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Abstract

This report aims to enhance the effectiveness of table tennis coaching and perfor-mance
analysis through human action recognition by using deep learning. In the field of video
analysis, human action recognition has emerged as a highly researched area. However,
the complexity of human actions presents significant challenges. To address these issues,
in this report, we combine the latest computer vision and deep learning algorithms to
accurately identify and classify a few strokes in human action recognition. Throughout
in-depth review of the existing methods, we develop a high-precision offline method for
player’s action recognition. Our experimental results show the success of six actions

classifications based on our own dataset with the average accuracy up to 99.85%.
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Chapter 1

Introduction

This chapter is structured into five sections. The first
introduces the background and motivation for the research.
The second outlines the key research question. This is followed
by an overview of the contributions made by this study, the
research objectives, and finally, the overall structure of the

report.



1.1 Background

Human Action Recognition in Sports Video Analysis has become a central topic in
computer vision and deep learning. As this field evolves, it brings significant
advancements in analyzing specific athletic actions, offering practical benefits such as
performance analysis, highlight creation, and support for coaching. Human action
recognition in table tennis, in particular, faces unique challenges due to the rapid and
subtle movements characteristic of this sport, which demand precise and fine-grained
detection methods. These challenges underscore the need for advanced techniques,
beyond traditional handcrafted methods, to support high-accuracy recognition, especially

in fast-moving sports.

This project focuses on developing an offline, high-precision system for recognizing
specific table tennis strokes by applying deep learning models, including convolutional
neural networks (CNNs) for spatial feature extraction and Transformer architectures for
temporal modeling. These models are tested on a dataset containing six table tennis stroke

types, collected in real-world conditions to ensure model robustness and accuracy.

Past research in human action recognition has shown its value in sports through
performance insights, and even as a training aid (Karpathy et al., 2014). However, sports-
specific recognition faces additional complexities, especially due to the rapid sequences
of athletic actions, the close similarities between action classes, and high-speed
movement (Wang et al., 2016). Traditional action recognition approaches relied on
handcrafted visual descriptors, such as Histogram of Oriented Gradients (HOG) and
optical flow, and employed classifiers like Support Vector Machines (SVMs) or Hidden
Markov Models (HMMs) (Laptev et al., 2008). While effective for certain tasks, these

methods fall short in handling the detailed distinctions between table tennis strokes.

The adoption of deep learning, especially CNNs, has provided a considerable
breakthrough by enabling automatic learning of complex spatial features from raw video

data, making it better suited for tasks like table tennis stroke recognition. A notable
2



advancement was the two-stream CNN proposed by Simonyan and Zisserman (2014),
which combined spatial (RGB frames) and temporal (optical flow) information for
enhanced recognition accuracy. This foundation led to further innovations, including the
Inflated 3D ConvNet (I3D) by Carreira and Zisserman in 2017, which extended 2D CNN
architectures along the temporal dimension and proved effective on large-scale action

datasets like Kinetics (Kay et al., 2017).

More recent models have been tailored to sports action recognition. For instance, Zhu
et al. (2019) introduced a multi-scale temporal convolutional network for stroke
recognition, achieving high accuracy. Similarly, Cai et al. (2020) implemented a temporal
segment network with attention mechanisms to detect badminton strokes. Despite these
advances, sports action recognition still faces critical challenges, such as the lack of
extensive labeled datasets and the complexities introduced by various players and

environments (Wang et al., 2019).

Among sports action recognition tasks, table tennis stroke recognition remains
challenging. Players' movements are extremely fast, and the small size of the ball means
limited visual data is available, making distinctions between stroke types subtle. Early
research relied on sensor-based methods, like those used by Blank et al. (2015), who
achieved high accuracy in detecting strokes by attaching inertial sensors to rackets.
However, sensor-based methods are intrusive and can impact gameplay. Markerless
motion capture has emerged as a promising alternative, with Hegazy et al. (2020) utilizing

IR depth cameras to reach high accuracy for table tennis stroke detection.

Accurate feedback is crucial for players and coaches to evaluate performance after
gameplay. This research addresses the challenge of designing an offline system that can
recognize and classify various table tennis actions with high accuracy, enabling effective
post-session feedback without relying on real-time processing (Voelikov et al., 2020).
Developing such a system requires innovative techniques to capture and analyze table
tennis movements from recorded gameplay, expanding the potential for comprehensive

performance evaluation. Positioned at the intersection of computer vision, machine
3



learning, and sports science, this research demands advanced methods that go beyond

traditional human action recognition techniques.

The use of deep learning algorithms offered a significant advancement in the table
tennis stroke recognition. In table tennis, the human action recognition was conducted by
using Twin Spatio Temporal Convolutional Neural Network (TSTCNN) (Martin et al.,
2019). The approach on the TTStroke-21 dataset was able to achieve an average of 91 %
accuracy. 4% in the identification of a stroke. This work showed that two parallel
convolutional streams are effective for modelling spatial and temporal data. A new
technique of table tennis stroke recognition (Kulkarni and Shenoy, 2021) was profound
by using two-dimensional human pose estimation. “StrokeMaster” is based on pose data
derived from the video frames for the classification of strokes with 99% validation
accuracy. This approach demonstrates that the high-level pose features are useful for the

fine-grained action recognition in the table tennis.

While research continues to improve the precision of table tennis stroke recognition,
several issues remain. Model adaptability to different playing styles, player positions, and
stroke types is an ongoing area of exploration. Future work may also address more
specific factors, such as the positions of players and ball trajectory, to enhance recognition

performance and provide a more complete understanding of table tennis gameplay.

1.2 Research Problem

Detecting human actions within table tennis gameplay introduces unique challenges due
to the specific characteristics of this sport. Two primary issues are at the forefront of this
research: the complexities in identifying fast and fluid motions and the need for precise,
detailed action recognition. Table tennis involves quick, intricate actions that take place
in rapid succession. The high speed and subtle distinctions between actions make accurate
detection difficult for traditional computer vision systems. Different stroke types, such as
topspin, backspin, and sidespin, each require distinct racket angles, body positioning, and

player paths, creating nuanced differences that are challenging to capture without
4



specialized approaches (Kulkarni & Shenoy, 2021).

Accurate feedback is essential for players and coaches to assess performance after
gameplay. This research addresses the challenge of designing an offline system capable
of recognizing and classifying various table tennis actions with high accuracy, providing
effective post-session feedback without the need for real-time processing (Voelikov et al.,
2020). Developing such a system necessitates innovative techniques to capture and
analyze table tennis movements from recorded gameplay, broadening the scope for
comprehensive performance evaluation. Situated at the intersection of computer vision,
machine learning, and sports science, this research requires advanced methods that

surpass traditional human action recognition approaches.

