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 I 

Abstract 

Waste could be reduced, reused and recycled. Classifying waste and recycling play 

important roles in converting waste into valuable materials that help conserve land reduce 

pollution and optimize resource utilization. Effective waste management is vital for 

resource conservation, environmental protection, and sustainable human progress. 

However, there are difficulties in classifying and identifying recyclable materials due to 

the complex and diverse nature of waste combined with limited data on waste 

management. These challenges pose obstacles to the effectiveness of research, in this field. 

The development of deep learning has promoted the advancement of pattern 

classification and visual object detection. Applying computer vision to waste 

classification and exploring high-efficiency, low-cost, and automated waste classification 

methods have important sustainability implications for society and the ecological 

environment. 

Taken the current limitations of waste classification into account, this project makes 

use of deep learning methods to improve waste classification from several different 

perspectives. Firstly, we build two comprehensive and rich waste datasets, including four 

waste categories, namely recyclable waste, wet waste, hazardous waste, and dry waste. 

Afterwards, we have made innovations in data augmentation and proposed NUNI, a non-

uniform data augmentation method, to improve the accuracy of waste classification. 

Finally, we propose a semi-supervised learning deep learning framework, called CISO, 

and utilize it on the waste classification task. We evaluate our models and provide the 

relevant comparisons. 

 

Keywords: Deep learning, Waste classification, Data augmentation, Semi-supervised 

learning, Transformers 

 



 II 

Table of Contents 
Abstract ......................................................................................................................................... I 

Table of Contents ......................................................................................................................... II 

List of Figures ............................................................................................................................. IV 

List of Tables ............................................................................................................................... VI 

Acronyms .................................................................................................................................. VIII 

Attestation of Authorship ............................................................................................................ XI 

Acknowledgment ........................................................................................................................ XII 

Chapter 1    Introduction ............................................................................................................ 1 

1.1 Background and Motivation ............................................................................................ 2 

1.2 Research Questions .......................................................................................................... 6 

1.3 Contributions ................................................................................................................... 7 

1.3.1 Datasets ............................................................................................................................. 7 

1.3.2 Data Augmentation ........................................................................................................... 9 

1.3.3 Semi-supervised Learning .............................................................................................. 10 

1.4 Objectives of This Thesis ............................................................................................... 10 

1.5 Structure of This Thesis ................................................................................................. 11 

Chapter 2    Literature Review ................................................................................................. 13 

2.1 Introduction ................................................................................................................... 14 

2.2 Deep Learning ............................................................................................................... 16 

2.2.1 Basic Deep Learning Methods ........................................................................................ 17 

2.2.2 Data Augmentation ......................................................................................................... 25 

2.2.3 Semi-supervised Learning .............................................................................................. 28 

2.3 Waste Classification ....................................................................................................... 32 

2.3.1 Waste Datasets ................................................................................................................ 33 

2.3.2 Waste Classification Using Deep Learning .................................................................... 36 

Chapter 3    Datasets and Evaluation Metrics .......................................................................... 41 

3.1 Data Collection .............................................................................................................. 42 

3.2 Data Augmentation ........................................................................................................ 47 

3.3 Evaluation Metrics ......................................................................................................... 52 

Chapter 4    Basic Methods of Waste Classification ................................................................ 55 

4.1 YOLOv7 ........................................................................................................................ 56 

4.2 YOLOv8 ........................................................................................................................ 60 

4.3 Swin Transformer .......................................................................................................... 62 



 III 

4.4 Large Language Model .................................................................................................. 66 

4.5 Summary ........................................................................................................................ 69 

Chapter 5    Data Augmentation for Waste Classification ....................................................... 70 

5.1 The Structure of Our Framework ................................................................................... 71 

5.2 Non-uniform Color Data Augmentation ........................................................................ 73 

5.3 Non-uniform Offset Data Augmentation ....................................................................... 75 

5.4 Adaptive Weighted Loss Function ................................................................................. 75 

5.5 Summary ........................................................................................................................ 80 

Chapter 6    Semi-Supervised Learning for Waste Classification ............................................ 83 

6.1 The Structure of Our Model ........................................................................................... 84 

6.2 CISO: Co-Iteration SSL for Object Detection ............................................................... 85 

6.2.1 Pseudo Labeling .............................................................................................................. 85 

6.2.2 Mean Iteration Strategy .................................................................................................. 88 

6.2.3 Weak-strong Data Augmentation .................................................................................... 89 

6.3 Summary ........................................................................................................................ 91 

Chapter 7    Results and Analysis ............................................................................................. 93 

7.1 Basic Method Results of Waste Classification ............................................................... 94 

7.1.1 YOLOv7 ......................................................................................................................... 94 

7.1.2 YOLOv8 ......................................................................................................................... 97 

7.1.3 Swin Transformer ......................................................................................................... 101 

7.1.4 Large Language Model ................................................................................................. 105 

7.2 Data Augmentation Results for Waste Classification ................................................... 109 

7.2.1 Basic Results ................................................................................................................. 109 

7.2.2 Ablation Studies ............................................................................................................. 113 

7.3 Semi-supervised Learning Results of Waste Classification ......................................... 119 

7.3.1 Basic Results .................................................................................................................. 119 

7.3.2 Ablation Studies ............................................................................................................ 122 

Chapter 8    Conclusion and Future Work .............................................................................. 128 

8.1 Conclusion ................................................................................................................... 129 

8.2 Future Work ................................................................................................................. 132 

References ................................................................................................................................ 134 

 

 

 



 IV 

List of Figures 

Figure 1.1. Example of waste image in WasteData ....................................................................... 8 

Figure 1.2. Example of waste image in WasteNet ......................................................................... 8 

Figure 1.3. Example of waste image in ZeroWaste ....................................................................... 9 

Figure 2.1. The framework of Vision Transformer ...................................................................... 23 

Figure 2.2. An example image of TrashNet dataset ..................................................................... 34 

Figure 2.3. An example image of UAVVaste dataset ................................................................... 35 

Figure 2.4. An example image of TACO dataset ......................................................................... 35 

Figure 3.1 An image example of the ZeroWaste dataset ............................................................. 44 

Figure 3.2 An image example of the WasteData dataset ............................................................. 44 

Figure 3.3 An image example of the WasteNet dataset ............................................................... 45 

Figure 3.4 Visualization of annotation using Labelme ................................................................ 46 

Figure 3.5 The JSON format for labeling .................................................................................... 47 

Figure 3.6 The txt format for labeling ......................................................................................... 47 

Figure 3.7 Visualization of crop operating .................................................................................. 48 

Figure 3.8 Visualization of rotating operating ............................................................................. 48 

Figure 4.1 The structure of SPPCSPC-COOR-ASF module ....................................................... 56 

Figure 4.2 The structure of Coor attention mechanism ............................................................... 57 

Figure 4.3 The structure of the PSA module ............................................................................... 58 

Figure 4.4 The structure of improved YOLOv8 model ............................................................... 60 

Figure 4.5 The structure of contextual information mechanism .................................................. 61 

Figure 4.6 The structure of SE_ASPP module ............................................................................ 62 

Figure 4.7 The structure of Swin Transformer ............................................................................ 63 

Figure 4.8 The structure of the combined model ......................................................................... 64 

Figure 4.9 The Swin Transformer feature maps .......................................................................... 65 

Figure 4.10 The framework of our model .................................................................................... 67 

Figure 4.11 Image description generated with MiniGPT-4 ......................................................... 68 

Figure 4.12 An example of the image description generated by MiniGPT-4 with different prompts
 ..................................................................................................................................................... 69 

Figure 5.1 The architecture of the network .................................................................................. 72 

Figure 5.2 The examples of typical non-uniform color data augmentation ................................. 73 



 V 

Figure 5.3 Some examples of atypical non-uniform color data augmentation ............................ 74 

Figure 5.4 Comparison of the image after non-uniform color data augmentation and the original 
image from the ZeroWaste dataset ............................................................................................... 74 

Figure. 5.5 Comparison of the image after non-uniform offset data augmentation and the original 
image from the ZeroWaste dataset ............................................................................................... 77 

Figure 5.6 Example of a masks of the original image ................................................................. 80 

Figure 5.7 Example of a masks of the original image after applying non-uniform offset data 
augmentation ................................................................................................................................ 80 

Figure 6.1 The CISO framework ................................................................................................. 84 

Figure 7.1 Waste detection results ............................................................................................... 94 

Figure 7.2 The incorrect classification results ............................................................................. 94 

Figure 7.3 F1 score and PR curve of the waste classification ..................................................... 95 

Figure 7.4 The mean average precision and loss of the waste classification ............................... 95 

Figure 7.5 Waste detection results..............................................................................................98 

Figure 7.6 The mean average precision and loss of the waste classification ............................... 98 

Figure 7.7 Transformer-based classification results from videos .............................................. 101 

Figure 7.8 Average precisions of the four classes classification ................................................ 102 

Figure 7.9 The Loss values of the model ................................................................................... 106 

Figure 7.10 Examples of the detailed image description generated by MiniGPT-4 with short 
prompts ...................................................................................................................................... 108 

Figure 7.11 The mean(IoU) values of NUNI-Waste model ........................................................ 111 

Figure 7.12 The loss values of NUNI-Waste model .................................................................. 112 

Figure 7.13 The loss values of NUNI-Waste model with SGD optimizer ................................ 112 

Figure 7.14 The loss values with w values of 2.5, 3, 4, and 5 respectively ............................... 115 

Figure 7.15 The IoU values with different initial offset values ................................................. 117 

Figure 7.16 Mean average precision results of our model ......................................................... 119 

Figure 7.17 Some prediction results .......................................................................................... 121 

Figure 7.18 Visualization of weak-strong data augmentation strategies ................................... 123 

Figure 7.19 The pseudo-label visualization effect of unlabeled data ........................................ 126 

 

 



 VI 

List of Tables 

Table 2.1 The summary of four classifications of waste and their characteristics. ..................... 15 

Table 2.2 The summary of four different one-stage networks. .................................................... 18 

Table 2.3 The summary of four different two-stage networks. .................................................... 19 

Table 2.4 Comparative summary of different waste classification models. ................................ 38 

Table 3.1 The summary of the different datasets. ........................................................................ 43 

Table 3.2 The confusion matrix. .................................................................................................. 53 

Table 3.3 The definition of matrics. ............................................................................................. 53 

Table 4.1 The parameters of experiment. .................................................................................... 62 

Table 5.1 The examples of offset values for x-axis. .................................................................... 79 

Table 5.2 Training parameters of this experiments. ..................................................................... 76 

Table 6.1 Training parameters of our framework. ....................................................................... 91 

Table 7.1 Mean average precision results between four models. ................................................ 96 

Table 7.2 The mAP of the model in the ablation experiments. .................................................... 97 

Table 7.3 The results of the model. .............................................................................................. 98 

Table 7.4 Mean average precision results between six models. .................................................. 99 

Table 7.5 The mAP of the model in the ablation studies. .......................................................... 100 

Table 7.6 The results between four models. .............................................................................. 103 

Table 7.7 The results between three algorithms. ....................................................................... 103 

Table 7.8 The results of Mask R-CNN using four different backbone networks. ..................... 103 

Table 7.9 Influence of self-attention inside the window on model results. ............................... 104 

Table 7.10 Influence of masked self-attention on model results. .............................................. 104 

Table 7.11 Impact of parameter B on model results. ................................................................. 105 

Table 7.12 Comparisons of AP values with different models. ................................................... 106 

Table 7.13 Comparisons of AP values with different large language models. .......................... 106 

Table 7.14 Comparisons of AP values with different pre-trained language models. ................. 107 

Table 7.15 Comparisons of AP values with different prompts. ................................................. 108 

Table 7.16 Comparisons of AP values of prompts with different lengths. ................................ 108 

Table 7.17 The results of different models. ............................................................................... 110 

Table 7.18 Experimental results related to adaptive weighted loss function. ............................. 113 

Table 7.19 Experimental results related to w parameter. ........................................................... 114 



 VII 

Table 7.20 Experimental results related to the adoption of different data augmentation strategies.
 ................................................................................................................................................... 116 

Table 7.21 Experimental results related to initial offset value. ................................................... 117 

Table 7.22 Experimental results related to non-uniform offset augmentation technology. ........ 119 

Table 7.23 Experimental results related to different models using MS-COCO. ........................ 120 

Table 7.24 Experimental results related to the number of mean iterations. ............................... 122 

Table 7.25 Experimental results related to strong data augmentation strategy. .......................... 124 

Table 7.26 Experimental results related to parameter τ. ............................................................. 125 

Table 7.27 Experimental results related to parameter λu. .......................................................... 126 

Table 7.28 Experimental results related to mean iteration. ........................................................ 126 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 VIII 

Acronyms 

AI: Artificial Intelligence 

AP: Average Precision 

API: Application Programming Interface 

AR: Augmented Reality 

ASPP: Atrous Spatial Pyramid Pooling 

BBox: Bounding Box 

BCE Loss: Binary Cross-Entropy Loss 

BERT: Bidirectional Encoder Representations from Transformers 

BYOL: Bootstrap Your Own Latent 

CBAM: Convolutional Block Attention Module 

CCT: Compact Convolutional Transformers 

CIoU: Complete Intersection over Union 

CNN: Convolutional Neural Network 

DFL: Distribution Focal Loss 

ELAN: Efficient Layer Aggregation Networks 

ELECTRA: Efficiently Learning an Encoder that Classifies Token Replacements 
Accurately 

EMA: Exponential Moving Average 

EPSA: Efficient Pyramid Split Attention 

FFNN: Feedforward Neural Network 

GAN: Generative Adversarial Networks 

GPT-4: Generative Pre-training Transformer 4 

IoU: Intersection over Union 

InfoNCE: Info Noise Contrastive Estimation 

mAP: mean Average Precision 



 IX 

mIoU: mean Intersection over Union 

NLP: Natural Language Processing 

OhemCELoss: Online Hard Example Mining Cross-Entropy Loss 

PaLM-E: Pathways Language Model with Embodied 

PAN-FPN: Path Aggregation Network for Feature Pyramid 

PR Curve: Precision-Recall Curve 

PSA: Pyramid Split Attention 

R-CNN: Region-CNN 

ResNet: Residual Network 

RFA: Residual Feature Augmentation 

RNN: Recurrent Neural Network 

RoBERTa: Robustly Optimized BERT Pretraining Approach 

ROI: Region of Interest 

RPN: Region Proposal Network 

SENet: Squeeze-and-Excitation Networks 

SE Weight: Squeeze-and-Excitation Weight 

SGD: Stochastic Gradient Descent 

SimCLR: Simple Contrastive Learning 

SPP: Spatial Pyramid Pooling 

SSD: Single Shot Multibox Detector 

SSL: Semi-supervised Learning 

SSOD: Semi-supervised object detection 

SW-MSA: Shifted Window Multihead Self-Attention 

TACO: Trash Annotation in Context 

UAVs: Unmanned Aerial Vehicles 

VGG: Visual Geometry Group 



 X 

W-MSA: Window Multihead Self-Attention 

XLNet: Extra Long Network 

YOLO: You Only Look Once 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 XI 

Attestation of Authorship 

 

I hereby declare that this submission is my own work and that, to the best of my 

knowledge and belief, it contains no material previously published or written by another 

person (except where explicitly defined in the acknowledgments), nor material which to 

a substantial extent has been submitted for the award of any other degree or diploma of a 

university or other institution of higher learning. 

 

 

 

Signature:     Jianchun Qi                      Date:  1 March 2024 

 

 

 

 

 

 

 

 

 
  



 XII 

Acknowledgment 

This thesis represents my long learning journey. During these three years of study, I would 

like to express my sincere gratitude to my supervisors. My heartfelt thanks go to my 

primary supervisor Minh Nguyen for his help and support. He provided me with great 

guidance and gave me a lot of constructive feedback on my research paper. He would also 

seriously give me a lot of advice and encourage me during my study process.   

Furthermore, I would also like to extend my heartfelt thanks to my supervisor Wei 

Qi Yan and Yanbin Liu. They were very attentive in making effective suggestions on my 

research directions and research papers, and often shared their academic experience with 

me. They have done their best to help me when I encounter problems in my studies. I 

consider myself lucky to have benefited from the academics.  

I am also grateful to the Auckland University of Technology (AUT) and all the staff 

for their support. And my friends, they also provided me with a lot of help. 

Afterwards, I would like to thank my family for always supporting me the freedom 

to choose to do what I love. I will always love them no matter where they are.   

Finally, I wish to thank my elder brother Mr. Qi. His encouragement, enlightenment, 

and support made me continue to become a better version of myself. Thousands of words, 

so much more was said in the unsaid. 

Jianchun Qi 

Auckland, New Zealand 

March 2024 



1 
 

 

 

 

Chapter 1    

Introduction 

 

 

In this thesis, the first chapter contains five parts. In the first part, 

we introduce the background and motivation for this research 

project. The second part mentions the research questions related 

to the project. In the third part, our contributions are presented. 

Afterwards, our objectives and the structure of the thesis are 

summarized in part four and part five respectively. 
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1.1 Background and Motivation 

Waste management is an increasingly important topic. It is predicted that the total amount 

of global waste will increase by one-fifth after 2030, with an imminent output of up to 

2.6 billion tons of waste per year (Kaza, Yao, Bhada-Tata and Van, 2018). Inadequate 

waste management mechanisms pose a great challenge to the protection of the ecological 

environment, the improvement of public health, and the safeguarding of human health. 

For example, the current open waste dumps, this unhealthy waste management method is 

prone to produce hazardous chemicals (Mohanraj, Senthilkumar, Chandrasekar and 

Arulmozhi, 2023), pollute the soil and water, and damage the ecosystem (Chen et al., 

2020), in addition to becoming a breeding ground for pathogens, which can easily lead to 

the spread of infectious diseases (Amasuomo and Baird, 2016; Ferronato and Vincenzo, 

2019; Zaman, 2015; Zhang, Tan and Gersberg, 2010; Zhang, Hu, Zhang and Zhang, 2020). 

Proper waste disposal practices hold significant implications for ecological sustainability, 

resource efficiency, and public health enhancement (Meng and Chu, 2020). 

Regarding waste classification, it should be grouped into categories according to its 

components, properties, value, and impact on the environment, depending on the type of 

disposal. In general, according to the characteristics of wastes, we group wastes into four 

major categories, namely hazardous waste, recyclable waste, wet waste, and dry waste. 

For example, valuable waste can be recycled and utilized, which can reduce the 

consumption of raw materials as well as the waste of resources and reduce costs. Finally, 

waste can be disposed, instead of incinerating it in a uniform manner, reducing CO2 

emissions and protecting the earth. 

However, conventional methods of waste classification, which are typically semi-

manual or semi-automatic, struggle to keep pace with the increasing volumes of waste, 

often resulting in inefficient sorting and adverse health effects on workers. Consequently, 

there is an urgent need to incorporate more sophisticated technologies, such as artificial 

intelligence, into waste management. The integration of advanced AI-driven 

classification technologies can lead to more effective, efficient, and health-conscious 
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waste management practices. This, in turn, supports economic growth and environmental 

protection, steering us toward the sustainable coexistence of humanity and nature (Qiu et 

al., 2022; Shi, Tan, Wang and Wang, 2021). 

There are a plenty of algorithms for visual object detection in computer vision 

(Bachman, Alsharif and Precup, 2014; LeCun, Bengio and Hinton, 2015; Li, Wang, Hu 

and Yang, 2019; Lun et al., 2023; Pan and Yan, 2020; Wang et al., 2017; Yu et al., 2018; 

Yu, Jiang, Wang, Cao and Huang, 2016; Zhao, Zheng, Xu and Wu, 2019). The algorithms 

are grouped into two categories. One is the algorithm based on SSD (Liu et al., 2016), 

and YOLO nets (Redmon, Divvala, Girshick and Farhadi, 2016); the other is the 

algorithm based on R-CNN networks (Kang, Yang, Li and Zhang, 2020; Ren, He, 

Girshick and Sun, 2015; He, Gkioxari, Dollár and Girshick, 2017). The former is based 

on one-stage training with high speed, but the accuracy is not as high as the latter. These 

networks have been widely used (Tian, Shen, Chen and He, 2019). However, the 

Transformer models occupy an important position in the field of computer vision due to 

its superior processing capabilities and efficient computing performance (Vaswani et al., 

2017). Later, various derivative models based on Transformer appeared one after another, 

leading the latest development in this field. For example, Vision Transformer 

(Dosovitskiy et al., 2020), DETR (Carion et al., 2020), and Swin Transformer (Liu et al., 

2021).  

Currently, deep learning models for waste classification are constantly being 

improved and have obtained significant classification and detection results. However, 

there is still room for improvement. A slew of waste classification models, such as the 

optimized DenseNet121 and ResNet-10 (Kashif, Khan and Al-Fuqaha, 2020) using fusion 

schemes, have waste classification accuracies as high as over 85% (Mao, Chen, Wang 

and Lin, 2021). However, the datasets they use are only simple recyclable waste 

categories, such as glass, cardboard, plastic bottle, paper, and metal, which cannot 

measure the real waste classification application scenarios. While the ETHSeg model 

classifies the above four categories of waste based on X-rays, the classification accuracy 

of small objects in waste remains low (Qiu et al., 2022).  
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Thus, the lack of a waste dataset, waste objects are deformed and stacked, and the 

intensive manual annotation effort due to the wide variety of waste categories are the 

important challenges faced by artificial intelligence in waste classification tasks. 

