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Abstract: In agriculture, timely and accurate assessment of fruit ripeness is crucial to optimize har- 7 
vest planning and reduce waste. In this article, we explore the integration of two cutting-edge deep 8 
learning models, YOLOv9 and Swin Transformer, to develop a complex model for detecting straw- 9 
berry ripeness. Trained and tested on a specially curated dataset, our model achieves a mean preci- 10 
sion (mAP) 87.3% by using the metric intersection over union (IoU) at threshold 0.5. This perfor- 11 
mance of this model outperforms the model by using YOLOv9 alone, which achieved a mAP 86.1%. 12 
Our model also demonstrated the improved Precision and Recall, with Precision rising to 85.3% and 13 
Recall rising to 84.0%, reflecting its ability to accurately and consistently detect different stages of 14 
strawberry ripeness. 15 
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1. Introduction 18 
With global population growth, climate change, and the need for sustainable prac- 19 

tices, the agricultural sector is facing unprecedented challenges which is in dire need of 20 
innovative solutions. Strawberries are highly perishable, sensitive to environmental con- 21 
ditions, and require precise harvest timing to ensure optimal quality and yield. 22 

Fortunately, the use of AI and deep learning in agriculture is becoming more com- 23 
mon. YOLOv9 is well-known for its real-time target detection capabilities, while Swin 24 
Transformer excels at processing image data, especially for tasks requiring detailed visual 25 
understanding [1, 2]. By integrating these two techniques for strawberry ripeness detec- 26 
tion, we aim to significantly improve the accuracy and efficiency of detection, reduce re- 27 
liance on manual labor, minimize human error, and make more accurate and timely har- 28 
vest decisions. 29 

The main objective of this article is how to effectively integrate and apply YOLOv9 30 
and Swin Transformer technologies for strawberry ripeness detection, so the main re- 31 
search questions of this article are: How can we effectively combine YOLOv9 and Swin 32 
Transformer for strawberry ripeness detection? To solve this research question, we split 33 
it into the following questions: 34 

 35 
• How can the integrated YOLOv9 and Swin Transformer model be trained, vali- 36 

dated? 37 
• What role does the Swin Transformer play in enhancing the accuracy of ripeness 38 

detection, and how does it complement the object detection capabilities of 39 
YOLOv9? 40 

• How do we evaluate the model and prove that our improvements to the model are 41 
effective? 42 

 43 
The core concept of this project is to utilize the complementary advantages of 44 

YOLOv9 and Swin Transformer to develop a robust, efficient, and highly accurate 45 
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strawberry ripeness detection system. We train the dataset to get the best results and eval- 46 
uate the model thoroughly. 47 

The article is structured as follows: Section 2 reviews some of the related works. Sec- 48 
tion 3 provides an in-depth discussion of the models and methods used in this research. 49 
Section 4 presents the results of the research. Section 5 concludes the article. 50 

2. Related Work 51 
 Deep learning and computer vision has emerged as  powerful tools in the field of 52 

agriculture, offering innovative solutions to various challenges faced in the industry. Pa- 53 
pers [3, 4, 5, 6, 7] present the status and applications of deep learning and computer vision 54 
in agriculture. 55 

The effectiveness of using pretrained deep neural networks (DNN) on agricultural 56 
datasets was explored to improve weed identification accuracy in precision agriculture 57 
[8]. 58 

The study by Sharma et al. [9] proposed the exceptional efficacy of Convolutional 59 
Neural Networks (CNNs) in analyzing plant disease images. The Faster R-CNN model 60 
they devised achieved a detection rate of 99.39% for chili plants, highlighting the potential 61 
of deep learning models to revolutionize agricultural disease management. 62 

A method [10] was proposed to automatically detect unripe tomatoes by using Faster 63 
Region-based Convolutional Neural Network (Faster R-CNN) and ResNet-101 model to 64 
learn from the COCO dataset through transfer learning. The method performed well on 65 
immature and occluded tomatoes that are difficult to detect through traditional image 66 
analysis methods. 67 

A CNN model [11] was introduced for automated, lossless classification of mulberry 68 
maturity. The method improved the accuracy and efficiency of the sorting process by au- 69 
tomatically classifying fruit into different ripeness categories based on visual cues. 70 