The primary objectives of this research are twofold: First, it aims to create an
approach for accurately recognizing table tennis movements and to implement a stable
system capable of classifying different strokes and actions. This system will leverage
advanced computer vision and machine learning techniques to analyze video data,
ensuring a high recognition rate for specific actions such as long push, forehand, and
backhand. This offline recognition system is intended to serve as a foundation for future

analytical and feedback tools.

1.3 Research Aim

The primary aim of this research is to develop an advanced system that enhances table
tennis coaching and performance analysis through the use of cutting-edge computer
vision and deep learning techniques. This system is designed to accurately recognize and
classify table tennis player movements, with a specific emphasis on capturing high-speed,

subtle actions that are challenging to detect with conventional methods.

The core objective is to create a software system capable of delivering detailed post-
session feedback, allowing coaches and players to analyze gameplay effectively and make

data-driven adjustments to their techniques. The system focuses on classifying various



table tennis strokes and evaluating player movements from recorded gameplay, offering

insights that are beneficial for technique refinement.

Beyond contributing to research, this system has practical applications in sports
coaching by offering players and coaches a comprehensive analysis tool. Its offline
functionality ensures accessibility for players at all levels without the need for constant
supervision. Additionally, the system’s potential extends to other fast-moving sports,

where accurate action recognition is critical for performance evaluation.

This research aims to build a robust action recognition system that addresses
challenges such as rapid movements, occlusions, and variations in playing styles and
environments. By leveraging state-of-the-art deep learning models, particularly the
Transformer architecture, this research seeks to significantly improve accuracy in
classifying different table tennis strokes, ultimately enhancing player development and

training methodologies.

1.4Research Objectives

(a) To develop a robust action recognition system capable of identifying and
classifying six specific table tennis actions with high accuracy. These actions
include complex and fast-moving strokes, such as Backhand Drive, Forehand
Drive, and Smash, which present significant challenges for traditional recognition

systems.

(b) To enhance stroke identification accuracy by analyzing player posture, limb
motion, and racket trajectory. This objective involves the integration of MediaPipe
for pose estimation, which captures body key points from recorded videos,

allowing for precise analysis of player movements.

(c) To design and implement a Transformer-based deep learning model optimized for
action recognition. The model is trained to handle the temporal and spatial

complexities of table tennis strokes while maintaining computational efficiency.
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(d) To ensure system adaptability and robustness by training the model on diverse
datasets, including supplementary online training videos. This objective addresses
the challenge of generalizing the model to different player styles, camera angles,
and environmental conditions, enhancing its applicability across various coaching

and analysis scenarios.

(e) To develop a user-friendly interface using PyQt5 and OpenCV, designed for
capturing and processing video inputs and displaying post-session analysis. This
interface provides coaches and players with an accessible tool for performance

evaluation and stroke analysis.

1.5 Research Questions

(a) How can advanced computer vision and deep learning techniques be utilized to

accurately recognize table tennis player actions from recorded video inputs?

This question explores how action recognition algorithms, particularly those based on
Transformer architectures, can capture the fast and fluid movements specific to table

tennis, managing the complexities of subtle stroke differences and high-speed gameplay.

(b) What factors contribute to designing an effective action recognition system that

provides coaches and players with detailed post-session feedback?

This question examines how the system’s design can make action recognition results clear
and accessible, focusing on accurate classification of actions and insights that support

training and performance improvement.

(c) How adaptable is the action recognition model across different player styles,

camera angles, and environments?

This question investigates the system’s generalization ability, assessing how well it
performs in diverse scenarios and addressing any challenges posed by variations in

playing style and setup.



1.6 Structure of This Report

The structure of this report is described as follows:

In Chapter 2, we conduct a literature review and discuss the relevant studies focused
on human action recognition in sports, particularly table tennis. This chapter also covers
the evolution of deep learning models and compares key technologies, models, and

methods used for action recognition.

In Chapter 3, we introduce the research methodology and experimental design,
including the custom dataset creation, model architecture, and the algorithms employed

in this study.

In Chapter 4, we present the collected data and experimental results obtained through
the proposed algorithm. This chapter also discusses the limitations of the approach in

detail.

In Chapter 5, we summarize and analyze the experimental results, providing

insights into the performance of the model and its implications.

In Chapter 6, we conclude the research and propose potential future work to further

enhance table tennis action recognition and its applications.



Chapter 2
Related Work

This chapter reviews the relevant literature on action
recognition in sports, emphasizing the evolution of deep

learning techniques and their application in table tennis.



2.1 Introduction

In recent years, rapid advancements in computer vision and deep learning have
significantly influenced sports video analysis, particularly in human action recognition.
This chapter provides an overview of current research and developments in action
recognition within sports, with a specific focus on the unique challenges posed by table
tennis stroke recognition.

Action recognition in sports presents distinct challenges, including fast and subtle
movements, complex player dynamics, and varying camera angles. Traditional
approaches relied on handcrafted features and classical machine learning methods.
However, with the emergence of deep learning models, particularly Convolutional Neural
Networks (CNNs) and Transformer-based architectures, considerable progress has been
made. These models improve the capacity to capture both spatial and temporal
dependencies, leading to higher accuracy in detecting and classifying complex sports
actions.

The objective of this chapter is to review key advancements in action recognition,
focusing on techniques and methodologies used in sports contexts, including table tennis.
The review starts with a discussion of traditional methods, followed by an examination
of recent deep learning models, their applications, and limitations. Particular attention is
given to the use of CNNs and Transformer architectures in sports action recognition. In
this project, MobileNetV2 is employed to efficiently extract high-dimensional features
from each video frame, while a Transformer model processes these features to handle
temporal dependencies and classify actions. Additionally, this chapter addresses the
challenges of data variability and the use of tools like MediaPipe for pose estimation.

This literature review aims to highlight the strengths and limitations of existing
methods, providing a foundation for the research problem and justifying the need for

developing a robust, high-precision table tennis action recognition system.
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2.2 Human Action Recognition in Sports

Action recognition in sports has become a crucial field of study in computer vision and
machine learning, with significant applications in performance analysis, coaching, and
automated sports analysis. Over the past two decades, this field has evolved from basic
techniques to advanced deep learning approaches to better capture and analyze the

dynamic and fast-moving nature of sports.

