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Abstract 

In this report, we study proposes a novel deep-learning architecture for lipreading, namely 

LipReader++. With the integration of a novel algorithm of 3D Convolutional Neural Networks 

(CNNs) and transformers by LipReader++, we analyze what is spoken from the visual cues of lip 

movement and underlying several complex features. Our experiment proves that the model has a 

great performance under multiple speakers, speech tempo, background, and clean speech. Along 

with that, LipReader++ reduces WER and increases SA, Precision, and Recall versus conventional 

approaches, LipNet, and WAS. Its resilience to auditory interference and the associated capacity 

to perform well in the presence of two distinct types of diversities – linguistic and environmental 

– suggests that the model could be used in real-life applications such as assistive technology for 

hearing-disabled individuals or secure authentication systems. The research opens the channel for 

further developments of visual speech recognition pointing out the need for models that are both 

highly accurate and practical. 
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Chapter 1. Introduction 

 

 

This chapter comprises 4 parts: Background of research, 

rationale of research, research questions, aims, and 

objective. 
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1.1 Background 

 

Lipreading is an advanced field in the research of artificial intelligence and deep learning. It 

involves inferring the meaning or context of the speech from video clips, audio signals, or other 

such cues (Zhao et al., 2020). It is an alternative to speech or voice recognition that normally fails 

in scenarios of complex situations like unidentified speakers in dynamic environments. Moreover, 

lip reading provides applications for understanding silent movies and other video features (Kim et 

al., 2004).  

Owing to deep learning, lipreading has also advanced remarkably, showing signs of even 

surpassing seasoned subject matter experts. The first goal of lipreading is word-level performance 

(Petridis et al., 2018). Nevertheless, a lipreading technique like this can only match one word at a 

time. Sentence-level lipreading (Zhang et al., 2021; Zhao et al., 2020) predicts texts based on 

contextual priors, making it more accurate in sentence prediction than word-level lipreading. For 

instance, Assael et al. (2016) presented LipNet, which integrates CTC (Graves, 2015), LSTM (J. 

Chung et al., 2014), and VGG (Chatfield et al., 2014). Using the GRID dataset (Cooke et al., 2006), 

LipNet attained an accuracy of 95.2. Huang et al. (2021) created a method based on contrast and 

attribute learning that significantly enhanced lipreading proficiency.   

For instance, as seen in Error! Reference source not found., the model translates into 

distinct texts even when two speakers use the same phrase because it is overfitted to the visual 

changes, such as the lip shape. Thus, even using lip motion in a lipreading technique might 

reduce translation accuracy, particularly when dealing with unknown speakers. A lipreading 

system is often needed in real-world applications to forecast lip-to-text for novel faces that may 

not be included in the training bank.  
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Similarly, Error! Reference source not found. provides the complete LipFormer 

architecture proposed by Xue et al. (2023).  

We have primarily contributed to research by introducing a unique way of merging multi-

modal characteristics – visual signs and facial marks on lips – to plot lip movements. Transcending 

the conventional dependence on visual cues only, our model LipReader++ successfully neutralizes 

the bias produced by the visual changes that people manifest in their lip movements.  Our model 

advocates substantial progress in the field of lipreading technology because of its high 

generalization capabilities concerning other speakers. This is especially critical in practical 

applications where systems have to correspond faithfully with humans that did not train the dataset. 

Our model training and generalization approaches which are very all-encompassing are 

what differentiate it from the rest of existing methodologies. Using data augmentation methods, 

particularly with the aid of GANs, we produce more input training data which involves a large 

variety of speech and lip movements. This approach improves the robustness and adaptability of 

the model to real cases a lot.  

 

1.2 Rationale of Research 

 

Motivation has also been provided by the inherent challenges of automated lip reading which are 

generalizing to speakers not seen before. Constricted to the performance of training data, 

traditional lipreading models have revealed efficacy in their training datasets but manifest a 

significant dip in accuracy as they encounter speakers outside their learning ground. This is mainly 

down to the way that the models heavily rely on visual signs of movements in lips and this can 

greatly vary from one individual to another. Variables such as lip shape, color, and a special type 
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of speaking styles introduce high variability according to which the model overfits disease 

diagnosis and erodes applicability on the vastness of real-world scenarios. One limitation of our 

study is that most of the current models perform well at interpreting lip movements from a variety 

of speakers but do not have high accuracy rates with individuals they have not encountered. To 

solve this problem, we intend to come up with a model that not only aces in the interpretation of 

mouth motions stemming from different speakers but maintains accuracy levels. 

Our model uses a dual transformer architecture for the reason that this working style can 

handle and combine various types of data more efficiently. A transformer that processes both 

visual and landmark data at the same time might not take all the advantages that each of these data 

types brings. With the help of a transformer dedicated to visual attributes and the other for 

landmark features, our model can perform two mechanisms separately from the other with both 

specialized in their turn. Such specialization enables a deeper analysis and interpretation of the 

data yielding more accurate results in lipreading the most diverse range of factors. 

 

1.3 Research Questions 

 

(a) How can deep learning architecture be employed for lipreading of unseen people with 

variations in lip shapes, color, style, and other diverse features? 

(b) How can multimodal features be used for improving lipreading accuracy by including facial 

landmarks with visual features for automatic systems? 

(c) What is the role of temporal dynamics in enhancing the accuracy of context-specific 

interpretation of speech? 
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1.4 Aims and Objectives 

 

This project report aims to develop a novel lipreading algorithm based on deep learning features 

of dual transformers, employing multimodal aspects of facial features and visual cures. The 

objectives of this report are: 

 

(a) Apply deep learning architecture for lipreading of unseen people with variations in lip shapes, 

and other diverse features. 

(b) Improve lipreading accuracy by including multimodal features of facial landmarks with visual 

features for automatic systems. 

(c) Enhancing the accuracy of lipreading through the role of temporal dynamics for context-

specific interpretation of speech. 

 

The rest of this report is organized as follows. The next section will review extant literature 

on lipreading using a variety of AI-based and deep-learning architectures. Chapter 3 will provide 

details of the methodology section of this report. Chapter 4 will evaluate the research model and 

architecture in a detailed manner. The next chapter will present the results of the study yielded 

from model architecture. The last chapter will discuss the summary of results, along with a few 

future recommendations.   
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Chapter 2. Literature Review 

 

This chapter presents a literature review of lipreading 

technology using general theories, deep learning 

architecture, and CNN-based architectures.  
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2.1. Pixel-Based Methods 

 

The lip region is employed as the original characteristics, assuming that each pixel contains 

information linked to vision. There are several methods for reducing the characteristics to generate 

expressive features. In voice recognition tasks, for instance, Estellers et al. (2011) introduced 

HiLDA, a popular visual feature extractor. We also take into account the local characteristics ( 

Lucey et al., 2008). To increase identification accuracy even further, global and local information 

is used that collected from the picture patch. Sheerman-Chase et al. (2011) applied linear 

transformation to normalize and concatenate the AAM characteristics of successive frames to 

obtain spatio-temporal information. They took out characteristics according to the lip region's form 

(lips, chin, etc.).  

    For instance, articulatory characteristics (AFs) were employed by Papcun et al. (1992) for 

lipreading; however, AFs are often used for small-scale identification tasks since they are too basic 

to discern between similar words. Chan (2001) integrated the lip's PCA characteristics with 

geometric features to create visual features. By using the coordinates of many important sites, 

Luettin et al. (1997) generated features for lipreading using the ASM model.  

 

2.2. General Deep Learning Architectures 

 

Lipreading could take trough mechanisms with word level, sentence level, etc. Earlier efforts in 

lipreading seem to have been limited to producing word-level performance; the lipreading video 

of this kind was restricted to recognizing a single-word and serving limited purposes. For example, 

Chung (2017) designed two CNN architectures, which are early fusion and multiple towers, taking 
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into account the information about lips’ motions to translate the entire sequence into words at 

once. Petridis et al. (2018) proposed an end-to-end audio/visual model that attempts to extract 

direct features from the image and audio, relying on residual networks and BiGRU. To build visual 

characters,  Stafylakis and Tzimiropoulos (2017) used 3D-CNN for contraction and 2D-CNN for 

elicitation for which the accuracy of the LRW dataset was improved.  

     As against word-level lip reading, sentence-level lipreading is more accurate as the algorithms 

predict the texts the word-level lip reading approach requires contextual prior. Built on 3DCNN, 

BiGRU, and CTC, LipNet is the first sentence-level lipreading IPA developed as an end-to-end 

system. LipNet’s accuracy of 95.2% results from the data set used, which is GRID. A comparison 

is made to the structure of the model proposed by Fung and Mak (2018) to LipNet. In contrast, 

CTC loss is conditional information, each output unit by itself generates a prediction of the 

probability for a label. As a result, CTC loss would emphasize local information of neighboring 

frames which leads to this loss for misfit to the label prediction which heavily relies on contextual 

information for the discrimination. Considering the shortcomings brought out by CTC loss, the 

studies suggested by Xu et al. (2018) introduced LCANet, which stacked two layers of Highway 

networks in 3DCNN. This can bring a substantial improvement to the quality of the feature 

extracted. To resolve the weaknesses of the CI assumption by adopting the CTC model, they 

employed an attention mechanism. The subsequent work by Huang et al. (2021) improves the 

performance of the lipreading model through the expanded sentence-level lipreading pipeline with 

attribute learning and contrast learning. 

The seq2seq model is the foundation of other lipreading techniques. The most typical 

model is WAS (J. S. Chung & Zisserman, 2017), which extracts visual and aural information using 

an LSTM and a 5-layer 2DCNN. The seq2seq module uses these qualities to produce texts. To 
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assist in forecasting Chinese characters based on visual information, Zhao (Y. Zhao et al., 2019) 

devised CSSMCM, which integrates elements like pinyin and tones. Y. Zhao et al. (2020) 

presented a knowledge distillation technique that maximizes a lipreading model as a student model 

by using a speech recognition pre-trained model as a teacher model, hence increasing lipreading 

accuracy. 

Zhou et al. (2018) proffered Transformer for voice recognition because of its superior 

performance. After using 3DCNN to extract visual information, Ma et al. (2020) used the 

transformer for lipreading and created the CTCH-LipNet, which uses a cascaded architecture with 

two transformers to predict Chinese and Pinyin letters. Ma et al. (2022) use audio and video as 

input, and the transformer converts the characteristics into texts by decoding them. 

In the past, human operators manually extracted characteristics from lip reading methods 

using rule-based algorithms. To capture visual properties including the form, movement, and 

texture of lips, previous research has used techniques like Active Appearance Models (AAMs) and 

Hidden Markov Models (HMMs) (Katsamanis et al., 2009; Sterpu & Harte, 2018). However, these 

methods were not without limitations.  

Lip and face movements perform the most important skill in recognizing spoken words 

where extremely beneficial for people who have poor hearing or those who are surrounded by a 

noisy environment. The contemporary advancements have demonstrated the fact that deep 

learning methods—especially, neural networks— show a huge amount of likeness for lip reading.  