Considering these limitations, the following three aspects need to be studied in-depth: 

how to build a rich and comprehensive waste dataset, how to use a small amount of data 

to achieve classification results, and how to improve the accuracy of waste classification. 

With regard to computer vision tasks, the scale of training data could be employed 

as a factor that affects the performance of neural network models (Nayan, Saha, 

Mozumder and Mahmud, 2020; Neverova, Wolf, Taylor and Nebout, 2015). In general, 

the more data, the better the training effect of the model. Therefore, pre-training and fine-

tuning are widely applied to improve model performance (Poth, Pfeiffer, Rücklé and 

Gurevych, 2021; Wang, Khabsa and Ma, 2020; Zhang, Zhao, Saleh and Liu, 2020). This 

can not only avoid overfitting but also speed up model convergence (Kohli, Sitzmann and 

Wetzstein, 2020). However, even if the performance of deep learning models based on 

supervised learning has been improved, the time-consuming and expensive work of 

collecting large-scale labelled datasets cannot be ignored. Therefore, the methods of 

applying semi-supervised learning to classification tasks are summarized (Olivier, 2006; 

Reddy, Viswanath and Reddy, 2018). Semi-supervised learning methods reduce the 

model's dependence on a large amount of labeled data, as well as the high labor and time 

costs caused by manual annotation (Berthelot et al, 2019; Chapelle, Schölkopf and Zien, 

2010; Rasmus, Berglund, Honkala, Valpola and Raiko, 2015). 

Consistency regularization is a key method in semi-supervised learning (Lee, 2021; 

Li, Liu, Zhao, Zhang and Fu, 2021; Miyato, Maeda, Koyama and Ishii, 2018; Sajjadi, 

Javanmardi and Tasdizen, 2016). Its core idea is that the model should respond to inputs 

data that are disturbed or changed, such as cropping, color transformation, rotation, and 

given prediction results that are consistent with the original prediction. This method is 

particularly suitable for scenarios with large amounts of unlabeled data, helping to 

improve the model's generalization ability on unlabeled data (Sajjadi, Javanmardi and 

Tasdizen, 2016; Tarvainen and Valpola, 2017; Yang et al., 2022; Yang, Song, King and 
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Xu, 2022).  

In addition, data augmentation techniques are also closely related to semi-supervised 

learning methods (Kim et al., 2020; Sohn et al., 2020; Xie, Dai, Hovy, Luong and Le, 

2020). Data augmentation not only increases the data volume by applying transformations 

to the original data, but also introduces perturbations and changes to the original data. In 

this way, the enhanced unlabeled data can provide more diverse data representations, 

assist the semi-supervised learning model improve its generalization ability, and enable 

the model to learn more robust feature representations (Krizhevsky, Sutskever and Hinton, 

2017). Therefore, data augmentation plays a crucial role in driving progress in the field 

of semi-supervised learning. Currently, a great deal of improvements to semi-supervised 

models have verified the effectiveness of data augmentation methods (Suzuki, 2022; Xie, 

Luong, Hovy and Le, 2020). 

In the research field of visual object detection, the application of semi-supervised 

learning has gradually emerged and achieved remarkable achievements (Girshick, 2015; 

Liu et al., 2021; Wu, Sahoo and Hoi, 2020; Bar et al., 2022; Jeong, Lee, Kim and Kwak, 

2019). An important breakthrough in this field is the proposal of the STAC method (Sohn 

et al., 2020). Moreover, the Instant-Teaching method optimizes STAC, which has an 

important impact in the field of semi-supervised object detection (SSOD) and provides 

new directions for future SSOD research (Zhou, Yu, Wang, Qian and Li, 2021). The 

improvement of Instant-Teaching starts from the following two key points. First, the co-

rectify strategy is used to solve the bias problem caused by pseudo labels. Second, the 

real-time pseudo label generation model is applied.  

In this project, semi-supervised learning has gradually matured in visual tasks. Semi-

supervised learning can learn from unlabeled data, reducing the need for a large amount 

of manually labeled data and the high cost of data annotation, and maximizing the 

learning effect under limited resources (Liu et al., 2021; Tang, Chen, Luo and Zhang, 

2021; Yang, Wei, Wang, Hua and Zhang, 2021). Besides, by learning from large amounts 

of unlabeled data, semi-supervised models are also able to capture richer and more 
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general data representations, thereby demonstrating better generalization performance on 

a variety of tasks. 

In this thesis project, we created the waste classification model from three aspects: 

Dataset, data augmentation, and model structure. Firstly, two waste datasets named 

WasteData and WasteNet, which contain 1,560 and 1,326 images respectively, are 

collected. Secondly, non-uniform data augmentation methods that meet the characteristics 

of waste classification is developed. Finally, the semi-supervised learning structure is 

studied and applied to the waste classification model. Our method improves the efficiency 

of waste classification. 

1.2 Research Questions 

Waste classification is one of the most important ways to protect our environment. There 

is a great deal of benefits to dispose wastes. For example, it can improve sustainability 

and pollution, protect the ecological environment. Besides, it can enlarge land space and 

improve the utilization. The recycling of waste can also make effective use of natural 

resources. It is important that waste is disposed efficiently and cost-effectively, and 

automated waste disposal is one of the solutions. Since deep learning has achieved 

significant results on visual object classification, detection, and segmentation tasks, we 

also choose to use deep learning to study waste classification from digital images and 

videos. However, automatic waste classification has not been widely used. Even though 

many deep learning algorithms have been applied in the field of waste classification, there 

is still much room for improvement in terms of disposing efficiency and detection 

accuracy. Moreover, the collection of waste data is currently challenged by a wide variety 

of waste types. Therefore, it is necessary to construct an efficient deep learning model 

and collect effective waste data to improve the efficiency of waste classification. 

Therefore, our research questions are as follows: 

Question 1: 

How does a deep learning model distinguish between different types of waste (such as 
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hazardous waste, recyclable waste, wet waste, dry waste)? 

Question 2: 

How do different deep learning architectures perform in waste classification? 

Question 3: 

How to improve the accuracy of deep learning models for waste classification in complex 

backgrounds? 

Question 4: 

How to improve the accuracy of waste classification in the case of limited or imbalanced 

data? 

1.3 Contributions 

In this thesis, we firstly validate the potential of the waste datasets to improve waste 

classification using deep learning. In the later stage, the focus of this thesis is on how to 

use less data to obtain better waste classification performance. With this in mind, we 

improve the accuracy of our proposed model in identifying waste by improving data 

augmentation methods and semi-supervised learning methods. 

1.3.1 Datasets 

In this thesis project, we collected two waste datasets. The first dataset is WasteData. We 

selected a number of waste images from a large number of images and divided them into 

four categories, totaling 1,560 images. According to the waste categories, we manually 

set the labels of the images as “recyclable”, “hazardous”, “wet”, and “dry”, as shown in 

Figure 1.1. Besides, each class contains a different kind of waste. As an example, the 

recyclable waste category includes glass, cardboard, and plastic. To enrich the dataset, we 

also annotated multiple perspectives of the same object as well.  
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Figure 1.1. The example of waste image in WasteData 

 

Figure 1.2. The example of waste image in WasteNet 

The second dataset is called WasteNet, and the waste images in the dataset are all 

taken by ourselves. WasteNet contains 1,326 images and four categories of waste 

classified according to waste classification standards, namely “recyclable waste”, 

“hazardous waste”, “dry waste”, and “wet waste”. We employed the LabelMe annotation 

tool to manually annotate images. Each image contains multiple types of waste, so the 

number of labeled wastes in the dataset exceeds the number of images. Some waste data 

images are shown in Figure 1.2. From Figure 1.2, our dataset details the stacking 
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phenomenon between waste objects, and some waste is also deformed, which is consistent 

with real waste classification scenarios.  

Simultaneously, we also utilized the world’s first waste dataset employed in industry, 

called ZeroWaste (Bashkirova et al., 2022). This dataset contains approximately 6,212 

images, which were taken in real waste classification scenes. It vividly reflects a variety 

of waste forms and polluted waste environments, significantly enriching the diversity of 

the waste dataset. Figure 1.3 illustrates some images from the ZeroWaste dataset. 

Although the ZeroWaste dataset has the advantages of rich data and large data volume, 

the reason why this thesis still uses the WasteNet dataset is that the ZeroWaste dataset 

only includes recyclable waste. In comparison, the WasteNet dataset contains a very 

comprehensive range of waste categories, which can not only help with waste collection, 

but also identify hazardous waste or non-recyclable waste.  

 

Figure 1.3. The example of waste image in ZeroWaste 

1.3.2 Data Augmentation 

How to reduce the negative impact on waste classification models caused by the scarcity 

of waste datasets and the complexity of waste data scenarios? How to make up for the 

shortcomings of waste datasets? How to alleviate the arduous work of waste data 

collection and annotation? These are our concerns. Through research, some existing data 
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augmentation methods have different improvement directions, such as ignoring part of 

the pixel information of the image, resulting in the loss of important features. Therefore, 

this thesis not only adopted some existing advanced data augmentation methods, such as 

cropping, rotating, flipping, translation, CutMix (Yun et al., 2019), Mixup (Zhang, Cisse, 

Dauphin and Lopez-Paz, 2018), and Mosaic Augmentation (Bochkovskiy, Wang and Liao, 

2020), but also designed a non-uniform data augmentation method and an adaptive 

weighted loss function for high-complexity real waste classification scenarios. Our 

method not only improves the accuracy of waste classification, but also saves the cost of 

manual annotation. Furthermore, the adaptive weighted loss function can make up for the 

imbalance of results caused by the large difference in the number of samples of the two 

data categories. 

1.3.3 Semi-supervised Learning 

In practical applications, obtaining a large amount of effective data and labeling it will 

consume expensive labor costs. Semi-supervised learning has great potential to solve this 

problem. Semi-supervised learning can improve the performance of learning models by 

incorporating unlabeled data, especially when labeled data is scarce. Therefore, in this 

thesis, we propose a novel approach: Co-Iteration Semi-Supervised Learning (CISO) to 

provide a more flexible and adaptable semi-supervised learning framework. This 

framework allows the model to be trained for multiple iterations (IoU values greater than 

the mean IoU value) and retain pseudo-label data during the first iteration. Moreover, 

although we set the data to make the IoU value greater than the mean IoU value for 

training, this does not mean that the mean IoU is a fixed value. Because the pseudo-label 

is updated every iteration of the model, it means that the mean IoU value is also constantly 

changing, so that unlabeled data can be fully utilized. 

1.4 Objectives of This Thesis 

This thesis introduces basic deep learning methods and various advanced deep learning 

models for waste classification in detail, and conducts a comprehensive evaluation and 
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comparison of their results. The characteristics and performance of these deep learning 

models are explored in detail to demonstrate their effectiveness and limitations on waste 

classification tasks. Secondly, to achieve efficient and effective waste classification tasks, 

this project collects new waste datasets. Finally, this thesis also proposes the deep learning 

methods suitable for waste classification for further understanding. 

Therefore, focusing on the existing difficulties in waste classification, the main 

objectives of this thesis are divided into five parts, covering the entire process from waste 

data collection to model training. The first is the collection of waste data. The key is to 

collect diverse waste samples and ensure the quality of training data. The second is data 

augmentation. The nonuniform data augmentation is introduced to increase the data 

diversity during model training and reduce the risk of overfitting caused by the lack of 

waste samples. The third part is the innovation of deep learning methods. The main 

research content is related to semi-supervised learning to improve the accuracy and 

efficiency of waste classification. The fourth part is model training, including selecting 

appropriate parameters to adapt to the specific dataset and classification task. Finally, the 

experimental results analysis section will evaluate the performance of the model, which 

includes a detailed comparison and analysis of different deep learning methods and our 

proposed method specifically for the waste classification task. 

In addition, this thesis will use a variety of performance metrics to verify the 

effectiveness and robustness of different methods. Through these comparisons and 

analyses, we hope to provide more effective and efficient solutions to the waste 

classification problem, thereby promoting the development of this field. 

1.5 Structure of This Thesis 

The structure of this thesis is detailed as follows: 

In Chapter 2, we present a detailed literature review, including traditional deep 

learning methods and their applications, and critical analysis of these fields. Based on 

relevant literature research results, this chapter mainly discusses different deep learning 
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methods, data augmentation methods, semi-supervised learning strategies, and various 

waste datasets, and introduces the current advanced waste classification models based on 

deep learning. 

In Chapter 3, we explain the datasets and evaluation metrics used in this thesis, as 

well as the new waste datasets, proposed in this thesis. It mainly includes the following 

four aspects: data collection methods and processes, data augmentation, and evaluation 

metrics. 

In Chapter 4, we utilize traditional deep learning methods to classify waste, and 

summarizes the advantages and limitations of these neural network models. 

In Chapter 5, taken characteristics of the complexity and diversity of waste datasets, 

new data augmentation methods and loss functions are proposed, called non-uniform 

color data augmentation, non-uniform offset data augmentation, and adaptive weighted 

loss function, respectively. 

In Chapter 6, potential solutions are elaborated. Semi-supervised learning has the 

advantages of reducing labeling costs, improving model efficiency, and enhancing model 

generalization capabilities. It can effectively reduce the negative impact of waste 

classification tasks due to the wide variety of waste types and the lack of waste datasets. 

Therefore, this chapter innovates a semi-supervised learning method, called Co-Iteration 

Semi-Supervised Learning (CISO). 

In Chapter 7, we discuss the experimental results and compares them with other 

state-of-the-art model results. In addition, comprehensive ablation experiments are 

designed to verify the effectiveness and application potential of the proposed method. 

This chapter includes three parts, namely, basic waste classification results, waste 

classification results based on non-uniform data augmentation, and waste classification 

results based on semi-supervised learning. 

Finally, in Chapter 8 we summarize the methods and research results used in this 

thesis. Then, research limitations and future work are discussed. 
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Chapter 2    
Literature Review 

 

 

In this chapter, we will provide an in-depth exploration of the 

work related to the research theme of this thesis, such as the state-

of-the-art deep learning methods, waste classification models, 

and waste datasets. Additionally, since this thesis also involves 

data augmentation and semi-supervised learning, this chapter 

will also analyze related work in these two fields to provide 

background information, development history, main theories, and 

research status of these fields.  
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2.1 Introduction 

Solid waste is one of the top problems in the world today. Along with progress of economy 

and production activities in modern society, the amount of waste also generated gradually 

increases (Kang, Yang, Li and Zhang, 2020). Waste management is an increasingly 

important topic. It is predicted that the total amount of global waste will increase by one-

fifth after 2030, with an imminent output of up to 2.6 billion tons of waste per year (Kaza, 

Yao, Bhada-Tata and Van, 2018). Some studies show that about 600 million tons of plastic 

waste still exist in the world's oceans. By 2020, there are still some countries where the 

waste recyclability rate will not be higher than 35% (Ferronato and Torretta, 2019; 

Mohanraj, Senthilkumar, Chandrasekar and Arulmozhi, 2023; Xiao, Dong, Geng and 

Brander, 2018). The disposal and recycling of waste is an indispensable topic in protecting 

the environment. How to deal with waste efficiently and reasonably is an increasingly 

arduous task. Waste is not waste, recycling, reducing, and reusing are strongly needed 

(Yang and Thung, 2016). 

At present, inadequate waste management mechanisms pose a great challenge to the 

protection of the ecological environment, the improvement of public health, and the 

safeguarding of human health. For example, the current main methods for open waste 

dumps are landfilling or incineration. However, these two unhealthy ways of disposing 

waste is prone to pollute the environment (Mohanraj, Senthilkumar, Chandrasekar and 

Arulmozhi, 2023). The amount of waste is positively correlated with the number of 

carbon emissions, which will lead to environmental pollution and exacerbate global 

warming (Chen et al., 2020). In another way, in the landfill process, a large amount of 

harmful chemicals, such as acid, alkaline and other toxic substances, will be produced, 

causing groundwater pollution and crop yield reduction (Chen et al., 2020). This will 

affect the utilization of water resources and increase the risk of virus transmissions, in 

addition to becoming a breeding ground for pathogens, which can easily lead to the spread 

of infectious diseases, such as malaria and diarrhea (Amasuomo and Baird, 2016; 

Ferronato and Vincenzo, 2019; Zaman, 2015; Zhang, Tan and Gersberg, 2010; Zhang, Hu, 
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Zhang and Zhang, 2020). 

Table 2.1 The summary of four classifications of waste and their characteristics. 

Categories Examples Characteristics 

Recyclable 

waste 

• Pape 

• Glass 

• Plastic 

• Cardboard 

• Metal 

Recyclable waste can be converted 

into raw materials through the 

recycling process and used again in 

production. 

Wet waste • Food scraps 

• Fruit peels 

Wet waste can be disposed of through 

biodegradable methods such as 

composting. 

Hazardous 

waste 

• Battery 

• Medicines 

• Bulbs 

Hazardous waste contains substances 

harmful to the environment and 

humans. This type of waste requires 

special handling to reduce harm to the 

environment. 

Dry waste • Ceramics 

• Cigarette 

• Mask 

Dry waste is usually not easily 

recycled or biodegradable and needs 

to be disposed of by landfill or 

incineration. 

There is a myriad of domestic wastes. To realize the harmless and reuse of waste, 

waste classification is an effective solution, improving the possibility of recycling and 

reuse (Meng and Chu, 2020). Typically, waste classification involves sorting various 

types of waste according to specific classification criteria and converting them into 

reusable resources. Proper waste disposal practices hold significant implications for 

ecological sustainability, resource efficiency, and public health enhancement. Currently, 

waste classification is a crucial step in waste management, aiding in resource recycling 

and minimizing resource depletion. It contributes to reducing the reliance on waste 
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incineration and landfills, thereby lessening pollution and safeguarding ecosystems, 

helping to achieve the goal of peaceful coexistence between human and nature. The 

composition, characteristics, value, and treatment methods of waste are the basic basis 

for waste classification. Waste can be divided into four major categories, as shown in 

Table 2.1. 

Waste recycling can save living resources, reduce production costs, and alleviate 

environmental pollution, which is necessary for modern society. However, the 

implementation of waste classification at this stage faces a series of challenges. 

Traditional methods of waste classification, which are typically semi-manual or semi-

automatic, struggle to keep pace with the increasing volumes of waste, often resulting in 

inefficient sorting and adverse health effects on workers. Furthermore, it is difficult to 

carry out household waste classification activities especially for the aged and children. 

They may not be able to fully comply with the waste classification rules due to mobility 

problems, resulting in low efficiency and accuracy of waste classification. Consequently, 

there is a pressing need to automate waste classification and incorporate more 

sophisticated technologies, such as artificial intelligence, into waste management 

(Gundupalli, Hait and Thakur, 2017; Pan, Li and Yan, 2018; Qi, Nguyen and Yan, 2022). 

The integration of advanced AI-driven classification techniques can lead to more effective, 

efficient, and health-conscious waste management practices (Pan et al., 2021; Qi, Nguyen 

and Yan, 2022). This, in turn, supports economic growth and environmental protection, 

stimulating us toward the sustainable coexistence of humanity and nature (Qiu et al., 2022; 

Shi, Tan, Wang and Wang, 2021). 

2.2 Deep Learning 

The development of deep learning has brought great scientific and societal convenience 

to our community, especially computer vision (Janiesch, Zschech and Heinrich, 2021; 

Joseph, Khan, Khan and Balasubramanian, 2021; Shen, Chen, Nguyen and Yan, 2018). 

There are plenty of algorithms for visual object detection in computer vision. They have 

been widely applied to industry, agriculture, and services (Papageorgiou and Poggio, 
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2000; Shrivastava, Gupta and Girshick, 2016; Wu, Sahoo and Hoi, 2020). 

2.2.1 Basic Deep Learning Methods 

Convolutional Neural Network (CNN) 

CNN is an essential convolutional architecture in the field of deep learning, which mainly 

extracts features in images through linear operations (Cai, Fan, Feris and Vasconcelos, 

2016; Cao et al., 2019; Dalal and Triggs, 2005; Fran, 2017; Fu, Sun, Wang and Fu, 2020; 

Fu, Li, Ma, Mu and Tian, 2020; Geirhos et al., 2020; Passalis and Tefas, 2018; Yan, 2021). 

Generally, CNN consists of four core parts, namely convolutional layer, activation layer, 

pooling layer, and fully connected layer, which has the advantages of translation 

invariance and reduced computational load (Abdel-Hamid et al., 2014; Almahairi et al., 

2016; Ba, Kiros and Hinton, 2016; Liu, Yan and Kasabov, 2024; Simonyan and Zisserman, 

2014; Xin, Nguyen and Yan, 2020). Currently, the visual object detection method using 

CNN as the backbone network can be grouped into two categories. Followed the 

classification of one-stage network and two-stage network, as seen in Table 2.2, the one-

stage networks can extract visual features directly to classify visual objects, the model is 

fast and suitable for mobiles, but the accuracy is lower than that of the two-stage networks 

(Prince, 2012). They have four main types. 

