  

 

																																																						𝑆 = [𝐹!"#, 𝐹!"(#"%), … , 𝐹!]. (2) 

    Since Transformers do not inherently understand the order of input frames, we 
adopt positional encodings to represent the sequential order. This is completed by 
adding positional encoding vectors to each feature vector	𝐹! , where each position has 
a unique encoding method based on sine and cosine functions of different frequen-
cies. This allows us to capture the temporal sequence as shown in Eq.(3). 

 

																																		𝑃𝐸('(),+,) = sin	( '()
%----!"/$

),  𝑃𝐸('(),+,.%) = cos @ '()

%----
!"
$
A.       (3) 

where pos represents the position in the sequence, 𝑑 is the dimension of positional encod- 210 
ing.  211 

We chose Transformer models due to the ability to efficiently capture long-range de- 212 
pendencies through parallel processing, which is crucial for recognizing player’s actions. 213 
Moreover, Transformers avoid the vanishing gradient problem, making them more suit- 214 
able for capturing the fast and subtle actions. 215 
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In addition, the use of consecutive frames instead of a fixed number of frames allows 216 
the model to be flexibly adaptive to varying lengths of sequences, enhancing its ability to 217 
generalize across different contexts and action classes. This flexibility is especially im- 218 
portant while classifying player’s strokes that may have different execution times, making 219 
the model more robust in handling diverse inputs. 220 

The sequence of feature vectors, now with positional encodings, is processed by us- 221 
ing Transformer. The core component is the Multi-Head Self-Attention mechanism, which 222 
calculates the attention score for each frame. The self-attention is defined as eq. (4).  223 

																																																						𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(/0
%

12&
)𝑉. (4) 

where 𝑄 (queries), 𝐾 (keys), and 𝑉 (values) represent projections of the input sequence 𝑆, 224 
𝑑3is the dimension of keys. The Multi-Head Attention mechanism allows the model to 225 
focus on multiple parts of sequence at once, capturing both short-term and long-term de- 226 
pendencies much effectively. Transformer has 8 attention heads, each with a size of 64 227 
dimensions. After the self-attention mechanism, the resulting attention scores are passed 228 
through a position-wise feedforward network, consisting of two fully connected layers 229 
with ReLU activation. The feedforward network is applied to each position inde- 230 
pendently. 231 

																																																						𝐹𝐹𝑁(𝑥) = max(0, 𝑥𝑊% +	𝑏%)𝑊+ +	𝑏+. (5) 

Residual connections are added around both the self-attention and feedforward lay- 232 
ers to stabilize the training process. These residual connections make the network much 233 
robust. Each sublayer is followed by layer normalization.  234 

 235 
Table 1. Architecture of the proposed model 236 

Layers Output shapes Param # 
InputLayer (None, 8, 1280) 0 

MultiHeadAttention (None, 8, 1280) 2,624,256 
LayerNormalization (None, 8, 1280) 2,560 

Dropout (None, 8, 1280) 0 
Dense (None, 8, 128) 163,968 

LayerNormalization (None, 8, 1280) 2,560 
Dropout (None, 8, 1280) 0 

GlobalAveragePooling1D (None, 1280) 0 
Dense (None, 64) 81,984 

class_output (Dense) (None, 13) 845 
flag_output (Dense) (None, 3) 195 

Table 2. Summary of training settings 237 

Training Information Values 
Total Params 3,123,472 (11.92 MB) 

Trainable Params 3,123,472 (11.92 MB) 
Epoch 1/300 

Step Time 3s 42ms/step 
Class Output Accuracy 0.09% 

 238 
In Table 1 and Table 2, the architecture of our proposed model is illustrated, show- 239 

casing how the model copes with the features from consecutive frames to produce out- 240 
puts. The model was trained by using the Adam optimizer with sparse categorical cross 241 
entropy as the loss function, which is particularly suitable for multiclass classification 242 



Computers 2024, 13, x FOR PEER REVIEW 7 of 12 
 

tasks with integer encoded labels. The training process was conducted over 300 epochs 243 
with a batch size of 32. The model has approximately 3.1 million parameters, ensuring it 244 
can deal with the complex movements in table tennis. The key components include: 245 

• Multi-Head Attention: With 8 Heads and 64 dimensions per Head, allowing 246 
the model to focus on temporal parts of the input sequence.  247 

• Fully Connected (Dense) Layers: These layers take use of the ReLU activation 248 
function to introduce non-linearity, enabling the model to learn complex pat- 249 
terns, while the dropout is applied to reduce overfitting and improve gener- 250 
alization. 251 

4.  Experimental Results 252 
The Transformer-based model for human action recognition in table tennis games 253 

was evaluated by using a comprehensive set of metrics. In this section, we present the 254 
overall accuracy, training, and validation progress, as well as per-class performance of the 255 
proposed model. Figure 2 illustrates the learning curves for both human action classifica- 256 
tion and action boundary detection over 300 epochs.  257 