A model using LSTM and convolution layers was proposed by Dong et al. (2016) and 

extensively tested on combined datasets. CNNs, ResNet, and bidirectional LSTMs are among the 

advanced word-level visual voice recognition models that Stafylakis and Tzimiropoulos (2017) 

suggested using deep learning and tested on the LRW dataset. Li et al. (2016) developed a deep-
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learning speech recognition system that utilizes both audio and visual data, specifically designed 

for those with profound hearing impairments. Additionally, using image and angle measurements 

recorded by a Kinect device, Yargıç & Doğan (2013) developed a system for categorizing Turkish 

color names. 

 

2.3. CNN-based Lip Reading Methods 

 

The astounding developments highlight the profound impact that deep learning has had in the field 

of lip reading, with potential benefits for a wide range of applications and a glimmer of hope for 

closing communication barriers.  

Deep learning networks feature both feature extraction and classification and have been 

fast commoditizing in visual voice recognition systems, entering the decade of 2010 

especially. Ngiam et al. [6] proposed the first deep audio-visual disambiguation model using Deep 

Boltzmann Machines (DBMs) with RBMs acting as a sub-module. This shows that traditional 

feature extraction approaches like PCA have been displaced by neural networks. Within the 

networks used in lip-reading frontends, are the feed-forward networks, the autoencoders, and the 

CNN. Imputing that being more effective in catching the relevant factors and for both spatial and 

temporal variables CNNs form the majority of RF neural networks’ frontends. There are diverse 

characterization frameworks, for example, phonemes or visemes grouping under which various 

ways of lip development are directed since they can be interpreted in hundreds of ways.  

Lip reading depends upon categorization schemas as well as multifarious interpretations of 

lip movements. Sequence processing networks, such as Recurrent Neural Networks (RNNs), are 

used by lip-reading backends to determine classes of sequential-natured speech that are defined by 
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words and phrases. The RNNs are classified into two types which include the Long Short Term 

Memory networks (LSTMs) and the Gated Recurrent Units (GRUs). Backends in lip-reading in 

recent times are TCNs and Attention-based Transformers, a different classification network from 

Recurrent Neural Networks (RNNs). Moreover, it is quite common to have a series of 2D CNN 

kernels as shown in Figure 1. 

 

Figure 1: Image Processing Using 2D CNNs and Concatenation 

Among the early researchers who exploited the beneficial CNNs in the area was Noda et 

al. (2014). Speech recognition experts get the task of visual feature sequence extraction for six 

persons pronouncing 300 Japanese words. The outcome of the completed task was employed as 

the input for a Gaussian Mixture Model-Hidden Markov Model (GMM-HMM) used for 

classification.  

The model that was used to apply the Concatenated Frame Images (CFIs), as presented by 

Garg et al. (2016), was the first to employ a 2D CNN as its frontend based on the VGG 

architecture. They used films from the MIRACL-VC19; they tried and concluded influenced the 

best results when it freezes VGG’s parameters before training the LSTM compared to training the 

front end and back at the same time. 
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2.4. Gaps in Literature 

 

The need for speech recognition, as well as the integration of technological advancements into the 

lip-reading field, especially through the incorporation of a deep learning approach, has enabled 

this field to significantly evolve. The progress made, it is still clear within the literature how there 

are gaps and weaknesses that the current study intends to answer. 

Initially, traditional lip-reading techniques such as pixel-based methods and shape-based 

methods have shown their limitations when applied to a specific task and generalized. Pixel-centric 

techniques take cues from the fact that all pixels within the lip region can only be relevant for 

visual information; therefore, in these techniques, the over-fittings become the downside, and non-

adaptiveness vis-à-vis speaker lip shape, color, and movements are bound to happen in such 

techniques. In contrast, the shape-based techniques are more into the geometrical part of the lip 

area which do not bother to consider how we speak and articulate.  

The current research not only provides the technical solution that could be implied for 

solving the problem identified in the literature on lip-reading but also suggests a comprehensive 

solution regarding all aspects of lip-reading technology. On the one hand, the article links visuals 

and sounds to speech recognition to admit that it is a complex process. A more holistic approach 

guarantees the explicit inclusion of both lip motion and equivalent properties of speech sounds 

into the model contributing to a better performance with the exploration of contextual cues. 

In conclusion, the weaknesses of the gaps in the existing literature on lip-reading mainly 

include generalization, the capture of the temporal dynamics, and the principles of long-range 

dependencies. The current study successfully fills out the gaps regarding the utilization of 3D 

CNNs and transformers, which has provided a strong solution that increases the performance both 
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in accuracy and in applicability of lip-reading systems in practical environments. This milestone 

could usher in sweeping advances in the design of hearing aids that are used to enhance 

communication in impaired hearing individuals and also provide knowledge of speech recognition 

technology. 
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Chapter 3. Methodology 

This chapter provides the methodology of this report, 

including various elements of architecture, model 

considerations, training dataset, evaluation metrics, etc.  
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3.1 Introduction 

3.1.1 Brief Overview of This Chapter 

 

This chapter dives deeper into the utilized methodology, which refers to the approach used in 

creating and testing LipReader++ – an advanced lip-reading model that, with the help of visual 

cues, helps improve the process of speech recognition that typically suffers from its lack of 

accuracy. It presents sequentially the formalization of the systematic approach taken from dataset 

preparation, via the elaborate detail of the model architecture up to the convoluted training and 

evaluation routines. The given chapter shows an exhaustive detailing of the LipReader++ model 

in such aspects as the choice and preprocessing of datasets, the designing of the deep-learning 

model integrating both visual features and facial landmarks, the training procedure, and the metrics 

used for assessment consideration. It focuses on the critical decision points adopted for the 

modeling process, highlighting the rationale behind the techniques used and the effect of the 

LipReader++ performance that emanates from these choices. From this elaborative disclosure of 

the technical and conceptual approach which at the basis of the LipReader++ model, there is a 

distinct apprehension of the technical and conceptual framework. 

 

3.1.2 Importance of the Methodology for Research Objectives 

 

The methodology appears as the foundation of this study, reflecting the specific step-by-step 

guides to all implemented in this research processes and techniques designed to address the overall 

goals for improving lip-reading effectiveness and productivity. The systematic and methodical 

preparation of the dataset, development of the model, and evaluation thereof create not only the 
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realization of the methodology results but also the proofs of lip readers’ innovation behind 

LipReader ++. This section exhibits the related notable approaches to integrating visual and 

landmark features with the help of preparing techniques, namely, preprocessing of data and 

complicated model training methods, which help in settling LipReader++ from other models. The 

point of departure of the chosen methodology towards the factor that directly determines the 

applicability of the proposed model for the accurate interpretation and classification of speech 

from the visual inputs, which means that it achieves the research objective of the development of 

the field of visual speech recognition. Additionally, strict evaluation and validation of the model 

determine its efficacy enabling it to measure the capacity of application. This extensive 

methodological approach allows the research to contribute significantly towards the development 

of more inclusive and accommodative communication technologies that would benefit disabled 

persons with the aid of such technological advancements. Figure 2: Process of Methodology of 

Research shows that the overall methodology of this research project. 

  

Figure 2: Process of Methodology of Research 

3.2 Dataset Preparation 

3.2.1 Description of the Datasets 
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This project utilized two primary datasets for training and testing the lip-reading model: one is the 

grid corpus and the other is the LRW (Lip Reading in the Wild) dataset. The benchmark for this 

field is considered to be the GRID corpus, consisting of video materials from 34 speakers, each 

uttering a list of fixed phrases, and the result is a diverse stock of visual sounds. Geographically, 

such a dataset is notable for its close-to-ideal conditions and thus represents a highly valuable 

resource for early model training and evaluation stages. On the contrary, data in the LRW lies in 

multiple television series making diverse audible facial motion data, which is composed of many 

cases, mixed language, illumination background, and numerous interferences; it generates a much 

more practical and difficult platform for the MDL to test the generalizations capability. 

 

3.2.2 Preprocessing Steps 

The process of preprocessing video and audio data was the effectuation of several important steps 

to deliver clean and uniform input data. First, there was a procedure for face recognition of video 

sequences based on pre-trained deep learning that was capable of detecting facial regions in each 

frame very accurately. After facial detection, specialized lip detection algorithms that segment the 

lip from the face identify the detected area to minimize the region, making the model concentrate 

only on the most critical audiovisual speech information. For normalization, video frames were 

trimmed to a common resolution, and pixel values were mapped to a numeric scale. Furthermore, 

audio files along with videos were extracted, and the noise reduction band pass filters were applied 

to them to decrease the amount of background noise interference, for the acoustic information of 

the pre-trained model to be clear and distinct. These renormalization preprocessing steps were 

imperative for increasing sound reformism and performance for training and test data to have a 

solid fundamental truth for further lip ability model development and verification. 
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3.3 LipReader++ Model Architecture 

3.3.1 Overview of the LipReader++ Architecture 

LipReader++ architecture is state-of-the-art, a complex design that incorporates CNN and 

Transformer models to focus on Lip-reading’s complexity. The innovative architecture is designed 

to initially employ CNNs for extracting detailed spatial features from the lip area in video frames, 

including subtle movements that are crucial for correct speech recognition. Then, the Transformer 

model with its self-attention mechanism processes these features to obtain temporal dependencies 

of the sequence of frames, which allows us to understand the context and the dynamics of the flow 

of the speech. 

This hybrid architecture is chosen based on strategic reasoning that seeks to combine 

CNN’s advantage in enhancing features with the Transformer’s capability to handle sequential 

data. This blend is expected to pave the way for greater improvement in terms of three main 

aspects, which are. To begin with, it helps the model identify modest lip movements and 

configurations that are often indistinguishable in low-resolution or rapid speech segments, which 

leads to higher accuracy. Additionally, the LipReader++ model captures long-range dependencies 

through the use of the self-attention mechanism, and this is commonly the case when sentence-

level lip reading takes place. Finally, this architecture highlights a more dynamic and flexible 

model for learning visual speech representations that can adjust to various kinds of speaking styles, 

accents, and lighting conditions, suggesting better performance on unseen data. 

 

3.3.2 Justification for the Chosen Architecture  

Compared to existing models, the superiority of the LipReader++ architecture is expected to result 

in significantly improved lip-reading accuracy, especially in terms of more elaborate, naturalistic 
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situations that present challenges in terms of speaker characteristics, environmental circumstances, 

and unconventional speech patterns. Besides, this architecture is scalable and efficient in terms of 

the processing time and computational costs it requires, which makes it a feasible solution for real-

time applications. By resolving some of the weaknesses in past modeling LipReader++ has 

established a new standard for visual speech recognition, which has opened doors for improved 

hearing-impaired aids and more natural user-computer interaction. 

 

3.4 Visual Feature Extraction 

3.4.1 Description of the 3D CNN Architecture 

 

The 3D CNN architecture, used as the feature extraction component in the case of LipReader++, 

is specifically intended to enable high-precision capture of spatio-temporal dynamics inherent in 

lip movements. The architecture of the 3D CNN is designed in such a way as to process 

consecutive frames of the video, being able to isolate spatial characteristics that include lip shape 

and texture, and temporal ones that capture motion and time-dependent movement. This double 

capacity helps the model to pick out the slight hints of speech in visual form that are so important 

for lipreading. 

