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Abstract 

This report aims to enhance the effectiveness of table tennis coaching and perfor-mance 

analysis through human action recognition by using deep learning. In the field of video 

analysis, human action recognition has emerged as a highly researched area. However, 

the complexity of human actions presents significant challenges. To address these issues, 

in this report, we combine the latest computer vision and deep learning algorithms to 

accurately identify and classify a few strokes in human action recognition. Throughout 

in-depth review of the existing methods, we develop a high-precision offline method for 

player’s action recognition. Our experimental results show the success of six actions 

classifications based on our own dataset with the average accuracy up to 99.85%. 

Keywords: Table tennis · Human action recognition · Deep learning · Computer vision  



 II 

Table of Contents 

Chapter 1 Introduction ................................................................................................................... 1 

1.1 Background .......................................................................................................................... 2 

1.2 Research Problem ................................................................................................................ 4 

1.3   Research Aim .................................................................................................................. 5 

1.4 Research Objectives ....................................................................................................... 6 

1.5 Research Questions ........................................................................................................ 7 

1.6 Structure of This Report ...................................................................................................... 8 

Chapter 2   Related Work ........................................................................................................... 9 

2.1 Introduction ........................................................................................................................ 10 

2.2 Human Action Recognition in Sports ................................................................................ 11 

2.3 Convolutional Neural Networks (CNN) in Human Action Recognition ........................... 13 

2.4 Transformer Models in Human Action Recognition ......................................................... 15 

2.5 Chapter Summary .............................................................................................................. 17 

Chapter 3 Methodology ............................................................................................................... 18 

3.1 Research Design ................................................................................................................ 19 

3.2 Data Collection and Preprocessing .................................................................................... 21 

3.3 Pose Estimation ................................................................................................................. 23 

3.4 Network Architecture ........................................................................................................ 24 

3.5 Action Recognition Model ................................................................................................ 28 

Chapter 4 ...................................................................................................................................... 30 

Results .......................................................................................................................................... 30 

4.1 Model Performance and Training Analysis ....................................................................... 31 

4.2 Per-Class Performance ....................................................................................................... 33 

4.3 Latency and Performance Metrics Section ........................................................................ 38 

4.4 Offline System Output for Each Action ............................................................................ 40 

4.5 Limitations of the Research ............................................................................................... 43 

Chapter 5 Analysis and Discussions ............................................................................................ 44 

5.1 Analysis ....................................................................................................................... 45 

5.2 Discussions .................................................................................................................. 45 

Chapter 6 Conclusion and Future Work ...................................................................................... 47 

6.1 Conclusion ................................................................................................................... 48 

6.2 Future Work ................................................................................................................. 48 



 III 

References .................................................................................................................................... 50 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 IV 

List of Figures 

Figure 3.1. The examples from our training dataset, showing 10 consecutive frames for 
each of the six table tennis actions ……………………………………………...………27 

Figure 3.2. The prediction of table tennis strokes using the proposed system….…….…30 

Figure 3.3. System Flow …………………..…………………………………….……...31 

Figure 3.4. The Transformer-based network architecture for action recognition. …...….34 

Figure 4.1. Training and validation accuracy and loss for action classification and 
boundary detection……………………………………………………………………...41 

Figure 4.2. Confusion Matrix for Flag Output (Boundary Detection) ….….……....……44 

Figure 4.3. Confusion Matrix for Action Output (Action Classification) …….…….….45 

Figure 4.4. Classification Report for Action and Flag Output...…………………………46 

Figure 4.5. The angle of a camera to capture the player’s action………………...………49 

Figure 4.6. The detection of Forehand Drive Action Count and Probability…………....50 

Figure 4.7. The detection of All Human Actions …………….…………………....……51 

 

 

 

 

 

 

 

 

 

 

 

 



 V 

List of Tables 

Table 4.1. Comparison of LSTM and Transformer Model Performance ….…….……...43 

Table 4.2. Summary of the latency measurements ….……...…….…….…….………...47 

Table 4.3. Performance metrics ……………………………………...……………...….47 

Table 4.4. The results of our developed prototype ……………………….……….…….48 
  



 VI 

Attestation of Authorship 

 

I hereby declare that this submission is my own work and that, to the best of my 

knowledge and belief, it contains no material previously published or written by another 

person (except where explicitly defined in the acknowledgments), nor material which to 

a substantial extent has been submitted for the award of any other degree or diploma of a 

university or other institution of higher learning. 

 

 

 

             Signature:               Date:  16 October 2024 

 

 

 

 

 

 

 

 

 
  



 VII 

Acknowledgment 

My deepest gratitude goes out to everyone who has shown support during my master's 

degree at Auckland University of Technology (AUT). Without their encouragement, 

guidance, and patience I could never have achieved my goal of graduating with honors. 

At first, I would like to acknowledge my family for their unwavering support and 

continuous care throughout this journey. Their understanding has allowed me to focus 

solely on my studies and meet this goal successfully. 

Professor Wei Qi Yan has been instrumental in my academic development and I feel 

immensely fortunate to have worked under his guidance. His expertise, thoughtful 

feedback, and encouragement played a huge role in shaping my thesis; I am extremely 

appreciative of his dedication to helping refine my ideas while providing insightful 

comments during this process. 

Finally, I would like to acknowledge and thank my colleagues at AUT for all of their 

assistance, support, and inspiration during my studies. Their companionship has made 

this journey both rewarding and unforgettable. 

 

Kangnan Dong 

Auckland, New Zealand 

Oct 2024 



1 
 
 

 

 

Chapter 1 

Introduction 

 

 

This chapter is structured into five sections. The first 

introduces the background and motivation for the research. 

The second outlines the key research question. This is followed 

by an overview of the contributions made by this study, the 

research objectives, and finally, the overall structure of the 

report. 
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1.1 Background 

Human Action Recognition in Sports Video Analysis has become a central topic in 

computer vision and deep learning. As this field evolves, it brings significant 

advancements in analyzing specific athletic actions, offering practical benefits such as 

performance analysis, highlight creation, and support for coaching. Human action 

recognition in table tennis, in particular, faces unique challenges due to the rapid and 

subtle movements characteristic of this sport, which demand precise and fine-grained 

detection methods. These challenges underscore the need for advanced techniques, 

beyond traditional handcrafted methods, to support high-accuracy recognition, especially 

in fast-moving sports.  

This project focuses on developing an offline, high-precision system for recognizing 

specific table tennis strokes by applying deep learning models, including convolutional 

neural networks (CNNs) for spatial feature extraction and Transformer architectures for 

temporal modeling. These models are tested on a dataset containing six table tennis stroke 

types, collected in real-world conditions to ensure model robustness and accuracy. 

Past research in human action recognition has shown its value in sports through 

performance insights, and even as a training aid (Karpathy et al., 2014). However, sports-

specific recognition faces additional complexities, especially due to the rapid sequences 

of athletic actions, the close similarities between action classes, and high-speed 

movement (Wang et al., 2016). Traditional action recognition approaches relied on 

handcrafted visual descriptors, such as Histogram of Oriented Gradients (HOG) and 

optical flow, and employed classifiers like Support Vector Machines (SVMs) or Hidden 

Markov Models (HMMs) (Laptev et al., 2008). While effective for certain tasks, these 

methods fall short in handling the detailed distinctions between table tennis strokes.  