In this project, MobileNetV2, a lightweight CNN architecture, is utilized for efficient
feature extraction. Each video frame is processed by MobileNetV2 to produce a high-
dimensional feature vector, which is then used to build a temporal sequence for
subsequent action recognition. The choice of MobileNetV2 ensures efficient processing

of recorded video data while maintaining high accuracy.

Earlier works in human action recognition in sports relied on handcrafted features
and traditional machine learning techniques. These methods typically followed a two-
stage process: feature extraction followed by classification. One of the earliest methods
was introduced by Laptev and Lindeberg (2003), who proposed space-time interest points
(STIPs) to capture spatiotemporal corners in video sequences. Following this, Dollar et
al. (2005) suggested the cuboid feature detector and descriptor, which further improved

action recognition across various datasets.

Another notable contribution to traditional methods was by Wang et al. (2011), who
introduced dense trajectories for action recognition, leveraging optical flow fields to track
dense points. This approach, which captured both motion and appearance information,
achieved state-of-the-art results in action recognition benchmarks. However, in sports
contexts, these traditional methods faced challenges due to high variability in athlete
movements, rapid actions, and complex backgrounds. Moreover, handcrafted features
struggled to differentiate between closely related actions, such as different types of swings
or shots.

11



The introduction of deep learning, particularly Convolutional Neural Networks
(CNNs), marked a breakthrough in sports action recognition. Unlike traditional
approaches, CNNs can automatically learn complex feature representations from raw data,
allowing for more detailed and abstract patterns. Early works, such as Karpathy et al.
(2014), showed the potential of CNNs in sports video analysis, although they had limited
temporal capabilities. Simonyan and Zisserman (2014) later introduced the two-stream
CNN model, which processed spatial data (RGB frames) and temporal data (optical flow)
separately. This approach proved well-suited for sports action recognition by capturing

both appearance and motion.

Subsequent advancements, like the two-stream spatiotemporal residual network by
Feichtenhofer et al. (2016), combined spatial and temporal streams with residual links,
enabling improved detection of complex sports movements. The model proved effective
in differentiating between movements with slight sequence variations. Similarly, 3D CNN
architectures, such as C3D (Tran et al., 2015), allowed for longer-duration motion
extraction, which is vital in capturing complete sports actions without handcrafted

features.

Recent studies have focused on sports-specific applications. For example, Zhu et al.
(2016) demonstrated a CNN-based approach for identifying specific tennis actions,
showcasing deep learning's ability to distinguish subtle differences between sports actions.
In sports action recognition, another challenge is the need for fine-grained classification
to differentiate between similar activities, such as various tennis serves or types of
baseball pitches. To address this, Wang et al. (2018) introduced the Temporal Segment
Network, which effectively models long-range temporal dependencies and enhances

detailed action recognition.

Camera angles, which vary widely across sports broadcasts, also present a challenge.
Bertasius et al. (2019) addressed this issue with a spatiotemporal attention mechanism
that adapts to different viewpoints, focusing on the most relevant regions of the frame for

12



action recognition.

End-to-end models capable of simultaneously learning spatial features and temporal
dependencies have gained popularity in recent years. Carreira and Zisserman (2017)
proposed the Inflated 3D ConvNet (I3D), an extension of 2D CNNs into the temporal
domain. Trained on large-scale video datasets like Kinetics, 13D has proven highly
effective for sports action recognition. More recently, Transformer-based models have
shown promise in action recognition tasks. Arnab et al. (2021) introduced ViViT, a video
vision transformer capable of learning long-range dependencies in videos, which has

proven especially effective for sports actions that unfold over extended periods.

2.3 Convolutional Neural Networks (CNN) in Human Action

Recognition

The development of Convolutional Neural Networks (CNNs) for video analysis,
especially in action recognition, marks a significant breakthrough in computer vision and
machine learning. In this project, MobileNetV2, a lightweight CNN architecture, is
employed for high-dimensional feature extraction from video frames, generating compact
feature vectors that capture spatial aspects of the data. Its efficient inverted residual
structure and linear bottleneck layers allow it to maintain low computational costs while
achieving high accuracy, making it suitable for analyzing fast-moving sports like table
tennis. Compared to other CNN architectures, such as ResNet or VGG, MobileNetV2
balances performance and efficiency, which is particularly beneficial in applications with

limited computational resources, such as offline sports analysis systems.

CNNs have proven valuable for video analysis, building on early work like Ji et al.
(2013), who introduced a 3D CNN for action recognition. This method extended 2D
convolutions used in image analysis to the temporal domain, enabling the network to learn
directly from raw video frames. The 3D CNN architecture showed improved performance

over conventional methods across various action recognition datasets, paving the way for
13



future innovations.

Karpathy et al. (2014) expanded CNN applications for video classification by
exploring different multi-modal fusion methods to integrate information across temporal
dimensions, including early, late, and slow fusion. They also highlighted the challenge of

capturing long-range temporal dependencies in videos, an ongoing research focus.

The two-stream architecture by Simonyan and Zisserman (2014) introduced a major
advancement, utilizing two separate CNN streams: one for spatial information and the
other for motion, represented as optical flow. This architecture captured both appearance
and motion, proving effective for action recognition tasks and inspiring numerous
subsequent studies. Building on this, Tran et al. (2015) proposed the C3D (3D
Convolutional Networks) architecture, which used 3D convolutions to learn
spatiotemporal features. The C3D model demonstrated that synchronizing the modeling

of both appearance and motion could outperform 2D CNNss in video analysis.

As the field evolved, approaches emerged to handle long-term temporal relationships
better. The Temporal Segment Network (TSN) (Wang et al., 2016) addressed this with a
segment-based sampling and aggregation module. By dividing videos into segments and
randomly sampling frames from each, TSN captures long-term dependencies while

reducing computational complexity.

Advances in other areas of computer vision have influenced CNN architectures for
action recognition. For example, ResNet's success in image classification (He et al., 2016)
encouraged researchers to adapt residual learning for video analysis. Feichtenhofer et al.
(2016) introduced a two-stream recurrent residual network for action recognition,

demonstrating that residual learning enhances performance in the spatiotemporal domain.

Carreira and Zisserman (2017) introduced the Inflated 3D ConvNet (I3D), which
extends 2D CNNs to the temporal domain, allowing image classification models to be

repurposed for video analysis. I3D set new benchmarks on several action recognition
14



datasets and has become a popular baseline for further research. Similarly, the SlowFast
network (Feichtenhofer et al., 2019) incorporates two pathways operating at different
temporal scales: a slow pathway to capture spatial details at a low frame rate and a fast
pathway for motion at a high frame rate. This design addresses the conflict between

capturing fine motion and spatial detail, improving recognition performance.

