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ABSTRACT 

    In this book chapter, YOLOv8, the effective version in the YOLO series, is modified through data 
augmentation, context strategies, and an advanced attention mechanism. These modifications aim to 
primarily improve the quality of waste dataset and the classification accuracy of small objects within given 
waste classes, thereby boosting the overall performance of the model. The waste data is classified into four 
classes, and 1,000 waste images were labelled for model training. Upon evaluation, the classification 
accuracy of the improved model reached 85.6%. The effectiveness of these improvements was further 
substantiated through ablation studies. 
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INTRODUCTION 

    Along with the progress of economy, the amount of waste generated also gradually increases. However, 
environmental protection and economic development are closely related to whether the waste is effectively 
disposed of. If waste is not properly disposed of, such as in random landfills, harmful chemical substances 
will be produced (Chen et al., 2020). It will pollute the air, soil, and water, damage the environment, and 
thus affect human health. Besides, if the recycling of waste is high, it will save costs and natural resources, 
thus successfully generating economic benefits. Therefore, taking active and effective measures for waste 
disposal and improving the recycling of wastes will have a positive impact on the natural environment and 
economic development. Thus, it is necessary to classify different waste types, such as hazardous waste and 
recyclable waste. At present, waste classification is mainly concentrated in the reuse collection stations, 
which are semi-automated and semi-manual that have the problems of low sorting efficiency and poor 
working environments. 
 
    Visual object detection has made remarkable progress in recent years, it is essential to use deep learning 
methods and computer vision as well as robots to replace manual labor for an automated classification. 
However, the accuracy of automated waste classification is lower than that of other classification tasks, 
such as fruit classification. It is speculated that there are two reasons for this difference in performance: 
� The waste dataset is with low quality; 
� There are a number of small wastes in the waste category, such as fruit pits and batteries, which appear 

as small objects in the same image with glass bottles. 
 
    The dataset in deep learning is an important factor influencing the training process of deep learning 
algorithms, and low quality of the dataset can seriously affect the accuracy of model predictions. A high-
quality dataset should have three characteristics: Observable features, a sufficient amount of data, and 
uniform distribution. Therefore, how to improve the model performance by using the quality of the waste 
dataset is one of the research objectives of this book chapter. Besides, improving the classification accuracy 
of small waste objects is also an important task of this book chapter. The blurry and noisy features that can 
be extracted from small objects in images badly affect the accuracy of object classification, which also 
influence waste classification. Taken the Deformable DETR model as an example, this model was designed 
to improve the problem of slow convergence of DETR and inaccurate classification of small objects (Zhu 
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et al., 2020). Although it achieves an accuracy 28.8% in small object classification, it is still much lower 
than the accuracy of medium-sized object classification and large object classification, which are 49.2% 
and 61.7%, respectively. The research work on small object classification has progressed slowly related to 
visual object classification, and even networks that are adopted at small object classification have a huge 
performance gap in detecting small and medium-sized or large targets. Finally, an attention mechanism is 
adopted that helps the network to focus on important information of the input images. 
 
    Therefore, in this book chapter, YOLOv8 is employed as the main model to classify wastes by using data 
augmentation methods, contextual information, and attention mechanism as a way to improve the accuracy 
of waste classification. The waste is classified into four classes according to the criteria, i.e., recyclable 
waste, dry waste, wet waste, and hazardous waste. Overall, the main contributions of this book chapter are 
listed as follows: 
� The improved YOLOv8  model for waste classification model is achieved through data augmentation, 

contextual information, and attention mechanism with a benchmark. The classification accuracy is up 
to 85.6%; 

� The effectiveness of the improved YOLOv8 model and the impact on the performance have been 
explored through ablation studies; 

� The waste classification model is proposed and a garbage dataset meeting the experimental 
requirements is collected, thus improving the garbage classification. 