The adoption of deep learning, especially CNNs, has provided a considerable 

breakthrough by enabling automatic learning of complex spatial features from raw video 

data, making it better suited for tasks like table tennis stroke recognition. A notable 
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advancement was the two-stream CNN proposed by Simonyan and Zisserman (2014), 

which combined spatial (RGB frames) and temporal (optical flow) information for 

enhanced recognition accuracy. This foundation led to further innovations, including the 

Inflated 3D ConvNet (I3D) by Carreira and Zisserman in 2017, which extended 2D CNN 

architectures along the temporal dimension and proved effective on large-scale action 

datasets like Kinetics (Kay et al., 2017).  

More recent models have been tailored to sports action recognition. For instance, Zhu 

et al. (2019) introduced a multi-scale temporal convolutional network for stroke 

recognition, achieving high accuracy. Similarly, Cai et al. (2020) implemented a temporal 

segment network with attention mechanisms to detect badminton strokes. Despite these 

advances, sports action recognition still faces critical challenges, such as the lack of 

extensive labeled datasets and the complexities introduced by various players and 

environments (Wang et al., 2019). 

Among sports action recognition tasks, table tennis stroke recognition remains 

challenging. Players' movements are extremely fast, and the small size of the ball means 

limited visual data is available, making distinctions between stroke types subtle. Early 

research relied on sensor-based methods, like those used by Blank et al. (2015), who 

achieved high accuracy in detecting strokes by attaching inertial sensors to rackets. 

However, sensor-based methods are intrusive and can impact gameplay. Markerless 

motion capture has emerged as a promising alternative, with Hegazy et al. (2020) utilizing 

IR depth cameras to reach high accuracy for table tennis stroke detection.   

Accurate feedback is crucial for players and coaches to evaluate performance after 

gameplay. This research addresses the challenge of designing an offline system that can 

recognize and classify various table tennis actions with high accuracy, enabling effective 

post-session feedback without relying on real-time processing (Voelikov et al., 2020). 

Developing such a system requires innovative techniques to capture and analyze table 

tennis movements from recorded gameplay, expanding the potential for comprehensive 

performance evaluation. Positioned at the intersection of computer vision, machine 
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learning, and sports science, this research demands advanced methods that go beyond 

traditional human action recognition techniques.  

The use of deep learning algorithms offered a significant advancement in the table 

tennis stroke recognition. In table tennis, the human action recognition was conducted by 

using Twin Spatio Temporal Convolutional Neural Network (TSTCNN) (Martin et al., 

2019). The approach on the TTStroke-21 dataset was able to achieve an average of 91 % 

accuracy. 4% in the identification of a stroke. This work showed that two parallel 

convolutional streams are effective for modelling spatial and temporal data. A new 

technique of table tennis stroke recognition (Kulkarni and Shenoy, 2021) was profound 

by using two-dimensional human pose estimation. “StrokeMaster” is based on pose data 

derived from the video frames for the classification of strokes with 99% validation 

accuracy. This approach demonstrates that the high-level pose features are useful for the 

fine-grained action recognition in the table tennis.  

While research continues to improve the precision of table tennis stroke recognition, 

several issues remain. Model adaptability to different playing styles, player positions, and 

stroke types is an ongoing area of exploration. Future work may also address more 

specific factors, such as the positions of players and ball trajectory, to enhance recognition 

performance and provide a more complete understanding of table tennis gameplay.  

1.2 Research Problem 

Detecting human actions within table tennis gameplay introduces unique challenges due 

to the specific characteristics of this sport. Two primary issues are at the forefront of this 

research: the complexities in identifying fast and fluid motions and the need for precise, 

detailed action recognition. Table tennis involves quick, intricate actions that take place 

in rapid succession. The high speed and subtle distinctions between actions make accurate 

detection difficult for traditional computer vision systems. Different stroke types, such as 

topspin, backspin, and sidespin, each require distinct racket angles, body positioning, and 

player paths, creating nuanced differences that are challenging to capture without 



5 
 
 

specialized approaches (Kulkarni & Shenoy, 2021). 

Accurate feedback is essential for players and coaches to assess performance after 

gameplay. This research addresses the challenge of designing an offline system capable 

of recognizing and classifying various table tennis actions with high accuracy, providing 

effective post-session feedback without the need for real-time processing (Voelikov et al., 

2020). Developing such a system necessitates innovative techniques to capture and 

analyze table tennis movements from recorded gameplay, broadening the scope for 

comprehensive performance evaluation. Situated at the intersection of computer vision, 

machine learning, and sports science, this research requires advanced methods that 

surpass traditional human action recognition approaches.  

The primary objectives of this research are twofold: First, it aims to create an 

approach for accurately recognizing table tennis movements and to implement a stable 

system capable of classifying different strokes and actions. This system will leverage 

advanced computer vision and machine learning techniques to analyze video data, 

ensuring a high recognition rate for specific actions such as long push, forehand, and 

backhand. This offline recognition system is intended to serve as a foundation for future 

analytical and feedback tools. 

1.3 Research Aim 

The primary aim of this research is to develop an advanced system that enhances table 

tennis coaching and performance analysis through the use of cutting-edge computer 

vision and deep learning techniques. This system is designed to accurately recognize and 

classify table tennis player movements, with a specific emphasis on capturing high-speed, 

subtle actions that are challenging to detect with conventional methods. 

The core objective is to create a software system capable of delivering detailed post-

session feedback, allowing coaches and players to analyze gameplay effectively and make 

data-driven adjustments to their techniques. The system focuses on classifying various 
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table tennis strokes and evaluating player movements from recorded gameplay, offering 

insights that are beneficial for technique refinement. 

Beyond contributing to research, this system has practical applications in sports 

coaching by offering players and coaches a comprehensive analysis tool. Its offline 

functionality ensures accessibility for players at all levels without the need for constant 

supervision. Additionally, the system’s potential extends to other fast-moving sports, 

where accurate action recognition is critical for performance evaluation. 

This research aims to build a robust action recognition system that addresses 

challenges such as rapid movements, occlusions, and variations in playing styles and 

environments. By leveraging state-of-the-art deep learning models, particularly the 

Transformer architecture, this research seeks to significantly improve accuracy in 

classifying different table tennis strokes, ultimately enhancing player development and 

training methodologies. 

1.4Research Objectives 

(a) To develop a robust action recognition system capable of identifying and 

classifying six specific table tennis actions with high accuracy. These actions 

include complex and fast-moving strokes, such as Backhand Drive, Forehand 

Drive, and Smash, which present significant challenges for traditional recognition 

systems. 

(b) To enhance stroke identification accuracy by analyzing player posture, limb 

motion, and racket trajectory. This objective involves the integration of MediaPipe 

for pose estimation, which captures body key points from recorded videos, 

allowing for precise analysis of player movements. 

(c) To design and implement a Transformer-based deep learning model optimized for 

action recognition. The model is trained to handle the temporal and spatial 

complexities of table tennis strokes while maintaining computational efficiency. 
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(d) To ensure system adaptability and robustness by training the model on diverse 

datasets, including supplementary online training videos. This objective addresses 

the challenge of generalizing the model to different player styles, camera angles, 

and environmental conditions, enhancing its applicability across various coaching 

and analysis scenarios. 

(e) To develop a user-friendly interface using PyQt5 and OpenCV, designed for 

capturing and processing video inputs and displaying post-session analysis. This 

interface provides coaches and players with an accessible tool for performance 

evaluation and stroke analysis. 