Pardede et al. used transfer learning of VGG-16 models for fruit ripeness detection. 71 
Their study [12] highlights the effectiveness of deep learning relative to traditional ma- 72 
chine learning for this task, with a particular emphasis on the important role of regulari- 73 
zation techniques in improving model performance. 74 

A powerful CNN model was proposed by Momeny et al. [13] to detect citrus black 75 
spot disease and evaluate fruit ripeness through deep learning. One of their key innova- 76 
tions is the use of a learning augmentation strategy that generates new data from noisy 77 
and recovered images to enhance model training. Momeny et al. utilized Bayesian algo- 78 
rithm-optimized noise parameters to create noisy images and then took use of convolu- 79 
tional autoencoders to restore these images, effectively augmenting the training data. 80 

In conclusion, it is very feasible to use deep learning for agricultural aspects espe- 81 
cially for fruit ripening detection. The potential of deep learning for fruit ripeness detec- 82 
tion represents an important step forward in agricultural technology, with the potential 83 
to not only reduce labor costs, but also improve efficiency and reduce waste. 84 

3. Materials and Methods 85 
In this section, we outline the research methodology for the development and evalu- 86 

ation of a deep learning-based system for dynamic detection of strawberry ripeness 87 
through video analysis. The integration of YOLOv9 and Swin Transformer forms the core 88 
of our approach, leveraging their capabilities to achieve real-time, accurate ripeness de- 89 
tection. 90 

3.1. Research Designn 91 
3.1.1. Overall of the Proposed Model 92 

In this article, we propose a strawberry ripeness detection method based on YOLOv9 93 
network and Swin Transformer. The method can automatically detect the position of 94 
strawberries from a video with multiple frames and track movement trajectory to mark 95 



Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 3 of 13 
 

the strawberries and predict their ripeness. This method will be a great convenience for 96 
growing and picking strawberries. 97 

We trained a hybrid model by combining YOLOv9 and Swin Transformer, which 98 
enhances the ability of this model to generalize and rely on modeling capabilities at a 99 
distance, resulting in better overall performance. 100 

The overall structure of strawberry ripeness detection model is shown in Figure 1. 101 
Firstly, YOLOv9 model is trained by using the pre-prepared dataset. This model is im- 102 
proved by combining Swin Transformer, which can better extract the target feature infor- 103 
mation. Then, the video was processed by using a fusion network of YOLOv9 and Swin 104 
Transformer to detect strawberry ripeness with high accuracy. This model will classify 105 
the strawberries as the classes “Unripe”, “Half-ripe”, and “Ripe”, outputs detection 106 
frames and feature vectors for each frame of the given video. 107 

 108 
Figure 1. Overall structure of the strawberry ripeness detection model. 109 

3.1.2. Research Design of YOLOv9 Model 110 
YOLOv9 introduces Programmable Gradient Information (PGI), which preserves 111 

important data throughout the depth of the proposed network, ensuring more reliable 112 
gradient generation and thus improving model convergence and performance. Mean- 113 
while, YOLOv9 designs a new lightweight network structure based on gradient path plan- 114 
ning: generalized efficient layer aggregation network (GELAN). By using only conven- 115 
tional convolution, GELAN achieves higher parameter utilization than deeply differenti- 116 
able convolutional designs based on state-of-the-art techniques, while demonstrating the 117 
great advantages of being lightweight, fast, and accurate [14]. 118 
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 119 
Figure 2. YOLOv9 structure 120 

Figure 2 illustrates the convolutional neural network architecture of YOLOv9 model. 121 
This model is divided into three main parts: Backbone, Neck, and Head. The Backbone is 122 
the main feature extraction part of this model. It consists of multiple convolutional layers 123 
that are responsible for extracting useful features from the input image. Backbone consists 124 
of multiple layers that progressively reduce the spatial dimensions and increase the num- 125 
ber of channels through different depth and step configurations, which helps in capturing 126 
features at different levels of abstraction of the image. 127 

Neck is the part that connects Backbone and Head, which serves to perform feature 128 
fusion and realignment for object recognition. This part consists of Up sample and Concat 129 
operations, which combine high level, smaller feature maps with low level, larger feature 130 
maps, thus preserving spatial information at different scales. This helps to detect objects 131 
at different scales of the image. Head is the last part of the model and is responsible for 132 
object detection based on the features coming from Backbone and Neck. 133 
3.1.3. Research Design of Swin Transformer 134 