 
    In this book chapter, related work is introduced in Section 2, our research methodology is presented in 
Section 3, the analysis of the results is described in Section 4, and conclusion is shown in Section 5. 

RELATED WORK 

    In recent years, waste classification algorithms have been extensively developed (Rabano et al., 2018) 
(Abdu & Noor, 2022) (Yan, 2021). A system based on YOLOv3 for real-time classification of wastes in 
video streams was proposed, achieving an accuracy of 68% (De, Ladogana & Macchiarulo, 2020). YOLO 
utilized large-scale convolutional kernels and dense convolutional blocks to increase the perceptual field of 
the model, enhancing the feature sensitivity of both shallow and deep semantics to improve waste 
classification accuracy (Lun et al., 2023). Additionally, the ResNet-34 model was also applied to waste 
classification, and an automatic classification bin was designed, including its hardware structure (Kang et 
al., 2020). Although exceptional results were obtained for waste classification of normal objects, research 
work on the detection of small objects in waste classification is scant, and the accuracy remains significantly 
lower than that of normal size of waste objects, which greatly affects the overall accuracy of waste 
classification. The research challenges for small object detection can be divided into four aspects: 
� Small objects in digital images have few effective features and low resolution.  
� Small object images are not easily labeled and much susceptible to noise, resulting in the lack of small 

object datasets (Chen et al., 2022). 
� Because of the location of small objects, the network model makes prediction with even one pixel 

offset, which makes the localization of small objects difficult and has a huge impact on IoU value 
(Chen et al., 2022). 

� The small object image is minuscule, which is prone to aggregation. When the network model 
performs prediction, the correct small object borders may be ignored due to non-maximum suppression, 
and the model convergence is difficult (Heo et al., 2021). 

  
    In response to these difficulties, advanced deep learning methods are utilized to improve the accuracy of 
small object classification. Contextual learning, a general and effective strategy, leverages the dependencies 
between detection objects and scenes or between objects themselves to extract contextual feature 
information. An effective contextual method is proposed, which infers the inherent semantic and spatial 
layout relationships among visual objects, effectively addressing the under-detection of small objects (Fu 
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et al., 2020) (Yan, 2019). The strategy of multiscale learning is also popular because it retains the rich detail 
in shallow features and the semantic information in deep feature maps, enhancing detection. For instance, 
to mitigate the issue of feature loss in small object models, a new real-time detection algorithm employs 
skip connections and upsampling methods to extract features, significantly improving small object detection 
performance (Nayan, Saha & Mozumder, 2020) (Nguyen & Yan, 2023). Additionally, the anchor-free 
mechanism proves effective for small objects, which occupy a small area in images; transitioning from 
anchor mechanisms to key point estimation reduces the complexity of hyperparameters and improves 
performance (Liu, Pan & Yan, 2022) (Fu et al., 2022). 
 
    Data augmentation is another essential technique that increases the informational value of limited data 
without increasing the quantity (Liu, Yan & Kasabov, 2023) (Qi, Nguyen & Yan, 2024). Convolutional 
neural networks, generally are invariant to image size and shifts, benefit from data augmentation, which 
helps them recognize the same object under various positions and scales. Currently, data augmentation falls 
into two categories: Single-sample enhancements like Flip, Rotation, Random Cropping, Elastic 
Deformation, Scaling, Color Transformation, Jitter, and Noise Injection; Multisampling enhancements like 
Mixup and Sample Pairing (Inoue, 2018) (Qi, Nguyen & Yan, 2023) (Zhang et al., 2018); and unsupervised, 
represented by methods like GAN and Auto Augmentation (Karras, Laine & Aila, 2019) (Cubuk et al., 
2019). By employing data augmentation, deep learning models are able to avoid irrelevant features, thus 
improving overall performance. 
 