1.5 Research Questions 

(a) How can advanced computer vision and deep learning techniques be utilized to 

accurately recognize table tennis player actions from recorded video inputs? 

This question explores how action recognition algorithms, particularly those based on 

Transformer architectures, can capture the fast and fluid movements specific to table 

tennis, managing the complexities of subtle stroke differences and high-speed gameplay. 

(b) What factors contribute to designing an effective action recognition system that 

provides coaches and players with detailed post-session feedback? 

This question examines how the system’s design can make action recognition results clear 

and accessible, focusing on accurate classification of actions and insights that support 

training and performance improvement. 

(c) How adaptable is the action recognition model across different player styles, 

camera angles, and environments? 

This question investigates the system’s generalization ability, assessing how well it 

performs in diverse scenarios and addressing any challenges posed by variations in 

playing style and setup. 
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1.6 Structure of This Report 

The structure of this report is described as follows: 

    In Chapter 2, we conduct a literature review and discuss the relevant studies focused 

on human action recognition in sports, particularly table tennis. This chapter also covers 

the evolution of deep learning models and compares key technologies, models, and 

methods used for action recognition. 

    In Chapter 3, we introduce the research methodology and experimental design, 

including the custom dataset creation, model architecture, and the algorithms employed 

in this study. 

    In Chapter 4, we present the collected data and experimental results obtained through 

the proposed algorithm. This chapter also discusses the limitations of the approach in 

detail. 

    In Chapter 5, we summarize and analyze the experimental results, providing 

insights into the performance of the model and its implications. 

In Chapter 6, we conclude the research and propose potential future work to further 

enhance table tennis action recognition and its applications.  
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Chapter 2   
Related Work  

 

 

This chapter reviews the relevant literature on action 

recognition in sports, emphasizing the evolution of deep 

learning techniques and their application in table tennis.  
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2.1 Introduction 

In recent years, rapid advancements in computer vision and deep learning have 

significantly influenced sports video analysis, particularly in human action recognition. 

This chapter provides an overview of current research and developments in action 

recognition within sports, with a specific focus on the unique challenges posed by table 

tennis stroke recognition. 

Action recognition in sports presents distinct challenges, including fast and subtle 

movements, complex player dynamics, and varying camera angles. Traditional 

approaches relied on handcrafted features and classical machine learning methods. 

However, with the emergence of deep learning models, particularly Convolutional Neural 

Networks (CNNs) and Transformer-based architectures, considerable progress has been 

made. These models improve the capacity to capture both spatial and temporal 

dependencies, leading to higher accuracy in detecting and classifying complex sports 

actions. 

The objective of this chapter is to review key advancements in action recognition, 

focusing on techniques and methodologies used in sports contexts, including table tennis. 

The review starts with a discussion of traditional methods, followed by an examination 

of recent deep learning models, their applications, and limitations. Particular attention is 

given to the use of CNNs and Transformer architectures in sports action recognition. In 

this project, MobileNetV2 is employed to efficiently extract high-dimensional features 

from each video frame, while a Transformer model processes these features to handle 

temporal dependencies and classify actions. Additionally, this chapter addresses the 

challenges of data variability and the use of tools like MediaPipe for pose estimation. 

This literature review aims to highlight the strengths and limitations of existing 

methods, providing a foundation for the research problem and justifying the need for 

developing a robust, high-precision table tennis action recognition system. 
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2.2 Human Action Recognition in Sports 

Action recognition in sports has become a crucial field of study in computer vision and 

machine learning, with significant applications in performance analysis, coaching, and 

automated sports analysis. Over the past two decades, this field has evolved from basic 

techniques to advanced deep learning approaches to better capture and analyze the 

dynamic and fast-moving nature of sports.  

 In this project, MobileNetV2, a lightweight CNN architecture, is utilized for efficient 

feature extraction. Each video frame is processed by MobileNetV2 to produce a high-

dimensional feature vector, which is then used to build a temporal sequence for 

subsequent action recognition. The choice of MobileNetV2 ensures efficient processing 

of recorded video data while maintaining high accuracy. 

    Earlier works in human action recognition in sports relied on handcrafted features 

and traditional machine learning techniques. These methods typically followed a two-

stage process: feature extraction followed by classification. One of the earliest methods 

was introduced by Laptev and Lindeberg (2003), who proposed space-time interest points 

(STIPs) to capture spatiotemporal corners in video sequences. Following this, Dollár et 

al. (2005) suggested the cuboid feature detector and descriptor, which further improved 

action recognition across various datasets. 

Another notable contribution to traditional methods was by Wang et al. (2011), who 

introduced dense trajectories for action recognition, leveraging optical flow fields to track 

dense points. This approach, which captured both motion and appearance information, 

achieved state-of-the-art results in action recognition benchmarks. However, in sports 

contexts, these traditional methods faced challenges due to high variability in athlete 

movements, rapid actions, and complex backgrounds. Moreover, handcrafted features 

struggled to differentiate between closely related actions, such as different types of swings 

or shots. 
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The introduction of deep learning, particularly Convolutional Neural Networks 

(CNNs), marked a breakthrough in sports action recognition. Unlike traditional 

approaches, CNNs can automatically learn complex feature representations from raw data, 

allowing for more detailed and abstract patterns. Early works, such as Karpathy et al. 

(2014), showed the potential of CNNs in sports video analysis, although they had limited 

temporal capabilities. Simonyan and Zisserman (2014) later introduced the two-stream 

CNN model, which processed spatial data (RGB frames) and temporal data (optical flow) 

separately. This approach proved well-suited for sports action recognition by capturing 

both appearance and motion. 

Subsequent advancements, like the two-stream spatiotemporal residual network by 

Feichtenhofer et al. (2016), combined spatial and temporal streams with residual links, 

enabling improved detection of complex sports movements. The model proved effective 

in differentiating between movements with slight sequence variations. Similarly, 3D CNN 

architectures, such as C3D (Tran et al., 2015), allowed for longer-duration motion 

extraction, which is vital in capturing complete sports actions without handcrafted 

features.  

Recent studies have focused on sports-specific applications. For example, Zhu et al. 

(2016) demonstrated a CNN-based approach for identifying specific tennis actions, 

showcasing deep learning's ability to distinguish subtle differences between sports actions. 

In sports action recognition, another challenge is the need for fine-grained classification 

to differentiate between similar activities, such as various tennis serves or types of 

baseball pitches. To address this, Wang et al. (2018) introduced the Temporal Segment 

Network, which effectively models long-range temporal dependencies and enhances 

detailed action recognition.  

Camera angles, which vary widely across sports broadcasts, also present a challenge. 

Bertasius et al. (2019) addressed this issue with a spatiotemporal attention mechanism 

that adapts to different viewpoints, focusing on the most relevant regions of the frame for 
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action recognition. 

End-to-end models capable of simultaneously learning spatial features and temporal 

dependencies have gained popularity in recent years. Carreira and Zisserman (2017) 

proposed the Inflated 3D ConvNet (I3D), an extension of 2D CNNs into the temporal 

domain. Trained on large-scale video datasets like Kinetics, I3D has proven highly 

effective for sports action recognition. More recently, Transformer-based models have 

shown promise in action recognition tasks. Arnab et al. (2021) introduced ViViT, a video 

vision transformer capable of learning long-range dependencies in videos, which has 

proven especially effective for sports actions that unfold over extended periods.  