 258 
Figure 2. Training / validation accuracy and loss for human action classification as well as action 259 
boundary detection. 260 

The model demonstrated consistent improvements during the training process. The 261 
training accuracy steadily increased, while the training loss showed a gradual decrease, 262 
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indicating effective learning of spatial and temporal features from the data. Despite peri- 263 
odic fluctuations in validation loss after epoch 150, the overall trend stabilized toward the 264 
later stages of training, suggesting that the model successfully generalized to unseen data. 265 
These fluctuations are likely due to the inherent complexity of certain stroke classes, such 266 
as visually similar actions like Forehand Drive and Short Placement, which challenge the 267 
model's ability to distinguish fine-grained temporal features.  268 

The model achieved human action classification accuracy 96%, highlighting its ability 269 
to differentiate between various strokes such as Forehand, Backhand, and Smash. These 270 
results underscore the robustness of the Transformer architecture in capturing both the 271 
spatial and temporal dependencies of human actions 272 

The macro-average F1-score 0.93 reflects the balanced performance across all classes, 273 
demonstrating its ability to classify less frequent actions such as "HighTossLoop" (F1- 274 
score: 0.91) and "ShortPlacement" (F1-score: 0.86) with notable accuracy. In contrast, the 275 
weighted-average F1-score 0.96 highlights the strong performance on frequent actions, 276 
particularly "NoAction", which achieved F1-score 0.99. These results underline the effec- 277 
tiveness of this proposed model in addressing the challenges posed by considering class 278 
imbalances, a common issue in real-world datasets. 279 

The action output loss curve reveals steady progress during training, with the loss 280 
decreasing consistently as the epochs advance. While validation loss exhibited occasional 281 
spikes after epoch 150, it ultimately stabilized toward the end of training. This fluctuation 282 
likely stems from the complexity of distinguishing visually similar strokes, such as Fore- 283 
hand Drive and Short Placement. Despite these variations, the model demonstrated strong 284 
generalization capabilities without significant overfitting. 285 

With an overall classification accuracy 96%, the model effectively captured both spa- 286 
tial and temporal dependencies in table tennis actions. However, transitional phases, in- 287 
cluding starting and hitting frames, presented challenges, reflected in lower F1-scores for 288 
these segments. Addressing these challenges through improved data representation or 289 
augmentation strategies could further enhance performance across all action phases. 290 

Overall, the Transformer-based model has proven highly effective in human action 291 
classification, with potential for further refinement in action boundary detection and ac- 292 
tion transition detection. The enhanced training strategies, such as augmenting the data 293 
to better capture middle phases or incorporating context-aware features, could address 294 
the fluctuations seen in the validation loss and improve the model performance. 295 

The self-attention mechanism in the Transformer enabled it to focus on relevant parts 296 
of a sequence, reducing misclassification and improving accuracy for complex action. This 297 
led to higher precision and recall for advanced actions, ultimately enhancing overall per- 298 
formance. 299 

In Figure 3, the confusion matrix for player’s action classification is presented. The 300 
model performs well across most of given actions, with high precision and recall, though 301 
misclassifications remain uncertainty. 302 

The performance of the proposed model was evaluated based on the test set, and the 303 
detailed metrics were computed to assess how well the model distinguishes between dif- 304 
ferent table tennis actions. In Figure 4, the overall accuracy for human action classification 305 
was 96%. While the model performed very well across most classes, lower recall was ob- 306 
served for human actions like Long Push, where the recall was 0.75, indicating that the 307 
model struggles to correctly identify all instances of this action.  308 

Pertaining to human action segmentation, the model achieved an accuracy 87%, with 309 
strong performance in detecting the starting, hitting and end time of each action. How- 310 
ever, the detection of the middle phase showed lower recall, indicating the room for im- 311 
provement in distinguishing this transitional phase. 312 

The confusion matrices and classification provide deeper insights into the model 313 
strengths and areas for improvement. While the model excels in distinguishing between 314 
most actions, further refinement may be required to improve its performance in 315 
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differentiating Forehand Drive from NoAction and resolving the confusions observed in 316 
Long Push.  317 

Table 3. Performance metrics for latency and standard deviation. 318 

Action Types Average Latency (ms) Standard Deviation (ms) 
Short Strokes 157 23 

Medium Stokes 213 31 
Long Stokes 286 42 

Serves 198 28 
 319 

 320 
Figure 3. Confusion matrix for action segmentation. 321 

 322 
Figure 4. Confusion matrix for human action classification. 323 

Table 4. Performance metrics of average accuracy. 324 

Metrics Values 
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Average Processing Time per 
Frame 

18.3 ms 

Action Recognition Accuracy 91.2% 
Maximum Consecutive 

Frames Processed 
3600 

System Stability Duration 120 minutes 
 325 
Temporal performance is crucial for practical applications in coaching and player 326 

analysis. This section presents a comprehensive analysis of the temporal characteristics of 327 
the proposed model. 328 

