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ABSTRACT 

In this book chapter, we introduce HFM-YOLO, a novel object detection model tailored for precise and 
efficient face mask detection. Based on the existing YOLOv8 framework, the model integrates the HGNetV2 
backbone and RepConv layers while enhancing the object detection capabilities. Our evaluation using the 
Face Mask Detection dataset demonstrates HFM-YOLO's superior performance in precision, recall, and 
computational efficiency compared to the standard YOLO architectures. These results highlight its 
potential applicability in visual object detection. 
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INTRODUCTION 
Efficient and accurate object detection models have been a primary focus of current research in the field of 
computer vision. The YOLO (You Only Look Once) series, particularly its most recent version YOLOv8 
models, has made notable advancements in this field. Nevertheless, the increasing need for models that 
possess both exceptional precision and the ability to function effectively in the contexts with limited 
resources has resulted in the creation of HFM-YOLO (Human Face Mask-YOLO). This adaption of the 
YOLO framework is specifically designed for real-time detection of face masks. 
 
    The rise of worldwide health crises, notably the COVID-19 pandemic, has emphasised on the need for 
automated systems that can monitor adherence to health safety protocols, such as the use of face masks 
(Pollard et al., 2020). HFM-YOLO addresses this need by providing a compact but highly efficient 
technology to detect human faces and determine whether they are wearing a mask in different environments. 
 
    The focus of HFM-YOLO design is on replacing the traditional backbone network in YOLOv8 with 
HGNetV2 (Zhao et al., 2024), a smaller and more efficient network architecture. HGNetV2 is known for 
its superior combination of accuracy and efficiency. It can be further enhanced by using HGNetV2 as the 
backbone network, making it specialized for the tasks of detecting human face masks. This optimization 
requires strategically reducing network complexity in order to minimize computational requirements while 
maintaining the performance of visual object detection. The HFM-YOLO architecture incorporates 
RepConv (replaceable convolution) into its backbone network, effectively replacing traditional 
convolutional layers. Integrating RepConv into HGNetV2 significantly reduces the processing 
requirements of the network, thereby simplifying the model while maintaining its detection capabilities. 
 
    The use of RepConv in HFM-YOLO marks a significant shift towards lightweight model architectures 
in visual object detection. This approach not only increases processing speed, making it ideal for real-time 
applications. The approach also ensures that the deployment of the model is possible in resource-
constrained scenarios such as mobile and embedded devices. Reducing model complexity does not reduce 
the ability of this model to identify complex face mask features, including a variety of mask types and 
occlusion directions.  
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    Additionally, HFM-YOLO’s design incorporates cutting-edge deep learning methods to ensure it 
remains robust in real-world applications. In terms of public health surveillance, the versatility and 
efficiency of HFM-YOLO make it a significant advance in visual object detection. 
 
    In summary, HFM-YOLO innovatively takes use of RepConv in HGNetV2. This model establishes a 
new benchmark among professional object detection models. This book chapter will further explore the  
structure, methodology, comprehensive performance evaluation, and its broader impact on real-time 
detection of HFM-YOLO model. 

RELATED WORK 
The field of visual object detection in computer vision has witnessed transformative changes (Xiao et al., 
2021), in which the development of deep learning-based models is a key factor. This section provides an 
overview of key advances in the field, focusing on convolutional neural networks (CNN) (Yan, 2019), the 
evolution of YOLO family, and the innovative use of replaceable convolutions (RepConv) in object 
detection.   
 
    The emergence of CNN has revolutionized the field of computer vision. LeCun et al. (2015) introduced 
this concept, and computer vision began to enter the era of deep learning. The AlexNet model was 
subsequently proposed by Krizhevsky et al. (2012). This model further demonstrates the effectiveness of 
deep CNNs in image recognition tasks. After that, various architectures such as Vedaldi and Zisserman’s 
VGG (Vedaldi & Zisserman, 2016) and He et al.’s ResNet (He et al., 2016) appeared one after another. 
Each model contributes to the efficiency and accuracy of CNN in object detection. 
 
    YOLO was proposed by Redmon et al. (2016) YOLO introduces a single-stage detection method. This 
method marks a major shift in target detection methods. In sharp contrast to previously dominant two-stage 
methods such as R-CNN by Girshick et al. (2014) The original YOLO model emphasized on speed but 
faced limitations in detection of small objects. Later versions, including YOLOv2 (Redmon & Farhadi, 
2017) and YOLOv3 (Redmon & Farhadi, 2018), introduced improvements such as anchor boxes and multi-
scale prediction, improving detection accuracy. Both YOLOv4 proposed by Bochkovskiy et al. (2020) and 
YOLOv5 (Jocher et al., 2022) of Ultralytics took use of the CSPDarknet53 advanced model. These models 
improve the efficiency and performance of visual object detection. 
 