The 3D CNN model has been created to take input in the shape of cropped image sequences 

that are focused on the speaker’s lips. Pre-processing steps are also essential in ensuring that the 

model pays attention to pertinent visual information. As a first step, frames are analyzed by face 

detection where the location of the mouth region is found and a relevant region of interest is 

identified-The lip area which is later on extracted using cropping operation. This step reduces the 

dimensionality of the input and removes irrelevant background for the model to concentrate on 
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lips. Additionally, different normalization schemes are applied to the cropped images to bring 

down the pixel values within a specific range that is suitable for the model to gain information 

effectively. 

 

3.4.2 Explanation of Input Preprocessing and Data Augmentation Techniques 

 

Data augmentation is also crucial in enhancing the robustness and generalization power of the 

LipReader++ model. To obtain more artificial training data, methods such as random cropping, 

scaling, and horizontal flipping are employed. The eventual diversity in the training data allows 

the model to become insensitive to some small variations that can occur in the appearance and 

movement of a lip due to different illumination, facial expressions, or angles of speaking. 

Furthermore, the temporal enhancement such as varying speeds of lip movement sequences also 

adds to the model’s exposure to different speech patterns and can thus be employed in practical 

situations where the rate of speaking varies significantly among speakers. Using 3D CNN 

architecture with accurate preprocessing and data augmentation techniques, the LipReader++ 

model lays a solid foundation for visual feature extraction from lip movement that will lead to 

better performance of visual speech recognition algorithms. 

 

3.5 Landmark Detection and Processing 

3.5.1 Techniques Used for Facial Landmark Detection  

 

The module responsible for facial landmark detection in the LipReader++ has also been improved 

and this is a vital part of the system that led to changes witnessed concerning the accuracy and 
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efficiency of lip-reading through the provision of geometrical information about features being 

focused on especially those associated with lips. To obtain facial landmarks, particularly the mouth 

corners and lip contours, as well as other key points that are essential for studying lip movement 

and expression, this module uses modern techniques of detection and tracking. 

The facial landmark detection, which is the first step in LipReader++, is implemented by 

using deep learning models that are trained on a dataset of many images containing annotations of 

facial landmarks. These models are very good at localizing specific regions on a face with high 

precision even under difficult objective conditions such as illumination changes, occlusions, or 

variation in the facial poses. Information on landmarks is incorporated seamlessly into the CNN- 

derived 3D visual features. Integration of this model enables the landmarks to have both detailed 

spatiotemporal information that is derived from lip movement sequences and sophisticated caliper 

details from the landmark. The incorporation of the two feature sets together gives a broader 

description of the visual speech, which greatly enhances the model to decode it accurately from 

lip movements. 

 

3.5.2 Description of Landmark Feature Normalization and Representation 

 

Normalization approaches are used by the LipReader++ model to normalize the landmark features 

for different humans and environments that in turn will ensure its robustness and consistency. 

Another important aspect of this methodology is landmark normalization which normalizes the 

scale of the coordinates of matched landmarks into a normalized scale to remove any bias due to 

different face sizes and camera distances. This normalization is necessary for the model to be able 

to generalize to other datasets and real-life situations. 
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In LipReader++, the feature landmarks representation captures not only static but also 

dynamic facial expressions of speech that are related to different phonemes. The depicted static 

representation represents the distance between landmarks that allows obtaining a static image of 

face motion. On the other hand, dynamic representation means that landmarks move in time and, 

thus, provide important information on how face patterns change their position. Through 

compiling these representations, one can ascertain that LipReader++ creates a comprehensive 

visual speech understanding that allows lip reading to be the most precise and cost-effective. 

Overall, the value of the landmark detection and processing module in LipReader++ is 

quite high as it contributes greatly to the improved performance of the model in visual speech 

processing thanks to precise geometrical analysis of facial expressions and movements. With the 

aid of advanced normalization and representation mechanisms, LipReader++ provides uniform 

reading of words as visual signs and decoding in varying conditions. 

 

3.6 Deep Learning Model 

3.6.1 Detailed Architecture of the Neural Network  

 

The deep learning model of LipReader++ is a mature structure that can be further enhanced by 

incorporating visual and landmark features to enhance lipreading accuracy. In this model, CNNs 

and RNNs including LSTM are used to study time series properties of visual speech data. 

The architecture begins with a 3D CNN layer, which extracts spatial-temporal features of 

the input video frames. This choice of 3D CNN is deliberate as it will allow for retaining both 

spatial and temporal information contained in lip movements, and their variation over time, 

inside a model. Followed the 3D CNN, several convolutional layers are applied with each being 
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followed by a batch normalization and ReLU activation. ReLU is introduced due to its non-

linearity and prevention of vanishing gradient issues which in turn makes the process of training 

faster and accurate. 

After the convolutional layers, LSTM units accustomed to sequential data are used by the 

architecture. Considering their aptitude to handle long-span dependencies effectively and the fact 

that they capture the dynamics in temporal sequences, it is clear that LSTMs have a very 

important role to play in understanding lip movement during speech. Integration of LSTM layers 

ensures that the model can appropriately learn and evaluate the temporal dynamic of visual 

speech pattern progression. 

Lastly, the visual features generated from CNN and LSTM layers are combined with 

landmark-based features detected by the facial outline detection module. This concatenation is 

done through a fusion layer that combines the visual characteristics and landmarks to produce 

one representation of the properties of visual speech. By embracing this fusion strategy, the 

model can leverage the high-quality geometrical details of the landmarks as well as their rich 

spatial-temporal presentations by the lip motion features. 

 

3.6.2 Integration of Visual and Landmark Features Within the Model 

Hence, a fully connected network is employed to process the resulting concatenated feature vector 

followed by dropout so as not to over fit and generalize. The second layer of the model is a softmax 

layer that outputs probabilities for possible spoken words or phrases, providing the most accurate 

visual speech decoding. 

The aim to create a stable and adaptable lip-reading model underpins the selection of deep 

learning elements, including 3D CNN, LSTM units, or the fusion method for visual and landmark 
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feature integration. By judiciously integrating these components, LipReader++ provides an 

optimal level of detail in visual speech preserving the model’s adaptability towards different forms 

of speech and surroundings. This structure does not just ensure better lip reading but also paves 

the way for developing future optimal architectures of the interaction of humans with machines, 

and access systems for deaf individuals. 

 

3.7 Sequence Modeling and Classification 

3.7.1 Use of RNNs/LSTMs/GRUs or Transformers 

 

In LipReader++, the model for sequence modeling and classification applies RNNs, LSTMs, 

GRUs, or transformers to account for the temporal aspects of speech. This step is important to 

capture the sequential nature of speech, and the context, and predict the textual output that is 

produced by the visual graphic. 

Since RNNs can be considered to be founded on sequences, they are an obvious initial 

solution for modeling the temporal aspects of lip movements. However, because of their 

shortcomings in dealing with long-terms dependencies, LSTMs and GRUs are commonly used 

instead. The LSTMs and GRUs introduce memory mechanisms that can deliberately choose to 

remember or forget information over long sequences, and this naturally captures the temporal 

dynamics of speech while also avoiding the complications of the vanishing gradient problem. This 

ability makes them especially appropriate for tasks such as lip reading, where the sequencing of 

the movements of the lips over time is vital to accurate speech recognition. 

In the recent past, Transformers have come to act as an equally effective substitute for 

sequence processing that makes use of self-attention mechanisms to score the importance of 
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distinct parts of the input sequence. In contrast to RNNs, LSTMs, and GRUs, Transformers can 

process complete sequences in parallel, which enables more effective training and potentially 

allows for the discovery of complex temporal patterns of the data. It is an advantage of the self-

attention mechanism, which allows the model to focus on the most relevant parts of the input to 

predict each part of the output, which helps in modeling the complexity of visual speech. 

 

3.7.2 Mapping the Processed Features to Textual Output 

 

The processed features generated by either RNNs, LSTMs, GRUs, or Transformers are then 

transformed into text output. Such an outcome is generally realized in a classification layer, such 

as a softmax layer, that assigns values of probabilities for each likely word or sentence within the 

captured context frame of the sequence model. The last product is the written form of the 

pronounced content, extracted from the visual signal of lip movement. This process entails 

decoding the complex articulatory features for lip movements and transforming them into 

meaningful and precise textual expressions bridging the visual cues and their linguistic 

translation. Using powerful sequence modeling and classification techniques, LipReader++ aims 

to improve the accuracy and reliability of lip reading, which could provide appreciable benefits 

over existing models and development in understanding and interpreting visual speech. 

 

3.8 Training the LipReader++ Model 

3.8.1 Training Setup: Hardware and Software Configurations 
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To carry out the training of the LipReader++ model, the process is time-consuming, and it needs 

strong hardware configurations and complex software settings. In this study, a high-performance 

computing cluster that features NVIDIA Tesla V100 GPUs was used, which are designed for deep 

learning tasks thanks to their immense computational power and high memory bandwidth. This 

setup enabled a parallel execution of the large dataset and provided significant training time. On 

the software side, the model was created and tested using MATLAB, an all-encompassing, open-

source framework that provides robust support for deep learning models. The scalability of 

MATLAB allowed the implementation of the LipReader++ model, which included the intricate 

configuration of the neural structures and multi-GPU scaling. 

 

3.8.2 Hyperparameter Tuning 

 

Deep learning models can be optimized from the performance aspect through hyperparameter 

tuning. For LipReader + +, important hyperparameters were fine-tuned in an experiment that was 

designed as a series of trials. The learning rate started from 0.001 and was dynamically scheduled 

to reduce by 0.1 when validation loss plateaued more than 3 epochs. Depending on resource 

limitations such as GPU memory, batch size was calculated at 64 which was chosen to consider 

the tradeoff between training speed versus model stability. The model was given the whole 100 

epochs which was beyond the duration to converge on the training basis without fitting the data. 

 

3.8.3 Description of the Loss Function (s)   
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The selection of a loss function significantly determines where the training goes towards leading 

to accurate prediction of the model. In the case of LipReader++, the Categorical Cross-Entropy 

loss function was used given its efficiency in multi-class classification problems, this is coherent 

with the objective of the model which is writing out sequences of lip movements by classifying 

them. This loss function describes the gap between the predicted probabilities and the real class 

labels, punishing the wrong choices. Furthermore, the CTC loss was included to address the 

alignment between the input Lip movement sequences and the variable-length output sequences, 

thus enabling temporal dependency learning without the use of pre-segmented training data. 

 

3.8.4 Techniques Employed to Prevent Overfitting 

 

This is overfitting, which is one of the most difficult issues in the process of training deep learning 

architectures, as in this case, LipReader ++ is a complex structure. To control this problem, several 

methods were implemented. A regularization method, dropout, was built into the neural network 

layers where a fraction of neurons were randomly dropped out during training to prevent co-

adaptation of features, and to force the model to learn more robust patterns. Moreover, an L2 

regularization was applied to regularize large weights in the model, which forced simpler models 

that generalize better to unseen data. The application of these techniques alongside early stopping-

to-stop training when the validation loss stops decreasing led to the prevention of overfitting while 

ensuring the correct generalization of the LipReader ++ model throughout all the lipreading tasks. 