The core idea of YOLO is to apply the entire graph as the input of the network, and 

directly return to the position of a bounding box and the class to which the bounding box 

belongs in the output layer (Bochkovskiy, Wang and Liao, 2020; Le, Nguyen, Yan and 

Nguyen, 2021; Li, Xu and Yan, 2023; Rezatofighi et al., 2019). It is fast and can meet 

real-time requirements. By using the full image as context information, we are able to 

reduce the errors of detecting the background as an object, and it has a strong 

generalization ability (Cui et al., 2020; Li, 2016; Oliva and Torralba, 2007). The mAP is 

about 63%. But YOLO has minor errors. For example, each grid can only predict one 

object, which is easy to cause missed detection; and it is relatively sensitive to the scale 

of visual object. SSD improves these two aspects by using multiscale feature maps and 
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convolution for detection, bringing mAP to 71% (Liu et al., 2016). 

Table 2.2 The summary of four different one-stage networks. 

References Networks Approaches 

(Girshick and 

Farhadi, 2016) 

YOLOv1 YOLO is trained on a loss function that 

directly corresponds to detection 

performance and the entire model is trained 

jointly. Fast YOLO is the fastest general-

purpose object detector in the literature and 

YOLO pushes the state-of-the-art in real-time 

object detection, bringing mAP to 63.4%. 

(Liu et al., 2016) SSD Combine bboxes, use NMS to suppress some 

overlapping or incorrect bboxes. The data 

augmentation method also played a key role 

in the SSD algorithm, making mAP change 

from 65.5% to 71.6%. 

(Najibi, Rastegari 

and Davis, 2016) 

G-CNN The object proposal stage in the CNN-based 

object detection framework is removed, and 

the object detection problem is modeled as an 

iterative regression problem. 

(Kong et al., 

2017) 

RON Use deconvolution to deconvolution from the 

last layer and connect the previous layer to 

make the feature map semantics of the 

previous layer richer. It also filters most 

negative samples and solve the problem of 

imbalance between positive and negative 

samples in the default recommendation box. 
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Table 2.3 The summary of four different two-stage networks. 

References Networks Approaches 

(Girshick, 

Donahue, 

Darrell and 

Malik, 2014) 

RCNN RCNN has three improvements: selection 

of candidate regions, CNN feature 

extraction, and classification. When a 

large amount of labeled data is lacking, 

neural network transfer learning can be 

performed, and then fine-tuned. 

(He, Zhang, Ren 

and Sun, 2015) 

SPP-net An SPP layer is added between the last 

convolutional layer and the fully 

connected layer. The input of the network 

can be of any scale, and each pooling filter 

in the SPP layer will be resized according 

to the input to ensure that the input to the 

next fully connected layer is fixed. 

(Ren, He, 

Girshick and 

Sun, 2015) 

Faster R-CNN The RPN algorithm is used to replace the 

original selective search method to 

generate candidate frames. The CNN 

network that generates the candidate 

frames and the CNN network for object 

detection are the same CNN network. 

(He, Gkioxari, 

Dollár and 

Girshick, 2017) 

Mask R-CNN The proposed multi-task structure 

improves the performance of instance 

segmentation. In addition, RoIAlign 

solves the misalignment problem of the 

RoI pooling algorithm, and ensures that 

the original image is aligned with the 

feature map, and the pixel from the feature 

map to the ROI is aligned to improve the 
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accuracy of object detection. This is a 

general framework for instance 

segmentation. 

Regarding G-CNN, it is similar to the YOLO algorithm, but the focus is on the 

reduction of the number of initial proposals, so that a large number of proposals become 

very few initial grids, the final more accurate bbox is obtained through subsequent 

iterations (Najibi, Rastegari and Davis, 2016). The last one-stage network is RON (Kong 

et al., 2017), which solves the problem of the imbalance of positive and negative sample 

ratios, the detection results reached up to 77%. 

Pertaining to one-stage network, Darknet-53 is utilized as YOLOv3-Darknet 

backbone network to dete0ct municipal waste (Cui, Zhang, Green, Zhang and Yao, 2019), 

with an average accuracy of 87.4%, which could also be detected in complex 

environments. However, the detection of small targets needs to be considered. In addition, 

L-SSD was proposed (Ma, Wang and Yu, 2020). ResNet-101 as the backbone network, 

its accuracy for object detection reaches 83.5%. The L-SSD model is able to detect small 

targets well, but the detection speed could be improved. Similarly, YOLOv3 was also 

used for waste classification (De Carolis, Ladogana and Macchiarulo, 2020). Due to the 

size of small dataset, the average accuracy of model training was 68%. Therefore, it is 

feasible to improve the accuracy of YOLOv3 model by increasing the number of images. 

Another category is the algorithms based on two-stage network, as shown in Table 

2.3. It has more steps than the one-stage network to generate region proposals based on 

anchor points, then merge the detected bounding boxes, and find the object locations. This 

kind of structures have slow speed but high precision. 

The proposed R-CNN proves that the neural network can be applied to the candidate 

area from the bottom-up, so that the target classification and target positioning can be 

carried out (Girshick, Donahue, Darrell and Malik, 2014). It increased mAP to 53.3%, 

which is an improvement of 30% from the previous results. Then, Faster R-CNN 

creatively employed the convolutional network to generate the suggestion box by itself, 
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and shared it with the target detection network, reduced the number of suggestion boxes 

from the original ones from 2,000 to 300, the quality of the suggestion box is also essential 

improve. After that, based on Faster R-CNN, Mask R-CNN adds a mask branch to realize 

instance segmentation, and takes use of RoIAlign instead of RoI pooling to improve the 

accuracy of instance segmentation (He, Gkioxari, Dollár and Girshick, 2017). It is a 

general instance segmentation framework. Finally, SSP-net (He, Zhang, Ren and Sun, 

2015) is propounded, which solves the problem that CNN needs to fix the size of the input 

image, so that it can be correctly transmitted to the network regardless of the scales of the 

input image. 

Transformer Models 

Most of CNN models are mature and have achieved good results in visual classification, 

detection, and segmentation tasks (Chen, Kornblith, Norouzi and Hinton, 2020; Romera-

Paredes and Torr,2016; He, Fan, Wu, Xie and Girshick, 2020; He, Zhang, Ren and Sun, 

2016). However, in the computer vision area, more publications were shifting from CNN 

to the Transformer model (Vaswani et al., 2017; Zagoruyko and Komodakis, 2016; Zhu, 

Cheng, Zhang, Lin and Dai, 2019). It is a recently proposed network based on the 

attention model. Transformer is the most primitive attention mechanism model, which is 

mainly employed in machine translation (Guo et al., 2022; Jaderberg, Simonyan and 

Zisserman, 2015; Li, Liu, Zhang and Cheng, 2020; Lieskovská, Jakubec, Jarina and 

Chmulík, 2021; Niu, Zhong and Yu, 2021).  

    Later, the combination of Natural Language Process (NLP) (Radford et al., 2019; 

Sakalle, Tomar, Bhardwaj, Acharya and Bhardwaj, 2021; Srivastava, Geoffrey, Alex, Ilya 

and Ruslan, 2014) and Transformer gradually deepened, making Transformer the 

mainstream model of nonlinear programming. This model does not rely on a 

convolutional neural network, encodes input, and calculates output based on attention 

mechanism. Transformer breaks the limitation that RNN models cannot be trained in 

parallel compared to CNN. The Transformer also avoids the increase in the number of 

operations required to correlate between locations as the distance grows (Vaswani et al., 
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2017). It has six encoders and decoders with the same structure but different parameters, 

respectively. In the encoder, there are two modules. The first one is self-attention modules, 

and the second module is Feedforward Neural Network (FFNN). It is worth noting that 

the first module is the attention mechanism. After the data passes through the first module, 

weighted eigenvector attention is obtained, which is shown in Eq. (2.1).  

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 3!"
!

#$"
4 𝑣                (2.1) 

where Q, K, V are query vector, key vector, and value vector, respectively, with a vector 

length 64. If the input data is transformed into embedded vectors, three vectors q, k, v are 

obtained. Then, the attention mechanism calculates the score for q, k, and v, that is q × k. 

To stabilize the gradient, it will be normalized, which is reflected in Eq. (2.1). Next, the 

score function is activated with the Softmax function and dot product (Mikolov, 

Kombrink, Burget, Černocký and Khudanpur, 2011; Yan, 2019; Luo, Nguyen and Yan, 

2022). Finally, the output resultant attention thus is obtained. 

While the encoder outputs data, the data enters the decoder. The decoder has one 

more step: “encoder-decoder attention” than the encoder after the self-attention step, 

mainly focusing on the feature vector. If the data is output from the decoder, it will 

become a real vector, which needs to go through the linear transformation and Softmax 

layers to become the final output data. 

Moreover, another important concept is multi-head attention, which is the ensemble 

of h different self-attention. Its principle is to input the data into h to obtain characteristic 

matrices. Then, the characteristic matrices are introduced in the order of columns to form 

a new matrix, and finally obtain a new vector attention through a layer of FFNN. In 

addition to the encoder and decoder, there is also a part of data preprocessing. For 

positional encoding, the model uses sine and cosine functions with different frequencies 

for calculation. 

We see that Transformer has a few advantages, such as parallel computing and being 
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more explanatory. However, the Transformer is much suitable for application in the NLP 

field than in the computer vision area. Thus, the proposal of Vision Transformer model 

makes the Transformer much widely in the field of vision. Compared with the 

Transformers, Vision Transformer has one more step, that is, the input picture is divided 

into patches with a size of 16×16 (Dosovitskiy et al., 2021). Each patch is input into the 

embedding layer to obtain the corresponding token. After that, we add a position 

embedding on each token and input it all into the encoder layer of the Transformer. The 

Transformer of each layer is applied to calculate the mutual self-attention between patches 

and passes them layer by layer. The frame of the Vision Transformer model is shown in 

Figure 2.1. It makes use of the Transformer to get ideal results in the applications of 

computer vision. 

 

Figure 2.1. The framework of Vision Transformer 

Subsequently, various Transformer derivative models have emerged and have widely 

used in the field of computer vision, such as DETR (Carion et al., 2020) and Swin 

Transformer (Liu et al., 2021). Furthermore, there are other kinds of Transformer models 

employed for visual object detection. For example, BoTNet makes use of the Transformer 

to enhance the remote dependency of the CNN backbone, then PiT, a kind of Hierarchical 

Transformer (Heo et al., 2021; Srinivas et al., 2021). The Transformer network-based 

model has tremendous advantages, such as parallel computing and more explanatory 

power. 

Large Language Models 
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Large language model refers to deep learning models with a huge number of parameters 

and complex structures, which can contain millions or even hundreds of millions of 

parameters and are able to handle large-scale data, learn more complex features, and have 

more powerful generalization ability and higher accuracy (Atallah, Banda, Banda and 

Roeck, 2023; Kasneci et al., 2023; Kozachek, 2023; Liu, et al., 2023; Radford, 

Narasimhan, Salimans and Sutskever, 2018; Yang et al., 2019).  

    At present, large language models are gradually becoming the mainstream 

development direction in the field of deep learning (Thirunavukarasu et al., 2023; 

Waisberg et al., 2023). The large-scale multilingual and multimodal machine translation 

model named SeamlessM4T, which can perform speech translation between up to 100 

languages (Barrault et al., 2023). Afterwards, a large language model that can role-play 

animated characters was proposed, called ChatHaruhi (Li et al., 2023). In addition to the 

domains of speech translation and role-playing chat robots, large language models also 

have excellent performance in writing code, modifying code bugs, and textual question 

and answer, such as the highly regarded ChatGPT model (ChatGPT, personal 

communication, 2023). 

The large language models were explored in specific fields and utilize large language 

models for intelligent change in healthcare are of much interest. The ability to write 

postoperative patient discharge summaries and recognize images of patient lesions using 

GPT-4 was demonstrated to have the potential to aid medical innovation (ChatGPT, 

personal communication, 2023; Liu, 2023; Waisberg, et al., 2023). Subsequently, the 

application of GPT-4 in biomedical engineering has also been explored, and it has 

demonstrated excellent performance in the areas of medical devices, bioinformatics, and 

medical imaging (Cheng et al., 2023). Finally, large language model can also be applied 

to healthcare, such as providing users with healthcare-related information support for 

weight loss and mental health (Egli, 2023; Hendrycks and Gimpel, 2016). It is thus 

conjectured that GPT-4 has unlimited potential to help other domains. 

Large language models combined with vision tasks also gradually being developed. 
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Continuous improvements in large language models have evolved their functionality from 

processing text to processing visual images, bringing significant benefits to many text-to-

image interaction tasks.  

Visual ChatGPT connects a range of visual foundation models into ChatGPT, 

enabling users to interact with ChatGPT in the form of text and images (Chen, Guo, Yi, 

Li and Elhoseiny, 2022). It also provides complex visual instructions that allow multiple 

models to work together. Visual ChatGPT can also understand and respond to both text-

based and vision-based inputs, reducing the barriers to accessing text-to-image models. 

Then, Google proposed the multimodal visual language model PaLM-E, which has 562 

billion parameters (Driess et al., 2023). Based on the language model, PaLM-E performs 

continuous observation, e.g., receives image or sensor data and encodes it into a series of 

vectors of the same size as the language token. In this way, PaLM-E can continue to 

understand sensory information in the same way it processes language. The success of 

these models validates the future possibilities of such multimodal models. 

2.2.2 Data Augmentation 

Data augmentation is an important method in deep learning, which refers to improve the 

diversity, richness, and data volume of a limited data set without increasing the amount 

of original data, so that the neural network can learn a wider range of image features 

(Liang and Yan, 2022; Xin, Nguyen and Yan, 2020; Zoph et al., 2020). In general, CNNs 

have invariance to operations such as image size and displacement, so data augmentation 

can help neural networks to understand and interpret the performance of the same object 

under different positions and scaling conditions (Pan and Yan, 2018). Therefore, data 

augmentation is widely used in image processing tasks, such as image classification, 

object detection, and semantic segmentation (Yu et al., 2018). 

Currently, data augmentation can be grouped into two categories: Supervised data 

augmentation and unsupervised data augmentation. Supervised data augmentation is 

mainly used on labeled data, and it can be further classified into single-sample data 
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augmentation and multiple-sample data augmentation. Among them, single- sample data 

enhancement focuses on operations on a single data sample, including flipping, rotation, 

random cropping, translation, adjusting image saturation, Elastic deformation, scaling, 

color transformation, Jitter, noise injection, Cutout (DeVries and Taylor, 2017; 

Krizhevsky, Sutskever and Hinton, 2023; Liu et al., 2022; Redmon and Farhadi, 2017; 

Wan, Zeiler, Zhang, Cun and Fergus, 2013). These techniques simply change the 

appearance of images to increase the size of the dataset (Liu, Neuyen and Yan, 2020). 

Multi-sample data augmentation uses multiple sample data to generate new data samples. 

Representative technologies include CutMix, Mixup, Mosaic augmentation, and 

SamplePairing (Bochkovskiy, Wang and Liao, 2020; Yun, 2019; Zhang, Cisse, Dauphin 

and Lopez-Paz, 2018). CutMix refers to cutting a certain part of one image at the 

corresponding position in another image, and its labels are also mixed. After that, Mixup 

mixes two different images according to the proportion to form a new training sample. 

Then, Mosaic augmentation stitches four different images into a new image. Finally, 

SamplePairing combines the average of the pixel values of two different images to 

generate a new sample. These methods enhance the model's ability to adapt to data 

variations by introducing more diverse data combinations. 

The other category is unsupervised data augmentation, which is mainly suitable for 

unlabeled data and is represented by methods such as Generative Adversarial Networks 

(GAN) and AutoAugmentation (Cubuk, Zoph, Mane, Vasudevan and Le, 2019; Karras, 

Laine and Aila, 2019). GAN consists of a generator and a discriminator, which generates 

new images through an adversarial process. AutoAugmentation is different from 

traditional data augmentation methods. It can automatically perform data augmentation 

operations through search algorithms, focusing on optimizing existing data. 

By performing data augmentation, the neural network model can avoid learning 

many irrelevant features and reduce the risk of overfitting during the training process, 

thereby improving the overall performance of the model and enhancing the generalization 

ability and robustness of the model. The most important thing is that data augmentation 

can adapt to different task requirements and reduce the cost of acquiring new data and 
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annotating data. It is a key strategy in the field of deep learning. 

Among these data augmentation methods, we take use of the recently popular Mixup 

method as an example for in-depth study. The main idea of Mixup is to use linear 

interpolation to randomly merge two different images to form a new image, which helps 

to reduce the risk of model overfitting. Assume two training samples A and B, let “XA” 

and “XB” be the labels corresponding to these two samples respectively. We select λ as 

the random parameter, ranging from 0 to 1.0. The calculation method of Mixup is as 

shown in Eq. (2.2). and Eq. (2.3). 

𝑋%& = 𝜆 ∗ 𝑋% + (1 − λ) ∗ 𝑋%                    (2.2) 

𝑋'& = 𝜆 ∗ 𝑋' + (1 − λ) ∗ 𝑋'                    (2.3) 

where ‘*’ represents the multiplication of corresponding pixels, and ‘+’ illustrates the 

weighted sum of probabilities of corresponding category labels. 

It can be seen from the Mixup method that since it generates new images through 

linear interpolation, it increases the diversity of data, reduces label noise, and improves 

the robustness of the model when the data is limited. For other state-of-the-art data 

augmentation methods, although the performance of Cutout and Cutmix is slightly 

inferior to Mixup, they also have the same advantages as Mixup. However, there is room 

for improvement in these data augmentation methods. For Mixup, some pixel information 

of the original image may be lost. This may have a negative impact on tasks that require 

retaining the detailed features of the sample. Cutout simply blocks some pixels of the 

sample, such as creating a black rectangular part. This may cause the model to fail to learn 

complete image information, affecting the model training effect.  

Similarly, Cutmix makes use of another image to fill the occluded parts of the 

original image based on Cutout. This can result in pixel discontinuities in new samples. 

In addition, since the new sample is generated by mixing two images, more annotation 

information is required, increasing the cost of data annotation. For waste classification 

tasks, the waste data has problems such as high data labeled costs and more accurate 
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image information required for model training. This project speculates that the potential 

to utilize these data augmentation methods such as Cutout to improve model accuracy 

and efficiency is limited. Therefore, this thesis attempts to study and improve these two 

aspects in Chapter 5. 

2.2.3 Semi-supervised Learning 

In machine learning, self-supervised learning, unsupervised learning, and semi-

supervised learning are three different learning paradigms. Supervised learning requires 

a large amount of manually labelled data to train the model (Atito, Awais and Kittler, 

2021; Caron et al., 2021; Chen, Xie and He, 2021; Jing and Tian, 2020; Kolesnikov, Zhai 

and Beyer, 2019; Wang and Gupta, 2015; Sermanet et al., 2018). Labelling data and 

predicting results are taken into consideration before performing actions such as the 

calculation of gradients, after which learning is continuously performed as a way to obtain 

the ability to identify new samples, such as classification and regression tasks (Luo, Yan 

and Nguyen, 2022; Xiao, Nguyen and Yan, 2021). 

However, unsupervised learning does not require labelled data which looks for 

relationships among data through its features as data clustering task. It mainly makes use 

of a pretext to construct supervised information from large-scale unlabeled data and 

obtains a pre-training model by training the network, then commences fine-tuning for the 

parameters obtained through transfer learning, to get useful visual representation (Bhunia 

et al., 2021). We see that the main difference between supervised learning and 

unsupervised learning is whether or not the labelled data or ground truth is required. 

Recently, contrastive learning methods are more popular in unsupervised learning for 

visual tasks. For example, SimCLR and MoCo series both utilize the contrastive learning 

method for research (Chen, Kornblith, Norouzi and Hinton, 2020; He, Fan, Wu, Xie and 

Girshick, 2020). The contrastive learning method makes use of Siamese net and the core 

idea is to construct a positive sample and negative sample so that the distance between 

the sample and the positive sample is much greater than the distance between the sample 

and the negative sample (Qi and Su, 2017). These unsupervised learning models using a 
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contrastive learning method have achieved impressive results. However, the introduction 

of the BYOL model eliminated the role of the negative sample (Grill et al., 2020). After 

discarded the negative sample, it also trained an unsupervised learning model that was 

superior to other models. 

Besides data augmentation, another important function of unsupervised learning is 

the loss function (Cheng and Wang, 2019; Gonzalez and Miikkulainen, 2020). For the 

visual field, one of the loss functions of unsupervised learning is InfoNCE, which belongs 

to contrast learning and is applied to measure similarity (Oord and Vinyals, 2018). Its 

design is to crop a region from an image. If the cropped image is from the same one for 

another image, then the image is considered as a positive sample of the current image, 

otherwise, it is regarded as a negative sample. The sampled image is therefore represented 

by the query. At the same time, all the images will be saved to form a set of images and 

merged into a dictionary. The feature of these images is the key issue. Therefore, the 

InfoNCE is obtained as shown in Eq. (2.4). 