    The attention mechanism is becoming increasingly important in deep learning and is widely employed 
in the fields such as computer vision, natural language processing, and speech recognition. Integrating 
attention mechanisms into deep learning models significantly enhances both interpretability and 
performance. The classic attention mechanism, CBAM, computes attention maps across two dimensions—
space and channel—and integrates them for adaptive learning, serving as a general, lightweight module 
(Woo et al., 2018). A newer attention module, Coordinate Attention, generates spatially selective attention 
maps by incorporating location information into channel attention, outperforming CBAM and enhancing 
performance in both object detection and segmentation tasks (Hou, Zhou & Feng, 2021). 

METHODOLOGY 

The role of data augmentation is closely related to the performance of visual object detection (Xia, Nguyen 
& Yan, 2023). Due to the small waste dataset and low waste dataset quality, using data augmentation can 
effectively improve the waste data quality and enhance the model performance in the following four aspects: 
� Preventing the model from learning excessive feature information unrelated to the detection object, 

which can lead to overfitting (Guo et al., 2020); 
� Improving the generalization ability of the model by increasing the number of training data samples; 
� Reducing the proportion of unbalanced training data; 
� Decreasing the sensitivity of the model and enhancing its robustness. 

 
    Therefore, in this book chapter, rotating, cropping, and colour transformation operations are mainly 
applied to improve the quality of labelled data. Besides, mosaic method is chosen to perform data 
augmentation on unlabeled data (Bochkovskiy et al., 2020). Mosaic is chosen because it utilizes four 
random images to obtain a new image after stitching, and each image corresponds a video frame. 
 
    Compared with Cutmix and Mixup, Mosaic not only increases data diversity but also enriches the image 
background, effectively adjusts the batch size, and provides better calculations of variance and mean values. 
Moreover, it avoids the interference from non-informative pixels during the training process, thus 
enhancing model performance. The examples of data augmentation strategies applied in this book chapter 
are illustrated in Figure 1 and Figure 2. 
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Figure 1. Visualization of data augmentation. The first row is the original image. The remaining ones from 
second column to the bottom are: Rotating, cropping, and color Transformations. 
 

 
Figure 2. Visualization of data augmentation: Mosaic. 

 
Network structure 
 
    Compared with YOLOv5 (Zhu et al., 2021), YOLOv8 has made a series of significant improvements. In 
the backbone network, YOLOv8 continues the CSP concept by utilizing the SPPF module but replacing the 
C3 module with the C2F module, applies two 3×3 convolutions to reduce the resolution by using a factor 
4 and achieves lightweight. Then, YOLOv8 removed all the convolutional machine structures in the PAN-
FPN upsampling stage of YOLOv5. In the neck and head stages, YOLOv8 introduces Decoupled-Head, 
eliminates the objectness branch, and shifts from anchor-based to anchor-free. YOLOv8 also adopts Binary 
CrossEntropy Loss (BCE Loss) for classification, and takes use of CIoU Loss and Distribution Focal Loss 
(DFL) for regression. Additionally, YOLOv8 utilizes a dynamic Task-Aligned Assigner for the matching 
(Redmon et al., 2016). In this book chapter, YOLOv8 model has been selected as the baseline, the model 
performance is enhanced by focusing on three aspects. Figure 3 illustrates the overall structure of the 
improved YOLOv8 model. 
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Figure 3. The structure of the improved YOLOv8 model. 

 
    Hence, a contextual information module is incorporated into the model to extract higher-level abstract 
features from the pixels surrounding small objects like fruit pits and batteries in waste images. In waste 
classification, small object detection typically relies on low-level features, which lack semantic richness 
despite their high resolution and detailed information. Conversely, while high-level features provide 
stronger semantic information, they suffer from low resolution and weak detail perception. 
 
   Therefore, to efficiently leverage the advantages of both, a feature fusion method is chosen to be 
implemented, as depicted in Figure 4. Feature fusion combines the information from both shallow and deep 
features, achieves a complementary balance that enhances the robustness and accuracy of the improved 
model in detecting small waste objects. 