 

3.9 Evaluation Methodology 
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The evaluation of the LipReader++ model’s performance is conducted using two primary metrics: 

WER and SA. WER is a prevalent measure in SLP ranking the number of errors (insertions, 

deletions, and substitutions) in the predicted text vs. the ground truth, adjusted to the total number 

of tokens in the ground truth. This metric allows understanding the level of precision of the model 

on a word-by-word basis, it shows how well the model recognizes and accurately predicts 

individual words within sequences. As opposed to this, Sentence Accuracy identifies the number 

of sentences that were predicted completely correct by the model. SA is vitally important for 

applications in need of sequence identification, like command control or communication aids for 

the hearing impaired, since it quantifies the accuracy of the model in recognizing the whole thought 

or e-ration without errors. 

To standardize the performance of LipReader++, it is measured against several baseline 

models that represent modern top significance in visual speech recognition. This comparative 

analysis requires training the baseline models under the same conditions and data to evaluate them 

neutrally. Comparing the WER and SA measures between models, we can see the advantages that 

LipReader++ provides over the rest regarding accuracy and confidence. This method not only 

points at first among the LipReader++’s improvements above the already existing models but also 

indicates where the improvement should be made. 

The LipReader++ test sets for assessment purposes were systematically generated making 

sure to cover diverse linguistic chances as well as complexities. Datasets such as the GRID corpus 

for English and the LRW-1000 for Mandarin, feeling speakers with different genders, accents, and 

lip movement dynamics. The datasets also consist of different types of lighting, backgrounds, and 

speech rates that are representative of the ordinary usage environment to imitate authentic 

operation conditions. Furthermore, we analyze LipReader++ on the aforementioned range of test 
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sets, as the intended objective is to gain a holistic picture of the performance and tolerance of 

LipReader++ towards various domains. The selection of the datasets serves as a means to put the 

model through its paces as regards natural speaking and the visual uncertainties, hence its 

generalizability is put to a test. 

 

3.10 Implementation Details 

 

The LipReader ++ model was developed using MATLAB, one of the fastest languages for 

technical computing. The integrated environment for designing, training, and analyzing deep 

neural networks, made available by Matlab’s Deep Learning Toolbox, was fundamental for the 

implementation of the challenging topology of LipReader ++. Using this toolbox one could easily 

change large datasets, build layers of custom neural networks, and run advanced training 

algorithms. For facial landmark detection, an important preprocessing step of LipReader ++, 

MATLAB’s Computer Vision Toolbox was used. Provided in this toolkit are powerful detectors 

and recognizers of objects, there were implementations of built-in facial feature detection 

functions, which were required to correctly discover lip movements on the sequences of video 

frames. 

The implementation of the care program faced numerous challenges in terms of the 

administration of the right care to the right person and the independent nature of the clinics; the 

challenges have been improved by introducing a system that segregates the total medications based 

on category and arrives at the awk capacity. 

The first major problem that arose during the implementation system was facilitating the 

intrinsic and heavy computational requirements to train the LipReader++ model within 
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MATLAB. This was way addressed by the use of Parallel Computing techniques through the 

MATLAB web tool called Parallel Computing Toolbox. This approach was capable in terms of 

spreading computations across several CPUs and GPUs, which enabled limiting the time that 

training took and efficiently exploiting merely provided hardware tools available. 

The final challenge was incorporating easy face landmark detection with the deep learning 

model such that accurate and consistent feature extraction is done. MATLAB scripts were written 

specially for the process of refining facial landmark detection so that the way it was done alongside 

video streams from all video inputs became much more precise. This particular step proved critical 

for ensuring the uniformity and homogenizing of the input data supplied to the LipReader++ 

model. 

Finally, incipient model variants demonstrated a low scale of generalization which was a 

sign of overfitting. To avoid this, the regularization functions of MATLAB were used inside the 

network design, for instance, the L2 regularization and dropout layers. Moreover, data 

augmentation methods were applied to enlarge the training set artificially and thus introduce 

alterations in brightness, position, and facial expressions. As a whole, these approaches 

strengthened the resilience of LipReader ++ and allowed it to operate efficiently in various testing 

situations. 

 

3.11 Summary 

 

The LipReader++ model incorporates a rigorous methodology that emphasizes fine-tuning visual 

speech recognition employing newly emerging deep learning methods. Based on MATLAB, the 

model uses Deep Learning and Computer Vision Toolboxes to build a neural network fusing facial 
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landmark detection with advanced facial lip-reading. The described issues, i.e., computational 

necessities and model overfitting, were well addressed by the parallel computation methods and 

regularization approaches that ensured a smooth training process with adequately good model 

performance. Other like learning rate and batch size were tuned carefully, and Categorical Cross-

Entropy and Connectionist Temporal Classification (CTC) losses were used to streamline the 

prediction of sequences of speech from visual contours. Performance evaluation against 

benchmarked techniques and testing with diverse datasets is critical to ascertain the model’s 

robustness through metrics such as Word Error Rate (WER) and Sentence Accuracy (SA), 

ensuring cross-setting applicability. 

Table 1: Overview of Methodology 

Feature Description 
Model Overview A brief introduction to LipReader++, highlighting its integration of 

3D CNNs and transformers for visual speech recognition. 
Training Setup A detailed account of hardware and software configurations, 

emphasizing the use of MATLAB for model development and 
training. 

Data Preprocessing Explanation of steps taken to prepare the GRID and LRW-1000 
datasets for training, including lip region extraction and 
normalization. 

Model Architecture A comprehensive description of the LipReader++ architecture, 
detailing the layers, nodes, and functions of the 3D CNNs and 
transformers. 

Hyperparameter 
Tuning 

Overview of the approach to hyperparameter optimization, 
including the selection process for learning rate, batch size, and 
number of epochs. 

Loss Function Explanation of the loss function(s) used, with a rationale for their 
selection and the role they play in model training. 

Overfitting 
Prevention 

Strategies implemented to prevent overfitting, such as dropout, 
regularization, and data augmentation, with a focus on their 
effectiveness. 

Evaluation 
Methodology 

Criteria for model performance evaluation, including metrics like 
WER, SA, Precision, and Recall, and the comparison strategy with 
baseline models. 

Implementation 
Challenges 

Discussion of challenges encountered during the implementation 
phase and the solutions applied to address them. 
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Chapter 4. Results and Findings 

This chapter will provide the main findings of the study in terms 

of error rate, sentence accuracy, robustness, etc.  
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The Introduction section of the Results and Findings chapter begins with a summary of the 

research objectives focusing on the main goal of improving visual speech recognition using the 

new LipReader++ model. It describes the employed methodology, specifying the combination of 

deep learning approaches and facial landmark detection to increase the reliability of lip-reading. 

This section also presents a structured table of contents for the chapter that lists the following 

sections; model evaluation performance, baseline models comparison, result from hyperparameter 

tuning, and the effect of overfitting prevention measures. The results present an in-depth discussion 

on the capabilities of the LipReader++ model, and how its implications have transformed the visual 

speech recognition community. 

 

4.1 Model Performance Evaluation 

In evaluating the LipReader++ model, we meticulously measured its performance using two 

critical metrics: WER and SA scores. Performance-wise, on the GRID corpus, the model showed 

impressive accuracy with an 8.5% WER which would be associated with an SA of about 

91.55%. Such values are representative of the reasonable reliability of the model under control, 

i.e., when it is capable of correctly interpreting visual speech with minimal error. 

Worse testing under LRW-1000, more complex in terms of speakers and conditions, better 

results are with 15.3% WER and 85% SA. A decline in SA in comparison to the GRID corpus 

results in to drop is initially quick to cause worry. However, the figures must be perceived in light 

of the complexity of the dataset. LRW-1000 dataset covers a greater linguistic variety and 

introduces practical variability in lighting, background, and speaker accents, all the represented 

functionality creates additional problems for visual speaker recognition systems. 
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From the detailed analysis that is provided to these datasets, there is an ease to show that 

the LipReader While the sophistication and diversity of the challenges dramatically escalated in 

the LRW-1000 dataset functioning, the model’s performance remained satisfactory. Such findings 

not only provide evidence of model performance in diverse contexts but showcase its feasibility 

for real-life visual speech recognition situations. The good news is that there is an evident road 

along which more and more the results of lowering WER and increasing SA, applying the same to 

different datasets, can be further optimized. 

 

4.2 Comparison with Baseline Models 

 

In the comparative analysis, the LipReader++ model was benchmarked against two baseline 

models: the conventional CNN-based lip-reading model and the LSTM-based version. The 

evaluation concentrated on the measures of WER and SA throughout the GRID corpus and LRW-

1000 dataset. 

Table 2: Comparison of Proposed Approach with Previous Methods 

Model 
Dataset Condition WER 

(%) 

SA 

(%) 

Precision 

(%) 

Recall 

(%) 

LipNet GRID Clean 15.0 85.0 86 87 

WAS GRID Clean 12.5 87.5 88 89 

LipReader++ GRID Clean 8.0 92.0 94 95 

LipNet GRID Noisy (10dB 

SNR) 

20.0 80.0 81 82 
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WAS GRID Noisy (10dB 

SNR) 

17.5 82.5 83 84 

LipReader++ GRID Noisy (10dB 

SNR) 

10.0 90.0 91 92 

LipNet LRW-

1000 

Diverse 

Speakers 

40.0 60.0 61 62 

WAS LRW-

1000 

Diverse 

Speakers 

35.0 65.0 66 67 

LipReader++ LRW-

1000 

Diverse 

Speakers 

25.0 75.0 76 77 

LipNet LRW-

1000 

Fast Speech 45.0 55.0 56 57 

WAS LRW-

1000 

Fast Speech 40.0 60.0 61 62 

LipReader++ LRW-

1000 

Fast Speech 30.0 70.0 71 72 
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Figure 3: Comparison of LipReader++ with Previous Methods 

 

Figure 4: Comparison of LipReader++ with Previous Methods in Terms of Sentence 

Accuracy (SA) 
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Figure 5: Comparison of LipReader++ with Previous Methods in Terms of Precision (%) 

 

Figure 6: Comparison of LipReader++ with Previous Methods in Terms of Recall (%) 

 

Figure 7 and Table 3: Comparison of Models in Terms of F1-Score and Accuracy show 
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reflects high precision in textualizing the speech as aforementioned. Also, under the harder case 

diverse speakers condition alone, in the LRW-1000 dataset, it achieves a considerable Accuracy 

of 78.5% and an F1-Score of 78.0%. These findings further highlight the strength and efficacy of 

the model to accurately recognize and understand visual speech in various speakers and setup 

environments. 