Swin Transformer (Shifted Window Transformer) is a computer vision model based 135 
on Transformer. Swin Transformer overcomes the problems of computational inefficiency 136 
and difficulty in handling high-resolution images of traditional Transformer models [15]. 137 
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 138 
Figure 3. Swin Transformer structure 139 

 140 
Figure 4. Swin Transformer Blocks 141 

Figure 3 shows the structure of the Swin Transformer. At the beginning, the image is 142 
divided into multiple small blocks, each small block is usually a small square. These 143 
patches are flattened into vectors and passed into the model for processing. The model 144 
adopts a layered design and consists of four stages, each stage will reduce the resolution 145 
of the input feature map. The four stages build varying-sized feature maps. The first three 146 
stages go via a Patch Merging layer for down sampling, while the first stage goes through 147 
a Linear Embedding layer. Swin Transformer Blocks are piled one after the other on each 148 
level. 149 

Transformer Block has two structures, as shown in Figure 4. One structure makes use 150 
of the W-MSA structure, while the other uses the SW-MSA structure. Furthermore, a W- 151 
MSA structure and a SW-MSA structure are employed in pairs when utilizing these two 152 
structures. 153 

In this article, we built the strawberry ripeness detection model based on YOLOv9. 154 
We propose a method to replace the backbone network in YOLOv9 with Swin Trans- 155 
former. This hybrid model combines the fast and efficient detection capabilities of 156 
YOLOv9 with the powerful and flexible feature representation of Swin Transformer, de- 157 
signed to enhance the system's ability to accurately identify and classify strawberry ripe- 158 
ness from video input. 159 
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In the hybrid model, Swin Transformer acts as a powerful feature extractor by cap- 160 
turing the details and variations of strawberry appearance. These details and changes 161 
mark different stages of maturity. Swin Transformer ensures that global and local features 162 
are effectively captured and used for prediction. This is particularly useful for detecting 163 
strawberries under varying lighting, occlusion, and background complexity conditions. 164 

3.2. Data Preparation 165 
In this article, we collected various strawberry images and videos datasets to ensure 166 

the quality and accuracy of our models. For the data set, we used pre-processing tech- 167 
niques such as image cropping, resizing, and labeling to ensure that the data set is pro- 168 
cessed into the form required by the model. 169 

We downloaded test videos of strawberry plantations from the internet and per- 170 
formed images extraction on the videos. We are use of a Python script to assist us in ex- 171 
tracting images. This script allows us to split the video into images at set intervals. This is 172 
helpful for reducing data redundancy. Additionally, we downloaded strawberry images 173 
from the Internet to increase robustness. 174 

As shown in Figure 5, we collected a total of 722 strawberry images. In addition, we 175 
also downloaded the strawberry image dataset, open sourced by the StrawDI team and 176 
selected images that met our requirements [16]. Finally, we collected a total of 2,000 straw- 177 
berry images from different regions and under different lighting and weather conditions, 178 
which helped to enhance model diversity. 179 

 180 
Figure 5. Samples of our dataset 181 

 In this article, we are use of EISeg to label the collected strawberry images. Figure 6 182 
illustrates the results after labeling. EISeg (Efficient and Interactive Segmentation) is an 183 
efficient interactive image segmentation tool, mainly used in geospatial analysis, remote 184 
sensing image processing, medical image processing and other fields. EISeg provides a 185 
method to achieve precise segmentation with minimal user interaction, greatly improving 186 
the efficiency and accuracy of image segmentation [17]. 187 
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 188 
Figure 6. The example of the results after labeling 189 

Data splitting is a fundamental method in machine learning for training models and 190 
evaluating model performance. It involves dividing the dataset into separate subsets to 191 
provide an honest assessment of the performance of our proposed models on unseen data. 192 
The three main subsets commonly used are: Training dataset, validation dataset and test 193 
dataset. The training set is the largest part of the dataset used to train the model. The 194 
validation set is employed to provide an unbiased assessment of the model which fits on 195 
the training data set when adjusting the model's hyperparameters. After the model has 196 
been trained and validated, the test set is used for an unbiased evaluation of the final 197 
model. The correct data splitting can avoid model overfitting problems and significantly 198 
improve the validity and reliability of model evaluation.  199 