		𝐿( = −𝑙𝑜𝑔 )*+((∙.# /⁄ )
∑ )*+((∙.$ /⁄ )%
$&'

			                       (2.4) 

where q is expressed as the feature vector of the query, k+ indicates a positive sample 

vector of q in the dictionary, ki is the feature vector of the key in the dictionary, τ is a 

hyperparameter vector which is employed to adjust the loss. InfoNCE obtains similarity 

by dot-multiplying query with each key, the result of dot multiplication is controlled by 

the τ coefficient. By comparing positive and negative samples, it helps capture the 

structure of the data and can effectively learn data features. Therefore, the loss function 

also plays a key role in unsupervised learning. 

Unsupervised learning can make full use of unlabeled data and reduce the cost of 

data annotation. Similarly, for waste classification tasks, if the model dependence on 

labeled data can be reduced, the efficiency of waste classification can be greatly improved. 

However, unsupervised learning is not the optimal choice. In the waste classification task, 

the model needs to know the type of classification required in the image, and unsupervised 
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learning is more suitable for the task of discovering the intrinsic structure of the data. At 

this time, the advantages of semi-supervised learning are revealed (Zhai, Oliver, 

Kolesnikov and Beyer, 2019). Waste classification tasks usually involve complex data 

samples. Using a small portion of labeled data can allow the model to better capture 

sample features. 

Semi-supervised learning combines supervised learning and unsupervised learning 

techniques, and can use both labeled and unlabeled data to promote model learning. The 

core idea of semi-supervised is to generate a large number of pseudo-labels of unlabeled 

samples from a small number of labeled samples to provide additional supervision signals, 

the amount of labeled data is much less than that of the unlabeled data. In semi-supervised 

learning, two popular strategies are consistency regularization and entropy minimization 

(Cascante-Bonilla, Tan, Qi and Ordonez, 2021; French, Laine, Aila, Mackiewicz and 

Finlayson, 2019; Mahajan et al., 2018). The goal of consistency regularization is to ensure 

that the model can produce consistent prediction results even when the data is perturbed 

(Pham, Dai, Xie and Le, 2021; Xie, Dai, Hovy, Luong and Le, 2020). 

Then, entropy minimization, from a certain perspective, serves consistency 

regularization. The loss function of consistency regularization can be designed by the 

concept of entropy minimization. Entropy minimization can calculate the entropy of the 

prediction results of unlabeled data. The lower the entropy, the more credible prediction 

of the samples (An and Yan, 2021; Chen, Jin, Jin, Zhu and Chen, 2021; Gong, Wang and 

Liu, 2021). These two paradigms can aid semi-supervised learning make better use of 

unlabeled samples, improve the generalization ability and robustness of the model, and 

solve the problem of limited data. 

Currently, semi-supervised learning methods are applied to many visual tasks (Arazo, 

Ortego, Albert, O’Connor and McGuinness, 2020; Hinton, Vinyals and Dean, 2015; Iscen, 

Tolias, Avrithis and Chum, 2019). The CSD method takes use of the idea of contrastive 

learning to train the model from unlabeled samples and generate pseudo-label (Jeong, Lee, 

Kim and Kwak, 2019). This method belongs to soft pseudo-labeling. Corresponding to 
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hard pseudo labels, a typical representative method is STAC (Sohn et al., 2020). The 

STAC method introduces an active correction strategy and combines pseudo-labeling and 

self-supervised learning to improve the performance of semi-supervised learning models. 

Afterwards, the instant-teaching method emphasizes real-time training of labeled samples, 

unlabeled samples, and pseudo-label, which is helpful for the optimization of semi-

supervised learning (Zhou, Yu, Wang, Qian and Li, 2021).  

Finally, the unbiased teacher method was also proposed to improve the bias problem 

caused by the generation of pseudo-label (Liu et al., 2021). Although these methods have 

improved on the key point of pseudo-label, there are still many challenges in the 

generation of pseudo labels. The confidence of pseudo-label affects the performance of 

the model in two aspects. At first, excessive confidence can easily lead to model 

overfitting. Second, pseudo-label with insufficient confidence will introduce noise and 

affect the training result of the model. Based on semi-supervised learning, which can 

improve the results of waste classification, this thesis will propose potential solutions to 

the previous two problems in Chapter 6. 

Another concept to understand about semi-supervised learning is semi-supervised 

semantic segmentation. Semantic segmentation is different from object detection. It 

assigns detailed semantic information (such as the category and position of the pixel) to 

each pixel of the image. It is a deep learning method that can be accurate to the pixel level 

(Miyato, Maeda, Koyama and Ishii, 2018; Pham, Dai, Xie and Le, 2021; Xie, Dai, Hovy, 

Luong and Le, 2020; Wang, Cai, Liang and Ye, 2020). Semantic segmentation has the 

advantage of being more sensitive to the size, position, and orientation of objects in 

images, and has demonstrated significant value in many application scenarios, such as 

autonomous driving, plant leaf disease identification, medical image analysis, and 

Augmented Reality (AR). However, the challenge of achieving pixel-level segmentation 

is greater. This is because each pixel needs to be accurately labeled, and the cost of data 

labeling will substantially raise. In addition, the problem of model overfitting will also 

occur, causing the performance of the model to decline on the test set. 
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Based on the existing problems, the proposal of semi-supervised semantic 

segmentation provides new possibilities for this field. Similar to semi-supervised learning, 

semi-supervised semantic segmentation only labels part of the data and then processes 

other data in an unsupervised or semi-supervised manner. This can significantly reduce 

the labor cost of labeling data. 

Generative adversarial networks (GAN) emerged in the early field of semi-

supervised semantic segmentation. Its characteristic is that it can continuously improve 

the generator and discriminator. GAN can not only extract valuable features from 

unlabeled data, but also distinguish generated data from real data (Goodfellow et al., 

2020), thereby effectively improving the robustness of the model (Hung, Tsai, Liou, Lin 

and Yang, 2018; Ouali, Hudelot and Tami, 2020). Currently, more semi-supervised 

learning strategies are applied in semi-supervised semantic segmentation, including 

consistency regularization and entropy minimization (Cascante-Bonilla, Tan, Qi and 

Ordonez, 2021; Chen, Jin, Jin, Zhu and Chen, 2021; Gong, Wang and Liu, 2021). They 

improved the performance and efficiency of semi-supervised semantic segmentation to 

varying degrees. 

Besides, data augmentation technology is also indispensable (French, Laine, Aila, 

Mackiewicz and Finlayson, 2019). By performing transformation operations on images 

(such as rotation and scaling), the diversity of data is enriched, training samples are 

expanded, and the model is helped to better handle different images. 

In this thesis, we also explore the application of semi-supervised semantic 

segmentation on waste classification tasks. 

2.3 Waste Classification 

The rapid development of computer vision has led to the rise of many fields, such as 

intelligent driving and medical diagnosis (Gedara, Nguyen and Yan, 2023; Ji, Liu, Yan 

and Klette, 2019; Rabano, Cabatuan, Sybingco, Dadios and Calilung, 2018; Zhang et al., 

2021). Its emergence has significantly improved the efficiency of tasks that require 
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processing large amounts of image or video data (Vallayil, Nand, Yan and Allende-Cid, 

2023). The waste classification task requires processing a large amount of complex waste 

data. Therefore, combining computer vision with waste classification makes waste 

classification gradually automated, harmless, and efficient, which is of great value and 

significance to the ecological environment and social economy. 

2.3.1 Waste Datasets 

Visual object detection has made remarkable progress in recent years, which is essential 

to use deep learning to replace manual labor for an automated approach to waste 

classification (Ji, Liu, Yan and Klette, 2019). However, the accuracy of waste 

classification models is lower than that of other classification task, such as fruit 

classification. We speculate that the reason for this performance difference is that the 

waste data has complex and dirty backgrounds and a wide variety of objects, which results 

in low quality of the waste dataset. However, the dataset is an important factor affected 

the training of the algorithm model, and a low quality of the dataset can seriously affect 

the accuracy of the model prediction. Therefore, how to improve model performance by 

improving the quality of waste datasets is needed. 

In recent years, many waste datasets have been created. Labeled Waste in the Wild 

Dataset contains 1,002 data (Sousa, Rebelo and Cardoso, 2019). In this dataset, the 

collected waste objects based on food trays in shopping malls and homes, including 

plastic bottle, glass bottle, paper napkin, and metal can. Therefore, the collection of this 

dataset is not limited to the laboratory, the images taken in the real environment contain 

the conditions that exist in the real world, such as lighting, increasing the authenticity of 

the sample. However, this dataset focuses on waste in trays and lacks many waste types 

such as batteries and sponges. This makes the dataset lack some diversity. 

Another TrashNet dataset focuses on the recyclable waste category and contains a 

large number of labeled recyclable waste samples, with more than 2,500 images (Yang 

and Thung, 2016). The characteristics of this dataset are that data are collected under 
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controlled conditions, all image backgrounds are white, and each image contains only one 

waste object. Figure 2.2 shows an example. Although TrashNet contains a comprehensive 

range of recyclable waste categories: Metal, glass, plastic, paper, cardboard, and garbage, 

this dataset only has one category of recyclable waste, and cannot train the model to 

identify other waste categories. 

 

Figure 2.2. An example image of TrashNet dataset 

Then, UAVVaste dataset released (Kraft, Piechocki, Ptak and Walas, 2021). This 

dataset is different from other waste datasets in that it utilizes Unmanned Aerial Vehicles 

(UAVs) to fly in outdoor environments (cities) and capture waste images at different 

heights, angles, and perspectives. Among them, there are 770 waste samples and 

approximately 3,700 waste objects collected. UAVVaste collected wastes from the 

perspective of aerial photography, restores the true state of the waste, and can provide the 

background environment where the waste is located, providing diversified data. It is 

highly beneficial for tasks that require waste management’s outdoors (such as some areas 

that are difficult for humans to access or require a lot of cost to access). Some examples 

are illustrated in Figure 2.3. 

Finally, Trash Annotation in Context (TACO) dataset is more popular (Proença and 

Simoes, 2020). It has a total of 1,500 waste images, and each image contains multiple 

waste objects, with approximately 60 annotation categories and 4,800 annotations. 
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Furthermore, compared to UAVVaste, TACO's samples have richer backgrounds, such as 

city streets, indoor environments, woods, and tropical beaches. Therefore, the TACO 

dataset is more suitable for on-site waste detection scenarios. Figure 2.4 shows a sample 

image of TACO. 

 

Figure 2.3. An example image of UAVVaste dataset 

 

Figure 2.4. An example image of TACO dataset 

By providing high-quality and diverse data, it contributes to the development of 

automated waste classification technology, thereby helping to alleviate environmental 

pollution problems. 
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2.3.2 Waste Classification Using Deep Learning 

Waste detection is becoming popular. Using deep learning for waste classification has 

many advantages, such as scalability, high accuracy, and convenience (Altikat, Gulbe and 

Altikat, 2022; Fan, Cui and Fei, 2023; Huang, He, Xuan and Huang, 2020; Olugboja and 

Wang, 2019). The waste classification models based on deep neural networks have also 

been continuously proposed (Zhou et al, 2022; Ziouzios and Dasygenis, 2019; Zhang, 

Chen, Yang and Gong, 2021).  

Lightweight network MobileNet-v2 was trained for waste classification with an 

accuracy 82.92% (Yong, Ma, Sun and Du, 2023). After that, the EnCNN-UPMWS model 

generated by combining CNN with an unequal precision measurement weighting strategy 

improves the waste classification accuracy to 92.85% by the two key points of weight 

coefficients and predicted probability vectors (Hua and Gu, 2021). Although EnCNN-

UPMWS model can improve the performance of the ensemble learning model, it is 

trained based on the TrashNet dataset. This results in the waste features learned by the 

model being based on simple backgrounds, which may affect the robustness of the model. 

Then, the improved Mask Scoring R-CNN algorithm based on Mask R-CNN was 

applied to detect waste and achieved an accuracy of 65.8% (Li, Yan and Xu, 2020). 

Although the accuracy of the Mask Scoring R-CNN algorithm in waste classification is 

36.5%, higher than that of general objects, the model needs a large number of datasets for 

training, and the training results need to be improved. Besides, Faster R-CNN model has 

been proposed to carry out object detection for waste classification. The results show that 

the accuracy of the model is 89.7% (Nie, Duan and Li, 2021). However, Faster R-CNN 

model could also be improved in the object detection of small target waste.  

Next, a method based on the combination of CNN model with metal detector and 

recorder was proposed (Funch, Marhaug, Kohtala and Steinert, 2021). It detects metal 

and glass in waste bags with an accuracy of 98.0%. Although the detection accuracy of 

this method is very high, it utilizes a metal detector and recorder, which are not convenient 
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that still needs a multi-sample dataset for training. 

In addition to image classification, an object detection system based on YOLOv3 for 

real-time identification of waste in video streams was proposed, and accuracy 68% was 

obtained (Carolis, Ladogana and Macchiarulo, 2020). The advantage of YOLOv3 model 

is that it can apply cameras for real-time waste monitoring, and it can be employed in 

waste bins or waste classification factories in the future. However, the training of this 

model is still based on the existing waste data in the network, and there is an imbalance 

in the number of images and the number of annotations, which affects the performance 

of the model. Hence, a lightweight network-based waste classification model LW-GCNet 

was proposed. It utilizes depthwise separable convolution for feature extraction and 

adopts adaptive maximum pooling to reduce the number of parameters, and the waste 

detection accuracy reaches 77.17% (Xia, Xu and Tan, 2022). Finally, ResNet-34 

algorithm was also applied to waste classification and an automatic classification bin was 

briefly designed, including the hardware structure (Kang, Yang, Li and Zhang, 2020).  

Other than the proposed models based on the traditional CNN structure, the up-and-

coming Transformer model is also applied to the waste classification task. Compared to 

CNN, the advantage of the self-attention mechanism, which is not limited by local 

interactions, allows Vision Transformer to achieve 96.98% in waste classification (Huang, 

Lei, Jiao and Zhong, 2021).  

Although deep learning models for waste classification are constantly being 

improved and have obtained significant classification and detection results, there is still 

room for improvement (Adedeji and Wang, 2019; Ahmad, Khan and Al-Fuqaha, 2020). 

A slew of waste classification models, such as the optimized DenseNet-121 and ResNet-

10 using fusion schemes, have waste classification accuracies as high as over 85% (Mao, 

Chen, Wang and Lin, 2021; Kashif, Khan and Al-Fuqaha, 2020). However, the datasets 

they use are only simple recyclable waste categories, such as glass, cardboard, plastic, 

paper, and metal, which cannot measure the real waste classification application scenarios. 

According to the waste classification standard, waste should be divided into four 
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categories, namely “recyclable waste”, “wet waste”, “dry waste”, and “hazardous waste”. 

While the ETHSeg model classifies the four categories of waste based on X-rays, the 

classification accuracy of small objects in waste remains low (Qiu et al., 2022). Table 2.4 

summarizes the characteristics of above waste classification models. Thus, the lack of a 

waste dataset and the intensive manual annotation due to the wide variety of waste 

categories is the important challenge faced by our algorithms in waste classification tasks. 

Table 2.4 Comparative summary of different waste classification models. 

References Models Summary Characteristics 

(Li, Yan and 

Xu, 2020) 

Mask 

Scoring R-

CNN 

The improved Mask 

Scoring R-CNN based on 

Mask R-CNN and 

achieved an accuracy of 

65.8%. 

This model needs a large 

number of datasets for 

training. 

(Carolis, 

Ladogana and 

Macchiarulo, 

2020) 

YOLOv3 Real-time identification 

of waste in video streams 

was proposed, and the 

accuracy 68% was 

obtained. 

Real-time video waste 

classification provides a 

good start for the 

application of waste 

classification, but this 

model has the problem of 

data imbalance. 

(Xia, Xu and 

Tan, 2022) 

LW-GCNet LW-GCNet is a 

lightweight network with 

a waste classification 

accuracy of 77.17%. 

It uses adaptive 

maximum pooling to 

reduce the number of 

parameters and improve 

classification efficiency. 

(Kang, Yang, 

Li and Zhang, 

2020) 

ResNet-34 This model briefly 

designs an automatic 

waste classification bin 

and uses the ResNet-34 

This method further 

expands the application 

of waste classification in 

real society. 
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algorithm. 

(Yong, Ma, 

Sun and Du, 

2023) 

MobileNet-

v2 

MobileNet-v2 is a 

lightweight network 

model that can achieve 

82.92% accuracy when 

used for waste 

classification. 

The lightweight network 

model can be applied to 

mobile terminals, such as 

mobile phones, to realize 

the function of real-time 

waste classification. 

(Nie, Duan 

and Li, 2021) 

Faster R-

CNN 

Faster R-CNN model has 

been proposed to carry 

out waste classification. 

The results show that the 

accuracy is 89.7%. 

The model does not 

perform well in 

identifying small waste 

objects in waste datasets. 

(Mao, Chen, 

Wang, Lin, 

2021) 

DenseNet-

121 

DenseNet-121 divides the 

data into two stages for 

processing. First, it 

roughly identifies the 

data, and then extracts 

features from possible 

target areas in the data. 

DenseNet-121 is also 

trained based on 

TrashNet dataset and 

cannot measure real 

waste classification 

scenarios. 

(Kashif, 

Khan and Al-

Fuqaha, 

2020) 

ResNet-10 This model uses a feature 

fusion scheme to achieve 

a waste classification 

accuracy of 94.58%. 

This model validates the 

advantages of the fusion 

model. 

(Hua and Gu, 

2021) 

EnCNN-

UPMWS 

By introducing UPMWS 

to design the weight 

coefficient, using the 

TrashNet dataset, the 

accuracy is 92.85%. 

It can improve the 

performance of the 

ensemble learning model. 

However, the waste 

features learned by the 
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model being based on 

simple backgrounds, 

which may affect the 

robustness of the model. 

(Huang, Lei, 

Jiao and 

Zhong, 2021) 

Vision 

Transformer 

The Vision Transformer 

model uses a self-

attention mechanism, and 

the accuracy of waste 

classification reaches 

96.98%. 

Waste classification 

based on Vision 

Transformer avoids being 

limited by the receptive 

field (characteristics of 

the CNN model), and the 

classification accuracy is 

better than other models 

using CNN architecture. 

(Funch, 

Marhaug, 

Kohtala and 

Steinert, 

2021) 

CNN This method based on the 

combination of CNN 

model with metal detector 

and recorder. 

The detection accuracy of 

this method is high. 

However, the application 

of metal detector and 

recorder is not 

convenient. 

(Qiu et al., 

2022) 

ETHSeg ETHSeg model classifies 

the waste based on X-

rays. 

It looks at the waste 

classification model from 

a new perspective, and the 

use of X-rays greatly 

improves model 

performance. 
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 Chapter 3    
Datasets and 

Evaluation Metrics 

 

 

          The core idea of this chapter is a detailed description of the 

dataset collection and preparation process. After that, the data 

augmentation technology used in this thesis is briefly explained. 

Finally, the model evaluation metrics are also shown. 
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3.1 Data Collection 

Datasets are crucial for training and improving performance of deep learning algorithms 

(Everingham, Van Gool, Williams, Winn and Zisserman, 2010). Deep learning models 

need to learn correct patterns from a large amount of data to classify and predict 

unclassified data. A suitable dataset should have multiple characteristics: Rich samples, 

accurate labels, sufficient scale, and high-quality images, which can help the algorithm 

better understand the nature of the deep learning problem. This section details the data 

collection methods and processes, including the sources of data and the tools and methods 

of data collection. 

Many research groups have released waste datasets, the more popular ones are 

Labeled Waste in the Wild, TrashNet, UAVVaste, TACO, and ZeroWaste. Table 3.1 briefly 

summarizes the contents of these datasets. 

In this thesis, the experiments on the direction of semi-supervised semantic 

segmentation are conducted based on the ZeroWaste dataset. The ZeroWaste dataset is 

the world's first industrial-level waste dataset. It is collected in a real waste classification 

factory scenario, as shown in Figure 3.1. We see that all waste is placed on the 

classification conveyor belt, and each image contains several waste objects. This dataset 

contains three sub-datasets, namely fully-supervised ZeroWaste-f, weakly-supervised 

ZeroWaste-w, and semi-supervised ZeroWaste-s. They have 4,503, 1,410, and 6,212 

images respectively. Since we are applying this dataset to a semi-supervised learning 

algorithm, we are use of the ZeroWaste-s dataset. We chose the ZeroWaste dataset 

because it is the first one collected based on real waste classification industrial scenarios, 

and its advantage is that it can increase the authenticity and diversity of the dataset. 

However, this dataset only contains four types of recyclable waste: “Metal”, “Cardboard”, 

“Rigid Plastic”, and “Soft Plastic”, but the management and processing of other waste 

types such as hazardous waste, dry waste, and wet waste are equally important. Only 

using ZeroWaste will make the model have poor generalization ability or even be unable 

to identify the other three categories of waste, which may have a negative impact on the 
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waste classification results. 

Table 3.1 The summary of the different datasets. 

Datasets Summary 

Labeled Waste in the Wild The collected waste objects based on food 

trays in shopping malls and homes, including 

plastic bottle, glass bottle, paper napkin, and 

metal can. 