2.3 Convolutional Neural Networks (CNN) in Human Action 

Recognition 

The development of Convolutional Neural Networks (CNNs) for video analysis, 

especially in action recognition, marks a significant breakthrough in computer vision and 

machine learning. In this project, MobileNetV2, a lightweight CNN architecture, is 

employed for high-dimensional feature extraction from video frames, generating compact 

feature vectors that capture spatial aspects of the data. Its efficient inverted residual 

structure and linear bottleneck layers allow it to maintain low computational costs while 

achieving high accuracy, making it suitable for analyzing fast-moving sports like table 

tennis. Compared to other CNN architectures, such as ResNet or VGG, MobileNetV2 

balances performance and efficiency, which is particularly beneficial in applications with 

limited computational resources, such as offline sports analysis systems.  

CNNs have proven valuable for video analysis, building on early work like Ji et al. 

(2013), who introduced a 3D CNN for action recognition. This method extended 2D 

convolutions used in image analysis to the temporal domain, enabling the network to learn 

directly from raw video frames. The 3D CNN architecture showed improved performance 

over conventional methods across various action recognition datasets, paving the way for 
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future innovations.  

Karpathy et al. (2014) expanded CNN applications for video classification by 

exploring different multi-modal fusion methods to integrate information across temporal 

dimensions, including early, late, and slow fusion. They also highlighted the challenge of 

capturing long-range temporal dependencies in videos, an ongoing research focus. 

The two-stream architecture by Simonyan and Zisserman (2014) introduced a major 

advancement, utilizing two separate CNN streams: one for spatial information and the 

other for motion, represented as optical flow. This architecture captured both appearance 

and motion, proving effective for action recognition tasks and inspiring numerous 

subsequent studies. Building on this, Tran et al. (2015) proposed the C3D (3D 

Convolutional Networks) architecture, which used 3D convolutions to learn 

spatiotemporal features. The C3D model demonstrated that synchronizing the modeling 

of both appearance and motion could outperform 2D CNNs in video analysis.  

As the field evolved, approaches emerged to handle long-term temporal relationships 

better. The Temporal Segment Network (TSN) (Wang et al., 2016) addressed this with a 

segment-based sampling and aggregation module. By dividing videos into segments and 

randomly sampling frames from each, TSN captures long-term dependencies while 

reducing computational complexity. 

Advances in other areas of computer vision have influenced CNN architectures for 

action recognition. For example, ResNet's success in image classification (He et al., 2016) 

encouraged researchers to adapt residual learning for video analysis. Feichtenhofer et al. 

(2016) introduced a two-stream recurrent residual network for action recognition, 

demonstrating that residual learning enhances performance in the spatiotemporal domain.  

Carreira and Zisserman (2017) introduced the Inflated 3D ConvNet (I3D), which 

extends 2D CNNs to the temporal domain, allowing image classification models to be 

repurposed for video analysis. I3D set new benchmarks on several action recognition 
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datasets and has become a popular baseline for further research. Similarly, the SlowFast 

network (Feichtenhofer et al., 2019) incorporates two pathways operating at different 

temporal scales: a slow pathway to capture spatial details at a low frame rate and a fast 

pathway for motion at a high frame rate. This design addresses the conflict between 

capturing fine motion and spatial detail, improving recognition performance.  

When comparing CNN architectures for action recognition, several effective models 

stand out. The two-stream architecture provides computational efficiency with 2D CNNs 

but may not capture temporal dependencies in detail. The 3D CNN models, such as C3D 

and I3D, excel at learning spatiotemporal features but come with higher computational 

costs and larger parameter counts. 

2.4 Transformer Models in Human Action Recognition 

Originally proposed by Vaswani et al. (2017) for natural language processing, 

Transformer models have since made substantial impacts in computer vision and action 

recognition, particularly for sports applications. Transformers leverage self-attention 

mechanisms to capture long-range dependencies and enable parallel computation, making 

them well-suited for processing complex visual data like sports videos, where fine-

grained actions must be distinguished accurately and efficiently. 

In this project, the Transformer model is applied to temporal sequences constructed 

from feature vectors generated by MobileNetV2. The Transformer processes these 

sequences to classify actions and detect boundaries, such as the start and end of an action. 

Its self-attention mechanism is highly effective at handling both short-term and long-term 

dependencies, addressing the varying duration of actions common in sports like table 

tennis, were rapid and subtle movements demand precision. This approach enhances 

classification accuracy while maintaining computational efficiency. 

Compared to traditional models, Transformers offer distinct advantages by handling 
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entire sequences in parallel, overcoming the limitations of recurrent structures and the 

fixed receptive fields commonly found in CNNs. This parallel computation allows for 

efficient and accurate processing, making Transformers especially suitable for offline 

action recognition, where large volumes of video data can be analyzed post-session 

without real-time constraints.  

Transformers were initially introduced to vision tasks through Dosovitskiy et al.'s 

Vision Transformer (ViT) (2021), which demonstrated the potential of applying self-

attention to image classification and opened new avenues for video analysis. Subsequent 

models like TimeSformer by Bertasius et al. (2021) extended this approach to video 

understanding, utilizing self-attention across both spatial and temporal dimensions. 

TimeSformer achieved state-of-the-art results on several action recognition benchmarks, 

confirming the suitability of Transformers for modeling intricate spatio-temporal 

relationships in sports actions. 

Arnab et al. (2021) introduced the ViViT model, further refining Transformers' role 

in video action recognition by exploring various methods for implementing self-attention 

across spatial and temporal features. ViViT’s factorized encoder, which independently 

encodes spatial and temporal dependencies, has proven particularly effective in sports 

videos where actions depend on both positioning and timing. This long-range dependency 

capability makes Transformers suitable for recognizing team sports or group activities, as 

demonstrated by Yan et al. (2022) in their group activity recognition model for soccer, 

capturing team-level actions and strategies.  

Another advantage of Transformers is their ability to handle input sequences of 

varying lengths without requiring recurrence or convolution, making them adaptable to 

sports actions that vary in duration. Liu et al. (2022) leveraged this flexibility in a study 

on fine-grained action recognition in gymnastics, applying a Transformer model to 

classify actions of diverse durations. Additionally, Girdhar et al. (2022) introduced a 

cross-view attention mechanism to improve action recognition from multiple camera 
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angles, a feature particularly valuable in broadcast sports where perspectives shift 

frequently. 

The core benefits of Transformer models for sports action recognition lie in their 

adaptability and self-attention mechanism, which allows them to focus on any input part 

irrespective of distance. This flexibility is invaluable for detecting complex interactions, 

such as a pass in soccer or a racket swing in tennis, where relevant features may be spread 

across a sequence of frames. 

2.5 Chapter Summary 

This chapter reviewed the evolution of human action recognition in sports, highlighting 

the progression from early handcrafted feature methods to advanced deep learning 

approaches. Key advancements in the field were examined, focusing on the roles of 

Convolutional Neural Networks (CNNs) for spatial feature extraction and Transformer 

models for capturing temporal dependencies in action sequences. MobileNetV2 was 

identified as an efficient choice for extracting high-dimensional spatial features from 

video frames, while the Transformer model demonstrated effectiveness in classifying 

actions and detecting boundaries, crucial for offline action analysis in table tennis. 