In Table 4, the results show that the latency varies across different classes and dura- 329 
tions of human actions. Latency in this study is defined as the time taken by the model to 330 
process a sequence of input frames and produce a classification output, focusing solely on 331 
inference time. For simpler actions such as Flicks and Flips, the average latency was 332 
157ms, reflecting shorter temporal dependencies and lower computational demand. In 333 
contrast, more complex actions such as Loops and Smashes exhibited a higher average 334 
latency of 286ms, due to their richer temporal patterns requiring the analysis of longer 335 
sequences for accurate classification. 336 

The latency values demonstrate the model's efficiency in handling sequential data for 337 
offline action recognition, as tested on 3,600 frames corresponding to a 2-minute video 338 
recorded at 30 fps. While effective for post-session evaluation, optimizing latency could 339 
make the system adaptable for real-time applications, such as providing immediate feed- 340 
back during coaching sessions. The results highlight the model's adaptability to varying 341 
input sequences, ensuring robustness across diverse scenarios. 342 

Table 5. The results of our developed method. 343 

Frame Rate (fps) Recognition Accuracy 
(%) 

CPU Utilization (%) GPU Utilization (%) 

15 88.7 23 31 
30 91.2 37 58 
60 93.5 63 82 

120 94.1 89 95 
 344 
Table 5 shows the performance at various frame rates, illustrating the trade-offs be- 345 

tween recognition accuracy and computational workload. The recognition accuracy in- 346 
creased from 88.7% at 15 fps to 94.1% at 120 fps, likely due to better temporal details cap- 347 
tured with higher frame rates. However, 30 fps was found to provide an optimal balance 348 
between processing efficiency and recognition accuracy for offline analysis.  349 

 350 
Figure 5. The view angle of a camera to capture the player’s actions. 351 

Figure 5 shows the camera setup to capture the player's actions during data collection 352 
time. The camera is positioned at a height above the table, approximately 2 meters away, 353 
angled at 45 degrees to capture the entire body of the player. This setup ensures an opti- 354 
mal view angle of the player’s movements and ball trajectory, providing comprehensive 355 
data for subsequent action analysis. The paddle faces the camera, allowing for a clearer 356 
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observation of the strokes, which helps in accurately analyzing the player's performance 357 
through MediaPipe platform. 358 

Table 6 presents the average statistics of six classes of player’s actions and a "NoAc- 359 
tion" class, indicating the ability to correctly identify each action. For instance, the action 360 
Forehand Drive consistently achieves an average probability above 99%, which highlights 361 
the precision and reliability of the model in detecting this action without missing any key 362 
movements. 363 

Table 6. The probability for each class of human actions. 364 

Actions Average Statistics 
Backhand Drive 99.90% 
Forehand Drive 99.92% 
High Toss Loop 99.85% 

Long Push 99.88% 
Short Placement 99.89% 

Smash 99.91% 
No Action 99.87% 

 365 
Figure 6. The detection of all human actions. 366 

The proposed model was tested across various human actions in table tennis games, 367 
including the actions: Smash, High Toss Loop, Long Push, Backhand Drive, Forehand 368 
Drive, and Short Placement as shown in Figure 6, which illustrates the six human actions 369 
in three distinct phases—Starting, Hitting, and End time. Each stroke is represented by 370 
using a sequence of video frames. 371 

The consistent detection across different stroke classes, including class "NoAction", 372 
highlights the robustness and adaptability of our proposed method. It successfully man- 373 
aged variations in player’s actions, lighting conditions, and stroke speeds without com- 374 
promising accuracy. The timely feedback provided by the proposed method simplifies 375 
coaching and training, enabling immediate performance review and adjustments.    376 
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5. Conclusions 377 
This paper has demonstrated the potentiality of advanced deep learning methods, 378 

particularly Transformer models, for enhancing player’s action recognition in table tennis. 379 
The proposed method provides a robust solution for human action recognition, offering 380 
comprehensive feedback for players and coaches after reviewing the recorded training 381 
sessions.   382 

The integration of Transformer models and MobileNetV2, with the ability to capture 383 
both spatial and temporal dependencies, has proven effectiveness in accurately classifying 384 
various strokes in table tennis. The proposed method ensures that it can be applied to 385 
practical training process, where efficient and precise feedback based on post-session 386 
video analysis is critical. Additionally, the pose estimation enhances the accuracy of the 387 
proposed model by tracking key points of human body, further improving human action 388 
recognition. 389 

Our future work should focus on expanding datasets and incorporating more robust 390 
methods to handle variations in lighting conditions, camera view angles, and player’s 391 
movements [18]. Despite these challenges, this research paper provides a solid foundation 392 
for human action recognition in table tennis games and has the potential to be adapted for 393 
broader applications beyond table tennis. 394 
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