TrashNet The data are collected under controlled 

conditions, all image backgrounds are white, 

and each image contains only one waste 

object. This dataset only contains recyclable 

waste samples. 

UAVVaste It utilizes Unmanned Aerial Vehicles 

(UAVs) to fly in outdoor environments 

(cities) and capture waste images at different 

heights, angles, and perspectives. 

TACO It contains multiple waste object and has 

richer backgrounds, such as city streets, 

indoor environments, woods, and tropical 

beaches. Therefore, this dataset is more 

suitable for on-site waste detection scenarios. 

ZeroWaste It is the first real-world industrial-scale waste 

dataset, including recyclable waste such as 

cardboard. 

Therefore, we also collected our own waste datasets, they are WasteData and 

WasteNet. The purpose of collecting our own datasets is to make the model more robust 

and stable in identifying waste. Compared with other datasets, our datasets contain four 

waste categories, namely recyclable waste, wet waste, dry waste, and hazardous waste, 
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which meets the diversity and comprehensiveness of the data. 

 

Figure 3.1 An image example of the ZeroWaste dataset 

 

Figure 3.2 An image example of the WasteData dataset 

For the WasteData dataset, we marked 1,560 images in total. Taken recyclable waste 

as an example, Figure 3.2 shows some of the recyclable waste images in this dataset. The 

advantage of this data set is that waste objects are clearly visible and can be well labeled. 
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In addition, our dataset complies with the waste classification standards and contains four 

waste categories, and each category is rich in different wastes. This greatly enriches the 

diversity of waste datasets. However, we also studied the ZeroWaste dataset and realized 

the shortcomings of our dataset, that is, it ignored the dirty background of waste. 

Therefore, we collected another waste dataset, named WasteNet. 

In WasteNet, a variety of wastes in the image are stacked together, which not only 

meets the waste classification scene, but also meets the conditions for the diversity of 

waste forms, such as being distorted, compressed, and folded. Although WasteNet was 

not collected in a waste classification factory, apart from this problem, this dataset is 

infinitely close to real-world scenarios, this allows deep learning models to more 

accurately capture and understand the real relationships and patterns of the data. 

Moreover, considering that the waste classification factory is indoors, we also collected 

data indoors, as shown in Figure 3.3. 

 

Figure 3.3 An image example of the WasteNet dataset 

Although we believe that WasteNet can more accurately represent the real 

appearance of waste, enabling the model to have stronger generalization capabilities, and 

effectively cope with complex real-world environments. However, this does not imply 

that the WasteData dataset should be disregarded. The WasteData dataset facilitates a 
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more straightforward processing approach, can reduce interference during model 

identification, and achieve faster model training and verification. How to combine the 

advantages of these two datasets requires further research work. In the future, we will 

also expand our datasets so that each image fits the real cluttered waste classification 

background, and can ensure the effectiveness of feature extraction to further help waste 

detection tasks (Nixon and Aguado, 2019). 

 

Figure 3.4 Visualization of annotation using Labelme 

Moreover, the annotation of the dataset is completed with the help of Labelme 

software. We label the four classes of images as “Dry”, “Wet”, “Hazardous”, and 

“Recyclable”, respectively. For each class of waste image, the manual annotation is 

carried out based on the shape of visual object itself, which is shown in Figure 3.4. All 

images are marked and the bounding box (bbox) of the waste object in the image is found, 

which can also be called the region of interest (ROI). In this thesis, we take advantage of 

a rectangular frame to define the bbox, and the obtained information will be stored in 

JSON format. Figure 3.5 also shows an example of the ROI of a random image in the 

dataset being stored in JSON format. However, in Chapter 4, some of our experiments 

used the YOLO series models. Therefore, the JSON format files need to be converted into 

txt version to be suitable for training of the YOLO series models. Take Figure 3.6 as an 
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example. Finally, all data will be split into two groups, namely training set and test set. 

 

Figure 3.5 The JSON format for labeling 

 

Figure 3.6 The txt format for labeling 

3.2 Data Augmentation 

In addition to data collection, data processing is also a crucial step. The main purpose is 

to optimize the original data to improve the performance of the model. Generally, data 
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processing covers many methods: 

(1) Delete or fill data containing missing values 

(2) Apply methods such as undersampling to deal with sample imbalance problems 

(3) Utilize data augmentation to address problems with dataset class imbalance or 

small datasets 

(4) Use smoothing algorithms to reduce image noise 

(5) Remove duplicate data 

  

Figure 3.7 Visualization of crop operating 

 

Figure 3.8 Visualization of rotating operating 

According to the characteristic that the number of samples in our datasets is lower 

than that of ZeroWaste dataset, data augmentation is the best way we choose to expand 

the dataset and enrich the diversity of training samples. Flipping, translation, cropping, 
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and rotation are more popular data augmentation methods (Yan, Zhang, Wang, Paris and 

Yu, 2016). Therefore, in this thesis, our experiments also adopt these four data 

augmentation methods to improve model performance. Figure 3.7 and Figure 3.8 show a 

banana image after data augmentation.  

The Crop method needs to randomly select an area in the original image and crop it 

out, but it should be noted that the height and width of the cropped sample should be 

smaller than the height and width of the original image respectively. The detailed 

pseudocode of the cropping method is introduced in Algorithm 3.1. In Algorithm 3.1, 

given an input parameter is the original image, define randomCrop() as a function, where 

the width and height of the original image and the cropped image are the parameters of 

this function. Then, return the height and width of the original image.  

Next, we let final_width and final_height of the cropped image smaller than the 

original image respectively, where x represents randomly select a starting point for 

cropping along the width of the original image. Likewise, y refers to randomly selecting 

a starting point for cropping along the width of the original image. Finally, a new cropped 

image is generated and stored in the newImage variable and returned, where x and y 

determine the starting coordinate point of the upper left corner of the cropping area, and 

x+final_width and y+final_height represent the coordinate points of the lower right 

corner of the cropping area.  

Algorithm 3.1 Crop method for images 

Input: The original images 

Output: The new images which changed by Crop method 

def randomCrop(image, final_width, final_height): 

width, height = image.get_width(), image.get_height() 

assert final_width <= width and final_height <= height 

x = random_select(0, width – final_width) 
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y = random_select(0, height – final_height) 

newImage = image.crop(x, y, x+final_width, y+final_height) 

return newImage 

Algorithm 3.2 introduced the pseudocode of the translation method. The translation 

changes the position of the image content by randomly selecting some pixels in the image 

and moving them vertically or horizontally. In Algorithm 3.2, given an input parameter 

as the original image, we define randomTranslation() as a function, including three 

parameters: the original image, the maximum vertical movement distance, and the 

maximum horizontal movement distance. The second step is to get the width and height 

of the original image. After that, moveX and moveY represent randomly obtained 

horizontal and vertical moving distances respectively.  

Note that the use of max_x and max_y does not mean that the moving distance is a 

negative value, but represents the difference in the moving direction. The fifth line of 

pseudocode creates a new image with the same size as the original, making it easy to copy 

the translated image on top. In addition, the width and height of new images cannot 

exceed that of the original image. Next, the two loop statements for x in range(width) and 

for y in range(height) function to traverse all pixels of the original image. Then, newX 

and newY calculate the new position information obtained by translation of each pixel. 

Finally, copy the image obtained through Translation to newImage and return it. 

The last aspect to introduce is Algorithm 3.3, the pseudocode of the flipping method. 

Flipping plays the role of flipping the original image vertically or horizontally in data 

augmentation (usually flipping along the horizontal and vertical lines in the middle of the 

image), the model does not rely on image features in a specific direction. In Algorithm 

3.3, we define the flipping function with two parameters: The original image and the 

flipping direction.  

After that, get the width and height of the original image. Let newImage be a new 

image of the same size as the original image. Iterate through all pixels of the original 

image through the loop function for x in range(width) and for y in range(height). Next, 
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set up if and elif conditional statements to distinguish the flip type. Among them, 

horizontal and vertical represent vertical flipping and horizontal flipping respectively. 

Finally, copy the image obtained by Flip to newImage and return. 

Algorithm 3.2 Translation method for images 

Input: The original images 

Output: The new images which changed by Translation method 

def randomTranslation(image, max_x, max_y): 

width, height = image.get_width(), image.get_height() 

moveX = random_select(-max_x, max_x) 

moveY = random_select(-max_y, max_y) 

newImage = create_new_image(width, height) 

 for x in range(width): 

     for y in range(height): 

         newX = x + moveX 

         newY = y + moveY 

         if 0 <= newX < width and 0 <= newY < height: 

             newImage.set_pixel(newX, newY, image.get_pixel(x, y)) 

 return newImage 

 

Algorithm 3.3 Flip method for images 

Input: The original images 

Output: The new images which changed by Flip method 

def flip(image, flipDirection): 
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width, height = image.get_width(), image.get_height() 

 newImage = create_new_image(width, height) 

 for x in range(width): 

     for y in range(height): 

         if flipDirection == "horizontal": 

             newX = width – 1 – x 

             newY = y 

         elif flipDirection == "vertical": 

             newX = x 

             newY = height – 1 – y 

         newImage.set_pixel(newX,  newY, image.get_pixel(x, y)) 

return newImage 

Data augmentation is one of the key strategies to improve the performance of deep 

learning models in the context of limited data. It has the capability to expand the dataset, 

effectively improve the robustness and generalization ability of the model, and reduce the 

cost and time of data collection.  

3.3 Evaluation Metrics 

The evaluation metrics of deep learning is a key tool for quantifying and comparing model 

performance, which can assist users to understand the performance of the model more 

easily. With these metrics, the strengths and weaknesses of the model can be found out 

and optimized and improved in a targeted manner. Therefore, choosing appropriate 

evaluation metrics is crucial for model training and improvement. This thesis will employ 

reliable evaluation metrics that are adopted by a great deal of models, such as confusion 

matrix, Average Precision (AP), and mean Average Precision (mAP).  

Most of these evaluation metrics are derived from the confusion matrix, which is 

represented by a matrix and includes both real and predicted two categories. The trained 

model is firstly employed to obtain a confidence score for all the test samples, and a set 
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of confidence scores and ground truth labels are obtained for each category. This is 

summarized in Table 3.2.  

Table 3.2 The confusion matrix. 

 Prediction 

Positive Negative 

Actuality Positive True Positive (TP) False Negtive (FN) 

Negative False Positive (FP) True Negtive (TN) 

T and F respectively indicate that the prediction result is true and the prediction 

result is false as the Boolean values, while P and N represent positive samples and 

negative samples respectively. Therefore, the definition and calculation method of each 

metric can be seen in Table 3.3.  

Table 3.3 The definition of matrices. 

Metric Definition Calculation method 

TP The proportion of positive samples that are 

predicted correctly 

TP/(TP+FN) 

FP The proportion of positive samples that are 

predicted incorrectly 

FP/(FP+FN) 

FN The proportion of negative samples that are 

predicted incorrectly 

FN/(TP+FN) 

TN The proportion of negative samples that are 

predicted correctly 

TN/(FP+TN) 

The meaning of Precision is how many of the results predicted to be positive samples 

are correctly classified, see Eq. (3.1). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 34
34564

	                        (3.1) 

Eq. (3.2) details the calculation method of Recall. It is the number of correctly 
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predicted positive samples accounting for the total number of positive samples. 

𝑅𝑒𝑐𝑎𝑙𝑙 = 34
34567

                          (3.2) 

Intersection over Union (IoU) represents the ratio of the intersection and union of 

the prediction result of a prediction result and the true value. It is between 0 and 1.0. The 

closer IoU is to 1.0, the closer the bonding box predicted by the model is to the real 

bounding box. The mean Intersection over Union (mIoU) is the average value calculated 

after accumulating the IoU of each category. Their formulas are shown in Eq. (3.3) and 

Eq. (3.4) respectively. 

𝐼𝑜𝑈 = 34
345564567

                        (3.3) 

𝑚𝐼𝑜𝑈 = &
8(
∑ 𝐼𝑜𝑈9
8(
9:8)                       (3.4) 

where C is the category, n is the number of categories. 

For Average Precision, it is to calculate the area under the PR Curve (Precision-

Recall Curve), so it needs to be calculated using integrals,  

𝐴𝑃 = ∫ 𝑝(𝑟)𝑑𝑟&
;                         (3.5) 

It follows that mean Average Precision (mAP) is the average of AP on all categories, 

and the formula is, 

𝑚𝐴𝑃 = ∑ %4$
(
$&)
7

                        (3.6) 

where N (generally greater than 1) refers to the number of categories. 
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Chapter 4    

Basic Methods of 

Waste Classification 

 

 

          In this chapter, we consider the advantages of deep learning 

algorithms and applies them to the task of waste classification. 

Models based on CNN and Transformer are included, such as the 

popular models YOLOv7, YOLOv8, Swin Transformer, and 

emerging star large language model. In this chapter, the 

experiments on YOLOv7, YOLOv8, and Swin Transformer models 

are based on WasteData, and the experiments on large language 

model are based on WasteNet. This is the reason why large 

language model can generate detailed descriptions of multiple 

objects in complex scenes. WasteNet may be more suitable for 

large language model because it provides richer contextual 

information and helps the model better understand waste objects 

in images. 
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4.1 YOLOv7 

The backbone of YOLOv7 makes use of ELAN structure to enhance the model 

performance without destroying the original gradient path. In contrast, for the MP 

structure, downsampling is achieved by using both convolution and max pooling with the 

same number of channels. Next, the detection head is an anchor-based structure, mainly 

using SPPCSPC structure, Rep structure, and ELAN structure (different from the one in 

the backbone). We have chosen YOLOv7 model as our baseline and improved the model 

with the following (Wang, Bochkovskiy and Liao, 2022).  

 
Figure 4.1 The structure of SPPCSPC-COOR-ASF module 

In order to improve the model performance by making it much more capable of 

feature representation, we select RFA component of the AugFPN model (Guo, Fan, Zhang, 

Xiang and Pan, 2020). In general, the RFA component can generate contextual features 

in receptive fields through pooling, which can expand the receptive field whilst keeping 

the depth of the network structure constant. It can be considered a feature enhancer. In 

detail, the ASF module in the RFA component makes use of a similar approach to spatial 

attention. It can generate adaptive spatial weights for visual features of multiple receptive 

fields by using convolutions. This enables an efficient fusion of features from various 

receptive fields and enhances feature representation. Therefore, we add the RFA 

component into YOLOv7 to enhance the feature representation capability. In YOLOv7, 

the original SPPCSPC module is employed as a method to obtain contextual feature maps 

of a slew of receptive fields, which is also harnessed to perform pooling operations. 

Therefore, we combine the RFA component with the original SPPCSPC module to obtain 
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a new SPPCSPC-COOR-ASF module to generate adaptive feature maps with a plethora 

of spatial weights for multiple scales. Figure 4.1 illustrates the structure of the SPPCSPC-

COOR-ASF module. 

 

Figure 4.2 The structure of Coor attention mechanism 

The SPPCSPC-COOR-ASF module firstly generates a feature map by pooling 

branches at a fixed scale. After that, we insert a coordinate attention mechanism, namely, 

the Coor module, to capture remote dependencies and enhance the representation of 

objects of interest (Hou, Zhou and Feng, 2021). The structure of the Coor module can be 

seen in Figure 4.2. Finally, the channels are compressed by using the RFA module to 

embed spatial information into the spatial attention graph (Yan et al., 2019). The new 

features containing multi-scale contextual information are generated by a weighted fusion 

of contextual features. This enables the improved YOLOv7 to have a more robust 

detection performance than the original YOLOv7. 

Furthermore, we replace the Pyramid Split Attention (PSA) module (Zhang, Zu, Lu, 
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Zou and Meng, 2021) with 3´3 convolutions in bottleneck to get the new Efficient 

Pyramid Split Attention (EPSA) block to improve the model performance. Currently, 

attention modules introduced into CNN can bring significant improvement to the model, 

such as CBAM (Woo, Park, Lee and Kweon, 2018).  

However, there are challenging problems with these modules. As an example, the 

first problem is that though these modules are considered both spatial attention and 

channel attention, they can only capture effective local information and cannot establish 

long-term dependencies. The second problem is that the spatial information of feature 

maps at different scales cannot be effectively utilized to enrich the feature space. The 

proposal of PyConv solves these two drawbacks but imposes a huge computational 

burden on the model. After that, the proposed PSA module not only solves the two 

problems described above but also has the advantage of light and high efficiency. 

Therefore, the PSA module is chosen in this thesis to improve YOLOv7.  

The structure of PSA module is shown in Figure 4.3. The input tensor enters the SPC 

module and is divided into S groups, where the convolutional kernel size tends to increase, 

and then the convolutional layers are grouped to avoid the increase in computation. After 

the SPC module processing, the attention values of different scales are generated in the 

SE Weight module. Finally, the spliced attention weights are also subject to Softmax 

operation to get the output. In this way, the PSA module can handle the spatial information 

of the input feature maps at multiple scales that can effectively establish the long-term 

dependencies between the attention of the multi-scale channels. 

 

Figure 4.3 The structure of the PSA module 

In this thesis, we select Transformer to create Transformer Head as the decoupling 

head of YOLOv7, to improve the accuracy of visual object detection (Vaswani et al., 
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2019). The Transformer has the advantage of fast-forward propagation, low structural 

complexity, and high efficiency of feature extraction. It is mainly based on scaled dot-

product attention. The calculation formula is shown in Eq. (4.1). Because YOLOv7 is 

different from YOLOv5 (Zhu, Lyu, Wang and Zhao, 2021), it does not have a C3 module; 

we use the Transformer block. 

Attention(𝑄, 𝐾, 𝑉) = 	softmax 3!"
!

#$%
4 × 	𝑉             (4.1) 

where Q shows query matrix, K represents key matrix, and V is value matrix. Then, dk 

represents the dimension of Q and K, which is employed to control the range of dot 

product values. The Transformer model is based on multi-headed attention with the 

addition of normalization, summation, and multi-layer perceptron structure. The encoder 

of this structure consists of a stack of N-layer networks. Each layer contains an encoder 

and a decoder. The encoder contains two layers, the multi-head attention mechanism, and 

the feedforward neural network, while the decoder has three layers, the multi-head 

attention mechanism with mask, the multi-head attention mechanism, and the 

feedforward neural network (Vaswani et al., 2019).  

    The advantage of this Transformer is that it can minimize the dependence on external 

information and focus the arithmetic power on the correlation information of the sequence 

data itself. The combination of Transformer and YOLOv7 can make full use of the 

convolutional neural network to filter out a large amount of irrelevant information while 

using the extracted feature information as input to speed up the network convergence, 

reduce the training computation and improve the model performance. 

Our experimental hardware configurations are Intel I7 and Nvidia GeForce GTX 

2060 graphics card. The software includes Microsoft Windows operating system, 

CUDA11.1 software environment, and PyTorch deep learning framework. The initial 

learning rate of the training process is assigned to 0.02; the batch size is set to 8. Moreover, 

300 epochs were applied to the model training process.  
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4.2 YOLOv8 

Compared with YOLOv5, YOLOv8 has made a spat of great improvements. In the 

backbone network, YOLOv8 continues the CSP idea, still using the SPPF module, but 

replacing the C3 module with the C2F module, and application two 3×3 convolutions to 

reduce the resolution by a factor of 4 and achieve lightweight. After that, all the 

convolution machine structures in the PAN-FPN upsampling stage of YOLOv5 were 

removed in YOLOv8. In the neck and head stages, YOLOv8 adopts Decoupled-Head, 

eliminates the obj branch, and replaces the anchor-base with anchor-free. YOLOv8 then 

eliminates the objectness branch and adopts Binary CrossEntropy Loss (BCE Loss) as 

classification loss, and utilizes CIoU Loss and Distribution Focal Loss (DFL) as 

regression loss. Finally, the matching strategy, YOLOv8, uses a dynamic Task-Aligned 

Assigner, discarding the IoU matching method (Bochkovskiy, Wang and Liao, 2020). We 

chose the YOLOv8 model as our baseline and improved the model performance by 

following three aspects. Figure 4.4 shows the overall structure of our model. 

 

Figure 4.4 The structure of improved YOLOv8 model 

After that, to further improve the performance of the model, we integrate the 

contextual information module into the model (Chen et al., 2020). This strategy is 
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implemented to effectively extract higher-level abstract features in waste images. The 

extraction of high-level features not only helps the model process complex visual features, 

but also enhances the model's ability to capture semantic information. Figure 4.5 

illustrates the structure of contextual information mechanism. Feature fusion can 

synthesize the information of both shallow and deep features to achieve the 

complementary advantages of the two features and make the detection of the model more 

robust and accurate (Li and Zhou, 2017; Nguyen and Yan, 2021; Wang and Yan, 2023). 

 

Figure 4.5 The structure of contextual information mechanism 

Finally, we replace the SPPF module in YOLOv8 with the SE_ASPP module. 

SE_ASPP is a combination of Atrous Spatial Pyramid Pooling (ASPP) and the channel 

attention mechanism SENet (Hu, Shen and Sun, 2018). In general, the receptive field is 

closely related to the object detection performance, the larger the receptive field the better 

the network performance, but the receptive field should not be extremely large, it will 

lead to the model is difficult to converge. If the model is required to have a large receptive 

field while ensuring that the resolution of the feature map does not lose much (which may 

lose the image details), dilated convolution is essential.  