In this article, we also split the data. We take use of 80% of the dataset for training, 200 
10% for validation, and 10% for testing. Figure 7 clearly illustrates the dataset splitting. 201 

 202 
Figure 7. Data splitting pie chart 203 

3.3. Evaluation Methods 204 
Our evaluation is a critical step for computer vision models, which helps measure 205 

model performance and guide future improvements. In deep learning, all evaluation 206 
methods are based on confusion matrix. Table 1 shows the confusion matrix. In Table 1, 207 
True Positive (TP) means that the true category of the sample is a positive sample, and the 208 
model predicts a positive sample, therefore the prediction is correct. True Negative (TN) 209 
means that the true category of the sample is a negative example, and the model predicts 210 
it as a negative example, therefore the prediction is correct. False Positive (FP) is a sample 211 
whose true category is a negative sample, but the model predicts it as a positive sample, 212 

80%

10%

10%

Training Set Validation set Test set
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and therefore the prediction is wrong. False Negative (FN) means that the true category 213 
of the sample is a positive example, but the model predicts it as a negative example, so the 214 
prediction is wrong [18]. 215 

Table 1. Confusion matrix. 216 

 Positive Negative 
True TP TN 
False FP FN  

IoU (Intersection over Union) is a general evaluation index in the field of computer 217 
vision, especially in tasks such as target detection and image segmentation. IoU mainly 218 
reflects the degree of overlap between the predicted bounding box and the ground truth 219 
bounding box. As shown in Figure 8, the green box is the truth bounding box, which is 220 
the box marked while labeling the data set. The red box is the predicted bounding box, 221 
which is the prediction box predicted by the trained model. IoU is the result of dividing 222 
the overlapping part of two areas by using the part of the two areas [19]. 223 

𝐼𝑜𝑈 = !"#$	&'	()#"*$+
!"#$	&'	,-.&-

                               (1) 224 

 225 
Figure 8. An example of bounding box 226 

Precision is an indicator for evaluating the performance of a classification model. It 227 
measures the proportion of items that the model correctly identifies as positive out of all 228 
items that the model identifies as positive [20]. 229 

Precision = /0
/0120

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (2)	 230 

Although precision is an important metric, it does not provide a complete view of 231 
model performance on its own. Therefore, precision is often combined with recall. 232 

Recall = 34
34156

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (3)	 233 

where mAP (mean Average Precision) is an indicator widely to evaluate model perfor- 234 
mance in computer vision tasks, especially in the fields of target detection and image re- 235 
trieval. The mAP provides a single performance metric to evaluate the overall effective- 236 
ness of the model by comprehensively considering the precision and recall of the model 237 
under different categories and different detection difficulties. By plotting the curve of Pre- 238 
cision versus Recall and calculating the area under the curve (AUC), the AP value of a 239 
single category is obtained. The mAP value is the average of the AP values of all categories. 240 
The higher the value, the better the performance of the model. The mathematical expres- 241 
sions are shown in Eq. (4) and Eq. (5). In this article, because the prediction results are 242 
divided into three classes, namely, k=3. 243 
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𝐴𝑃 = ∫ 𝑝(𝑟)𝑑𝑟7
8 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (4)	 244 

𝑚𝐴𝑃 = ∑ !4!
"
!#$
:

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (5)	 245 

where mAP@IoU represents the mAP value calculated under a specific IoU threshold. For 246 
example, mAP@0.5 means that the result is considered correct only when IoU≥0.5. 247 
mAP@0.5 is a very popular evaluation metric because it considers the recognition accu- 248 
racy and positioning accuracy of the model. mAP@[.5:.95] is also an evaluation indicator, 249 
which calculates the average of all mAP values with IoU from 0.5 to 0.95 (in steps of 0.05). 250 
This approach is more rigorous as it considers a range of different IoU thresholds, provid- 251 
ing a more comprehensive perspective on model performance. 252 