    During the evolution of YOLO series, YOLOv6, YOLOv7 and YOLOv8 have promoted industrial 
applications. YOLOv6 (Li et al., 2022) combines processes such as EfficientRep, self-distillation and 
advanced quantification. It also provides a deployable network with customizable architecture, effectively 
balancing accuracy and speed. YOLOv7 (Wang et al., 2023) is an enhanced version of YOLOv5. YOLOv7 
focuses on the training process and introduces strategies such as reparameterization modules and model 
scaling. YOLOv8 (Ju & Cai, 2023) further evolved from YOLOv5. At its core, it replaces the C3 module 
of its network backbone with C2f and adopts a decoupling process in Head. Together, these releases 
demonstrate significant advances in object detection performance and efficiency. 
 
    RepConv has attracted considerable interests in deep learning community. RepConv was firstly proposed 
by Soudy et al. (2023) RepConv is a convolution that is highly adaptable and can effectively replace 
traditional convolutional layers. Owing to its design, it can be easily replaced and modified within 
established CNN frameworks. By replacing traditional convolutions, neural networks that enhance specific 
goals can be achieved. 

METHODOLOGY 
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HFM-YOLO is a specialized object detection model, which is designed to detect masks efficiently and 
accurately. The architecture of HFM-YOLO is based on YOLOv8 framework but with significant 
modifications. The modified model is more suitable for face mask detection. The model architecture 
integrates HGNetV2 as its backbone by replacing traditional convolutional layers with RepConv layers.  
 

 
Fig 1. The architecture of HFM-YOLO model 

 

 
Fig 2. The structure of the HG Block 
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    The core of HGNetV2 is the HG block, which is cleverly designed to process data in a hierarchical 
manner. This design allows the network to learn from both low-level and high-level features. This results 
in a rich, multidimensional understanding of the input data. Each HG block is customized to handle different 
levels of data abstraction. By using HG blocks, the model is able to tell whether the mask is worn or not. 
This feature is critical for accurate mask detection across different scenarios, including different lighting 
conditions, angles, and mask types. 
 
    The LDS layer is complementary to the HG blocks which is located between the HG blocks. These layers 
perform the critical downsampling operation, reducing the spatial dimension of the feature map. The LDS 
layer not only reduces the computational load but also potentially expands the receptive field of subsequent 
layers. The LDS layer helps improve the overall efficiency of HFM-YOLO, allowing it to process images 
quickly. The process at high speeds retains the ability to recognize comprehensive feature information. The 
integration of LDS layer ensures that HFM-YOLO remains computationally efficient, an important property 
for visual object detection applications. Incorporating these HG blocks and LDS layers into the backbone 
fundamentally enhances HFM-YOLO's data flow and feature extraction capabilities. The model effectively 
detects complex layers in visual data and accurately extracts visual features for face mask detection. 
 
    HFM-YOLO is further enhanced with the addition of a RepConv layer. The RepConv layer replaces the 
traditional convolutional layer (Yan, 2023) in the network. These layers are designed to increase efficiency 
and adaptability, allowing HFM-YOLO to maintain a leaner configuration. At the same time, it can also 
improve computing output. The RepConv layer excels at dynamically adjusting to different shapes and 
sizes of masks. This innovation not only reduces the overall computational load of the model but also 
improves its detection accuracy. 

 
Fig 3. Replacing traditional convolutional layers in the HG block with RepConv 

 
    The last part is the Detect part, which is responsible for the final visual object detection. 

 
Fig 4. The structure of our detection model 
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    The Bbox Loss in our model is crafted to optimize the accuracy of the predicted bounding boxes in 
relation to the ground truth. This loss component is bifurcated into two primary segments: 
 
    This aspect of the Bbox Loss (Li et al., 2020) concentrates on minimizing the disparity between the 
central coordinates of the predicted bounding boxes and the ground truth. We employ Mean Squared Error 
(MSE) (Imran et al.,2019) as a measure for this discrepancy, as it effectively captures the variance in the 
positional accuracy of the predictions. 
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where, 𝑏'&' 	 and 𝑏')' are the coordinates of the center, width, and height of the predicted bounding box, and 
𝑏'&' 	 and 𝑏')' are those of the ground truth, with 𝑁 being the number of bounding boxes. 
 