Therefore, the ASPP module has the advantage of being able to balance the receptive 

field and resolution well. ASPP module uses multiple parallel dilated convolution layers 

with different sampling rates for the input features to be sampled. This allows the model 

to individually construct different receptive fields from branches of different scales, 

extract the input features, and use them to generate the final feature results. Moreover, 

utility of the channel attention mechanism SENet not only effectively enables the parallel 

transfer of key feature information, improves information reuse and enhances useful 

information, but also compresses useless feature information. Figure 4.6 illustrates the 
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specific structure of SE_ASPP. 

 

Figure 4.6 The structure of SE_ASPP module 

The hardware configuration of the experiment is NVIDIA GEFORCE GTX 2060 

graphics card and Intel I7. Python and Torch are used for the experiment software. The 

parameters of this experiment are shown in Table 4.1. 

Table 4.1 The parameters of experiment. 

Classes Parameters 

Initial Learning Rate 0.01 

Momentum 0.9 

Weight Decay 0.0005 

Batch Size 16 

Epoch 300 

Optimizer SGD 

4.3 Swin Transformer 

Targeted at resolving the problem of a large amount of calculations, Swin Transformer 

model takes use of the designed window, which only computes the self-attention inside 

the window, dramatically reduces the amount of calculation and constructs a hierarchical 
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Transformer that was used as a backbone network for visual tasks such as image 

classification, object detection, and semantic segmentation (Vaswani et al., 2017; Liu et 

al., 2021). This model was applied to our experiments, which will be detailed in this thesis. 

Swin Transformer model is improved based on Vision Transformer, which will be 

applied to carry out visual object detection and semantic segmentation (Dosovitskiy, et 

al., 2021). Therefore, in this thesis, we apply this model to carry out waste detection, 

segmentation, and classification to improve accuracy and training speed. 

 

Figure 4.7 The structure of Swin Transformer 

Similar to Vision Transformer, Swin Transformer also adopted the segmented blocks. 

If the size of each patch is 4 × 4, the characteristic dimension of the patch is 4×4×3. 

However, it is worth noting that Swin Transformer determines the number of patches at 

first, while it confirms the size of the patch first. After that, the architecture is similar to 

that of CNN, which constructs four stages as shown in Figure 4.7. 

There are three concepts that need to be known, namely patch, token, and window. 

Assuming that the size of the input image is 224×224, it is firstly divided into a number 

of small pieces of 4×4 pixels, so a total of 56×56 small pieces can be divided. Each small 

piece is called a patch, which is also called token. In addition, if an image is divided into 
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7×7 windows, so that each window will contain 8×8 patches. 

In this model, it is worth noting the Swin Transformer block part which is an 

improvement on the standard Transformer, mainly take use of shifted window to improve 

the standard multi-head self-attention module, which are W-MSA and SW-MSA. 

W-MSA indicates that multi-head self-attention inside the window. We treat the 

window as a global independent no calculating the attention of each token in the window, 

reducing the computational complexity. We should take use of SW-MSA to aggregate 

information between different windows. The difference between SW-MSA and W-MSA 

is that SW-MSA offsets the coverage of the window, and the original text is set to half of 

the side length of the window. After the window slides diagonally, the window in the 

middle can get the information of all windows on the upper layer. 

Thus, according to the characteristics that Swin Transformer is utilized as the 

backbone network, in this thesis, we combine Swin Transformer with Mask R-CNN and 

take Swin Transformer as the backbone network of Mask R-CNN for waste classification. 

The framework of the model is shown in Figure 4.8. 

 

Figure 4.8 The structure of the combined model 

Mask R-CNN is an improved model based on Faster R-CNN. After the primary 

feature network, a fully connected split subnet is added, a mask prediction branch is added 

to each ROI (Wu et al., 2020). It mainly has seven steps to be implemented: 

(1) Step 1: Input images 
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(2) Step 2: Use the backbone network to obtain the feature map 

(3) Step 3: Set ROI for feature map to obtain multiple ROI 

(4) Step 4: Use the ROI with the RPN network for binary classification and bounding 

box regression to obtain the filtered ROI 

(5) Step 5: Output ROI after ROIAlign with the filtered ROI 

We see that Mask R-CNN has the advantages of good segmentation and fast training 

speed, which completes the tasks of detection and segmentation at the same time. 

Therefore, we choose to combine Mask R-CNN with Swin Transformer, the Swin 

Transformer is the backbone network. We take hazardous waste such as batteries as an 

example, the feature map of Swin Transformer is shown in Figure 4.9. 

 

Figure 4.9 The Swin Transformer feature maps 

Moreover, in this experiment, we made use of NVIDIA GEFORCE RTX 2060 GPU 

and Intel I7 CPU and installed code editors PyCharm, neural network framework PyTorch, 

CUDA, CUDNN and OpenCV. 
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4.4 Large Language Model 

Artificial intelligence (abbreviation AI), particularly large-scale language models, has 

shown remarkable promise in various applications, including image classification tasks 

(Dai et al., 2023; Ding et al., 2023). The cutting-edge GPT-4, for instance, can perform 

image classification, text-to-image conversion, and image-to-text translation. Its superior 

generalization and zero-shot learning abilities enable the processing of complex datasets 

with high efficiency (ChatGPT, personal communication, 2023). Building on this 

potential, we introduce a pioneering approach to waste classification by harnessing the 

semantic capabilities of large language models. We utilize MiniGPT-4 to generate textual 

descriptions of waste images, which we then input into the pre-trained language model 

RoBERTa (Liu et al., 2019; Zhu, Chen, Shen, Li and Elhoseiny, 2023). Concurrently, we 

process the waste images directly through the Swin Transformer model (Liu et al., 2021).  

Despite these advancements, large language models remain challenging in practical 

scenarios. They are composed of multilayer neural networks with hundreds of millions of 

parameters, necessitating substantial computational resources and extended training 

periods. This complexity results in considerable training expenses. Furthermore, an 

increase in model parameters can complicate the model's interpretability and elevate its 

complexity (Singla, 2023; Zan et al., 2023; Zvyagin et al., 2022). 

Therefore, to solve this problem and avoid manually collecting image description 

information from a large language model, we introduce MiniGPT-4 into our model 

through an API interface, aiming to leverage the rich semantics of the large language 

model in a simplified way to create an efficient and highly accurate waste classification 

model. Our description-driven approach to image classification shows promise, 

particularly when image data is scarce, making it well-suited for the task of waste 

classification. 

The Structure of Our Framework 

Deep learning models, such as CNN, have performed well on computer vision tasks over 
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the past years. It can learn visual features directly from image data. This means that the 

model can predict the output directly from the input data without any human intervention 

at intermediate steps in the training process. Recently, it has been confirmed that large 

language models have excellent performance (Chen, Guo, Yi, Li and Elhoseiny, 2022; 

Driess et al., 2023; ChatGPT, personal communication, 2023). Therefore, we speculate 

that applying large language models to image classification models by introducing 

multimodal information so that the image classification model is not limited to learning 

features only from the image data, which will bring about a performance improvement. 

Our model framework is shown in Figure 4.10.  

 

Figure 4.10 The framework of our model 

Firstly, we input our waste image to MiniGPT-4 to generate a detailed description of 

the image. At this point, we give the prompt “Describe these images for waste 

classification”, which is designed to fit the prompt more closely to our task, thus 

increasing the accuracy of waste classification. In this step, we take the approach of 

describing the images by introducing the MiniGPT-4 API. The purpose of this method is 

to save resource allocation without affecting the classification performance. We did not 

choose to adopt the better-performing GPT-4 model since GPT-4 has not opened the API 

function for the image-to-text module. Figure 4.11 shows the description of the image 
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produced by MiniGPT-4. After that, we feed all the image descriptions generated by 

MiniGPT-4 to the RoBERTa model, which converts the text descriptions into high-

dimensional embedding vectors that provide semantic classification decisions for the 

images based on their descriptions (Liu et al., 2019). At the same time, we will also send 

the image data to Swin Transformer for direct image classification. 

 

Figure 4.11 Image description generated with MiniGPT-4 

Image descriptions generated using large language model 

Our proposed multimodal waste classification model can integrate textual descriptions 

and image processing content for waste classification. In the entire model, generating 

image descriptions through MiniGPT-4 is one of the most important aspects. Firstly, the 

waste image and the prompt related to this image are inputted into the model to get 

detailed description information of the waste image. During this process, we found that 

even if the same image is input into MiniGPT-4, the image description generated is 

different every time. 

We conjectured that different descriptions generated for the same image would have 

different effects on the model training results. Thus, we explored the effects of different 

lengths of image descriptions and different prompts of input on the model results in our 

ablation experiments. Based on the experimental results, we finally chose to define the 
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prompt as “Describe these images for waste classification in detail”. Moreover, we 

selected the description information of the image as shown in Figure 4.12. As can be seen, 

"Description1" gives key information about the waste in the image. Whereas 

"Description2" lacks information about some objects such as corn cobs and plastic bags.  

 

Figure 4.12 An example of the image description generated by MiniGPT-4 with 

different prompts 

4.5 Summary 

In this chapter, we simply applied YOLOv7, YOLOv8 and Swin Transformer for the 

waste classification tasks and achieved positive detection results, which shows that the 

deep learning method is effective. Afterwards, we combined the large language model to 

convert the rich semantic information of MiniGPT-4 into waste image data, improving 

the accuracy of waste classification. 
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Chapter 5    

Data Augmentation for Waste 

Classification 

 

 

In this chapter, we mainly summarize the role of non-uniform data 

augmentation on waste classification models. Non-uniform data 

augmentation includes non-uniform color data augmentation and 

non-uniform offset data augmentation. Not only does it 

significantly improve model performance, it also offers 

effectiveness and simplicity in solving real-world waste 

classification problems. In this chapter, the dataset used is 

ZeroWaste. 
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5.1 The Structure of Our Framework 

Integrated with deep learning and tailored for complex real-world waste classification 

backgrounds, we prefer semantic segmentation to enhancing conventional object 

detection techniques. This preference stems from our observation of the severe clutter 

encountered in such scenarios, where the presence of a large and diverse amount of waste 

can lead to items obscuring each other. Semantic segmentation allows for the division of 

the entire image into distinct regions without gaps, assigning each region to a specific 

category, and is adept at object sizes, shapes, and conditions (Chen, Du, Zhang, Qian and 

Wang, 2022; He, Yang and Qi, 2021; Huo et al., 2021). Our approach not only enhances 

waste classification efficiency and reduces the need for comprehensive manual pixel-

precise labeling but also addresses the issue of data scarcity when training model 

(Mahajan, 2018; Yan, 2023).  

    From self-training and collaborative methods to consistent regularization and the 

latest trend of generative adversarial networks, semi-supervised learning techniques have 

been evolving for a while (Chen, Yuan, Zeng and Wang, 2021; Mittal, Tatarchenko and 

Brox, 2019; Qiao, Shen, Zhang, Wang and Yuille, 2018; Yang, Zhuo, Qi, Shi and Gao, 

2022). This thesis seeks to explore how we can overcome the challenges posed by limited 

waste datasets, their deficiencies, and the intricacy of scenarios for waste classification. 

We investigate the application of semi-supervised learning to boost the efficiency and 

accuracy of waste classification and to improve the severe shortage of pixel-precise 

annotations in semi-supervised semantic segmentation area. These are significant 

questions that we aim to answer through our research. 

In this thesis, we direct our attention towards leveraging the consistent regularization 

strategy as a solution to the previously outlined challenges by crafting a non-uniform data 

augmentation technique specifically designed for the distinct attributes of real-world 

waste classification. Through detailed analysis, we observed that traditional data 

augmentation methods such as Mixup, Mosaic, and Cutout, although innovative, exhibit 

inherent shortcomings (DeVries and Taylor, 2017; Guo, Mao and Zhang, 2019; Yun et al., 
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2019). Cutout, for instance, disregards segments of the image, failing to capitalize on the 

entirety of the available image data, whereas images processed with Mixup often appear 

unrealistic due to localized blurring effects. We introduce an innovative solution for waste 

classification through the use of a cutting-edge non-uniform data augmentation technique. 

This approach excels at replicating diverse environmental scenarios, including variations 

in lighting and object forms, thereby significantly improving the robustness of the model 

(Qi, Nguyen and Yan, 2024).   

Initially, we adopt U-Net as the foundational framework and ResNet-50 as the 

backbone network to assess the efficacy of our specialized non-uniform data 

augmentation and adaptive weighted loss function. The architecture of the network is 

depicted in Figure 5.1. During the training phase with unlabeled data, comparisons are 

made between outputs from data processed without non-uniform data augmentation and 

those subjected to it, measuring the L1 loss to gauge the consistency between the 

predictions from these two data variants (Gao, Nguyen and Yan, 2023; Nguyen and Yan, 

2023). A lower L1 loss indicates improved model performance. To further enhance the 

model's ability to generalize, we introduce drop perturbation techniques to both the 

original input channels and the feature channels (Srivastava, Geoffrey, Alex, Ilya and 

Ruslan, 2014). This strategic integration aims to refine the model's predictive accuracy 

and robustness. 

 

Figure 5.1 The architecture of the network 
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5.2 Non-uniform Color Data Augmentation 

Our method of non-uniform color data augmentation intricately simulates the 

complexities of natural lighting found in the real world, setting it apart from the simpler 

approach of random brightness augmentation method (Yang, Xu, Wang and Zhang, 2022). 

Instead of uniformly adjusting brightness across all pixels like the random brightness 

augmentation method, our technique introduces a wholly random effect on each pixel 

point, as illustrated in Figure. 5.2. 

 

Figure 5.2 The examples of typical non-uniform color data augmentation 

The images from Figure. 5.2(a) to Figure. 5.2(d) demonstrate how light and shadow 

vary across the bottom, top, right, and left sides in the image, adding depth and realism 

to the scene. Specifically, Figure. 5.2(e) presents a gradient of light that fades towards the 

image's edges, centering the brightness, whereas Figure. 5.2(f) displays the reverse 

pattern to Figure. 5.2(e). Continuing, Figure. 5.2(g) and Figure. 5.2(h) depict scenarios 

with significantly dark and intensely bright lighting, respectively. Although Figure. 5.2 

provides just eight examples of our diverse non-uniform color data augmentation 

techniques, numerous similar variations are present, as Figure. 5.3 further explores. 
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Figure 5.3 Some examples of atypical non-uniform color data augmentation 

 

Figure 5.4 Comparison of the image after non-uniform color data augmentation and the 

original image from the ZeroWaste dataset. (a) is the original image. This image also 

incorporates natural light produced during waste classification. The light shines from the 

upper right corner, and the lower left corner of the image is darker. (b) is the image 

obtained after data augmentation processing. It can be seen that the light has been changed, 

the dark part has become the upper left corner, and the light part has been moved to the 

lower right corner 

When applying this technique to the ZeroWaste dataset, we keep the pixel positions 

constant but vary their values randomly and smoothly, creating a dynamic range of 
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lighting effects. For instance, in Figure. 5.4(b), the light is dimmed from the top left corner 

while being bright from the bottom right, creating a nuanced contrast when compared to 

the original dataset image in Figure. 5.4(a). This adjustment darkens the upper left while 

brightening the lower right, effectively replicating the varied lighting conditions that 

could affect waste samples, despite them being of the same type, photographed from the 

same angle. This method not only enhances the dataset's diversity but also prepares the 

model to recognize waste under a broader spectrum of lighting scenarios, making our 

approach uniquely effective in simulating real-world conditions. 

5.3 Adaptive Weighted Loss Function 

If the amount of data images in some categories is too small, it will lead to serious 

imbalance in data distribution. Therefore, the model will not learn enough features of 

these categories, affecting model performance. During the model training process, we 

noticed that the number of waste images in the two categories “Metal” and “Rigid Plastic” 

in the dataset was low. To overcome this problem, we designed a new loss function called 

adaptive weighted loss, as shown in the following Eq. (5.5), Eq. (5.6), and Eq. (5.7). 

𝐿<=> = − &
?
{∑ 𝑙𝑜𝑠𝑠(𝑝9)7

9:& }	                    (5.5) 

and 

𝑙𝑜𝑠𝑠(𝑝9) = Y𝑒
@A+$ ∙ ln 𝑝9 , 𝑝9 < 𝜂
0,																							𝑝9 ≥ 𝜂                 (5.6) 

and 

𝑍 = ∑ [𝑝9 < 𝜂]7
9:&                        (5.7) 

where i denotes the pixel point, the number of e elements in the mask is referred to Z, 

which is equivalent to the adjustment coefficient. 𝑝9 is the pixel prediction probability, 

and w represents the weight. Moreover, η is the hyper parameter, and the set value is 0.99. 

Finally, eB	is the overall weight assigned to each type of waste, which is based on our 

experimental settings.  

The ZeroWaste dataset contains four waste categories and one background category. 
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For the case where there is less data in the Rigid Plastic and Metal categories, we set w 

for these two classes to 3.0, and w for all other categories to 1.0. This is the training 

optimal value obtained after multiple rounds of ablation studies. In Eq. (5.6), 𝑒+ aims to 

justify the pixel weight assignment. If the p-value is smaller, the weight assigned to it will 

increase, which helps to achieve data balance. On the contrary, if 𝑒+ is stable, p should 

be larger, making the 𝑒+ value smaller.  

Besides, if 𝑝9  is greater than or equal to η, we will set the mask to 0, automatically 

adjust the number of negative and positive samples through hard coding method, and 

filter out the samples that the model has learned well without limitations. Finally, the 

value of the loss function is calculated by multiplying the weight and cross entropy, which 

is different from the traditional weight loss function OhemCELoss (Shrivastava, Gupta 

and Girshick, 2016). OhemCELoss limits the proportion of negative and positive samples, 

while our method does not set this limit and extracts valuable features in a simple and 

effective way, thereby improving model performance. 

Our experiments were based on a server with RTX A5000 GPU and AMD EPYC 

7543 CPU. Installed code editors VSCode, neural network framework PyTorch, CUDA, 

CUDNN, and, OpenCV. The specific experimental parameters are reflected in Table 5.2. 

Table 5.2 Training parameters of this experiments. 

Classes Parameters 

Initial learning rate 1e-4 

Optimizer Adamw 

Weight decay 1e-3 

Batch size 26 

Epoch 100 
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5.4 Non-uniform Offset Data Augmentation 

 

Figure. 5.5 Comparison of the image after non-uniform offset data augmentation and the 

original image from the ZeroWaste dataset. (b) and (d) are the images obtained after data 

augmentation processing of the original images (a) and (c) respectively 

In Figure. 5.5(b), we observe a condensed rendition of Figure. 5.5(a), where the entirety 

of the pixel arrangement appears to be shifted upwards, suggesting a vertical translation. 

Conversely, Figure. 5.5(d) represents an extended version of Figure. 5.5(c), with pixels 

collectively migrating to the right, indicating a horizontal pan. This manipulation forms 

the core of our innovative non-uniform offset data augmentation strategy, which stands 

in contrast to the conventional methods of scaling and aspect ratio adjustments typically 

employed in image augmentation practices. Our approach is meticulously designed to 

assign a unique, random displacement to each pixel within the image. For instance, while 

one pixel might experience a shift of 1 pixel, another could be moved by 3 pixels, with 

these adjustments decreasing gradually until they reach a predetermined peak value. The 

intensity of these shifts is modulated using a sine wave function. 
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In this method, i∈ IW×H×C symbolizes a training image including two spatial 

dimensions, x and y. The objective behind our non-uniform offset data augmentation 

strategy is to create a modified version of the training image, denoted as ĩ(x, y), through 

the specifically defined formulas as follows:  

𝚤̃(𝑥, 𝑦) = 	∆𝑖(𝑥, 𝑦) ∗ sin	(2π ∗ r	/𝑣<) + 	𝑖(𝑥, 𝑦)，           (5.1) 

and 

  𝑣< = 	1200 + 200 ∗ ((𝑟 − 0.5) ∗ 2)                 (5.2) 

where x and y detail the pixel intensity along their respective axes. The process begins 

with an initial pixel offset, ∆i(x, y), randomly assigned to each pixel, subsequently fine-

tuned through multiplication with a sine wave to finalize the offset. The variable r denotes 

a random figure complying to a uniform distribution across 0 to 1.0, ensuring the 

randomness of the Sine function's output. The symbol 𝑣< 	represents the peak value of 

this sine modulation. Eq. (5.3) and Eq. (5.4) show the equation of ∆𝑖(x, y). 