When comparing CNN architectures for action recognition, several effective models
stand out. The two-stream architecture provides computational efficiency with 2D CNNs
but may not capture temporal dependencies in detail. The 3D CNN models, such as C3D
and I3D, excel at learning spatiotemporal features but come with higher computational

costs and larger parameter counts.

2.4 Transformer Models in Human Action Recognition

Originally proposed by Vaswani et al. (2017) for natural language processing,
Transformer models have since made substantial impacts in computer vision and action
recognition, particularly for sports applications. Transformers leverage self-attention
mechanisms to capture long-range dependencies and enable parallel computation, making
them well-suited for processing complex visual data like sports videos, where fine-

grained actions must be distinguished accurately and efficiently.

In this project, the Transformer model is applied to temporal sequences constructed
from feature vectors generated by MobileNetV2. The Transformer processes these
sequences to classify actions and detect boundaries, such as the start and end of an action.
Its self-attention mechanism is highly effective at handling both short-term and long-term
dependencies, addressing the varying duration of actions common in sports like table
tennis, were rapid and subtle movements demand precision. This approach enhances

classification accuracy while maintaining computational efficiency.

Compared to traditional models, Transformers offer distinct advantages by handling

15



entire sequences in parallel, overcoming the limitations of recurrent structures and the
fixed receptive fields commonly found in CNNs. This parallel computation allows for
efficient and accurate processing, making Transformers especially suitable for offline
action recognition, where large volumes of video data can be analyzed post-session

without real-time constraints.

Transformers were initially introduced to vision tasks through Dosovitskiy et al.'s
Vision Transformer (ViT) (2021), which demonstrated the potential of applying self-
attention to image classification and opened new avenues for video analysis. Subsequent
models like TimeSformer by Bertasius et al. (2021) extended this approach to video
understanding, utilizing self-attention across both spatial and temporal dimensions.
TimeSformer achieved state-of-the-art results on several action recognition benchmarks,
confirming the suitability of Transformers for modeling intricate spatio-temporal

relationships in sports actions.

Arnab et al. (2021) introduced the ViViT model, further refining Transformers' role
in video action recognition by exploring various methods for implementing self-attention
across spatial and temporal features. ViViT’s factorized encoder, which independently
encodes spatial and temporal dependencies, has proven particularly effective in sports
videos where actions depend on both positioning and timing. This long-range dependency
capability makes Transformers suitable for recognizing team sports or group activities, as
demonstrated by Yan et al. (2022) in their group activity recognition model for soccer,

capturing team-level actions and strategies.

Another advantage of Transformers is their ability to handle input sequences of
varying lengths without requiring recurrence or convolution, making them adaptable to
sports actions that vary in duration. Liu et al. (2022) leveraged this flexibility in a study
on fine-grained action recognition in gymnastics, applying a Transformer model to
classify actions of diverse durations. Additionally, Girdhar et al. (2022) introduced a
cross-view attention mechanism to improve action recognition from multiple camera

16



angles, a feature particularly valuable in broadcast sports where perspectives shift

frequently.

The core benefits of Transformer models for sports action recognition lie in their
adaptability and self-attention mechanism, which allows them to focus on any input part
irrespective of distance. This flexibility is invaluable for detecting complex interactions,
such as a pass in soccer or a racket swing in tennis, where relevant features may be spread

across a sequence of frames.

2.5 Chapter Summary

This chapter reviewed the evolution of human action recognition in sports, highlighting
the progression from early handcrafted feature methods to advanced deep learning
approaches. Key advancements in the field were examined, focusing on the roles of
Convolutional Neural Networks (CNNs) for spatial feature extraction and Transformer
models for capturing temporal dependencies in action sequences. MobileNetV2 was
identified as an efficient choice for extracting high-dimensional spatial features from
video frames, while the Transformer model demonstrated effectiveness in classifying

actions and detecting boundaries, crucial for offline action analysis in table tennis.

The chapter also emphasized the importance of constructing temporal sequences
from consecutive frames to capture the dynamics inherent in sports actions. Together,
these techniques form the foundation of the methodology and experimental design
discussed in the following chapters, supporting a high-accuracy, offline approach to

action recognition.
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Chapter 3
Methodology

In this chapter, we outline the research design and
methodology employed in this study. This includes details
on data collection, preprocessing, and the architecture of
the action recognition model. We also describe the training
strategy and evaluation metrics used to assess the model's
performance, addressing the practical challenges of
accurately recognizing and analyzing table tennis actions

in recorded gameplay for detailed post-session feedback.
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3.1 Research Design

This research project focuses on developing a method for human action recognition in
table tennis—a sport characterized by rapid, precise, and often subtle strokes.
Recognizing the complexities and speed of table tennis actions, we aimed to create a
solution capable of accurately distinguishing between various movements, even those
with nuanced differences. By leveraging advanced deep learning models, our method is

designed to not only detect but also analyze these high-speed actions in detail.

To achieve this, we integrated a Transformer-based neural network for human action
recognition. This model excels in handling the temporal dependencies crucial for
analyzing sequences of fast movements, accurately capturing the subtle variations
characteristic of table tennis strokes. Our approach supports detailed, post-session
feedback, providing athletes and coaches with valuable insights to refine techniques based

on recorded gameplay.
The key components of the research design are as follows:
Step 1: Data Collection and Preprocessing

To gather a comprehensive dataset, we recorded videos of six distinct table tennis strokes
performed by players across varying skill levels, from amateur to professional. This
dataset was further enriched with online training videos to introduce more diversity in
player styles and environments, improving the model's robustness. After collection, the
data underwent preprocessing, including frame extraction and annotation, before being
loaded into the model for training. Preprocessing involved annotating key body points
and creating sequences, ensuring the model could simulate different player techniques

and environments, thus enhancing generalizability.
Step 2: Model Architecture

We selected a Transformer-based architecture due to its strength in capturing long-range

temporal dependencies, which are essential for accurately recognizing stroke sequences
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in table tennis. The self-attention mechanism in Transformers allows it to focus on
specific elements within an input sequence, boosting classification accuracy for complex
strokes. MediaPipe’s precise key-point detection provides an ideal solution for tracking
movements in table tennis, enabling accurate analysis of body posture and stroke

mechanics.