    This segment addresses the differences in the width and height of the predicted bounding boxes compared 
to the actual dimensions in ground truth (Ju & Cai, 2023). To compute this loss, we utilize the square root 
of the MSE for the width and height, which aids in balancing the loss contribution from larger versus smaller 
boxes, ensuring that the model is equally sensitive to the objects with various sizes. Our model employs 
Class Loss (Cls Loss) (Cui et al., 2019) to fine-tune its capability in accurately classifying the objects. This 
loss function is crucial for distinguishing between different object categories: 
 
    We make use of cross-entropy loss to quantify the deviation between the predicted probability 
distribution of an object class and the ground-truth distribution. This choice is motivated by using the cross-
entropy loss in penalizing inaccuracies in probabilistic predictions. Thus, the classification accuracy of the 
model is improved.  
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where 𝐶 is the number of classes, 𝑝&,! is the ground truth probability of class	𝑐	for the 𝑖-th instance, and 
𝑝&,! is the predicted probability for that class. The incorporation of these specialized loss functions in our 
model is instrumental in achieving high precision in both object detection and classification tasks. Bbox 
Loss ensures the accuracy our proposed model in locating objects within an image, while Cls Loss 
guarantees precise classification. 

RESULT 
We make use of the face mask detection dataset (Pooja & Preeti, 2021) from Kaggle as the basic data for 
experimental analysis. The dataset contains 853 images. The dataset was divided into three different 
categories: Correctly worn masks, not worn masks, and incorrectly worn masks. The data set also covers 
different scenarios. 
 
   Before starting the experiments, we adapted the dataset to a format compatible with the YOLO training 
format. This preparation involves randomly partitioning the dataset into different subsets for training, 
validation, and testing purposes. We divided the data set. The training set is taken account for 80% of the 
total data set, the validation set and test set for 5% and 15% respectively. This distribution is designed to 
ensure a stable training regime while ensuring complete model evaluation and testing. 
 
   Our experiments took use of a Tesla T4 GPU. We used this GPU as the main hardware for the model 
training, verification and testing stages. The training parameters of all models were standardized to maintain 
consistency in experimental conditions. Specifically, we configure the training process to 100 epochs and 
set the batch size to 8. 
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Fig 5. The samples  from our dataset 

 
    After the training process was completed, we successfully extracted a comprehensive set of experimental 
results. These results form the basis of our subsequent analysis, providing important insights into the 
efficacy and performance of the proposed model in the context of mask detection. 
 
    In the field of visual object detection, the terms such as true positive (TP), false positive (FP), false 
negative (FN) and true negative (TN) are widely employed. These metrics are the components of 
performance evaluation in deep learning because they are directly related to the accuracy and reliability of 
the model. True positives (TP) are the number of instances that the model correctly identifies as positive. 
A false positive (FP) refers to a situation where the model incorrectly identifies a negative class instance as 
a positive class instance. False negatives (FN) represent the number of positive instances that the model 
failed to identify. True Negatives (TN) A true negative is calculated when the model correctly identifies an 
object as a negative class. 
 
    These metrics are often employed to calculate key performance indicators such as precision (Padilla et 
al.,2020), recall, and F1 score. Precision measures how accurately a model identifies front-facing objects. 
In visual object detection, if the bounding box predicted by the model is consistent with the real bounding 
box, the accuracy is considered correct. 
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    Recall rate measures the model's ability to identify all positive objects (Gao et al.,2023). In visual object 
detection, if the true bounding box coincides with the predicted bounding box, the sample is considered to 
be correctly recalled. 
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    The F1-score is the harmonic average of precision and recall (Liu & Yan, 2021), which provides a single 
metric to evaluate the overall performance of the model.  

𝐹1	𝑆𝑐𝑜𝑟𝑒 = 2 × ,/01'#'"2×4051!!
,/01'#'"2-4051!!

                                                   (5) 
 



 7 

    Through these metrics, we can comprehensively evaluate the performance of object detection models 
and guide the optimization and application of the models. 
 
    Mean Average Precision (mAP) is a metric to determine the performance of an object detection algorithm 
(Gao et al., 2024). mAP is the average of multiple class average precision (AP), where the AP for each class 
is calculated from the results of classification. The specific equation is shown as follows,  
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where mAP is one of the most popular indicators in object detection, it is usually applied to evaluate the 
accuracy and reliability of object detection algorithms. In order to better evaluate the performance, we make 
use of mAP50 and mAP50-95 for model evaluation. mAP50 indicates the mAP value if IoU is 0.5. mAP50-
95 indicates the mAP value if IoU is 0.5-0.95. 
 
Our Results 
 
The results we obtained are shown in Figure 6. 
 