The chapter also emphasized the importance of constructing temporal sequences 

from consecutive frames to capture the dynamics inherent in sports actions. Together, 

these techniques form the foundation of the methodology and experimental design 

discussed in the following chapters, supporting a high-accuracy, offline approach to 

action recognition. 
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Chapter 3 
Methodology 

 

 

In this chapter, we outline the research design and 

methodology employed in this study. This includes details 

on data collection, preprocessing, and the architecture of 

the action recognition model. We also describe the training 

strategy and evaluation metrics used to assess the model's 

performance, addressing the practical challenges of 

accurately recognizing and analyzing table tennis actions 

in recorded gameplay for detailed post-session feedback.  
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3.1 Research Design 
This research project focuses on developing a method for human action recognition in 

table tennis—a sport characterized by rapid, precise, and often subtle strokes. 

Recognizing the complexities and speed of table tennis actions, we aimed to create a 

solution capable of accurately distinguishing between various movements, even those 

with nuanced differences. By leveraging advanced deep learning models, our method is 

designed to not only detect but also analyze these high-speed actions in detail. 

To achieve this, we integrated a Transformer-based neural network for human action 

recognition. This model excels in handling the temporal dependencies crucial for 

analyzing sequences of fast movements, accurately capturing the subtle variations 

characteristic of table tennis strokes. Our approach supports detailed, post-session 

feedback, providing athletes and coaches with valuable insights to refine techniques based 

on recorded gameplay. 

The key components of the research design are as follows:  

Step 1: Data Collection and Preprocessing 

To gather a comprehensive dataset, we recorded videos of six distinct table tennis strokes 

performed by players across varying skill levels, from amateur to professional. This 

dataset was further enriched with online training videos to introduce more diversity in 

player styles and environments, improving the model's robustness. After collection, the 

data underwent preprocessing, including frame extraction and annotation, before being 

loaded into the model for training. Preprocessing involved annotating key body points 

and creating sequences, ensuring the model could simulate different player techniques 

and environments, thus enhancing generalizability. 

Step 2: Model Architecture 

We selected a Transformer-based architecture due to its strength in capturing long-range 

temporal dependencies, which are essential for accurately recognizing stroke sequences 
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in table tennis. The self-attention mechanism in Transformers allows it to focus on 

specific elements within an input sequence, boosting classification accuracy for complex 

strokes. MediaPipe’s precise key-point detection provides an ideal solution for tracking 

movements in table tennis, enabling accurate analysis of body posture and stroke 

mechanics.  

Step 3: Training and Validation Strategy 

To optimize training and validation, we divided the dataset into training, validation, and 

test sets (70-15-15) to ensure that each stroke type was well-represented. To address class 

imbalances among underrepresented strokes, oversampling techniques were applied. For 

training, we used the Adam optimizer with sparse categorical cross-entropy loss functions 

for both classification and action boundary detection. Hyperparameter tuning was 

employed to maximize validation accuracy.  

Step 4: Offline Testing 

After completing training, the system underwent offline evaluation in table tennis 

coaching environments to assess its suitability for post-session analysis. Key performance 

metrics included action recognition accuracy, system latency, and frame processing rate 

(FPS), which are essential for providing detailed feedback to coaches and players. A user-

friendly interface was developed using PyQt5, enabling intuitive interaction for reviewing 

recorded sessions and analyzing player performance (Summerfield, 2015). Although low 

latency was considered to optimize processing efficiency, the focus remained on 

achieving accurate and reliable analysis for post-session evaluation.  

Step 5: Evaluation Metrics 

Model performance was evaluated based on four core metrics: accuracy, precision, recall, 

and F1-score. Additional metrics, such as frame processing time and system stability, 

were also examined to ensure dependable performance during extended offline gameplay 

analysis. This evaluation provides insights into the system's effectiveness in delivering 
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actionable insights for post-training feedback. 

3.2 Data Collection and Preprocessing 

To obtain the visual data for this project, we recorded videos of six specific table tennis 

actions and supplemented these recordings with online training videos. This approach 

allowed us to capture actions across different environments, enhancing the model's 

adaptability and robustness (Zhu et al., 2022). The recordings were conducted under the 

guidance of professional table tennis coaches, using a handheld camera operating at 30 

frames per second (fps) from a referee’s perspective to accurately capture subtle player 

movements and the ball trajectory.  

Our dataset includes six actions: Backhand Drive, Forehand Drive, High Toss Loop, 

Long Push, Short Placement, and Smash. Additionally, a "NoAction" class was added to 

represent moments without specific actions, including preparatory movements and other 

unrelated frames (e.g., start, hit, and end frames). Each action was thoroughly annotated 

to ensure comprehensive coverage of key frames.  

Using OpenCV, frames were extracted at a fixed rate, resized to 224x224 pixels, and 

normalized for consistent model input. Data augmentation methods, such as horizontal 

flipping and slight rotation, were applied to increase model robustness and reduce 

overfitting, particularly for underrepresented classes. 

Figure 3.1 shows examples from our training dataset, highlighting continuous 

sequences of annotated video frames for human action recognition. 
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Figure 3.1. The examples from our training dataset, showing 10 consecutive frames for 

each of the six table tennis actions. 

All data was annotated in collaboration with professional players and coaches to 

ensure accurate labeling of start, hit, and end frames, as well as action classes. A two-

stage review process, with initial annotations by trained annotators and final reviews by 

professional coaches, ensured high accuracy and consistency. 

To maintain a balanced dataset, we collected approximately equal samples for each 

stroke type. However, due to the dynamic nature of table tennis, some actions naturally 

appeared more frequently. To address this imbalance, oversampling techniques were 

applied to the underrepresented classes. The dataset was ultimately split into 70% for 

training, 15% for validation, and 15% for testing, with validation and test sets containing 

samples from players not included in the training set. 

During preprocessing, we encountered several challenges with lighting and camera 

angles, which affected key point detection. For instance, if the player's feet were obscured 

by the table, MediaPipe struggled to detect movements accurately. Adjusting the camera 

to a referee’s perspective improved consistency. We applied normalization techniques to 

address these issues and ensured consistency across annotated frames, enabling reliable 
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action recognition during offline analysis. 

3.3 Pose Estimation 

Estimating poses is a vital component of human action recognition in table tennis, 

providing essential data for classifying player movements and identifying movement 

patterns. We selected MediaPipe for its high accuracy, efficient performance, platform 

independence, and multi-person pose estimation capabilities—important features given 

the multiplayer nature of table tennis (Lugaresi et al., 2019). 

 

Figure 3.2. The prediction of table tennis strokes using the proposed system. 

Figure 3.2 shows an example of pose estimation applied to a table tennis player using 

MediaPipe. Key points, including the wrists, elbows, shoulders, hips, knees, and ankles, 

are detected, and connected to capture the player’s posture and movements. This setup 

enables the system to accurately track essential body parts for human action recognition. 
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MediaPipe offers full-body pose estimation, but not all detected key points are 

necessary for effective action recognition in table tennis. Based on biomechanical studies, 

critical key points include the playing arm's wrist, elbow, shoulder joints, hip joints, knee 

joints, leading foot’s ankle, and head position. These points are essential for accurately 

representing table tennis strokes, enabling a reduction in computational load without 

compromising on action recognition accuracy. 

To capture temporal characteristics, we recorded these specific points across 

consecutive frames. This provided key data on temporal patterns, allowing the system to 

distinguish between strokes that may appear similar spatially but differ significantly in 

timing and movement dynamics. 