Step 3: Training and Validation Strategy

To optimize training and validation, we divided the dataset into training, validation, and
test sets (70-15-15) to ensure that each stroke type was well-represented. To address class
imbalances among underrepresented strokes, oversampling techniques were applied. For
training, we used the Adam optimizer with sparse categorical cross-entropy loss functions
for both classification and action boundary detection. Hyperparameter tuning was

employed to maximize validation accuracy.

Step 4: Offline Testing

After completing training, the system underwent offline evaluation in table tennis
coaching environments to assess its suitability for post-session analysis. Key performance
metrics included action recognition accuracy, system latency, and frame processing rate
(FPS), which are essential for providing detailed feedback to coaches and players. A user-
friendly interface was developed using PyQt5, enabling intuitive interaction for reviewing
recorded sessions and analyzing player performance (Summerfield, 2015). Although low
latency was considered to optimize processing efficiency, the focus remained on

achieving accurate and reliable analysis for post-session evaluation.

Step 5: Evaluation Metrics

Model performance was evaluated based on four core metrics: accuracy, precision, recall,
and F1-score. Additional metrics, such as frame processing time and system stability,
were also examined to ensure dependable performance during extended offline gameplay

analysis. This evaluation provides insights into the system's effectiveness in delivering
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actionable insights for post-training feedback.

3.2 Data Collection and Preprocessing

To obtain the visual data for this project, we recorded videos of six specific table tennis
actions and supplemented these recordings with online training videos. This approach
allowed us to capture actions across different environments, enhancing the model's
adaptability and robustness (Zhu et al., 2022). The recordings were conducted under the
guidance of professional table tennis coaches, using a handheld camera operating at 30
frames per second (fps) from a referee’s perspective to accurately capture subtle player

movements and the ball trajectory.

Our dataset includes six actions: Backhand Drive, Forehand Drive, High Toss Loop,
Long Push, Short Placement, and Smash. Additionally, a "NoAction" class was added to
represent moments without specific actions, including preparatory movements and other
unrelated frames (e.g., start, hit, and end frames). Each action was thoroughly annotated

to ensure comprehensive coverage of key frames.

Using OpenCV, frames were extracted at a fixed rate, resized to 224x224 pixels, and
normalized for consistent model input. Data augmentation methods, such as horizontal
flipping and slight rotation, were applied to increase model robustness and reduce

overfitting, particularly for underrepresented classes.

Figure 3.1 shows examples from our training dataset, highlighting continuous

sequences of annotated video frames for human action recognition.
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Figure 3.1. The examples from our training dataset, showing 10 consecutive frames for

each of the six table tennis actions.

All data was annotated in collaboration with professional players and coaches to
ensure accurate labeling of start, hit, and end frames, as well as action classes. A two-
stage review process, with initial annotations by trained annotators and final reviews by

professional coaches, ensured high accuracy and consistency.

To maintain a balanced dataset, we collected approximately equal samples for each
stroke type. However, due to the dynamic nature of table tennis, some actions naturally
appeared more frequently. To address this imbalance, oversampling techniques were
applied to the underrepresented classes. The dataset was ultimately split into 70% for
training, 15% for validation, and 15% for testing, with validation and test sets containing

samples from players not included in the training set.

During preprocessing, we encountered several challenges with lighting and camera
angles, which affected key point detection. For instance, if the player's feet were obscured
by the table, MediaPipe struggled to detect movements accurately. Adjusting the camera
to a referee’s perspective improved consistency. We applied normalization techniques to

address these issues and ensured consistency across annotated frames, enabling reliable
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action recognition during offline analysis.

3.3 Pose Estimation

Estimating poses is a vital component of human action recognition in table tennis,
providing essential data for classifying player movements and identifying movement
patterns. We selected MediaPipe for its high accuracy, efficient performance, platform
independence, and multi-person pose estimation capabilities—important features given

the multiplayer nature of table tennis (Lugaresi et al., 2019).

Figure 3.2. The prediction of table tennis strokes using the proposed system.

Figure 3.2 shows an example of pose estimation applied to a table tennis player using
MediaPipe. Key points, including the wrists, elbows, shoulders, hips, knees, and ankles,
are detected, and connected to capture the player’s posture and movements. This setup

enables the system to accurately track essential body parts for human action recognition.
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MediaPipe offers full-body pose estimation, but not all detected key points are
necessary for effective action recognition in table tennis. Based on biomechanical studies,
critical key points include the playing arm's wrist, elbow, shoulder joints, hip joints, knee
joints, leading foot’s ankle, and head position. These points are essential for accurately
representing table tennis strokes, enabling a reduction in computational load without

compromising on action recognition accuracy.

To capture temporal characteristics, we recorded these specific points across
consecutive frames. This provided key data on temporal patterns, allowing the system to
distinguish between strokes that may appear similar spatially but differ significantly in

timing and movement dynamics.

3.4 Network Architecture

Our proposed action recognition model is designed to accommodate both spatial and
temporal dependencies in video sequences. The architecture uses MobileNetV2 for
feature extraction, while Transformer-based models handle temporal sequence
processing. This combination allows us to recognize 12 distinct table tennis strokes and

detect action boundaries accurately.

Figure 3.3 illustrates the structure of the proposed action recognition system. First,
video data is processed with OpenCV to extract frames. MobileNetV2 is then used to
perform feature extraction on each frame, generating high-dimensional feature vectors.
These vectors are organized into sequences to capture the temporal dependencies essential
for accurately recognizing fast-moving table tennis strokes. A Transformer-based model
subsequently processes these sequences, providing action recognition and boundary
detection outputs. Finally, an action counting logic component quantifies the recognized

actions, facilitating detailed post-session analysis.
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Fig 3.3. System Flow

3.4.1. Feature Extraction with MobileNetV2

To efficiently extract spatial features from individual video frames, we use MobileNetV2,
a lightweight convolutional neural network. MobileNetV2 was chosen for its balance
between accuracy and computational efficiency, making it ideal for handling the demands

of action recognition tasks.

For each frame t in the video sequence, MobileNetV2 extracts a 1280-dimensional

feature vector:
F; = MobileNetV2(frame;) (3.1)

These feature vectors capture the spatial information of the frame. Since the system
processes n consecutive frames to capture temporal dynamics, the sequence of feature

vectors is defined as:
S = [Ft—n'Ft—(n—l)J s Fi] (3.2)
3.4.2. Positional Encoding

Since Transformers do not inherently understand the order of input frames, we introduce

positional encodings to represent the sequence order. This is achieved by adding
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positional encoding vectors to each frame’s feature vector F;, using sine and cosine

functions to encode positional information:

o pos _ pos
PEpos,2i) = sin (55 550a)> PE@os,zi+1) = €08 ([5g0020a) (3.3)

where pos represents the position in the sequence, and d is the dimension of the
positional encoding.