 
Figure 4. The structure of contextual information. 

 
 

Figure 5. The structure of SE_ASPP module. 
 
   Finally, the SPPF module in YOLOv8 is replaced with the SE_ASPP module. SE_ASPP combines Atrous 
Spatial Pyramid Pooling (ASPP) and the channel attention mechanism SENET. Generally, the receptive 
field is closely linked to object classification. A larger receptive field typically improves network 
performance, but an excessively large receptive field can make the model difficult to converge. If the model 
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needs a large receptive field while maintaining the resolution of the feature map (to preserve image details), 
the dilated convolution becomes essential. Thus, the ASPP module is beneficial as it can effectively balance 
the receptive field and resolution. It utilizes multiple parallel dilated convolution layers with different 
dilation rates to sample the input features, allowing the model to construct different receptive fields from 
branches of varying scales, extract the input features, and use them to generate the final feature results.  
    Additionally, the use of channel attention mechanism SENET not only facilitates the effective transfer 
of key feature information, enhancing information reuse and amplifying useful information but also 
minimizes redundant feature information. Figure 5 illustrates the specific structure of SE_ASPP. 

RESULT ANALYSIS 
   The hardware configuration for our experiments includes an Nvidia GeForce GTX 3090 graphics card 
and an Intel i7 processor. The experimental software encapsulates Python 3.8.16 and Torch 1.13.1. The 
detailed parameters of the experiment are presented in Table 1. In this book chapter, the enhanced YOLOv8 
model significantly improved the accuracy of waste classification. Additionally, ablation experiments were 
conducted to verify the feasibility and effectiveness of the improved model. 
 

Table 1. The detailed parameters of the experiment 
Classes Parameters 

Initial learning rate 0.01 
Optimizer SGD 

Momentum 0.9 
Weight decay 0.0005 

Batch size 16 
Epoch 300 

 

 
Figure 6. The samples of waste dataset, (a) A banana is assigned to the class “Wet”, (b) A glass bottle is 
grouped to the class “Recyclable”, (c) A battery is classified to the class “Hazardous”, (d) A mask is set 

to the class “Dry”. 
 

    The dataset in this book chapter is a waste dataset. The waste images were selected from a large pool and 
divided into four classes, totaling 1,000 images. According to the waste classes, the images were manually 
labelled as "Recyclable," "Hazardous," "Wet," and "Dry." Additionally, each class contains different types 
of wastes. For example, the recyclable category includes glass, cardboard, and plastic. To enrich the dataset, 
multiple perspectives of the same object are also annotated. Table 2 presents the specific details of the 
dataset, Figure 6 displays the images from the dataset. 
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Table 2. The number of samples in our waste dataset 

Classes of Samples Numbers 
Recyclable waste 253 
Recyclable waste 251 

Wet waste 252 
Dry waste 244 

Total 1,000 
 

    In this experiment, Average Precision (AP), Mean Average Precision (mAP), and F1 score are the metrics 
which are taken to evaluate the accuracy and performance of the model. Figure 7 depicts the confusion 
matrix of the model. 
 

 
Figure 7. The confusion matrix of waste classification  

    To make the classification results visible, a classified waste is marked. The waste classification results 
are shown in Figure 8. In these results, multiple classes of classified wastes were represented in colour with 
bounding boxes, including "Wet," "Dry," "Recyclable," and "Hazardous." Most of the classification results 
are correct; however, the object in Figure 8(c) is a missed classification and should belong to the class 
"dry". 
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Figure 8. Waste classification results. (a) The visual objects like egg shell, battery, and sponge dishcloth, 
were classified to “Wet”, “Hazardous”, and “Dry” respectively. (b) The visual objects sweet potato and 

can, were classified to “Wet” and “Recyclable” respectively. (c) The visual objects like plastic bottles 
were classified as “Recyclable”. (d) The visual objects like phone and glass bottle were classified to the 

classes like “Recyclable” and “Recyclable” respectively. 