 
Fig 6. The result of YOLOv8 and HFM-YOLO 

 
    From Figure 6, we see that the training losses (Bbox, cls) of all models decrease significantly as epochs 
increase, indicating that the models improve the predictions over time. The precision of all three models is 
improved to a very high level, and the recall of the models also increased. This shows that the models were 
correct in most cases. The accuracy and mAP curves of HFM-YOLO are smoother, which may indicate 
more stable learning. YOLOv8 has a very high initial validation class loss at the beginning, which may 
affect performance. 

Table 1. Caption text. 
Backbone Precision Recall mAP50 mAP50-95 

Darknet-19 0.916 0.818 0.903 0.649 
CSPDarknet-53 0.913 0.824 0.903 0.662 

Darknet-53 0.931 0.865 0.932 0.703 
Light-HGNetV2 0.957 0.881 0.938 0.771 
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    In comparison to the conventional Darknet-19 backbone, the implementation of Light-HGNetV2 exhibits 
a notable improvement of approximately 4.5% in precision. This enhancement is indicative of the model's 
elevated accuracy in object detection, effectively minimizing the incidence of false positives. 
 
   The recall metric, which measures the model's capability to identify all relevant instances, sees Light-
HGNetV2 achieving a remarkable rate of 0.881. This number is significantly better than other backbone 
architectures, highlighting the superior detection capabilities of Light-HGNetV2. 
 
    mAP50 is a key metric for evaluating a model's performance at the 50% IoU threshold. Light-HGNetV2 
outperforms its peers with a score of 0.938. This is a 3.9% improvement over Darknet-53, the second-
highest-performing backbone. 
 
    Light-HGNetV2’s mAP50-95 demonstrates a substantial leap in performance. It achieves an average 
precision and recall of 9.7% higher than that achieved by Darknet-53 over the IoU threshold (Yang et 
al.,2023). This result illustrates the robust and consistent performance of Light-HGNetV2 across varying 
degrees of object overlap. 
 
    The empirical data unequivocally reinforces the effectiveness of the Light-HGNetV2 backbone in the 
visual object detection framework. The marked improvements in precision, recall, and mean average 
precision across diverse IoU thresholds attest to the advanced capabilities of Light-HGNetV2 in delivering 
precise and reliable object detection and classification. These findings compellingly advocate the 
integration of sophisticated backbone architectures like Light-HGNetV2 within the YOLO framework, 
paving the way for substantial advancements in the field of visual object detection.  
 

Table 2. Comparison of the model performance in computing speed 
Model Names GFLOPs FPS 

YOLOv5 16.5 52 
YOLOv8 8.1 51 

Light-HGNetV2 7.7 74 
 
    Table 2 clearly shows that our Light-HGNetV2 model, which is the backbone of HFM-YOLO with 
RepConv integration, requires only 7.7 GFLOPs. This is significantly lower than YOLOv5's 16.5 GFLOPs 
and even surpasses YOLOv8's 8.1 GFLOPs. This reduction in computational complexity is pivotal, as it 
indicates a more efficient model that can perform the same tasks with less computational demand. 
 
    In terms of FPS, the Light-HGNetV2 backbone enables HFM-YOLO to achieve an impressive 74 frames 
per second, markedly outperforming YOLOv5's 52 FPS and YOLOv8's 51 FPS. This increase in processing 
speed is crucial for real-time applications, as it allows for faster detection and response times. This is crucial 
in scenarios where timely processing is crucial. 
 
    RepConv replaces traditional convolutional networks in the HFM-YOLO model. Light-HGNetV2 
significantly enhances model performance in terms of computational efficiency and processing speed. 
Reduce GFLOPs without affecting or even improving FPS. These results demonstrate the use of advanced 
techniques such as RepConv when developing high-performance, real-time object detection models.  
 
    During our testing and evaluation of the HFM-YOLO model, we discovered the model performance that 
deviated from the expected results. One notable example was a young girl whose mobile phone was 
identified as not wearing a mask properly as shown in Figure 7. 
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Fig 7. The detection errors 

 
    This particular instance serves as a critical error analysis, highlighting potential directions for 
improvement of our model. The error highlights challenges to discern subtle differences in mask placement 
and use. These nuances are critical to public health safety, making accurate detection of mask use imperative. 
 
CONCLUSION 
HFM-YOLO represents a major leap forward in object detection, especially in applications involving public 
health safety, such as mask detection. Our designed Light-HGNetV2 significantly improves detection 
accuracy and processing efficiency. HFM-YOLO achieved a precision 0.957 in human face mask detection. 
Although the model demonstrated high efficiency, the challenges pointed out areas that require further 
enhancement. Overall, HFM-YOLO stands out as a powerful and efficient solution for visual object 
detection, opening new views for technological advancement in this field.  
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