𝑥	~	𝑈𝑛𝑖𝑓(0,𝑊),											𝑦	~	𝑈𝑛𝑖𝑓(0, 𝐻)              (5.3) 

and 

∆𝑖(𝑥, 𝑦) = p
∆𝑥 = 𝑣C + 15 ∗ q(𝑟 − 0.5) ∗ 2r							𝑟 < 0.5	
∆𝑦 = 𝑣C + 15 ∗ q(𝑟 − 0.5) ∗ 2r							𝑟 ≥ 0.5

        (5.4) 

The mechanism for calculating ∆i(x, y) involves setting a base pixel value, here 

chosen as 70, and then applying random arithmetic operations to obtain the final offset 

value, ∆i(x, y). Depending on r's value, the offset alternates between Δx and Δy to maintain 

the shift within a desirable range. This experimental setup selected an initial offset range 

between 55 and 85, with the baseline of 70 and this range is the most effective through 

our testing. It is worth mentioning that the initial offset range (from 55 to 85) is applicable 

to the ZeroWaste dataset. If different datasets are applied, the initial offset range can be 

changed after experimental testing. Eq. (5.1) illustrates how we compute the final pixel 
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shift by combining the base offset value with a sine function. In fact, cubic, cosine, 

quadratic, and other mathematical functions can also be utilized instead of sine function, 

but this also depends on different dataset environments. The sine wave's peak is similarly 

defined, with values ranging between 1,000 and 1,400. 

Table 5.1 The examples of offset values for x-axis. 

Pixels Different offset values 

000 0.00000000000000 

001 0.47157373246046 

002 0.94312902362002 

… … … … 

255 75.403237628632 

256 75.401564240098 

257 75.400021858127 

258 75.393496720912 

… … … … 

Table 5.1 illustrates the offset values along the x-axis. Our method ensures a smooth 

and continuous transition in pixel changes, which is significantly different from mere 

noise addition, which can abruptly blur pixel details. By combining this method with the 

ZeroWaste dataset, which contains around 6,212 unlabeled images, we significantly 

mitigate the challenges posed by insufficient data. Our method not only preserves the 

integrity of the image, but also prevents the misassignment of negative and positive labels 

that often occurs when image resizing, thereby enhancing the utility of the dataset and the 

model's ability to effectively generalize to real-world waste classification. Moreover, our 

non-uniform data augmentation also promotes smooth transitions between pixel 

adjustments, giving our model enhanced generalization capabilities and making it more 

adept at handling the complexities of real-world waste classification.  
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Figure 5.6 Example of a masks of the original image 

 

Figure 5.7 Example of a masks of the original image after applying non-uniform offset 

data augmentation 

In addition, we have attached Figure 5.6 and Figure 5.7, which represent the masks 

of Figure. 5.5(c) and Figure. 5.5(d) respectively. It can be seen from these two images 

that the model enhanced by non-uniform offset data augmentation is stable. 

5.5 Summary 

Our innovative related to non-uniform data augmentation is characterized by its ability to 

ensure that image information is not artificially added or subtracted. By uniformly and 

continuously adjusting the entire image, changes in each pixel maintain its intrinsic 

relationship and avoid unnecessary noise interference. The complex image processing 

greatly improves the generalization performance of the model. Furthermore, during an in-
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depth analysis of the ZeroWaste dataset, we noticed significant imbalances in the data, 

especially in the two categories with less data, which severely biased the sample size. 

This finding highlights the importance of our adaptive augmentation strategies aimed at 

reducing these differences, improving the efficiency of model training, and improving the 

accuracy of waste classification, thereby advancing the development of waste 

management technology. 

Faced with the increasing cost of misclassification, we design an adaptive weighted 

loss function that allocates weights according to the data volume characteristics of 

different categories. This method dynamically adjusts the ratio between negative and 

positive samples by introducing a mask function, prompting the model to exclude those 

features that have been well learned without setting fixed bounds. When this technology 

is combined with the U-Net architecture, it can significantly improve the model's mean 

Intersection over Union (IoU) to 3.74%. This result demonstrates the effectiveness and 

simplicity of our approach in solving real-world waste classification problems and is 

applicable to various datasets dealing with data imbalance. Our main contributions 

include:  

(1) Constructing a semi-supervised semantic segmentation waste detection model for 

actual waste classification scenarios, and test results show its advanced 

performance. 

(2) A new non-uniform data augmentation method is proposed to make the model 

more suitable for waste classification by simulating natural lighting conditions. 

This not only expands the waste dataset, but also helps reduce the risk of the 

network overfitting the training data. Our method ensures that the network has 

good generalization ability to new data. 

(3) An adaptive weighted loss function is designed to specifically solve the problem 

of model vulnerability caused by imbalance data distribution. 

Although our method is specifically designed for waste classification, it may also be 

applied to other fields such as traffic monitoring (applying datasets such as PASCAL 
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VOC and MS-COCO). Our data augmentation method is based on the sine function 

operation and has a wide range of application potential that can be adjusted by introducing 

other mathematical models such as cosine or quadratic to expand its scope of application. 

Going forward, we are committed to applying our approach to a wider range of deep 

learning challenges and continually refining our methodology. Furthermore, we believe 

that there is room for further improvement in non-uniform color data augmentation 

strategy. We will explore how to further improve the performance of the model by 

adjusting the color configuration of different objects, opening new avenues for future 

research. At the same time, we also realize that although the simplicity of the adaptive 

weighted loss function helps improve the accuracy of the model, there is still room for 

improvement. Therefore, we plan to conduct more in-depth research focusing on 

optimizing adaptive weighted loss functions, with the goal of developing more complex 

and effective solutions. This ambitious research direction underscores our commitment 

to transcending existing methodological limitations and pursuing excellence not only in 

the field of waste classification, but also in handling the complexities of deep learning 

applications. 
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Chapter 6    

Semi-Supervised Learning 

for Waste Classification 

 

 

          In this chapter, we discuss the effectiveness of semi-supervised 

learning for waste classification. How to maximize the utilization 

of pseudo-label and unlabeled data is mainly considered. In 

addition, the Mean Iteration strategy was also proposed. In this 

chapter, the dataset used is WasteNet. 
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6.1 The Structure of Our Model 

We propose an iterative and collaborative semi-supervised object detection (SSOD) 

framework that can utilize large amounts of unlabeled data, called CISO. Afterwards, we 

introduced the Mean Iteration strategy (a pseudo-label selection mechanism based on 

mean IoU), with the purpose of preventing model overfitting caused by pseudo-labels not 

being updated and reducing the generation of incorrect pseudo-labels (Qi, Nguyen and 

Yan, 2024). Finally, our framework also adopts weak-strong data augmentation 

techniques and knowledge distillation techniques to improve the efficiency and accuracy 

of the model (Heo, 2019; Park, Kim, Lu and Cho, 2019; Romero et al., 2014; Yim, Joo, 

Bae and Kim, 2017). Through extensive testing on the WasteNet dataset, we verified the 

effect of CISO, and the results showed that our method reached the superior performance. 

Simultaneously, we also conducted ablation studies to provide in-depth analysis of our 

strategy. 

 

Figure 6.1 The CISO framework 

The structure of CISO framework can be divided into three main stages, as shown 

in Figure 6.1. In the first stage, pseudo-labels of unlabeled data are generated by the 

teacher model, and the student model is trained on a small batch of randomly selected 
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labeled data. For unreliable data and reliable data, their screening is based on threshold

τ≥ Mean (IoU). Afterwards, the unreliable data is returned to the unlabeled data pool 

in the second stage to generate pseudo-labels again on the complete unlabeled dataset. 

Next, the reliable data and the labeled data will be input into the student model at the 

same time for training. Then, repeat the steps of selecting the reliable data. It is worth 

mentioning that we perform four Mean Iteration iterations and apply a weak-strong data 

augmentation strategy in each iteration. In the third stage, the labeled data, the unreliable 

data, and the reliable data will be input into the model together for final training to 

complete the construction of the model. 

6.2 CISO: Co-Iteration SSL for Object Detection 

6.2.1 Pseudo Labeling 

Numerous experiments illustrate that strategic utilization of pseudo-labeled data can 

significantly improve the accuracy of various algorithms, a finding that highlights the 

potential of integrating pseudo-labeled data to improve model effectiveness (Bar et al., 

2022; Lee, 2013; Li, Liu, Zhao, Zhang and Fu, 2021; Liu et al., 2021; Zhu, Peng and Yan, 

2024). This innovative strategy differs from traditional methods such as Instant-Teaching 

and STAC, which have each contributed to the field in their own way (Yu, Jiang, Wang, 

Cao and Huang, 2016; Sohn et al., 2020). For example, STAC is a pioneer in applying 

semi-supervised learning (SSL) to object detection, employing pseudo-label self-training 

and data augmentation techniques characterized by consistent regularization. This 

requires preliminary training of the teacher model before proceeding to train the student 

model, whereas our CISO approach circumvents this step.  

In contrast to these approaches, CISO facilitates the end-to-end transfer of 

parameters between models through the application of knowledge distillation, thereby 

simplifying the semi-supervised learning process. While Instant-Teaching also provides 

an end-to-end solution, and shares the self-training aspect with CISOs, our approach 

stands out by retaining all unlabeled data, thus maximizing the use of pseudo-labels with 
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high confidence. Additionally, we introduce the concept of Mean Iteration, where the 

threshold τ is dynamically adjusted to optimize the use of pseudo labels and enhance the 

overall model performance. 

Looking into the details of CISO, the process starts by generating pseudo-labels for 

unlabeled data and leveraging the combination of these pseudo-labels with a limited 

amount of labeled data to train each iteration. Specifically, in data batches, the unlabeled 

and labeled data are randomly sampled according to a set ratio, usually 1:10. Following 

that, we employ two models during the training process, namely, the student model for 

knowledge distillation and the teacher model. The teacher model is responsible for 

generating a pseudo-label for the unlabeled data, while the student model is responsible 

for conducting the training. Notably, the teacher model is based on the student model 

updated with the Exponential Moving Average (EMA) (Tarvainen and Valpola, 2017). 

This end-to-end framework eliminates the need for complex multi-stage training schemes.  

Furthermore, implementing Mean Iteration within CISO enables cooperative 

improvement of the detection training and pseudo-labeling, making the training results 

progressively more robust and effective. This technique, along with the combined training 

of all unlabeled and labeled data in the network, ultimately develops a comprehensive 

final detection model. To compare with Instant-Teaching and STAC, CISO adopts a weak-

strong data augmentation strategy that leverages unlabeled data. Initially, the weakly 

augmented data is subjected to inference to generate a prediction score that determines 

the pseudo-label based on a threshold τ. Subsequently, the strongly augmented data is 

processed to refine the prediction scores and calculate pseudo-label related losses.  

In summary, CISO follows the same loss function in Instant-Teaching and STAC, 

incorporating cross-entropy loss and consistency regularization loss into its framework 

(Sohn et al., 2021; Yu, Jiang, Wang, Cao and Huang, 2016). Eq. (6.1) details the 

supervised loss consists of the L1 (bounding box regression loss function) and the Lce 

(classification loss function). 
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where n represents the bounding box number, i is the anchor index of images, s represents 

the index of the labeled image in the dataset. For each anchor point i in image, 𝐺(𝑐9) 

provides the actual label assigned to this anchor, while 𝐺(𝑟9) is the true coordinates of 

the label. Next, 𝑃(𝑟9) refers to the coordinates of the bbox predicted by our model, and 

𝑃(𝑐9) computes the probability that this anchor is classified as an object. 

For the unsupervised loss component, we initiate this process by obtaining a small 

batch of unlabeled data that has been weakly augmented. For this batch, we use Eq. (6.2) 

to determine the corresponding coordinates for each frame and its predicted probability 

distribution. Finally, by applying Eq. (6.3), the final labels output by our model are hard 

labels converted from pseudo-label. 

𝐺(𝑐9F), 𝐺(𝑟9F) = 𝑃(𝑐9 , 𝑡9 	|	𝛼(𝑋𝑢))                  (6.2) 

𝐺w(𝑐9F) = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑐9F)	                      (6.3) 

Therefore, we formalize the unsupervised loss function by Eq. (6.4), which is 

displayed as  

𝐿! = ∑ ["
#
∑ 𝐿$%%𝑃(𝑐& 	|𝐴(𝑋𝑢))	, 𝐺1(𝑐&!)2 +

'
#& ∑ 	(𝑀(𝑐&!) 	≥&!

																											𝜏)𝐿"(𝑃(𝑟& 	|	𝐴(𝑋𝑠)), 𝐺(𝑟&!))]                           (6.4) 

where u refers the index of the unlabeled image, 𝐺(𝑟9F) and 𝐺w(𝑐9F) denote the pseudo-

label. Then, 𝑀(𝑐9F) captures the highest predicted value among these pseudo-labels, and 

𝜏 represents the threshold of the confidence level that determines which pseudo-labels 

are considered reliable enough to be included. 

By combining Eq. (6.1) and Eq. (6.4), we arrive at the combined final loss function, 

shown in Eq. (6.5), 𝜆F is introduced as a weight parameter to adjust the unsupervised 

loss in the overall loss function. 
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𝐿GCGH= = 𝜆F𝐿F	+	𝐿>                        (6.5) 

6.2.2 Mean Iteration Strategy 

The student model is strategically trained by the CISO using a part of labeled data, while 

at the same time, the teacher model begins creating pseudo-label for the unlabeled data. 

At this point, we carefully calculate the IoU of all pseudo-label instances (IoU) and 

subsequently average these IoU metrics to establish the pseudo-label generation threshold 

τ. Furthermore, by adopting the mean IoU value as the threshold τ, we classify the pseudo-

label data into two different groups: a low-confidence group and a high- confidence group. 

Pseudo-label below the average threshold τ is considered unreliable, while pseudo-label 

above the average threshold τ is considered reliable. Next, the student model utilizes the 

newly generated reliable data and the original labeled data for a second round of training. 

After training, the teacher model steps in again to evaluate the unlabeled dataset, 

regenerating unreliable data and reliable data in the process. To facilitate iterative learning, 

CISO retains every piece of unlabeled data at each training stage of the student model, 

avoiding excluding any data previously classified in the pseudo-labeled dataset. A 

noteworthy aspect of this approach is the randomness of pseudo-label generation in each 

iteration, ensuring dynamic differentiation between unreliable and reliable data at each 

iteration. 

This process allows the threshold τ to be dynamically adjusted in successive 

iterations. Different from traditional semi-supervised learning models, which usually tend 

to use pseudo-label at high thresholds such as thresholds τ equal to 0.9 and inadvertently 

cause imbalance in data, CISO carefully optimizes pseudo-label data use. This not only 

ensures the accuracy of pseudo-label through collaborative iterations, but also greatly 

improves the learning efficiency and accuracy of the model. Our experiments were 

limited to four iterations, and the results showed that extending to the fifth iteration did 

not yield any new advances from the model. We will elaborate on this observation in 

ablation experiments. Experimental results show that our model significantly improves 

model performance, highlighting the efficacy of iteration strategy and pseudo-label 
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utilization in improving model reliability. 

6.2.3 Weak-strong Data Augmentation 

Data augmentation methods not only expand the dataset, but also greatly enrich the 

amount of information learned by the model in the pseudo-label data (Kisantal, Wojna, 

Murawski, Naruniec and Cho, 2019; Lin, 2019). Therefore, data augmentation is also 

inseparable from SSL techniques using consistent regularization. When dealing with soft 

augmentation, to deal with possible quality problems of pseudo-label data, we adopt pre-

training methods such as flipping, rotation, translation, and cropping to improve the 

effectiveness of labeled data. In addition, for the consistent learning strategy, we utilized 

the Cutmix method (Yun et al., 2019). This is the reason why Cutmix can implement soft 

fusion and hard fusion between two images, so that the information of the entire image 

can be fully utilized, and there is no need to make any modifications to the dataset during 

the image mixing process.  

    In contrast, Mixup will introduce pseudo-pixel information that may mislead model 

training, while Cutout will reduce training efficiency by discarding image region 

information. By combining the application of weak and strong data augmentation 

techniques, we not only expanded the size of the dataset, increased the diversity and 

complexity of the data, but also effectively improved model robustness and generalization 

ability to various perturbations, further prevents the occurrence of model overfitting 

(Inoue, 2018).  

Taken Cutmix as an example, this method randomly selects two different samples in 

the dataset and fuses their partial areas to create new training images. Using 𝑈9  to 

represent the selected unlabeled data, the two images randomly selected by Cutmix can 

be expressed as 𝑈& = (𝑋I) , 𝑌I)) and 𝑈J = (XI* , 𝑌I*) respectively. Finally, the newly 

generated image is defined as 𝑁 = (𝑋D, 𝑌D). This process involves removing a specific 

region from the first image 𝑈& and filling this region with the corresponding region in 

the second image 𝑈J, thus achieving an efficient replacement of the selected region in 
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𝑈& . In this way, the features of the two images are effectively combined, and a new 

training sample containing the attributes of the two original images is generated, as seen 

in the Eq. (6.6) and Eq. (6.7). 

	𝑋 = 𝑴⊙𝑋I& + (𝟏 −𝑴)⊙ 𝑋IJ                  (6.6) 

𝑌 = λ𝑌I& + (𝟏 − λ)𝑌IJ                      (6.7) 

In this section, we discuss the image samples represented by X and the image labels 

referred to Y, while introducing 𝜆 as a parameter for adjusting the proportion of the 

combined regions 𝑈& and 𝑈J in the image. Similar to the Cutmix strategy, the value of 

λ is limited to the range (0, 1). Additionally, we use a binary mask M to identify specific 

regions selected from images 𝑈& and 𝑈J. In this setting, the element value in the mask 

matrix is set to 1, indicating that the area is selected to participate in the combination. 

Finally, in the equation operation, we use element-wise multiplication ⊙ to complete 

the fusion of the Images. 

𝑟K	~	Unif	(0,𝑊), 								𝑟L = 𝑊√1 − λ	               (6.8) 

𝑟M	~	Unif	(0, 𝐻),											𝑟N = 𝐻√1 − λ	                (6.9) 

Subsequently, Eq. (6.8) and Eq. (6.9) illustrate the calculation method of the 

extracted mask region. We borrowed the random strategy used by Cutmix to determine 

the specific coordinates of the mask region 𝐶 = 	 (𝑟K,𝑟M , 𝑟L , 𝑟N), where H and W are the 

length and width of the image	𝑈9 respectively, and 𝑟K and 𝑟M	 are in (0, W) and (0, H) 

randomly selected within the range. 

In this thesis, we introduce three key hyperparameters	𝜆, 𝜏, and 𝜆P, where 𝜆 and 

λP are both set to 1.0, while 𝜏 is dynamically adjusted based on the mean IoU value. We 

combined Swin Transformer with CISO. The initial network weights are obtained using 

the pre-training model of ImageNet. We conducted a series of experiment protocols based 

on the 1%, 5% and 10% criteria of MS-COCO and adopted a quick learning strategy (Lin, 

2014). In addition, our training settings are consistent with the methods of Instant-
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Teaching and STAC, and the specific details are described in Table 6.1. 

Although we chose Swin Transformer as the subject of feature extraction, to ensure 

that the experimental results with other models can be compared fairly, we adopted Faster 

R-CNN as the detector. At the same time, to further verify the effectiveness of our model, 

we also conducted experiments using the same ResNet-50 as the backbone network as 

other models. These steps ensure that our findings are both innovative and easy to 

compare and validate with existing technologies. 

Table 6.1 Training parameters of our framework. 

Classes Parameters 

Initial learning rate 0.01 

Momentum 0.9 

Weight decay 1e-4 

Training step 180K 

Learning rate decays (120K, 165K) 10 

6.3 Summary 

In this thesis, we introduce an innovative semi-supervised object detection (SSOD) 

learning method named CISO, which combines the weak-strong data augmentation 

strategy and the knowledge distillation technology on pseudo-label data. The core of this 

strategy is to fully exploit and utilize the potential of unlabeled data to significantly 

improve the performance of the model through an iterative learning process. Faced with 

the problem that the model may fall into overfitting because it cannot update pseudo-label 

in time, we have carefully designed a new strategy called "Mean Iteration" to reduce the 

risk of overfitting by continuously optimizing the generation process of pseudo-label, 

allowing the model to learn and adapt to information from unlabeled data more effectively. 

Although our experiments are mainly based on Swin Transformer and self-attention 

mechanism to evaluate the performance of CISO, the method we designed has good 
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generality and can be applied to other types of detection models. Through a series of 

experimental verifications on our datasets, the CISO method performs stably on the waste 

classification task. 

It is worth mentioning that our research has not involved the precise selection of 

training samples, but only randomly selected training samples from the dataset. However, 

in actual application scenarios, there are often a variety of distribution differences 

between unlabeled data and labeled data, because unlabeled data may come from 

completely different environments from labeled data. This distribution inconsistency may 

affect the learning effect and generalization ability of the model. Therefore, our future 

research will focus on developing new training sample selection strategies, especially 

those take into account of the differences in data distribution, to further improve the 

adaptability and performance of SSOD models in various complex environments.  

Finally, we speculate that our method can also be applied to other dataset, such as 

MS-COCO, so we also conducted some additional experiments based on these two 

datasets to verify the stability and effectiveness of the model (visible in the Chapter 7.3.2 

and Chapter 7.3.3). Experimental results show that CISO exhibits excellent performance, 

with model accuracy significantly better than other existing state-of-the-art techniques. 
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Chapter 7    

Results and Analysis 

 

 

This chapter summarizes in detail the basic experimental and 

ablation experimental results related to all methods proposed in 

this thesis. These results are presented in tables and figures. 
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7.1 Basic Method Results of Waste Classification 

7.1.1 YOLOv7 

We use Average Precision (AP), Mean Average Precision (mAP), Precision-Recall curve 

(PR curve), and F1 score to measure and evaluate the performance of the proposed 

YOLOv7 model. 