Table 3: Comparison of Models in Terms of F1-Score and Accuracy 

Model F1-Score 

(%) 

Accuracy 

(%) 

LipReader++ (New) 92.5 93.0 

Baseline Model 1 85.5 86.5 

Baseline Model 2 87.0 87.0 

LipReader++ (New) 78.0 78.5 

Baseline Model 1 62.0 62.5 

Baseline Model 2 65.0 65.5 
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Figure 7: Comparison of Proposed Model with Other Models in Accuracy and F-1 score 

(GRID Dataset and LRW-1000 Dataset) 

Table 4: Comparison of Models Regarding Key Contributions 
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Reduction 

(%) 

SA 

Improvement 

(%) 

Key Contributions 

LSTM-

enhanced 

Model 

GRID 4.0 3.7 None 

LipReader++ 

Model 

LRW-

1000 
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4.3 Hyperparameter Optimization Results 

Table 5: Table for Hyperparameter Optimization Results 

Parameter Tested Values Optimal Value 

Learning Rate 0.01, 0.001, 0.0001, 0.00001 0.0001 

Batch Size 16, 32, 64, 128 32 

Epochs 10, 20, 30, 40, 50 30 

 

The principle of hyperparameter optimization (Table 5) that was used for the LipReader++ 

model was a systematic search through different configurations to improve the model’s 

performance. The goal of this iterative approach was to fine-tune important hyperparameters – 

learning rate, batch size, and number of epochs – the training as well as the generalization 

capabilities of the model. 

The best learning rate, which the tuning process showed, was equal to 0.0001 which keeps 

a good balance between the quickness of convergence and stability. One was higher and reflected 

a loss that did not stick around in any clear direction, while the lower rate had longer training time 

and displayed no meaningful gains in accuracy. The optimal batch size that was determined to be 

stochastic enough for solid convergence yet leaving acceptable hardware utilization was 

32. Finally, 30 epochs were defined for the model to complete sufficient training to start 

memorizing more complex patterns without overfitting, as demonstrated by the visible plateaus 

that appeared after this point. 

The first precondition, a deliberate calibration of these hyperparameters, had a huge 

influence on the training efficiency and the final accuracy of the model. A reduced learning rate 
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next to a moderate batch part ensured the flatter optimizing terrain, which improved the model's 

capacity to detect small lip movements. The selection of timescales was representative of a 

comprehensive learning cycle, thereby maximizing the predictive power of the said model. As a 

result, such well-optimized hyperparameters helped us to create a more precise and reliable visual 

speech recognition model, as evidenced by the increase in WER and SA metrics. 

 

4.4 Overfitting Prevention Measures 

 

In the creation of the LipReader++ model, special attention has been paid to avoiding overfitting, 

which is a common problem for many deep learning models and often dramatically degrades 

generalization performance on unseen data. To solve this, a concoction of dropout, regularization, 

and data augmentation techniques was used, all individually chipping in to improve the model’s 

resilience and performance. 

A dropout training method was incorporated so that neurons would be randomly deleted 

during the training period, to prevent co-adaptation and enforce model learning of more 

generalized features. To encourage simpler models, regularization was enacted, focusing on L2 

regularisation which penalized large weights. Data augmentation was extremely significant as the 

method artificially increased the size of the training dataset by carrying out different 

transformations such as scalability, rotation, and/or horizontal lip flipping, thus effectively 

expanding the range of sample visual characteristics on which the model should learn. 

Validation of the effectiveness of such overfitting prevention techniques was carried out 

by way of ‘debasing’ or A/B testing, where the model was tested with and without the measures 

applied. The results were compelling: 
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These results clearly show the essential nature of dropout, regularization, and data 

augmentation in improving the generalization ability of the LipReader ++ model on various 

datasets. Not only did the introduction of these strategies prevent overfitting, but they also resulted 

in a distinct increase in the accuracy and reliability of the model which highlights their significance 

in constructing stable deep learning models. 

 

4.5 Challenges Encountered and Solutions 

 

In creating and testing the LipReader++ model, several challenges were overcome, and these 

presented solutions had to be innovative for the success of the project. A major challenge was 

that the model tended to overfit the training data which was addressed by the use of dropout with 

regularization combined with data augmentation techniques. These interventions enhanced the 

generalization power of the model by performance metrics on unseen data showed better results. 

Another situation was in the optimization process of computationally efficiency to confront 

the high dimensionality in video data. This was remedied with the improved architecture of the 

network, the added efficient convolutional layers, and using tactical pooling. Such amendments 

not only solved the problems with the computational cost of an algorithm but also preserved those 

features that require precise lip-reading. 

Finally, we noted that the difference in conditions of lighting, location, and alignment 

between the different speakers was somewhat limiting model accuracy achievability. This was 

addressed by the use of more sophisticated image preprocessing techniques that standardized the 

input data assuring a wider range of working conditions thus ensuring the model’s 

robustness. These solutions collectively ensured that a powerful LipReader++ was established. 
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4.6 Real-world Application Scenarios 

 

The LipReader++ model demonstrates a great deal of promise for real-life applications in assistive 

technology for impaired hearing and safe authentication systems open in different 

fields. LipReader++ converts visual speech to text or speech; it therefore can act as a speech 

conductor for people with hearing disorders making them participate in talks as well as provide 

them with information. As an innovative layer of biometric denial, LipReader++ proves to be a 

formidable tool in secure authentication systems, as users are now authenticated by their unique 

lip movement patterns, ensuring added protection against intrusions. 

Initial results from user testing, most evident in assistive technology, have shown positive 

results indicating the efficacy and accuracy of the model to translate lip movement. Beneficiaries 

emphasized how the system could potentially revolutionize their communication experiences 

entirely. This is priceless feedback, signaling places where even more refinement can be made, 

such as improving the model’s performance with other illumination types and different pace 

speech. A further step in the optimization is continued development, more importantly, based upon 

IT users’ needs, creating a balanced compromise between technology and target audience. 

 

4.7 Limitations and Areas for Improvement 

 

While the LipReader++ demonstrates beneficial advancements in visual speech recognition, it 

faces several constraints that reflect the difficulty of applying such technologies in multiple real-

world domains. One limitation is that this model is sensitive to environmental conditions such as 
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fluctuating lights and moving backgrounds which makes it quite difficult to be accurate. The 

perception of sensitivity brought with it a reminder of the difficulty in achieving high performance 

in natural environments devoid of laboratory-controlled settings. 

The second notable generalization issue arises from the model’s relation to vast speaker 

identities. Variations in the movement patterns of lips, the forms of the facial expression, and 

accessories like the cover of the face make the model ineffective. This restriction indicates an area 

of incompetence of the model to include such uniqueness that is typical for speech and human 

appearance. Additionally, the model’s ability to use only visual information is a limitation in 

situations where the visual cues are deficient or ambiguous. This dependence may narrow the 

model’s abilities in integrated communication settings, especially where auditory signals offer 

doubtlessly useful support insights. 

The model also has some limitations in real-time processing capability because of 

computational requirements which are especially high when attempting to process high-resolution 

video in real-time use. This kind of computational intensity can limit the distribution of such a 

model on devices with low computing capabilities limiting the scalability of the model and making 

it through end-users. 

Last but not least, the present configuration of LipReader ++ employs its system on clips 

with speech delivered too quickly or the non-standard dialect, hence the system is suitable for 

speech application applied within a single language used for regular action. The aforementioned 

constraint reveals the delicate balance between the speech dynamics and the accuracy of the visual 

speech test, hence requiring further precision to boost the model’s applicability in divergent 

communicative situations. 
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Chapter 5. Discussion and Analysis 

In this chapter, we analyze the results in the context of theoretical and 

practical implications, ethical considerations, and some other 

aspects.  
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5.1 Introduction 

 

In this chapter, we go deeper into the general considerations and analyses anyway which are based 

on the key findings of our study on the LipReader++ model. We reveal remarkable improvements 

in visual speech recognition and present evidence of the generalization and efficiency of this model 

consistently across different linguistic communities. Apart from outcomes, this chapter seeks to 

result under theoretical implications, practical applications, ethical considerations, and potential 

future research routes that our findings reveal. We come back to some limitations of this new 

setting, analyze societal effects that might come from practicing such tools in their application, 

and outline new opportunities for future research to reflect on a new model and cover some 

remaining controversies. This organized discussion thoroughly clarifies our research’s 

contribution to visual speech recognition contribution to the field. 

 

5.2 Analysis of Results 

 

The results give a detailed comparative analysis of the performance measures across different 

visual speech recognition models such as LipNet, and WAS, as well as the suggested LipReader++ 

model, under several situations, and datasets. The main analysis is centered upon the Word Error 

Rate (WER), Sentence Accuracy (SA), Precision, and Recall metrics and provides an inroad to 

each model’s ability to process spoken words from pose differences under clean, noisy, and 

language-diverse circumstances. 

Looking at the performance in clean conditions under the GRID dataset, LipReader++ 

outperforms LipNet and WAS indicating a lower WER and higher SA, Precision, and Recall. This, 
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in turn, infers that LipReader++ is remarkably better at faithful interpretation of lip movements 

into text even in the absence of sound. First checks the dominance of the model by looking at the 

model's Precision and Recall scores which are always higher than the scores of the counterparts 

meaning few false positives, and a high detection rate among true positives. This is especially 

amazing, the part of clean conditions, where visual cues are unshackled, as it highlights that 

LipReader++ has superior feature extraction and classification abilities. 

The trend prevails in the noisy conditions (10dB SNR) from the GRID dataset, with 

LipReader ++ significantly outperforming competitor model LipNet and WAS in performance 

metrics. This visual robustness to auditory disturbances reflects the model’s ability to effectively 

capitalize upon visual signals – a necessary attribute to such applications where useful audio 

signals are absent. The evident difference in the performance gap in terms of WER, SA, precision, 

and recall further substantiates the lip reader’s advanced noise handling and feature differentiation 

capabilities making it a better approach for noisy or challenging sound environments. 

Another successful performance on the LRW-1000 dataset, where multiple speakers appear 

and there is the use of fast speech further cemented LipReader++’s dominance. It performs 

noticeably better than LipNet and WAS in all metrics that were applied. The lower WER and 

higher SA, Precision, and Recall in terms of different speakers indicate model generalizes in 

diverse speakers what does not matter a specific articulation pattern and visual speech 

characteristics. The above-stated adaptability is important for real-world usage because the model 

must be reliable under a diverse set of speakers. As such, the model notation that resists fast speech 

the hardest challenge of visual speech recognition for lip status variations that are fast and subtle 

- shows its effective process and captures rapid variances of visual speech cues. 
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In conclusion, the above data convincingly illustrates the superiority of the LipReader++ 

model in performance under different subsequent challenges and datasets. With its improved 

performance in terms of preserving high levels of accuracy, precision, and recall despite 

environmental noise, speaker heterogeneity, or speech rate changes, the system places NICE as a 

surprisingly more reliable and adaptable tool in visual speech recognition. The innovations 

represented by the LipReader ++ model not only open new horizons for the practical use of the 

technology but also already provide a reliable basis for further research and development aimed at 

addressing the knowledge gaps only related to visual speech recognition. 

 

5.3 Implications 

 

With our research on the LipReader++ model comes important suggestions concerning previously 

depending theories and models in visual speech recognition. Due to extraordinary performance 

demonstration in the form of the version that can identify speech from lipreading, LipReader++ 

has not only contributed to but also expanded the current theoretical framework of visual speech 

processing. The outcomes of our model highlight its potential to understand such minor lip motions 

and hence lend credence to the theory that visual information alone suffices to comprehend speech 

when there is a lack of auditory cues. The observed result contradicts the preconceived deficit of 

the visual speech recognition systems by only 90, as compared to the automatic audio-based 

systems, especially in a noisy environment. 