4. Results 253 

4.1. Performance of Strawberry Ripeness Detection Model 254 
Figure 9 shows the results of our model based on the validation set. In the same val- 255 

idation dataset, our model can detect most strawberries of different sizes, orientations, 256 
environments, and ripeness.  257 

 258 
Figure 9. Results of our model on the validation set 259 

We plotted the Precision-Recall (PR) curves of the two models as shown in Figure 10 260 
and Figure 11. The PR curve represents the relationship between precision and recall, 261 
where the thin line represents the PR curve of each category, the thick line represents the 262 
average PR curve of all categories. The area under the PR curve (AUC) can be employed 263 
to reflect the performance of the model. Comparing the AUC values can show the perfor- 264 
mance gap between the two models [21]. Comparing the AUC values can indicate how 265 
much the performance of the model has been improved by adding Swin Transformer. For 266 
the "ripe", the AUC increased from 0.925 to 0.933. For the "half- ripe", the AUC increased 267 
from 0.789 to 0.804. For the "unripe", the AUC increased from 0.868 to 0.882. For the sum 268 
of all, the AUC of mAP @0.5 improves from 0.861 to 0.873. It is obvious that the perfor- 269 
mance of the model with Swin Transformer is improved at all ripeness, with higher pre- 270 
cision and recall values. In short, the PR curve of our model performs well, can accurately 271 
detect the ripeness of strawberries, and is significantly improved compared to the 272 
YOLOv9 model. 273 
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 274 
Figure 10. PR curve of YOLOv9+Swin Transformer model 275 

 276 
Figure 11. PR curve of YOLOv9 model 277 

Figure 12 shows the evaluation metrics of the proposed model. The Precision and 278 
Recall of our model are both high and stable, indicating that the model performs well. 279 
mAP@0.5 is the average average accuracy with IoU threshold 0.5. mAP@[.5:.95] This 280 
shows the average accuracy calculated over multiple IoU thresholds from 0.5 to 0.95 in 281 
steps of 0.05. Figure 4.8 shows that mAP@ and mAP@[.5:.95] continue to increase, indicat- 282 
ing that the model performs well under different levels of detection stringency. Overall, 283 
the model shows improvement over time in all aspects: Bounding box prediction, object 284 
presence confidence, and classification. Precision and recall are both high. mAP is also 285 
excellent, reflecting excellent model performance. 286 

 287 
Figure 12. Plots of results of YOLOv9+Swin Transformer model 288 
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From Table 2, we analyze the performance of different versions of the YOLO model 289 
in terms of Precision, Recall and mAP. The YOLOv9+Swin Transformer model has the 290 
highest Precision, reaching 0.853. In comparison, the Precision of the original YOLOv8 291 
and YOLOv9 is slightly lower, with YOLOv9 being 0.777 and YOLOv8 being 0.774. 292 
YOLOv9+Swin Transformer reaches 0.840 in Recall, higher than the other three models. 293 
YOLOv9+Swin Transformer also has the highest mAP@0.5, reaching 0.873. On the more 294 
stringent mAP@[.5:.95], YOLOv9+Swin Transformer also showed the best performance, 295 
reaching 0.627. In summary, the YOLOv9+Swin Transformer model we proposed per- 296 
forms optimally on all major performance indicators. This further demonstrates that our 297 
method combining YOLOv9 and Swin Transformer is able to improve the performance of 298 
the strawberry detection model. 299 

Table 2. Comparison of strawberry ripeness detection models. 300 

Model Precision Recall mAP@0.5 mAP@[.5:.95] 
YOLOv9 0.777 0.800 0.861 0.610 
YOLOv8 0.774 0.749 0.823 0.552 

YOLOv8+Swin Transformer 0.815 0.831 0.861 0.613 
YOLOv9+Swin Transformer 0.853 0.840 0.873 0.627 

All in all, our strawberry ripeness detection model can accurately detect the ripeness 301 
of strawberries. All indicators of the model are very good, and our improvements to the 302 
model have proven to be very effective.  303 

4.2. Comparison of YOLOv10 modle 304 
YOLOv10 introduces a new approach to real-time target detection. Addressing the 305 

shortcomings of previous versions of YOLO in terms of post-processing and model archi- 306 
tecture, YOLOv10 achieves state-of-the-art performance while significantly reducing com- 307 
putational overhead [22]. 308 