3.4.3 Temporal Sequence Modeling with Transformer

We selected a Transformer-based model for its advantages in capturing long-range
dependencies through self-attention mechanisms, particularly useful for recognizing table
tennis strokes that exhibit subtle differences over time. Unlike LSTMs, which process
sequences sequentially, Transformers allow for parallel processing of sequences,

enhancing both computational efficiency and recognition speed.

The use of n consecutive frames (rather than a fixed number) allows the model to
adapt to variable-length sequences, improving generalization across different contexts
and playing styles. This flexibility is critical for strokes with varying execution times,

enhancing the model's robustness.

The sequence of feature vectors S, now with positional encodings, is processed by
the Transformer. The core component is the Multi-Head Self-Attention mechanism,
which calculates the attention score for each frame in relation to others. The self-attention

is defined as:
Attention(Q,K,V) = softmax(Q—JI;_:)V (3.4)

where Q (queries), K (keys), and V (values) represent projections of the input sequence

S. dj is the dimension of the keys.

The Multi-Head Attention mechanism, consisting of 8 heads (each with 64

dimensions), allows the model to focus on different parts of the sequence concurrently.
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After the self-attention layer, the output is processed by a position-wise feedforward

network:
FFN(x) = max(0,xW; + b)) W, + b, (3.5)

Residual connections are added around both the self-attention and feedforward
layers, followed by layer normalization:

LayerNorm(x + Sublayer(x)) (3.6)

l

0 | tayer_normatlizat.. |

dropout_1 (D ) | (None, 8,

163,968 | dropout_i[e][e] |

165,120 | dense[e][0]

3s 42ms/step - class acy: 0.0906 - class_output_loss:

Figure 3.4. The Transformer-based network architecture for action recognition

In Figure 3.4, the detailed architecture of the proposed model is illustrated, showing
how the model processes features from n consecutive frames to produce outputs for action
classification and boundary detection. The model was trained using the Adam optimizer

with sparse categorical cross-entropy as the loss function, over 300 epochs with a batch
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size of 32. With approximately 3.1 million trainable parameters, the model is optimized

to efficiently handle the complex, rapid movements typical of table tennis.
The key components include:

e Multi-Head Attention: With 8 heads and 64 dimensions per head, allowing the

model to focus on different temporal parts of the input sequence.

o Fully Connected (Dense) Layers: These layers use ReLU activation and dropout

to prevent overfitting and improve model generalization.

e Two Output Branches: One branch for action classification (identifying 6 stroke
types) and another branch for boundary detection (detecting the start,

continuation, or end of an action).

3.5 Action Recognition Model

Building on the architecture outlined in Section 3.4, the Action Recognition Model uses
a dual-output design to handle both stroke classification and boundary detection tasks.

The Action Classification Branch identifies stroke types, while the Boundary Detection
Branch detects temporal phases (start, continuation, end) within each action, supporting

a more detailed analysis of player movements.

The model employs a multi-task loss function to balance classification loss with
boundary detection loss, enhancing performance in both tasks. Training was conducted
using the Adam optimizer over 300 epochs with a learning rate scheduler to ensure

stable convergence, and dropout regularization was applied to minimize overfitting.

Evaluation metrics, including accuracy, precision, recall, and F1-score, were used
to assess action classification. Temporal precision and recall were used to measure
boundary detection accuracy. A post-processing strategy with a state machine was
implemented to manage stroke counting based on boundary, providing robust tracking

even in complex sequences.
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This dual-output model, combined with post-processing strategies, supports reliable
stroke recognition, temporal localization, and accurate action counting in continuous
video streams, establishing a strong foundation for future applications in performance

analysis and detailed post-session feedback for coaching.
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Chapter 4

Results

This chapter presents the results of the experiments
conducted to evaluate the performance of the proposed
action recognition model. It covers the overall accuracy,
training, and validation analysis, as well as per-class
performance metrics. The results are discussed in detail,
highlighting the model's strengths and areas for
improvement in distinguishing between various table tennis

strokes.
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4.1 Model Performance and Training Analysis

The Transformer-based model for human action recognition in table tennis was
evaluated by using a comprehensive set of metrics. In this section, we present the overall
accuracy, training, and validation progress, as well as per-class performance of the
proposed model. Figure 4.1 displays the learning curves for both action classification and

boundary detection over 300 epochs.

The model showed significant progress throughout its training for both human
action output and flag output tasks, with overall improvements in training accuracy and

decreases in training loss.
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Figure 4.1. Training and validation accuracy and loss for action classification and

boundary detection.

The model achieved an action classification accuracy 96%, highlighting its ability to
differentiate between various strokes such as forehand, backhand, and smash. These
results underscore the robustness of the Transformer architecture in capturing both the
spatial and temporal dependencies of actions. The macro-average F1-score 0.93 indicates
good performance across all classes despite the uneven distribution of strokes.

Additionally, the weighted-average F1-score 0.96 shows particularly strong performance
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on more frequent classes like NoAction.

The action output loss curve shows effective learning, with training loss steadily
decreasing as the epochs progressed. Validation loss, while more volatile after epoch 150,
eventually leveled off towards the end of training. The temporary spikes in vali-dation
loss may be related to the difficulty in distinguishing visually similar strokes like
Forehand Drive and Short Placement. Despite this, the overall performance remained

strong, with no significant signs of overfitting in the later stages of training.

Regarding the output task, the model achieved an accuracy 87%, with an F1-score of
0.97 for NoAction detection. However, challenges arose in predicting the start, hit and
end phases, as seen in lower F1-scores for these classes. The accuracy showed a relatively
smooth learning curve. This divergence suggests potential overfit-ting in detecting
middle-phase actions, which could be mitigated through improved data representation for

transitional phases.

Overall, the Transformer-based model has proven highly effective in action
classification, with potential for further refinement in action boundary and action
transition detection. Enhanced training strategies, such as augmenting the dataset to better
capture middle phases or incorporating context-aware features, could help address the
fluctuations seen in the validation loss and improve the model’s performance in these

arcas.

4.2 Per-Class Performance

The self-attention mechanism in the Transformer enabled it to focus on relevant parts of
a sequence, reducing misclassification and improving accuracy for complex action. This
led to higher precision and recall for advanced actions compared to the LSTM model,
ultimately enhancing overall performance.