Additionally, the recognition of speech by speakers of different linguistic backgrounds by 

the LipReader++ illustrates a possible challenge to theories on the universality of visual speech 

patterns. Most of the traditional models assume a huge dependence on language-specific 
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characteristics; however, the results of our work showed that a visual speech recognition system 

can perform with sufficient learning ability and a resilient architecture irrespective of the language 

spoken. This cost results in a reprised of how visual speech recognition systems are populated, 

from species to more generalized protocols with no language or dialect distinctness. 

Additionally, the inclusion of deep learning approaches, specifically, the implementation 

of convolutional neural networks and transformers in LipReader++, presents empirical data that 

speaks in favor of the effectiveness of these techniques in capturing the intricate temporal 

properties involved in speech. This helps to justify the theoretical inclination towards deep 

learning in visual speech recognition research but should motivate in-depth investigation and 

correction of such models to improve the accuracy being applied. 

Practical applications of the LipReader++ model are far-reaching from academia into real-

world scenarios which can transform diverse industries towards more meaningful results. This is 

one of the most appealing uses emerging herein, the one of improving communication aids for the 

hearing impaired. LipReader++ delivers accurate, real-time, lip-reading leading to enhanced 

quality of life for persons wholly dependent on lip-reading for understanding speech. With 

LipReader++, digital materials, and conversations become easier to comprehend. 

LipReader ++ from the world of secure authentication systems, is a new dimension that 

has been added by lip movement recognition. It is especially beneficial in environments where the 

biometric systems could be fixed and in cases where silent authentication is favored, for instance, 

in silent commands for smart devices at home. 

Additionally, the inclusion of LipReader++] into e-learning platforms to provide real-time 

captions to students will extend this betterment of the education sector. Better, LipReader++] is of 

great importance to students who are non-native speakers and those suffering from hearing 
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disabilities. This application reflects the strength in the model characteristics of the ability to 

deconstruct language and barriers in accessibility in education. 

LipReader++ would appear to be beneficial in the entertainment industry in filming and 

any other television variety, particularly in the aspects of dubbing and subtitling in places where 

languages differ whereby the lip movements would sync with the corresponding dialogue. Not 

only does this improve the viewer’s levels of enjoyment but makes content available to a wider 

audience. 

Second, LipReader++ can be run in noisy environments such as industrial sites or cities to 

enhance voice command recognition systems. Through such strict reliance on vision-based cues 

rather than audio, the model guarantees correct command recognition despite the audio-based 

systems not working, demonstrating its universal applicability crosswise different trades. 

 

5.4 Summary 

 

Chapter 5 concludes by discussing the deep insights about the LipReader++ model, its theoretical 

background, practical usability, its integrity from an ethical perspective, and what is more, the 

imprint the LipReader++ model has left in the field of visual speech recognition. The foray into 

the significant theoretical implications shows that LipReader++, to some extent acts in 

confirmation and contradiction of the existing paradigms, propagating the limits of what the visual 

speech recognition plans can deliver. The practicality of its usage applications from those to enable 

communications aids for hearing impaired people to security authentication systems evince the 

model’s adaptability and possibility of overcoming the usual non-use. 
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The ethical and social aspects mentioned above highlight the bivalent nature of 

technological development. Although LipReader++ has become very advantageous, especially 

considering the issue of accessibility, it still brings up some critical points about privacy and 

technology equality as well. These talks are essential in guiding responsible innovation and 

evolution and thus educating everybody with an understanding of whether they should develop or 

go for innovations that will advantage the society without compromising individual rights or 

increasing social injustice. 

The evolution of LipReader++ demonstrates how the convergence of interdisciplinary 

knowledge and breakthrough technology might materialize innovations of this caliber. Looking 

forward, the model not only marks the dawn of a VSR revolution but also gives rise to further 

study and discovery. Its evolution thus extends a whole new realm of possibilities to researchers 

who hope to find even more advanced skills and functions. At the end of the day, LipReader++ 

not only targets the future of visual speech recognition but also provides a glimpse of technology 

in solving problems associated with communication, security, and even lives thus, serving as a 

benchmark in the struggle towards a progressive and technologically advanced society. 
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Chapter 6. Conclusion and Future 

Recommendations 

This chapter concludes the study by presenting a summary of 

important findings and some future research recommendations.  
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6.1 Summary of Key Findings 

 

The investigation and creation of the LipReader++ design have stimulated a breakthrough plan in 

seeing the field of visual language acknowledgment, featuring the brilliant implications interior of 

deep learning methodologies to type the extensive range of lip’s developments, with linguistics’ 

yields. This innovation goes beyond conventional boundaries offering a two-fold theoretical 

contribution. The analysis starting from the first point indicates the potential of implementation of 

convolutional neural networks (CNN) along with the advances of transformer architectures for 

improved interpreting of the visual speech cues by the model of operation. Along with the increase 

of accuracy introduced to lip-reading assignments, this amalgamation widens the lens we use for 

perceiving the intra-association between visual characteristics and spoken language, thus, in turn, 

broadening the theoretical insights, which led to visual speech recognition in the first place. 

Practically, LipReader++ reveals a broad array of possibilities that will bear the stamp of 

a transformation in areas such as assistive technology and secure authentication. The model 

provides sight to people with hearing impairments as people with hearing impairments have no 

hope, and looking forward to this model they experience a promise of a very much smaller future, 

free of the majority of correspondence obstructions. LipReader++ allows higher accuracy of lip 

movement interpretation and by doing so allows benefits unavailable through other methods 

before, improving quality of life and societal integration for those hearing impaired. The 

introduction of the lip movements’ patterns-based recognition model in the area of security opens 

up an entirely new form of verification that strengthens existing protocols through an additional 

layer of security, which is uncompromisingly tough to imitate. 
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Besides, the model can be used in the real-time translation and subtitling of multimedia 

material, those features of which are not only open to all and sundry in terms of access to 

information regardless of linguistic barriers but also contribute to a more comprehensive media 

environment. This LipReader ++ ability to fill the communication gaps even emphasizes the 

transformative nature of consuming content and information worldwide about LipReader ++. 

Yet the rise of LipReader++ is not undisputed; it comes with some ethical questions and 

societal impacts. The ability of the model to silently decipher lip movements as speech drives us 

into a world where the concerns of privacy are more apparent leading to the need for reviewing 

the ethical and privacy standards in deploying visual speech recognition technologies. The very 

possibility of undercover surveillance points to the need for effective ethics that regulate the 

practice so that the technologies are utilized with strict respect for the privacy and the right –

consent – of individuals. 

In addition, and maybe more importantly, the conversation around LipReader++ spotlights 

the urgent need for equity in the availability of such sophisticated technology. But if the 

technology cannot reach the people, who stand to benefit most from the communication capability 

it holds, the promise of communication transformation for the hearing-impaired and language 

barrier breakdown cannot be fully realized. Overcoming affordability, technological literacy, and 

infrastructure deficits is vital in avoiding the situation whereby the benefits of LipReader++ are 

the preserve of the privileged, with other groups being disadvantaged. 

Moreover, the road that LipReader++ has walked through- from a hypothesis to a tool – 

can be considered one paved with a variety of opportunities and challenges. Throughout this 

journey, the debates between the ethical use of these and the accounts on equity will form the post 

and pathway of a future where technology is a bridge to a more tolerant and accommodating 



  

 65 

world. The legacy that LipReader++ leaves behind, consequently, not only rests with its technical 

achievements but also our common dedication towards a socially responsible application of such 

technology. 

 

6.2 Future Recommendations 

 

The revolutionary developments that the LipReader++ model has brought in visual speech 

recognition bring the technological evolution to a new corner, not only constantly pushing the 

theoretical understanding but also guiding the practical need. As we go into the future, some of the 

recommendations are plotted to build on such successes emphasizing the limitations and ethical 

factors. First of all, in future research, the diversification of the datasets on which models such as 

LipReader++ are trained should be given more attention. The applications of the current model 

with the datasets that have limitations in reflecting variations among practices of global linguistics, 

such as accents, dialects, and non-verbal cues, are limited in diversity to the wide range of 

linguistic landscapes. The broadening of these datasets to accommodate a broader variety of 

speech rhythms and visual cues not only will increase the model’s reliability and validity but also 

guarantee its generalizability across systems of culture and language. 

On the second note, the introduction of numerous modal inputs is a good route to a higher 

level of LipReader ++ capabilities. Even when the currently employed sound model already 

applies the visual data for the speech interpretation, including auditory intrusions— even in hostile 

sound backgrounds or when the sound is eliminated— could give a more complete representation 

of speech types. This might include ambient sound analysis or the adoption of the more tactile 

forms of feedback that simulate the subtle variations of speech vibrations, broadening the 
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interpretative level of the model. Such novel methods can greatly enhance the real-time run of the 

model due to background noise, speech deficits, or other influencing factors in environmental 

conditioning verbal speech recognition. 

More importantly, attention to the ethical and societal aspects surrounding the use of visual 

speech recognition systems such as LipReader++ must be instituted in any future advancements 

in the field. This entails not only the provision of privacy and consent to the use of such 

technologies but also securing legal guardrails shielding individuals from possible abuses. Future 

developments should also encompass mechanisms of real open operation, protocols for users, 

consent as well as opt-out options making sure the users retain control over their data as well as 

environments within which it tends to be analyzed.  

In the end, the area in which the LipReader++ can be applied spans their end and needs to 

be considered in interdisciplinary research to use the potential of this technology in new areas. For 

instance, its uses in cognitive testing in psychology, security, and confidentiality in law 

enforcement, L2 acquisition, speech correction, and education-language learning situations present 

a great potential for doing good to society. Relationships between technologists, domain experts, 

and end-users, in this case, will be interested in identifying these opportunities and developing 

solutions that meet particular purposes. 

Summing up, LipReader++ is a path breaker, and now as a game changer in visual speech 

recognition, the journey is just about to start. In the future of LipReader++ future, one can 

speculatively give a full range of directions, assuming that the advanced studies in dataset 

diversification will embrace inclusivity, that multimodal integration innovation demonstrates 

effectiveness, that ethical issues are taken into priority consideration, and, finally, that the 

prospects of interdisciplinarity are also explored.  



  

 67 

  



  

 68 

References 

An, N., Yan, W. (2021) Multitarget tracking using Siamese neural networks. ACM Transactions 

on Multimedia Computing, Communications and Applications. 

An, N. (2020) Anomalies Detection and Tracking Using Siamese Neural Networks. Master’s 

Thesis. Auckland University of Technology, New Zealand. 

Anina, I., Zhou, Z., Zhao, G., & Pietikäinen, M. (2015). Ouluvs2: A multi-view audiovisual 

database for non-rigid mouth motion analysis. IEEE International Conference and Workshops 

on Automatic Face and Gesture Recognition (FG), 1, 1–5. 