We also run our dataset based on the YOLOv10 model. The results are shown in Ta- 309 
ble 3. 310 

Table 3. Comparison of YOLOv10 model 311 

Model Precision Recall mAP@0.5 mAP@[.5:.95] 
YOLOv9 0.777 0.800 0.861 0.610 
YOLOv10 0.817 0.789 0.871 0.620 

YOLOv9+Swin Transformer 0.853 0.840 0.873 0.627 

YOLOv10 shows improved performance compared to YOLOv9, but the combination 312 
of YOLOv9 with Swin Transformer still achieves the highest scores. This suggests that the 313 
enhancements introduced in YOLOv10 are beneficial, but the additional integration with 314 
Swin Transformer provides the best results for real-time target detection. 315 

Notably, the YOLOv10 model significantly outperforms the other two models in 316 
terms of training time. This is also in accordance with the improvements made by Wang 317 
et al. in their paper on model lightweighting. Combining YOLOv10 with Transformer is 318 
possible. The combined model might be able to balance the high efficiency of YOLOv10 319 
with the accuracy of Transformer. 320 

5. Conclusions and Future Work 321 

5.1. Analysis and Discussions 322 
In summary, the model of YOLOv9 and Swin Transformer effectively improves the 323 

accuracy and reliability of strawberry ripeness detection. Indicators such as precision, 324 
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recall, and mAP all show that the hybrid model of YOLOv9 and Swin Transformer has 325 
better detection results for strawberries of various ripeness levels. 326 

As shown in the previous sections, our experimental results show that the hybrid 327 
model of YOLOv9 and Swin Transformer performs better than the YOLOv9 model. The 328 
key factors enabling these advances include: 329 

Firstly, Swin Transformer can capture detailed and subtle features of strawberries, 330 
which greatly improves detection rates. This works particularly well in complex scenes 331 
where strawberries appear under various lighting and occlusion conditions. 332 

Secondly, the architecture of YOLOv9, especially the integration of Programmable 333 
Gradient Information (PGI) and its lightweight and powerful network structure (GE- 334 
LAN), can locate strawberries quickly and accurately within video frames. 335 

5.2. Conclusion 336 
In this research project, we successfully demonstrated the integration of YOLOv9 and 337 

Swin Transformer models to detect strawberry ripeness with high accuracy. The hybrid 338 
model achieved a mean Average Precision (mAP) at an IoU of 0.5 of 87.3%, surpassing the 339 
performance of traditional models by using YOLOv9 alone, which registered a mAP of 340 
86.1%. The Precision and Recall are better. This improvement underscores the effective- 341 
ness of combining these advanced deep learning technologies to enhance precision in ag- 342 
ricultural applications. The ability of this proposed model to accurately categorize straw- 343 
berries into unripe, half-ripe, and ripe stages can significantly aid in optimizing harvest 344 
times, thus reducing waste and increasing yield quality. 345 

5.3. Limitations 346 
While the results are promising, our research has several limitations: 347 
Firstly, though the dataset includes images of strawberries from a variety of condi- 348 

tions, they are primarily from one variety. This limitation may affect the applicability of 349 
the model to different varieties of strawberries, such as strawberries that are white when 350 
ripe. 351 

Secondly, our model has good performance. However, the performance of this pro- 352 
posed model in actual strawberry planting may be affected by external factors such as 353 
lighting and camera clarity. 354 

Finally, the strawberry dataset we have proposed is limited in size and variety, and 355 
using more datasets may further improve model performance. 356 

5.4. Future Work 357 
Our future work remains to solidify the findings of this article and address its limi- 358 

tations. 359 
Firstly, we will collect and integrate data from a wider range of climate and geo- 360 

graphic regions to improve the model's robustness and applicability in different agricul- 361 
tural settings. 362 

Secondly, we will improve the model according to different varieties of strawberries 363 
to improve the general applicability of our model to various varieties of strawberries. 364 

Thirdly, we will combine visual data with input from environmental sensors (e.g., 365 
humidity, temperature), which can improve the accuracy of maturity detection under dif- 366 
ferent environmental conditions. 367 

Finally, we will try to train a model that combines YOLOv10 and Transformer to 368 
achieve improved detection results while being more lightweight. 369 
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