3.4 Network Architecture 

Our proposed action recognition model is designed to accommodate both spatial and 

temporal dependencies in video sequences. The architecture uses MobileNetV2 for 

feature extraction, while Transformer-based models handle temporal sequence 

processing. This combination allows us to recognize 12 distinct table tennis strokes and 

detect action boundaries accurately. 

Figure 3.3 illustrates the structure of the proposed action recognition system. First, 

video data is processed with OpenCV to extract frames. MobileNetV2 is then used to 

perform feature extraction on each frame, generating high-dimensional feature vectors. 

These vectors are organized into sequences to capture the temporal dependencies essential 

for accurately recognizing fast-moving table tennis strokes. A Transformer-based model 

subsequently processes these sequences, providing action recognition and boundary 

detection outputs. Finally, an action counting logic component quantifies the recognized 

actions, facilitating detailed post-session analysis. 
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Fig 3.3. System Flow 
 

3.4.1. Feature Extraction with MobileNetV2 

To efficiently extract spatial features from individual video frames, we use MobileNetV2, 

a lightweight convolutional neural network. MobileNetV2 was chosen for its balance 

between accuracy and computational efficiency, making it ideal for handling the demands 

of action recognition tasks. 

For each frame 𝑡 in the video sequence, MobileNetV2 extracts a 1280-dimensional 

feature vector: 

𝐹! = 𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡𝑉2(𝑓𝑟𝑎𝑚𝑒!)                (3.1) 

These feature vectors capture the spatial information of the frame. Since the system 

processes n consecutive frames to capture temporal dynamics, the sequence of feature 

vectors is defined as: 

𝑆 = [𝐹!"#, 𝐹!"(#"%), … , 𝐹!]                    (3.2) 

3.4.2. Positional Encoding 

Since Transformers do not inherently understand the order of input frames, we introduce 

positional encodings to represent the sequence order. This is achieved by adding 
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positional encoding vectors to each frame’s feature vector 𝐹! , using sine and cosine 

functions to encode positional information: 

𝑃𝐸('(),+,) = sin	( '()
%----!"/$

), 𝑃𝐸('(),+,.%) = cos	( '()
%----!"/$

)      (3.3) 

where 𝑝𝑜𝑠  represents the position in the sequence, and 𝑑 is the dimension of the 
positional encoding. 

 

3.4.3 Temporal Sequence Modeling with Transformer 

We selected a Transformer-based model for its advantages in capturing long-range 

dependencies through self-attention mechanisms, particularly useful for recognizing table 

tennis strokes that exhibit subtle differences over time. Unlike LSTMs, which process 

sequences sequentially, Transformers allow for parallel processing of sequences, 

enhancing both computational efficiency and recognition speed. 

The use of 𝑛 consecutive frames (rather than a fixed number) allows the model to 

adapt to variable-length sequences, improving generalization across different contexts 

and playing styles. This flexibility is critical for strokes with varying execution times, 

enhancing the model's robustness. 

The sequence of feature vectors 𝑆, now with positional encodings, is processed by 

the Transformer. The core component is the Multi-Head Self-Attention mechanism, 

which calculates the attention score for each frame in relation to others. The self-attention 

is defined as: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(!"
!

#$"
)𝑉            (3.4) 

where 𝑄 (queries), 𝐾 (keys), and 𝑉 (values) represent projections of the input sequence 

𝑆. 𝑑% 	is the dimension of the keys.  

The Multi-Head Attention mechanism, consisting of 8 heads (each with 64 

dimensions), allows the model to focus on different parts of the sequence concurrently. 
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After the self-attention layer, the output is processed by a position-wise feedforward 

network: 

𝐹𝐹𝑁(𝑥) = max(0, 𝑥𝑊% +	𝑏%)𝑊+ +	𝑏+         (3.5) 

Residual connections are added around both the self-attention and feedforward 

layers, followed by layer normalization: 

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 + 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥))                (3.6) 

 

Figure 3.4. The Transformer-based network architecture for action recognition 

In Figure 3.4, the detailed architecture of the proposed model is illustrated, showing 

how the model processes features from 𝑛 consecutive frames to produce outputs for action 

classification and boundary detection. The model was trained using the Adam optimizer 

with sparse categorical cross-entropy as the loss function, over 300 epochs with a batch 
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size of 32. With approximately 3.1 million trainable parameters, the model is optimized 

to efficiently handle the complex, rapid movements typical of table tennis.  

The key components include: 

• Multi-Head Attention: With 8 heads and 64 dimensions per head, allowing the 

model to focus on different temporal parts of the input sequence. 

• Fully Connected (Dense) Layers: These layers use ReLU activation and dropout 

to prevent overfitting and improve model generalization. 

• Two Output Branches: One branch for action classification (identifying 6 stroke 

types) and another branch for boundary detection (detecting the start, 

continuation, or end of an action). 

3.5 Action Recognition Model 

Building on the architecture outlined in Section 3.4, the Action Recognition Model uses 

a dual-output design to handle both stroke classification and boundary detection tasks. 

The Action Classification Branch identifies stroke types, while the Boundary Detection 

Branch detects temporal phases (start, continuation, end) within each action, supporting 

a more detailed analysis of player movements.  

The model employs a multi-task loss function to balance classification loss with 

boundary detection loss, enhancing performance in both tasks. Training was conducted 

using the Adam optimizer over 300 epochs with a learning rate scheduler to ensure 

stable convergence, and dropout regularization was applied to minimize overfitting. 

Evaluation metrics, including accuracy, precision, recall, and F1-score, were used 

to assess action classification. Temporal precision and recall were used to measure 

boundary detection accuracy. A post-processing strategy with a state machine was 

implemented to manage stroke counting based on boundary, providing robust tracking 

even in complex sequences. 
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This dual-output model, combined with post-processing strategies, supports reliable 

stroke recognition, temporal localization, and accurate action counting in continuous 

video streams, establishing a strong foundation for future applications in performance 

analysis and detailed post-session feedback for coaching. 
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Chapter 4  

Results 

 

 

This chapter presents the results of the experiments 

conducted to evaluate the performance of the proposed 

action recognition model. It covers the overall accuracy, 

training, and validation analysis, as well as per-class 

performance metrics. The results are discussed in detail, 

highlighting the model's strengths and areas for 

improvement in distinguishing between various table tennis 

strokes.  
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4.1 Model Performance and Training Analysis 

The Transformer-based model for human action recognition in table tennis was 

evaluated by using a comprehensive set of metrics. In this section, we present the overall 

accuracy, training, and validation progress, as well as per-class performance of the 

proposed model. Figure 4.1 displays the learning curves for both action classification and 

boundary detection over 300 epochs. 

    The model showed significant progress throughout its training for both human 

action output and flag output tasks, with overall improvements in training accuracy and 

decreases in training loss. 
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Figure 4.1. Training and validation accuracy and loss for action classification and 

boundary detection. 

 

The model achieved an action classification accuracy 96%, highlighting its ability to 

differentiate between various strokes such as forehand, backhand, and smash. These 

results underscore the robustness of the Transformer architecture in capturing both the 

spatial and temporal dependencies of actions. The macro-average F1-score 0.93 indicates 

good performance across all classes despite the uneven distribution of strokes. 

Additionally, the weighted-average F1-score 0.96 shows particularly strong performance 
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on more frequent classes like NoAction.  