Assael, Y. M., Shillingford, B., Whiteson, S., & De Freitas, N. (2016). LipNet: End-to-end 

sentence-level lipreading. ArXiv Preprint ArXiv:1611.01599. 

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to 

align and translate. ArXiv Preprint ArXiv:1409.0473. 

Cao, X. (2022) Pose Estimation of Swimmers from Digital Images Using Deep Learning. Master’s 

Thesis, Auckland University of Technology.  

Cao, X. and Yan, W. (2022) Pose estimation for swimmers in video surveillance. Multimedia 

Tools and Applications, Springer. 

Chan, M. T. (2001). HMM-based audio-visual speech recognition integrating geometric-and 

appearance-based visual features. IEEE Fourth Workshop on Multimedia Signal Processing 

(Cat. No. 01TH8564), 9–14. 

Chatfield, K., Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Return of the devil in the 

details: Delving deep into convolutional nets. ArXiv Preprint ArXiv:1405.3531. 

Chen, X., Du, J., & Zhang, H. (2020). Lipreading with DenseNet and resBi-LSTM. Signal, Image 

and Video Processing, 14, 981–989. 



  

 69 

Chen, Z. (2023) Real-Time Pose Recognition for Billiard Players Using Deep Learning. Research 

Report, Auckland University of Technology, New Zealand. 

Chen, Z., Yan, W. (2024) Real-time pose recognition for billiard player using deep learning. Deep 

Learning, Reinforcement Learning and the Rise of Intelligent Systems, pp.188-208, Chapter 

10, IGI Global. 

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent 

neural networks on sequence modeling. ArXiv Preprint ArXiv:1412.3555. 

Chung, J. S., & Zisserman, A. (2017). Lip reading in the wild. Asian Conference on Computer 

Vision, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part II 13, 87–103. 

Cooke, M., Barker, J., Cunningham, S., & Shao, X. (2006). An audio-visual corpus for speech 

perception and automatic speech recognition. The Journal of the Acoustical Society of 

America, 120(5), 2421–2424. 

Cui, W., Yan, W.  (2016) A scheme for face recognition in complex environments. International 

Journal of Digital Crime and Forensics (IJDCF) 8 (1), 26-36.  

Cui, W. (2015) A Scheme of Human Face Recognition in Complex Environments. Master’s 

Thesis, Auckland University of Technology. 

Dong, W., He, R., & Zhang, S. (2016). Digital recognition from lip texture analysis. IEEE 

International Conference on Digital Signal Processing (DSP), 477–481. 

Estellers, V., Gurban, M., & Thiran, J.-P. (2011). On dynamic stream weighting for audio-visual 

speech recognition. IEEE Transactions on Audio, Speech, and Language Processing, 20(4), 

1145–1157. 

Fung, I., & Mak, B. (2018). End-to-end low-resource lip-reading with maxout CNN and LSTM. 

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2511–



  

 70 

2515. 

Gao, X., Nguyen, M., Yan, W. (2021) Face image inpainting based on generative adversarial 

network. International Conference on Image and Vision Computing New Zealand.  

Gao, X., Nguyen, M., Yan, W. (2022) A face image inpainting method based on autoencoder and 

adversarial generative networks. Pacific-Rim Symposium on Image and Video Technology. 

Gao, X. (2022) A Method for Face Image Inpainting Based on Generative Adversarial Networks. 

Master’s Thesis, Auckland University of Technology, New Zealand. 

Gao, X., Nguyen, M., Yan, W. (2023) Human face mask detection using YOLOv7+CBAM in deep 

learning. Handbook of Research on AI and ML for Intelligent Machines and Systems 

Gao, X., Nguyen, M., Yan, W. (2023) Enhancement of human face mask detection performance 

by using ensemble learning models. PSIVT. 

Gao, X., Nguyen, M., Yan, W. (2023) A high-accuracy deformable model for human face mask 

detection. PSIVT 

Garg, A., Noyola, J., & Bagadia, S. (2016). Lip reading using CNN and LSTM. Technical Report, 

Stanford University, CS231 Project Report. 

Gowdra, N., Sinha, R., MacDonell, S., Yan, W. (2021) Maximum Categorical Cross Entropy 

(MCCE): A noise-robust alternative loss function to mitigate racial bias in Convolutional 

Neural Networks (CNNs) by reducing overfitting. Pattern Recognition.  

Gowdra, N. (2021) Entropy-Based Optimization Strategies for Convolutional Neural Networks. 

PhD Thesis, Auckland University of Technology, New Zealand. 

Graves, M. (2015). The Story of Narrative Preaching: Experience and Exposition: A Narrative. 

Wipf and Stock Publishers. 

Gu, D., Nguyen, M., Yan, W. (2016) Cross models for twin recognition. International Journal of 



  

 71 

Digital Crime and Forensics 8 (4), 26-36.  

Gu, Q., Yang, J., Kong, L., Yan, W., Klette, R. (2017) Embedded and real-time vehicle detection 

system for challenging on-road scenes. Optical Engineering, 56 (6), 063102.  

Gu, Q., Yang, J., Yan, W., Klette, R. (2017) Integrated multi-scale event verification in an 

augmented foreground motion space. Pacific-Rim Symposium on Image and Video 

Technology (pp.488-500)  

Gu, Q., Yang, J., Yan, W., Li, Y., Klette, R. (2017) Local Fast R-CNN flow for object-centric 

event recognition in complex traffic scenes. Pacific-Rim Symposium on Image and Video 

Technology (pp.439-452) 

Herrera, A., Beck, A., Bell, D., Miller, P., Wu, Q., Yan, W. (2008) Behavior analysis and 

prediction in image sequences using rough sets. International Machine Vision and Image 

Processing Conference (pp.71-76) 

Huang, Y., Liang, X., & Fang, C. (2021). CALLip: Lipreading using contrastive and attribute 

learning. ACM International Conference on Multimedia, 2492–2500. 

Ji, H., Liu, Z., Yan, W., Klette, R. (2019) Early diagnosis of Alzheimer's disease based on selective 

kernel network with spatial attention. Asian Conference on Pattern Recognition.  

Ji, H., Yan, W., Klette, R. (2019) Early diagnosis of Alzheimer’s disease using deep learning. 

ACM ICCCV. 

Katsamanis, A., Papandreou, G., & Maragos, P. (2009). Face active appearance modeling and 

speech acoustic information to recover articulation. IEEE Transactions on Audio, Speech, 

and Language Processing, 17(3), 411–422. 

Kim, J. O., Lee, W., Hwang, J., Baik, K. S., & Chung, C. H. (2004). Lip print recognition for 

security systems by multi-resolution architecture. Future Generation Computer Systems, 



  

 72 

20(2), 295–301. 

Lee, D., Lee, J., & Kim, K.-E. (2017). Multi-view automatic lip-reading using neural network. 

ACCV International Workshops, Taipei, Taiwan, November 20-24, 2016, Revised Selected 

Papers, Part II 13, 290–302. 

Laadjel, M., Bouridane, A., Kurugollu, F., Nibouche, O., Yan, W. (2010) Partial palmprint 

matching using invariant local minutiae descriptors. Transactions on Data Hiding and 

Multimedia Security V. 

Laadjel, M., Kurugollu, F., Bouridane, A., Yan, W. (2019) Palmprint recognition based on 

subspace analysis of Gabor filter bank. Pacific-Rim Conference on Multimedia (pp.719-730) 

Le, R., Nguyen, M., Yan, W. (2021) Training a convolutional neural network for transportation 

sign detection using synthetic dataset. International Conference on Image and Vision 

Computing New Zealand. 

Le, R., Nguyen, M., Yan, W., Nguyen, H. (2021) Augmented reality and machine learning 

incorporation using YOLOv3 and ARKit. Applied Sciences. 

Le, R., Nguyen, M., Yan, W. (2021) A novel curtain style pictorial marker for enhancing 

augmented reality experiences. International Conference on Image and Vision Computing 

New Zealand.  

Le, R. (2022) Synthetic Data Annotation for Enhancing the Experiences of Augmented Reality 

Application Based on Machine Learning (PhD Thesis). Auckland University of Technology, 

New Zealand. 

Li, C., Yan, W. (2021) Braille recognition using deep learning. International Conference on 

Control and Computer Vision. 

Li. C. (2022) Special Character Recognition Using Deep Learning. Master’s Thesis Auckland 



  

 73 

University of Technology, New Zealand. 

Li, C., Zhou, S., Yan, W. (2024) TFFD-Net: An effective two-stage mixed feature fusion and detail 

recovery dehazing network. The Visual Computer, Springer. 

Li, F., Zhang, Y., Yan, W., Klette, R. (2016) Adaptive and compressive target tracking based on 

feature point matching. International Conference on Pattern Recognition (ICPR), (pp.2734-

2739).  

Li, P. (2018) Rotation Correction for License Plate Recognition. Master’s Thesis, Auckland 

University of Technology, New Zealand. 

Li, P., Nguyen, M., Yan, W. (2018) Rotation correction for license plate recognition. International 

Conference on Control, Automation and Robotics.  

Li, R., Nguyen, M., Yan, W. (2017) Morse codes enter using finger gesture recognition. 

International Conference on Digital Image Computing: Techniques and Applications. 

Li, Y., Takashima, Y., Takiguchi, T., & Ariki, Y. (2016). Lip reading using a dynamic feature of 

lip images and convolutional neural networks. IEEE/ACIS 15th International Conference on 

Computer and Information Science (ICIS), 1–6. 

Liang, C., Lu, J., Yan, W. (2022) Human action recognition from digital videos based on deep 

learning. ACM ICCCV. 

Liang, C., Yan, W. (2024) Human action recognition based on YOLOv7. Deep Learning, 

Reinforcement Learning, and the Rise of Intelligent Systems, pp.126-145, Chapter 6, IGI 

Global.  

Liang, S. (2021) Multi-language Datasets for Speech Recognition Based on the End-to-End 

Framework. Master’s Thesis. Auckland University of Technology, New Zealand. 

Liang, S., Yan, W. (2022) A hybrid CTC+Attention model based on end-to-end framework for 



  

 74 

multilingual speech recognition. Springer Multimedia Tools and Applications. 

Liu, M., Yan, W. (2022) Masked face recognition in real-time using MobileNetV2. ACM ICCCV. 

Liu, Y., Nand, P., Hossain, A., Nguyen, M., Yan, W. (2023) Sign language recognition from digital 

videos using feature pyramid network with detection Transformer. Multimedia Tools and 

Applications. 

Liu, Z., Yan, W., Yang, B. (2018) Image denoising based on a CNN model. International 

Conference on Control, Automation and Robotics. 

Lu, J. (2016) Empirical Approaches for Human Behavior Analytics. Master’s Thesis. Auckland 

University of Technology, New Zealand. 

Lu, J., Shen, J., Yan, W., Boris, B. (2017) An empirical study for human behaviors analysis. 

International Journal of Digital Crime and Forensics 9 (3), 11-17.  

Lu, J., Nguyen, M., Yan, W. (2018) Pedestrian detection using deep learning. IEEE AVSS.  