In Figure 4.2, the confusion matrix for action classification is presented. The model
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performs well across most actions, with high precision and recall, though some degree of

misclassification remains for certain actions.

Confusion Matrix - Flag Output
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Figure 4.2. Confusion Matrix for Flag Output (Boundary Detection)

The performance of the proposed model was evaluated on the test set, and de-tailed
per-class metrics were computed to assess how well the model distinguishes between
different table tennis actions. As summarized in Figure 4.3, the overall accuracy for action
classification was 96%, with a weighted-average Fl-score 0.96. While the model
performed very well across most classes, lower recall was observed for actions like Long
Push, where the recall was 0.75, indicating that the model struggles to correctly identify

all instances of this action.

Pertaining to the action segmentation, the model achieved an accuracy 87%, with
strong performance in detecting the start, hit and end phases of each action. However, the
detection of the middle phase showed lower recall, indicating room for improvement in

distinguishing this transitional phase.
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These confusion matrices and classification provide deeper insights into the model’s
strengths and areas for improvement. While the model excels in distinguishing between
most actions, further refinement may be required to improve its performance in

differentiating Forehand Drive from NoAction and resolving the confusions observed in

Long Push.
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Figure 4.3. Confusion Matrix for Action Output (Action Classification)

Table 4.1. Comparison of LSTM and Transformer Model Performance

Metric LSTM Model Transformer Model
Overall Accuracy 93.7% 96%
Macro-average F1-Score 0.924 0.93
Weighted-average F1-Score  0.936 0.96
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The performance of the proposed model was evaluated on the test set, and detailed
per-class metrics were computed to assess how well the model distinguishes between
different table tennis actions. As summarized in the classification report (Figure 4.4), the
overall accuracy for action classification was 96%, with a weighted-average F1-score of
0.96. While the model performed very well across most classes, lower recall was observed
for actions like Long Push, where the recall was 0.75, indicating that the model sometimes

struggles to correctly identify all instances of this action.

For the Flag Output task (boundary detection), the model achieved an accuracy of
87%, with strong performance in detecting the start (97%) and end (92%) phases of each
action. However, the detection of the middle phase showed lower recall (14%), indicating

room for improvement in distinguishing this transitional phase.
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Figure 4.4. Classification Report for Action and Flag Output.

These confusion matrices and classification reports provide deeper insights into the
model’s strengths and areas for improvement. While the model excels in distinguishing
between most actions, further refinement may be required to improve its performance in
differentiating Forehand Drive from NoAction and resolving the confusions observed in

Long Push.
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4.3 Latency and Performance Metrics Section

Table 4.2. Summary of the latency measurements

Action Type Average Latency (ms) Standard Deviation (ms)
Short Strokes 157 23
Medium Strokes 213 31
Long Strokes 286 42
Serves 198 28

Table 4.3. Performance metrics

Metrics Values

Average Processing Time per Frame 18.3 ms

Action Recognition Accuracy (Offline) 91.2%

Maximum Consecutive Frames Processed 3,600

System Stability Duration 120 minutes

The temporal performance of human action recognition in table tennis is crucial for
its practical application in coaching and playing analysis. This section presents a
comprehensive analysis of the temporal characteristics. In Table 4.3, the results show
that the latency varies for different types and durations of actions. The actions Flicks and

Flips have an average latency 157ms, while the actions Loops and Smashes have an
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average latency of 286ms. The reason is that the actions are inherently temporal, requiring
varying amounts of sequential information to be fed into the model for accurate human
action classification. The proposed method was evaluated by processing continuous

sequences of player actions in table tennis.

The effectiveness was well proved by the achieved results based on 3,600 frames,
which corresponds to 2 minutes of uninterrupted video footage at 30 fps. The performance
was evaluated across various frame rates to assess its adaptability to different video input

qualities.

Table 4.4. The results of our developed prototype

Frame Rate Recognition CPU Utilization GPU Utilization

(fps) Accuracy (%) (%) (%)
15 88.7 22 31
30 91.2 37 58
60 93.5 63 82
120 94.1 89 95

Table 4.4 presents the performance of the action recognition model at various frame
rates, illustrating the trade-offs between recognition accuracy and computational load.
The recognition accuracy improved from 88.7% at 15 fps to 94.1% at 120 fps, likely due
to enhanced temporal detail capture at higher frame rates. However, 30 fps was found to
provide an optimal balance between processing efficiency and recognition accuracy for

offline analysis, as further increases in frame rate showed diminishing returns.

At higher frame rates, the computational costs become significant—both CPU and
GPU utilization increase dramatically, nearing maximum capacity at 120 fps. This trade-
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off between accuracy and computational resources is crucial when considering

deployment on different hardware platforms.

Notably, the results at 30 fps achieved a high level of recognition accuracy (91.2%)
with moderate computational requirements, making it a practical choice for offline
analysis. Although recognition accuracy continued to improve at higher frame rates (up
to 0.6% between 60 fps and 120 fps), the additional temporal information became less
impactful beyond 60 fps. Thus, 30 fps represents an optimal compromise between
computational cost and recognition performance for applications requiring detailed post-

session analysis.

4.4 Offline System Qutput for Each Action

Figure 4.5 shows the camera setup used to capture the player's action during data
collection. The camera is positioned at a height above the table tennis table,
approximately 2 meters away, angled at 45 degrees to capture the entire body of the player.
This setup ensures an optimal view of the player’s movements and ball trajectory,
providing comprehensive data for subsequent action analysis. The paddle faces the
camera, allowing for a clearer observation of the stroke actions, which helps in accurately

analyzing the player's performance.

40



Figure 4.5. The angle of a camera to capture the player’s action.

Table 6 presents the average statistics for six classes of table tennis actions and a
"No Action" class, indicating the ability to correctly identify each action. For instance,
the action Forehand Drive consistently achieves an average probability above 99%, which
highlights the precision and reliability of the model in detecting this action without

missing any key movements.

Table 4.6. Probability for each human action

Actions Averages Statistics
Backhand Drive 99.90%
Forehand Drive 99.92%
High Toss Loop 99.85%

Long Push 99.88%
Short Placement 99.89%
Smash 99.91%

No Action 99.87%
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Figure 4.7. The detection of All Human Actions.

The proposed model was tested across various human actions in table tennis,

including actions: Smash, High Toss Loop, Long Push, Backhand Drive, Forehand

Drive, and Short Placement as shown in Figure 6. This figure illustrates the six human

actions in three distinct phases—Start, Hit, and End. Each stroke is represented by a

sequence of video frames.