The action output loss curve shows effective learning, with training loss steadily 

decreasing as the epochs progressed. Validation loss, while more volatile after epoch 150, 

eventually leveled off towards the end of training. The temporary spikes in vali-dation 

loss may be related to the difficulty in distinguishing visually similar strokes like 

Forehand Drive and Short Placement. Despite this, the overall performance remained 

strong, with no significant signs of overfitting in the later stages of training. 

Regarding the output task, the model achieved an accuracy 87%, with an F1-score of 

0.97 for NoAction detection. However, challenges arose in predicting the start, hit and 

end phases, as seen in lower F1-scores for these classes. The accuracy showed a relatively 

smooth learning curve. This divergence suggests potential overfit-ting in detecting 

middle-phase actions, which could be mitigated through improved data representation for 

transitional phases.  

Overall, the Transformer-based model has proven highly effective in action 

classification, with potential for further refinement in action boundary and action 

transition detection. Enhanced training strategies, such as augmenting the dataset to better 

capture middle phases or incorporating context-aware features, could help address the 

fluctuations seen in the validation loss and improve the model’s performance in these 

areas. 

 

4.2 Per-Class Performance 

The self-attention mechanism in the Transformer enabled it to focus on relevant parts of 

a sequence, reducing misclassification and improving accuracy for complex action. This 

led to higher precision and recall for advanced actions compared to the LSTM model, 

ultimately enhancing overall performance. 

In Figure 4.2, the confusion matrix for action classification is presented. The model 
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performs well across most actions, with high precision and recall, though some degree of 

misclassification remains for certain actions. 

 

Figure 4.2. Confusion Matrix for Flag Output (Boundary Detection) 

The performance of the proposed model was evaluated on the test set, and de-tailed 

per-class metrics were computed to assess how well the model distinguishes between 

different table tennis actions. As summarized in Figure 4.3, the overall accuracy for action 

classification was 96%, with a weighted-average F1-score 0.96. While the model 

performed very well across most classes, lower recall was observed for actions like Long 

Push, where the recall was 0.75, indicating that the model struggles to correctly identify 

all instances of this action.  

Pertaining to the action segmentation, the model achieved an accuracy 87%, with 

strong performance in detecting the start, hit and end phases of each action. However, the 

detection of the middle phase showed lower recall, indicating room for improvement in 

distinguishing this transitional phase. 
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These confusion matrices and classification provide deeper insights into the model’s 

strengths and areas for improvement. While the model excels in distinguishing between 

most actions, further refinement may be required to improve its performance in 

differentiating Forehand Drive from NoAction and resolving the confusions observed in 

Long Push.  

 

 

Figure 4.3. Confusion Matrix for Action Output (Action Classification) 

Table 4.1. Comparison of LSTM and Transformer Model Performance 

Metric LSTM Model Transformer Model 

Overall Accuracy 93.7% 96% 

Macro-average F1-Score 0.924 0.93 

Weighted-average F1-Score 0.936 0.96 
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The performance of the proposed model was evaluated on the test set, and detailed 

per-class metrics were computed to assess how well the model distinguishes between 

different table tennis actions. As summarized in the classification report (Figure 4.4), the 

overall accuracy for action classification was 96%, with a weighted-average F1-score of 

0.96. While the model performed very well across most classes, lower recall was observed 

for actions like Long Push, where the recall was 0.75, indicating that the model sometimes 

struggles to correctly identify all instances of this action. 

For the Flag Output task (boundary detection), the model achieved an accuracy of 

87%, with strong performance in detecting the start (97%) and end (92%) phases of each 

action. However, the detection of the middle phase showed lower recall (14%), indicating 

room for improvement in distinguishing this transitional phase. 
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Figure 4.4. Classification Report for Action and Flag Output. 

These confusion matrices and classification reports provide deeper insights into the 

model’s strengths and areas for improvement. While the model excels in distinguishing 

between most actions, further refinement may be required to improve its performance in 

differentiating Forehand Drive from NoAction and resolving the confusions observed in 

Long Push. 
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4.3 Latency and Performance Metrics Section 

Table 4.2. Summary of the latency measurements 

Action Type Average Latency (ms) Standard Deviation (ms) 

Short Strokes 157 23 

Medium Strokes 213 31 

Long Strokes 286 42 

Serves 198 28 

 

Table 4.3. Performance metrics 

Metrics Values 

Average Processing Time per Frame 18.3 ms 

Action Recognition Accuracy (Offline) 91.2% 

Maximum Consecutive Frames Processed 3,600 

System Stability Duration 120 minutes 

 

The temporal performance of human action recognition in table tennis is crucial for 

its practical application in coaching and playing analysis. This section presents a 

comprehensive analysis of the temporal characteristics.  In Table 4.3, the results show 

that the latency varies for different types and durations of actions. The actions Flicks and 

Flips have an average latency 157ms, while the actions Loops and Smashes have an 
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average latency of 286ms. The reason is that the actions are inherently temporal, requiring 

varying amounts of sequential information to be fed into the model for accurate human 

action classification. The proposed method was evaluated by processing continuous 

sequences of player actions in table tennis. 

The effectiveness was well proved by the achieved results based on 3,600 frames, 

which corresponds to 2 minutes of uninterrupted video footage at 30 fps. The performance 

was evaluated across various frame rates to assess its adaptability to different video input 

qualities.  

Table 4.4. The results of our developed prototype 

Frame Rate 

(fps) 

Recognition 

Accuracy (%) 

CPU Utilization 

(%) 

GPU Utilization 

(%) 

15 88.7 22 31 

30 91.2 37 58 

60 93.5 63 82 

120 94.1 89 95 

 

Table 4.4 presents the performance of the action recognition model at various frame 

rates, illustrating the trade-offs between recognition accuracy and computational load. 

The recognition accuracy improved from 88.7% at 15 fps to 94.1% at 120 fps, likely due 

to enhanced temporal detail capture at higher frame rates. However, 30 fps was found to 

provide an optimal balance between processing efficiency and recognition accuracy for 

offline analysis, as further increases in frame rate showed diminishing returns. 

At higher frame rates, the computational costs become significant—both CPU and 

GPU utilization increase dramatically, nearing maximum capacity at 120 fps. This trade-



40 
 
 

off between accuracy and computational resources is crucial when considering 

deployment on different hardware platforms. 

Notably, the results at 30 fps achieved a high level of recognition accuracy (91.2%) 

with moderate computational requirements, making it a practical choice for offline 

analysis. Although recognition accuracy continued to improve at higher frame rates (up 

to 0.6% between 60 fps and 120 fps), the additional temporal information became less 

impactful beyond 60 fps. Thus, 30 fps represents an optimal compromise between 

computational cost and recognition performance for applications requiring detailed post-

session analysis. 

4.4 Offline System Output for Each Action 

Figure 4.5 shows the camera setup used to capture the player's action during data 

collection. The camera is positioned at a height above the table tennis table, 

approximately 2 meters away, angled at 45 degrees to capture the entire body of the player. 

This setup ensures an optimal view of the player’s movements and ball trajectory, 

providing comprehensive data for subsequent action analysis. The paddle faces the 

camera, allowing for a clearer observation of the stroke actions, which helps in accurately 

analyzing the player's performance. 

 

 



41 
 
 

Figure 4.5. The angle of a camera to capture the player’s action. 

Table 6 presents the average statistics for six classes of table tennis actions and a 

"No Action" class, indicating the ability to correctly identify each action. For instance, 

the action Forehand Drive consistently achieves an average probability above 99%, which 

highlights the precision and reliability of the model in detecting this action without 

missing any key movements. 