 
Figure 9. The mean average precision and loss of the waste classification 

 
    Furthermore, the parameters such as mAP and Recall rates for waste classification are detailed in Table 
3. After 300 training epochs, the total mAP of the model is 0.856, with the mAP values of classification for 
Hazardous, Recyclable, Wet, and Dry classes being 0.927, 0.955, 0.820, and 0.720, respectively. Figure 9 
illustrates the stability of the improved model. 

 
Table 3. The parameters of each waste class 

Classes Box R mAP 50 mAP 50:90 
Recyclable waste 0.874 0.848 0.927 0.884 
Recyclable waste 0.912 0.900 0.955 0.905 

Wet waste 0.866 0.761 0.820 0.674 
Dry waste 0.717 0.467 0.720 0.650 

Total 0.842 0.744 0.856 0.778 
 

Table 4. The comparison of waste classification 
Models mAPs F1 score 

Faster R-CNN 0.639 0.611 
SSD 0.665 0.616 

YOLOv5 0.717 0.676 
YOLOv7 0.759 0.720 
YOLOv8 0.802 0.768 

Ours 0.856 0.790 
 

    To further explore the performance of the model, the improved YOLOv8 model is compared with five 
advanced models by using our dataset, as shown in Table 4. Our model achieved the highest mAP  0.856, 
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which is an improvement by 0.054 over the original YOLOv8 model. In comparison, the mAP values of 
YOLOv5 and YOLOv7 are 0.717 and 0.759, respectively. Moreover, the mAP values of SSD and Faster 
R-CNN are relatively low, not exceeding 0.700, with Faster R-CNN having the lowest mAP at 0.639, which 
is 0.026 smaller than the mAP value of SSD. 
 
    Moreover, ablation experiments were conducted on the proposed model to verify the validity and 
necessity of the proposed improved features (akin to control variables). The results of the ablation studies 
confirm that the improved YOLOv8 model is feasible and valid. The results of the eight ablation 
experiments are detailed in Table 5. The original YOLOv8 model without any modifications show the 
lowest mAP 0.802. Consequently, data augmentation, feature fusion, and SE_ASPP modules are separately 
added. Among these, the SE_ASPP module contributed to the largest performance improvement, with an 
increase in mAP of 0.022. Feature fusion increased the mAP of YOLOv8 by 0.015, while data augmentation, 
though it provided the smallest improvement, increased the mAP by 0.003. This demonstrates that data 
augmentation, feature fusion, and SE_ASPP are all crucial for enhancing the performance of the model. 
 

Table 5. The mAP of the model in the ablation experiment 
Model Data Augmentation Feature Fusion SE_ASPP mAP 

 
 

 
YOLOv8 

    0.802 
√    0.814 
 √   0.817 
  √  0.824 

√  √  0.845 
√ √   0.834 
 √ √  0.851 

√ √ √  0.856 
 

    The mAP value for the combination of data augmentation and feature fusion is 0.834. If feature fusion is 
ignored, the mean AP value is 0.845. The mAP value increases to 0.851 if feature fusion and SE_ASPP are 
applied. These results are lower than the mAP 0.856 if all three features are utilized, indicating that optimal 
results are obtained by applying all three features together. 

CONCLUSION 
    In conclusion, YOLOv8 is enhanced by incorporating data augmentation, contextual information 
methods, and the SE_ASPP module to improve the accuracy of waste classification. 1,000 waste images 
are labelled across four categories: “hazardous”, “wet”, “recyclable”, and “dry”. The mAP of this model 
improved by 5.4% to 85.6%. Additionally, the ablation study verifies the effectiveness of the model, 
demonstrating that the model is efficient and stable for the waste classification. However, the experiments 
are limited, primarily by the lack of a diverse dataset. Thus, enhancing the waste dataset remains an 
important task for future work. 
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