The consistent detection across different stroke types, including precise "No

Action" handling, highlights the robustness and adaptability of our proposed method. It

successfully managed variations in player actions, lighting conditions, and stroke

execution speeds without compromising accuracy. The timely feedback provided by the

proposed method simplifies coaching and training, enabling immediate performance

review and adjustments.
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4.5 Limitations of the Research

Though the table tennis action recognition system has produced promising results, several
limitations must be addressed to optimize its performance and ensure adaptability to

diverse scenarios.

(1) The system tends to overfit to controlled indoor environments. Changes in
lighting, camera angles, or backgrounds can reduce accuracy in real-world
settings. More varied training data is needed to ensure robustness across

different environments.

(2) The dataset includes common strokes and relies on convolutional methods,
limiting generalization to more complex actions or new settings. Expanding the

dataset to include diverse strokes and scenarios would improve adaptability.

(3) The system sometimes confuses visually similar strokes, such as Forehand
Drive, Smash, and High Toss Loop. Non-stroke movements, like wrist

adjustments, are occasionally misclassified as actions, leading to false positives.
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Chapter 5

Analysis and Discussions

This chapter presents an analysis of the experimental results,
discussing the model's performance, challenges encountered, and

implications for real-world applications in offline coaching and

performance analysis.
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5.1 Analysis

In this research, human pose estimation was utilized through MediaPipe and deep
learning to recognize and classify various table tennis strokes. MediaPipe extracted key
body posture points, including joints such as elbows, wrists, and shoulders. These key
points were then processed by a Transformer-based model specifically designed to
capture the temporal dependencies within motion sequences, enabling a nuanced
understanding of player actions.

To improve system robustness, a sliding window technique was applied during
preprocessing to smooth the extracted key points and reduce noise. This step helped
stabilize movement trajectories, ensuring that rapid movements or temporary occlusions
did not impact stroke recognition accuracy. Once the key point sequences were
preprocessed, the model could effectively predict actions such as Forehand Drives,
Smashes, and other strokes within the dataset.

he proposed model demonstrated strong performance, achieving an overall accuracy
of 96%, a macro-average F1 score of 0.93, and a weighted-average F1 score of 0.96.
Strokes like Smashes and High Toss Loops were recognized with high precision (1.0 and
0.91, respectively), highlighting the model's capacity to handle fast, complex actions
accurately. However, some advanced strokes, such as the Sidespin Flick and Flip, which
involve more subtle wrist and arm movements, exhibited relatively lower precision.
Addressing this limitation may require a larger dataset to better distinguish these strokes
from similar actions, such as forehand drives. This discrepancy underscores the challenge
of differentiating between closely related actions, particularly when the differences
involve fine motor control. Enhancing the model's sensitivity to subtle joint movements
or integrating additional contextual data could improve classification accuracy for these

challenging cases.

5.2 Discussions

During the experiments, different configurations and approaches were evaluated to
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optimize stroke recognition performance. The Transformer-based model’s architecture
was selected for its ability to capture long-range dependencies across multiple frames,
crucial for classifying complex, rapid sequences in sports. This approach proved effective
in handling the temporal dynamics required for accurate action recognition in table tennis,
aligning with recent studies that underscore the strengths of Transformers in processing
sequential sports data.

One of the main challenges encountered was occlusion, particularly during fast
actions when parts of the player’s body, such as the wrist or racket, were occasionally
obscured from view. MediaPipe’s predictive capabilities were somewhat limited in cases
where subtle joint movements, like those in Flip and Sidespin Flick, became difficult to
distinguish. To mitigate this, a sliding window technique was employed to smooth key
point data, improving stability in action classification. Nonetheless, similar motion
patterns among certain strokes occasionally led to misclassifications, highlighting a key
area for further refinement.

The system’s performance was strong overall, achieving high precision in classifying
strokes like Smashes and High Toss Loops. However, subtle movements in actions such
as Sidespin Flick require further sensitivity to distinguish nuances in wrist and arm
positioning. Implementing additional metrics, such as racket angle tracking or ball
trajectory analysis, could enhance the model’s ability to differentiate these intricate
actions, addressing a recurring challenge in sports action recognition.

These findings highlight the model’s potential for offline coaching applications,
providing players and coaches with detailed insights for post-session review. The addition
of features like racket tracking or enhanced joint detection would enable even more
precise analysis, helping coaches make targeted adjustments to players’ techniques based

on in-depth, frame-by-frame action breakdowns.

46



Chapter 6

Conclusion and Future Work

This chapter summarizes the key findings of the research and
outlines potential areas for improvement in the action recognition

System.

47



6.1 Conclusion

This research developed a dual-output Transformer-based action recognition system
tailored for table tennis. By combining MobileNetV2 for spatial feature extraction and a
Transformer model for temporal sequence modeling, the system achieved high accuracy
in classifying six different strokes. MediaPipe was incorporated for pose estimation to
enhance recognition accuracy, ensuring precise tracking of body posture during strokes.

The proposed model achieved an overall classification accuracy of 96%,
demonstrating the effectiveness of advanced computer vision and deep learning
techniques in providing detailed, frame-by-frame feedback for post-session analysis.
These findings underscore the system's utility for coaches and players, allowing for
comprehensive performance analysis that supports technique refinement and training
efficiency. This research contributes to the growing field of sports action recognition,
especially for complex sports like table tennis, where fast and subtle movements present

significant challenges for automated recognition.

6.2 Future Work

While the research yielded strong results, further development would enhance the
system’s capabilities. Expanding the dataset by including more players, diverse playing
styles, and varied environmental conditions would strengthen its generalizability.
Additionally, addressing distinctions between visually similar strokes, such as Sidespin
Flick and Flip, may involve refining temporal features or incorporating multimodal input,
such as data from wearable sensors, to complement visual inputs.

Future work could also explore optimizing the model for more efficient processing,
potentially by investigating lightweight Transformer architectures or using model pruning
and quantization techniques. These improvements would make the system more
adaptable to platforms with limited computational resources, such as mobile devices,

broadening its practical applications.
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Beyond table tennis, this framework could be applied to other activities that require
fine-grained action recognition, such as badminton, tennis, or fitness and rehabilitation
tracking. Expanding the system to recognize more complex action sequences and
integrating automated coaching tools could enhance its impact in sports training and

performance analysis, offering valuable insights across various domains.
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