Table 4.6. Probability for each human action 

Actions Averages Statistics 

Backhand Drive 99.90% 

Forehand Drive 99.92% 

High Toss Loop 

Long Push 

Short Placement 

Smash 

No Action 

99.85% 

99.88% 

99.89% 

99.91% 

99.87% 
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Figure 4.7. The detection of All Human Actions. 

 

The proposed model was tested across various human actions in table tennis, 

including actions: Smash, High Toss Loop, Long Push, Backhand Drive, Forehand 

Drive, and Short Placement as shown in Figure 6. This figure illustrates the six human 

actions in three distinct phases—Start, Hit, and End. Each stroke is represented by a 

sequence of video frames. 

The consistent detection across different stroke types, including precise "No 

Action" handling, highlights the robustness and adaptability of our proposed method. It 

successfully managed variations in player actions, lighting conditions, and stroke 

execution speeds without compromising accuracy. The timely feedback provided by the 

proposed method simplifies coaching and training, enabling immediate performance 

review and adjustments. 
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4.5 Limitations of the Research 

Though the table tennis action recognition system has produced promising results, several 

limitations must be addressed to optimize its performance and ensure adaptability to 

diverse scenarios. 

(1) The system tends to overfit to controlled indoor environments. Changes in 

lighting, camera angles, or backgrounds can reduce accuracy in real-world 

settings. More varied training data is needed to ensure robustness across 

different environments. 

(2) The dataset includes common strokes and relies on convolutional methods, 

limiting generalization to more complex actions or new settings. Expanding the 

dataset to include diverse strokes and scenarios would improve adaptability. 

(3) The system sometimes confuses visually similar strokes, such as Forehand 

Drive, Smash, and High Toss Loop. Non-stroke movements, like wrist 

adjustments, are occasionally misclassified as actions, leading to false positives. 
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Chapter 5 

Analysis and Discussions 

 

 

This chapter presents an analysis of the experimental results, 

discussing the model's performance, challenges encountered, and 

implications for real-world applications in offline coaching and 

performance analysis. 
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5.1 Analysis 

In this research, human pose estimation was utilized through MediaPipe and deep 

learning to recognize and classify various table tennis strokes. MediaPipe extracted key 

body posture points, including joints such as elbows, wrists, and shoulders. These key 

points were then processed by a Transformer-based model specifically designed to 

capture the temporal dependencies within motion sequences, enabling a nuanced 

understanding of player actions. 

To improve system robustness, a sliding window technique was applied during 

preprocessing to smooth the extracted key points and reduce noise. This step helped 

stabilize movement trajectories, ensuring that rapid movements or temporary occlusions 

did not impact stroke recognition accuracy. Once the key point sequences were 

preprocessed, the model could effectively predict actions such as Forehand Drives, 

Smashes, and other strokes within the dataset. 

he proposed model demonstrated strong performance, achieving an overall accuracy 

of 96%, a macro-average F1 score of 0.93, and a weighted-average F1 score of 0.96. 

Strokes like Smashes and High Toss Loops were recognized with high precision (1.0 and 

0.91, respectively), highlighting the model's capacity to handle fast, complex actions 

accurately. However, some advanced strokes, such as the Sidespin Flick and Flip, which 

involve more subtle wrist and arm movements, exhibited relatively lower precision. 

Addressing this limitation may require a larger dataset to better distinguish these strokes 

from similar actions, such as forehand drives. This discrepancy underscores the challenge 

of differentiating between closely related actions, particularly when the differences 

involve fine motor control. Enhancing the model's sensitivity to subtle joint movements 

or integrating additional contextual data could improve classification accuracy for these 

challenging cases. 

5.2 Discussions 

During the experiments, different configurations and approaches were evaluated to 
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optimize stroke recognition performance. The Transformer-based model’s architecture 

was selected for its ability to capture long-range dependencies across multiple frames, 

crucial for classifying complex, rapid sequences in sports. This approach proved effective 

in handling the temporal dynamics required for accurate action recognition in table tennis, 

aligning with recent studies that underscore the strengths of Transformers in processing 

sequential sports data. 

One of the main challenges encountered was occlusion, particularly during fast 

actions when parts of the player’s body, such as the wrist or racket, were occasionally 

obscured from view. MediaPipe’s predictive capabilities were somewhat limited in cases 

where subtle joint movements, like those in Flip and Sidespin Flick, became difficult to 

distinguish. To mitigate this, a sliding window technique was employed to smooth key 

point data, improving stability in action classification. Nonetheless, similar motion 

patterns among certain strokes occasionally led to misclassifications, highlighting a key 

area for further refinement. 

The system’s performance was strong overall, achieving high precision in classifying 

strokes like Smashes and High Toss Loops. However, subtle movements in actions such 

as Sidespin Flick require further sensitivity to distinguish nuances in wrist and arm 

positioning. Implementing additional metrics, such as racket angle tracking or ball 

trajectory analysis, could enhance the model’s ability to differentiate these intricate 

actions, addressing a recurring challenge in sports action recognition. 

These findings highlight the model’s potential for offline coaching applications, 

providing players and coaches with detailed insights for post-session review. The addition 

of features like racket tracking or enhanced joint detection would enable even more 

precise analysis, helping coaches make targeted adjustments to players’ techniques based 

on in-depth, frame-by-frame action breakdowns. 
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Chapter 6 

Conclusion and Future Work 

 

 

This chapter summarizes the key findings of the research and 

outlines potential areas for improvement in the action recognition 

system. 

 

  



48 
 
 

 

6.1 Conclusion 

This research developed a dual-output Transformer-based action recognition system 

tailored for table tennis. By combining MobileNetV2 for spatial feature extraction and a 

Transformer model for temporal sequence modeling, the system achieved high accuracy 

in classifying six different strokes. MediaPipe was incorporated for pose estimation to 

enhance recognition accuracy, ensuring precise tracking of body posture during strokes. 

The proposed model achieved an overall classification accuracy of 96%, 

demonstrating the effectiveness of advanced computer vision and deep learning 

techniques in providing detailed, frame-by-frame feedback for post-session analysis. 

These findings underscore the system's utility for coaches and players, allowing for 

comprehensive performance analysis that supports technique refinement and training 

efficiency. This research contributes to the growing field of sports action recognition, 

especially for complex sports like table tennis, where fast and subtle movements present 

significant challenges for automated recognition. 

6.2 Future Work 

While the research yielded strong results, further development would enhance the 

system’s capabilities. Expanding the dataset by including more players, diverse playing 

styles, and varied environmental conditions would strengthen its generalizability. 

Additionally, addressing distinctions between visually similar strokes, such as Sidespin 

Flick and Flip, may involve refining temporal features or incorporating multimodal input, 

such as data from wearable sensors, to complement visual inputs. 

Future work could also explore optimizing the model for more efficient processing, 

potentially by investigating lightweight Transformer architectures or using model pruning 

and quantization techniques. These improvements would make the system more 

adaptable to platforms with limited computational resources, such as mobile devices, 

broadening its practical applications. 
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Beyond table tennis, this framework could be applied to other activities that require 

fine-grained action recognition, such as badminton, tennis, or fitness and rehabilitation 

tracking. Expanding the system to recognize more complex action sequences and 

integrating automated coaching tools could enhance its impact in sports training and 

performance analysis, offering valuable insights across various domains. 
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