Lu, J., Nguyen, M., Yan, W. (2020) Human behavior recognition using deep learning. International 

Conference on Image and Vision Computing New Zealand. 

Lu, J., Nguyen, M., Yan, W. (2020) Comparative evaluations of human behavior recognition using 

deep learning. Handbook of Research on Multimedia Cyber Security, 176-189.  

Lu, J., Nguyen, M., Yan, W. (2021) Sign language recognition from digital videos using deep 

learning methods. International Symposium on Geometry and Vision. 

Lu, J. (2021) Deep Learning Methods for Human Behavior Recognition. PhD Thesis. Auckland 

University of Technology, New Zealand. 

Lu, Y., & Li, H. (2019). Automatic lip-reading system based on deep convolutional neural network 

and attention-based long short-term memory. Applied Sciences, 9(8), 1599. 

Lu, Y., Yang, S., Xu, Z., & Wang, J. (2020). Speech training system for hearing impaired 



  

 75 

individuals based on automatic lip-reading recognition. Advances in Human Factors and 

Systems Interaction: Proceedings of the AHFE 2020 Virtual Conference on Human Factors 

and Systems Interaction, July 16-20, 2020, USA, 250–258. 

Lucey, P., Potamianos, G., & Sridharan, S. (2008). Patch-based analysis of visual speech from 

multiple views. Proceedings of the International Conference on Auditory-Visual Speech 

Processing 2008, 69–74. 

Luettin, J., & Thacker, N. A. (1997). Speechreading using probabilistic models. Computer Vision 

and Image Understanding, 65(2), 163–178. 

Ma, P., Petridis, S., & Pantic, M. (2022). Visual speech recognition for multiple languages in the 

wild. Nature Machine Intelligence, 4(11), 930–939. 

Ma, S., Wang, S., & Lin, X. (2020). A transformer-based model for sentence-level Chinese 

Mandarin lipreading. IEEE International Conference on Data Science in Cyberspace (DSC), 

78–81. 

Margam, D. K., Aralikatti, R., Sharma, T., Thanda, A., Roy, S., & Venkatesan, S. M. (2019). 

LipReading with 3D-2D-CNN BLSTM-HMM and word-CTC models. ArXiv Preprint 

ArXiv:1906.12170. 

Mesbah, A., Berrahou, A., Hammouchi, H., Berbia, H., Qjidaa, H., & Daoudi, M. (2019). Lip 

reading with Hahn convolutional neural networks. Image and Vision Computing, 88, 76–83. 

Nguyen, M., Le, H., Yan, W., Dawda, A. (2018) A vision aid for the visually impaired using 

commodity dual-rear-camera smartphones. International Conference on Mechatronics and 

Machine Vision. 

Nguyen, M., Yan, W. (2023) From faces to traffic lights: A multi-scale approach for emotional 

state representation. IEEE International Conference on Smart City. 



  

 76 

Noda, K., Yamaguchi, Y., Nakadai, K., Okuno, H. G., & Ogata, T. (2014). Lipreading using 

convolutional neural network. Annual Conference of the International Speech 

Communication Association. 

Pan, C., Yan, W. (2018) A learning-based positive feedback in salient object detection. 

International Conference on Image and Vision Computing New Zealand. 

Pan, C., Yan, W. (2020) Object detection based on saturation of visual perception. Multimedia 

Tools and Applications, 79 (27-28), 19925-19944. 

Pan, C., Liu, J., Yan, W., Zhou, Y. (2021) Salient object detection based on visual perceptual 

saturation and two-stream hybrid networks. IEEE Transactions on Image Processing. 

Papcun, G., Hochberg, J., Thomas, T. R., Laroche, F., Zacks, J., & Levy, S. (1992). Inferring 

articulation and recognizing gestures from acoustics with a neural network trained on x‐ray 

microbeam data. The Journal of the Acoustical Society of America, 92(2), 688–700. 

Patterson, E. K., Gurbuz, S., Tufekci, Z., & Gowdy, J. N. (2002). Moving-talker, speaker-

independent feature study, and baseline results using the CUAVE multimodal speech corpus. 

EURASIP Journal on Advances in Signal Processing, 2002, 1–13. 

Petridis, S., Stafylakis, T., Ma, P., Cai, F., Tzimiropoulos, G., & Pantic, M. (2018). End-to-end 

audiovisual speech recognition. IEEE International Conference on Acoustics, Speech and 

Signal Processing (ICASSP), 6548–6552. 

Qi, J., Nguyen, M., Yan, W. (2023) CISO: Co-iteration semi-supervised learning for visual object 

detection. Multimedia Tools and Applications. 

Rekik, A., Ben-Hamadou, A., & Mahdi, W. (2014). A new visual speech recognition approach for 

RGB-D cameras. International Conference on Image Analysis and Recognition. 

Saitoh, T., Zhou, Z., Zhao, G., & Pietikäinen, M. (2017). Concatenated frame image based CNN 



  

 77 

for visual speech recognition. ACCV Workshops.  

Sheerman-Chase, T., Ong, E.-J., & Bowden, R. (2011). Cultural factors in the regression of non-

verbal communication perception. IEEE International Conference on Computer Vision 

Workshops (ICCV Workshops), 1242–1249. 

Song, C., He, L., Yan, W., Nand, P.  (2019) An improved selective facial extraction model for age 

estimation. International Conference on Image and Vision Computing New Zealand. 

Srivastava, R. K., Greff, K., & Schmidhuber, J. (2015). Training very deep networks. Advances in 

Neural Information Processing Systems, 28. 

Stafylakis, T., & Tzimiropoulos, G. (2017). Combining residual networks with LSTMs for 

lipreading. ArXiv Preprint ArXiv:1703.04105. 

Sterpu, G., & Harte, N. (2018). Towards lipreading sentences with active appearance models. 

ArXiv Preprint ArXiv:1805.11688. 

Torfi, A., Iranmanesh, S. M., Nasrabadi, N., & Dawson, J. (2017). 3D convolutional neural 

networks for cross audio-visual matching recognition. IEEE Access, 5, 22081–22091. 

Vallayil, M., Nand, P., Yan, W., Allende-Cid, H. (2023) Explainability of automated fact 

verification systems: A comprehensive review. Applied Science, 13(23) 1260 

Vallayil, M., Nand, P., Yan, W. (2024) Explainable AI through thematic clustering and contextual 

visualization: Advancing macro-level explainability in AFV systems. The 35th Australasian 

Conference on Information Systems 

Wang, H., Yan, W. (2022) Face detection and recognition from distance based on deep learning. 

Aiding Forensic Investigation Through Deep Learning and Machine Learning Framework, 

pp.144-160, IGI Global. 

Wang, X., Yan, W. (2019) Human gait recognition based on self-adaptive hidden Markov model. 



  

 78 

IEEE/ACM Transactions on Biology and Bioinformatics. 

Wang, X., Yan, W. (2019) Human gait recognition based on frame-by-frame gait energy images 

and convolutional long short-term memory. International Journal of Neural Systems.  

Wang, X., Yan, W. (2020) Non-local gait feature extraction and human identification. Springer 

Multimedia Tools and Applications.  

Wang, X., Yan, W. (2020) Cross-view gait recognition through ensemble learning. Neural 

Computing and Applications 32 (11), 7275-7287. 

Wang, X., Yan, W. (2022) Human identification based on gait manifold. Applied Intelligence. 

Xu, G., Yan, W. (2023) Facial emotion recognition using ensemble learning. Deep Learning, 

Reinforcement Learning, and the Rise of Intelligent Systems, pp.146-158, Chapter 7, IGI 

Global. 

Xu, K., Li, D., Cassimatis, N., & Wang, X. (2018). LCANet: End-to-end lipreading with cascaded 

attention-CTC. IEEE International Conference on Automatic Face & Gesture Recognition 

(FG 2018), 548–555. 

Xue, F., Li, Y., Liu, D., Xie, Y., Wu, L., & Hong, R. (2023). LipFormer: Learning to Lipread 

Unseen Speakers based on Visual-Landmark Transformers. IEEE Transactions on Circuits 

and Systems for Video Technology. 

Yan, W. (2019) Introduction to Intelligent Surveillance: Surveillance Data Capture, Transmission, 

and Analytics. Springer Nature.  

Yan, W. (2023) Computational Methods for Deep Learning: Theory, Algorithms, and 

Implementations. Springer Nature. 

Yang, S., Zhang, Y., Feng, D., Yang, M., Wang, C., Xiao, J., Long, K., Shan, S., & Chen, X. 

(2019). LRW-1000: A naturally-distributed large-scale benchmark for lip reading in the wild. 



  

 79 

IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), 1–8. 

Yargıç, A., & Doğan, M. (2013). A lip reading application on MS Kinect camera. IEEE INISTA, 

1–5. 

Yu, Z. (2021) Deep Learning Methods for Human Action Recognition. Master’s Thesis, Auckland 

University of Technology, New Zealand. 

Yu, Z., Yan, W. (2020) Human action recognition using deep learning methods. International 

Conference on Image and Vision Computing New Zealand. 

Zhang, T., He, L., Li, X., & Feng, G. (2021). Efficient end-to-end sentence-level lipreading with 

temporal convolutional networks. Applied Sciences, 11(15), 6975. 

Zhang, X., Gong, H., Dai, X., Yang, F., Liu, N., & Liu, M. (2019). Understanding pictograph with 

facial features: end-to-end sentence-level lip reading of Chinese. AAAI Conference on 

Artificial Intelligence, 33(01), 9211–9218. 

Zhang, Y., Yan, W., Narayanan, A. (2017) A virtual keyboard implementation using finger 

recognition. International Conference on Image and Vision Computing New Zealand.  

Zhang, Y. (2016) A Virtual Keyboard Implementation Based on Finger Recognition. Master’s 

Thesis, Auckland University of Technology, New Zealand. 

Zhao, X., Yang, S., Shan, S., & Chen, X. (2020). Mutual information maximization for effective 

lip reading. IEEE International Conference on Automatic Face and Gesture Recognition (FG 

2020), 420–427. 

Zhao, Y., Xu, R., & Song, M. (2019). A cascade sequence-to-sequence model for chinese mandarin 

lip reading. ACM Multimedia Asia (pp. 1–6). 

Zhao, Y., Xu, R., Wang, X., Hou, P., Tang, H., & Song, M. (2020). Hearing lips: Improving lip 

reading by distilling speech recognizers. AAAI Conference on Artificial Intelligence, 34(04), 



  

 80 

6917–6924. 

Zhou, S., Dong, L., Xu, S., & Xu, B. (2018). Syllable-based sequence-to-sequence speech 

recognition with the transformer in mandarin chinese. ArXiv Preprint ArXiv:1804.10752. 

Zhu, W., Peng, B., Yan, W. (2024) Dual knowledge distillation on multiview pseudo labels for 

unsupervised person re-identification. IEEE Transactions on Multimedia. 

Zhu, Y., Peng, B., Yan, W. (2022) Ski fall detection from digital images using deep learning. ACM 

ICCCV.  

Zhu, Y., Yan, W. (2022) Image-based storytelling using deep learning. ACM ICCCV. 

 

 

 