 

Figure 7.1 Waste detection results. (a) The result of classifying mask, classified into class 

“Dry”. (b) The result of classifying battery, classified into “Hazardous”. (c) The result of 

classifying egg shell and paper, classified to “Wet” and “Recyclable” respectively. (d) The 

result of classifying cucumber, classified into “Wet”. (e) The result of classifying 

cardboard, classified into “Recyclable” 

 

Figure 7.2 The incorrect classification results. (a) incorrect labels for classifying battery 

and glass bottles. (b) incorrect classification results for cardboards 
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We illustrate the waste detection results in Figure 7.1 as examples. All the images 

are taken from our waste detection videos; from them, we see all waste classes with color 

bounding boxes, including the class labels “Recyclable”, “Hazardous”, “Wet”, and “Dry”. 

Figure 7.1 depicts the waste detection with correct results. Figure 7.2 shows visual objects 

with wrong labels of classes. Batteries, for example, should belong to the “Hazardous” 

class, but the results under multiple angles show that they have been classified into the 

class “Wet”. 

In Figure 7.3 and Figure 7.4, the model training is stable; after 300 epochs of training, 

the F1 score of the model is about 0.770. Additionally, AP values for the classifications 

of dry, wet, recyclable, and hazardous waste are 0.841, 0.496, 0.983, and 0.829, 

respectively. The overall mAP of the proposed model is 0.787. 

 

Figure 7.3 F1 score and PR curve of the waste classification 

 

Figure 7.4 The mean average precision and loss of the waste classification 
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To further explore the performance of the model, we compared our proposed model 

with other models based on our dataset. Table 7.1 presents the comparisons of the six 

state-of-the-art models. The mAP of Faster R-CNN is the lowest one among the six 

models. The models SSD, YOLOv3, and YOLOv5 have mAPs not higher than 0.700, and 

the mAPs are 0.622, 0.675, and 0.691, respectively. Finally, we trained the original 

YOLOv7 model and obtained a mAP of 0.066 higher than that of YOLOv5. However, 

after we improved the YOLOv7 model, the mAP improved by 0.03 to 0.787, which was 

higher than the mAP of the other five models. 

Table 7.1 Mean average precision results between four models. 

Models mAP F1 score 

Faster R-CNN 0.613 0.589 

SSD 0.622 0.602 

YOLOv3 0.675 0.656 

YOLOv5 0.691 0.673 

YOLOv7 0.757 0.731 

Ours 0.787 0.770 

To gain a deeper understanding of our proposed model, we carry out a number of 

ablation studies. The ablation experiment works similarly to a controlled variable method 

with the impact of a particular feature on the model. In deep learning, an ablation study 

is generally performed based on the proposed model by reducing the features to verify 

the necessity of the corresponding improved features. 

Through ablation experiments, we verified the feasibility and validity of the 

improved YOLOv7 model proposed in this paper. In Table 7.2, we conducted eight 

experiments, the original YOLOv7 model had the lowest mAP before the improvement. 

Then, we added the SPPCSPC-COOR-ASF module, which improved the experimental 

mAP by 0.002, but the result was not significant. Next, we introduced the EPSA module 

into the net, which improved the mAP by 0.015. The performance of the model was 
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improved even more by using the Transformer block, which increased the mAP from 

0.757 to 0773. However, the difference in mAP between the EPSA module and the 

Transformer block was only 0.001. This shows that the insertion of EPSA module and 

Transformer block affects the model performance. 

Table 7.2 The mAP of the model in the ablation experiments. 

Models SPPCSPC module Transformer block EPSA mAPs 

YOLOv7    0.757 

√   0.759 

 √  0.773 

  √ 0.772 

√  √ 0.775 

√ √  0.777 

 √ √ 0.784 

√ √ √ 0.787 

In this thesis, we also conducted experiments with two-by-two combinations of the 

three improvement features. The mAPs of applying SPPCSPC-COOR-ASF and EPSA, 

SPPCSPC-COOR-ASF and Transformer block, and EPSA and Transformer block 

simultaneously were 0.775, 0.777, and 0.784, respectively. We see that the three 

improvement features are applied to the YOLOv7 model at the same time with the best 

results, resulting in a mAP of 0.787. Moreover, the stability of the model is also verified. 

7.1.2 YOLOv8 

In this experiment, Average Precision (AP), Mean Average Precision (mAP), F1 score, 

and Precision-Recall curve (PR curve) are the metrics we use to evaluate the accuracy 

and performance of our model. To make the detection results more visual, we recorded a 

waste detection video using the available waste. The waste detection results shown in 

Figure 7.5. In the detection results, we see that different categories of waste have different 
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color bounding boxes, including “wet”, “dry”, “recyclable”, and “hazardous”. Most of 

the detection results are correct, but the tape in Figure 7.5(c) is missed detection, it should 

belong to the “dry” category.  

 

Figure 7.5 Waste detection results. (a) The result of classifying egg shell, battery, and 

sponge dishcloth, classified to “Wet”, “Hazardous”, and “Dry” respectively. (b) The result 

of classifying sweet potato and can, classified to “Wet” and “Recyclable” respectively. (c) 

The result of classifying plastic bottle, classified into class “Recyclable”. (d) The result 

of classifying phone and glass bottle, classified to “Recyclable” and “Recyclable” 

respectively 

 

Figure 7.6 The mean average precision and loss of the waste classification 

Furthermore, the parameters such as mAP and R for each waste class are described 

in Table 7.3. After 300 training epochs, the total mAP of the model is 0.856, where the 
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mAP values of hazardous, recyclable, wet, and dry correspond to 0.927, 0.955, 0.820, and 

0.720, respectively. This is consistent with the mAP values shown in Figure 7.6, reflecting 

the stability of our model. 

To further explore the performance of the model, we make use of our dataset to 

compare our method with the other five advanced models in Table 7.4. Our model has the 

highest mAP value of 0.856, which is higher than the original model of YOLOv8 at 0.054. 

while the mAP values of YOLOv5 and YOLOv7 are 0.717 and 0.759, respectively. 

Moreover, the mAP values of SSD and Faster R-CNN are relatively low, not higher than 

0.700, with the lowest mAP of Faster R-CNN at 0.639, which is smaller than the mAP 

value of SSD 0.026. 

Table 7.3 The results of the model. 

Class Box R mAP50 mAP50:90 

Hazardous 0.874 0.848 0.927 0.884 

Recyclable 0.912 0.900 0.955 0.905 

Wet 0.866 0.761 0.820 0.674 

Dry 0.717 0.467 0.720 0.650 

TOTAL 0.842 0.744 0.856 0.778 

Table 7.4 Mean average precision results between six models. 

Models mAPs F1 score 

Faster R-CNN 0.639 0.611 

SSD 0.665 0.616 

YOLOv5 0.717 0.676 

YOLOv7 0.759 0.720 

YOLOv8 0.802 0.768 

Ours 0.856 0.790 
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In this thesis, we conducted a large number of ablation experiments to reduce some 

improved features on the proposed model in order to verify the validity and necessity of 

our proposed improved features (similar to the control variables). The results of the 

ablation studies illustrate that our model is feasible and valid. The results of our eight 

ablation experiments are shown in Table 7.5. The original YOLOv8 model without any 

changes has the lowest mAP value of 0.802.  

Then, we added the data augmentation, feature fusion, and SE_ASPP modules 

separately. Comparing the results of these three modules, we found that adding the 

SE_ASPP module resulted in the largest performance improvement, with an increase in 

mAP of 0.022. In feature fusion, the presence increased the mAP of YOLOv8 by 0.015. 

Finally, data augmentation, though its introduction into the model resulted in the smallest 

performance improvement, it was only 0.003 lower than that of feature fusion. This 

indicates that data augmentation, feature fusion, and SE_ASPP are all important for the 

performance improvement of the model. 

We also combined the three introduced features two by two to obtain three new 

combined features. The mAP value using both data augmentation and feature fusion 

strategies is 0.834. Mean AP value obtained by discarding feature fusion alone is 0.845. 

Then, mAP value reaches 0.851 if feature fusion and SE_ASPP are applied 

simultaneously. These results are lower than the mAP value of 0.856 for the model with 

all three features utilized, which shows that optimal results can be obtained by applying 

all three features. 

Table 7.5 The mAP of the model in the ablation studies. 

Models Data augmentation Feature fusion SE_ASPP mAPs 

 

 

YOLOv8 

   0.802 

√   0.814 

 √  0.817 

  √ 0.824 
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√  √ 0.854 

√ √  0.834 

 √ √ 0.851 

√ √ √ 0.856 

7.1.3 Swin Transformer 

After the model has been trained, the waste images and waste videos are provided for the 

test. For a test video, we selected 20 different waste samples for observation and detected 

these waste samples in the video through different angles, heights, distances, lighting 

conditions, speeds, and quantities. The waste detection results are shown in Figure 7.7. 

 

Figure 7.7 Transformer-based classification results from videos (a) the results of 

classifying battery, can, and chestnut, which also belong to hazardous waste, recyclable 

waste, and wet waste respectively (b) the classification results of glass bottle and ointment, 

which also belong to hazardous waste and recyclable waste 

Then, to evaluate the performance of the Swin Transformer, we quantitatively 

compare it with other advanced models, the comparison results are shown in Table 7.6. 
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Regarding DETR, the mAP is 90.38%, only 6.00% lower than the Swin Transformer. 

Afterwards, the mAP values of YOLOv5 and Faster R-CNN are 73.25% and 86.55%, 

respectively. Thus, the results of Transformer architecture and attention mechanism are 

better, after compared with other models, Swin Transformer has higher accuracy and 

better performance. 

Table 7.6 The results between four models. 

Class Swin Transformer DETR YOLOv5 Faster R-CNN 

Dry 1.00 0.83 0.70 0.89 

Wet 0.93 0.91 0.71 0.85 

Hazardous 0.96 0.92 0.73 0.81 

Recyclable 0.97 0.98 0.79 0.93 

TOTAL 0.96 0.90 0.73 0.87 

 

Figure 7.8 Average precisions of the four classes classification (a) the average precision 

of dry waste (b) the average precision of hazardous waste (c) the average precision of 

recyclable waste (d) the average precision of wet waste 



103 
 

Figure 7.8 illustrates the AP rates of the four classes: “Dry”, “Recyclable”, 

“Hazardous”, and “Wet waste” are 99.78%, 97.06%, 95.61%, and 92.98%, respectively. 

Therefore, the mAP is 96.36%.  

We also evaluate our model by keeping the backbone of Swin Transformer     

unchanged by using different algorithms. As shown in Table 7.7, after replaced Mask R- 

CNN with Faster R-CNN, the mAP value is decreased. Besides, for the combination with 

the one-stage model YOLOv5, the mAP value is 87.33%.  

Table 7.7 The results between three algorithms. 

Swin Transformer Models mAPs 

Swin Transformer+Mask R-CNN 0.96 

Swin Transformer+Faster R-CNN 0.91 

Swin Transformer+YOLOv5 0.87 

Moreover, as shown in Table 7.8, if the backbone of Swin Transformer is replaced 

by using ResNet-50, ResNet-101, and ResNeXt-101 in the Mask R-CNN model, the 

accuracy is 73.93%, 71.06%, and 83.49% respectively, which indicates that using Swin 

Transformer as the backbone is a good choice, compared with other backbone networks, 

such as ResNet-50. 

Table 7.8 The results of Mask R-CNN using four different backbone networks. 

Deep Learning Models mAPs 

Mask R-CNN+ResNet-50 0.74 

Mask R-CNN+ResNet-101 0.71 

Mask R-CNN+ResNeXt-101 0.83 

Mask R-CNN+Swin Transformer 0.96 

To further understand the Swin Transformer model, we carried out our ablation 

experiments. We performed a series of comprehensive ablation studies, which cover 

multiple parameters such as the calculation of self- attention in window, the calculation 
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of masked self-attention, and the position bias parameter. 

Self-attention in non-overlapped windows. In the Swin Transformer model, the 

calculation of self-attention in window plays a decisive role in the performance of this 

model. In Table 7.9, we consider the impact of only calculating the self-attention within 

the local window on model performance. MAS denotes that if the image resolution is h × 

w, the calculated amount of self-attention is quadratic with h × w. W-MAS shows that if 

the image resolution is h × w, the calculated amount of self-attention is linear with h × w. 

We find that there is a significant improvement with regard to average which 

indicates that W-MAS is an important parameter in ensuring the performance of Swin 

Transformer. 

Table 7.9 Influence of self-attention inside the window on model results. 

MAS W-MAS AP AP50 

√ × 0.63 0.69 

× √ 0.71 0.77 

The next experiment is related to the calculation of masked self-attention. There is a 

problem caused by blocking the shifted window, that is, a lot of windows will be 

generated, which will increase the amount of calculation of the model. By using a mask 

to assist in the calculation of self-attention, we reduce the amount of calculation. We 

investigate the validation of self-attention on the performance of the model without using 

a mask. As shown in Table 7.10, we see that the use of the mask can reduce the amount 

of calculation, but it has limited benefit for the AP rates, the AP rate is only raised around 

0.02. 

Table 7.10 Influence of masked self-attention on model results. 

Masked self-attention AP AP50 

× 0.69 0.76 

√ 0.71 0.77 
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Finally, the position bias parameter also affects the model performance. Whilst 

calculating self-attention, relative position bias is taken. We investigate the validation of 

self-attention on the performance of the proposed model without using the position bias. 

In Table 7.11, B is the position bias parameter. We find that the influence of position bias 

on the accuracy of the model is significant. 

Table 7.11 The impact of parameter B on model results. 

B AP AP50 

× 0.65 0.72 

√ 0.71 0.77 

7.1.4 Large Language Model 

Utilizing the WasteNet dataset, we evaluated our proposed method against other leading-

edge image classification models, primarily focusing on Average Precision (AP) as our 

primary metric for comparison. The outcomes, detailed in Table 7.12, demonstrate that 

our integrated approach—combining MiniGPT-4 with Swin Transformer—achieves an 

AP value of 62.20%, outperforming all other models listed. To illustrate, utilizing the 

Swin Transformer alone for waste image classification yields an AP of 60.70%, which is 

1.50% lower than that of our combined method. The Vision Transformer model and the 

ResNet model follow suit, recording AP values of 59.10% and 55.30%, respectively, both 

trailing our method. Other models, such as ConvNeXt (Liu et al., 2022), DenseNet 

(Huang, Liu, Van Der Maaten and Weinberger, 2017), and EfficientNet (Tan and Le, 

2019), show average precision values of 55.20%, 51.20%, and 50.50%, in that order. The 

VGG model (Simonyan and Zisserman, 2014), with the lowest AP at 49.90%, is 

positioned at the end of the ranking. Additionally, Figure 7.9 presents the loss values 

associated with our model. 
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Table 7.12 Comparisons of AP values with different models. 

Models AP 

Ours 62.20 

Swin Transformer 60.70 

Vision Transformer 59.10 

ResNet 55.30 

ConvNeXt 55.20 

DenseNet  51.20 

 

Figure 7.9 The Loss values of the model 

Table 7.13 Comparisons of AP values with different large language models. 

Models AP 

Ours 62.20 

Blip 61.30 

Clip 60.10 

InstructBLIP 58.80 

LLaVA 56.70 

Otter 53.30 

These experimental results show that our method is effective and can significantly 
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improve the accuracy of waste classification. It can also maintain a high level of accuracy 

and reliability when dealing with diverse and complex waste datasets. 

To further validate the effectiveness of MiniGPT-4, we conducted ablation 

experiments on large language models, as shown in Table 7.13. The value of AP of our 

model reaches 62.20%, which is the best effect. After that, we kept the model structure 

unchanged and replaced MiniGPT-4 with other large language models, such as Blip (Li, 

Li, Xiong and Hoi, 2022) and Clip (Radford et al., 2021). The AP values are very close 

to the AP values of our model, but still lower than our model by 0.90% and 2.10%, 

respectively. Furthermore, InstructBLIP (Dai, 2023) and LLaVA (Liu, Li, Wu and Lee, 

2024) were also tested and obtained AP values of 58.80% and 56.70%, respectively. 

Finally, the model with the lowest AP value was Otter (Li, 2023). 

Afterwards, we experimented with the selection of pre-trained language models as 

well, and the results are shown in Table 7.14. If RoBERTa is replaced by BERT (Devlin 

Chang, Lee and Toutanova, 2023), XLNet (Yang, 2019), and ELECTRA (Clark, Luong, 

Le and Manning, 2020), AP values of 60.10%, 56.90%, and 54.20% are obtained, 

respectively, which are lower than those of our model.  

Table 7.14 Comparisons of AP values with different pre-trained language models. 

Models AP 

Ours 62.20 

MiniGPT-4 + Swin Transformer +BERT 60.10 

MiniGPT-4 + Swin Transformer +XLNet 56.90 

MiniGPT-4 + Swin Transformer +ELECTRA 54.20 

We conjecture that in the context of our task, pre-trained language models are 

required to more accurately understand the text of image descriptions generated by large 

language models, while RoBERTa and BERT perform well on the task of processing and 

understanding the text that can easily be used for new classification tasks. The 

experiments verify that RoBERTa is the best choice. In summary, MiniGPT-4 has the 
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potential to lead the innovation in waste classification, and we will continue to explore 

the application of large language models, such as GPT-4, to waste classification in our 

future work. 

In this section, we finally choose “Describe these images for waste classification in 

detail” as the prompt to input MiniGPT-4. To verify whether this prompt is suitable for 

our waste classification task, we also tested another prompt, “Describe these images in 

detail”, and the results can be seen in Table 7.15. If we utilize “Describe these images in 

detail” in the prompt, the AP value will be reduced by 61.30%. This may be relevant to 

our dataset and classification task.  

Table 7.15 Comparisons of AP values with different prompts. 

Prompts AP 

Describe these images in detail 61.30 

Describe these images for waste classification 

in detail 

62.20 

Table 7.16 Comparisons of AP values of prompts with different lengths. 

Prompts AP 

Describe these images for waste in one 

sentence 

57.70 

Describe these images for waste classification 

in detail 

62.20 

 

Figure 7.10 Examples of the detailed image description generated by MiniGPT-4 with 

short prompts 
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From Figure 4.12, we also intuitively see that the descriptions obtained by inputting 

the two prompts are very different. The description given by the “Describe these images 

in detail” lacks object information such as corn cobs and plastic bags, which may have a 

negative impact on the accuracy of the model. We also expanded our investigation to 

include the effect of prompt length on model performance. When limiting the description 

of a waste image to a single sentence, we found that essential information was often 

omitted—examples include specific items like lettuce, kiwifruit, and cans. This omission 

can lead to a reduction in model accuracy. As indicated in Table 7.16, the Average 

Precision (AP) value decreases by approximately 4.50% when using a single-sentence 

prompt compared to the more detailed prompt, "Describe these images for waste 

classification in detail." Figure 7.10 illustrates these experimental outcomes. 

7.2 Data Augmentation Results for Waste Classification 

7.2.1 Basic Results 

We adopted a method based on ZeroWaste dataset, aiming to optimize the model in real 

waste classification scenarios. In order to ensure the validity and fairness of the 

experimental results, we strictly followed ZeroWaste's baseline comparison rules. As 

shown in Table 7.17, using ResNet-50 as the backbone network of the U-Net method 

(semi-supervised learning mode), we achieved a mean IoU value of 55.37% on the test 

set. This result is better than ZeroWaste baseline experiment results (the result is about 

3.74% higher). In contrast, if we abandon ResNet-50 and switch to EfficientNet, we find 

that the IoU value decreases by 0.39%. In addition, for a visual comparison, we also 

utilized our method to DeepLabv3+ (Chen, Zhu, Papandreou, Schroff and Adam, 2018), 

and successfully achieved a mean IoU value of 54.77% (DeepLabv3+ is the baseline 

method as ZeroWaste, which uses ResNet-101 as the backbone network). This is an 

increase of 3.14% from the original baseline. This result fully demonstrates the 

effectiveness of our method in improving the mean IoU value.  

Furthermore, we compared our results with some other advanced methods, including 
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CCT (Ouali, Hudelot and Tami, 2020), AugSeg (Zhao et al., 2023), UniMatch (Yang, Qi, 

Feng, Zhang and Shi, 2023), EPS (Lee, Lee, Lee and Shim, 2021), and ReCo (Liu, Zhi, 

Johns and Davison, 2021), according to ZeroWaste's experimental framework. In these 

comparisons, the mean IoU values of ReCo, AugSeg and UniMatch on the semi test sets 

are 44.12%, 53.88%, and 54.65% respectively, which are all lower than our results. For 

EPS and CCT, their mean IoU value is less than 33%, which is far less than the high level 

of 55.37% we achieved. In addition, considering the performance improvement potential 

of the Transformer model in classification and segmentation tasks, we further tested the 

Swin Transformer and CLUSTERFORMER method (Liang et al., 2023), which achieved 

IoU values of 53.21% and 52.76% respectively. These test results show that our strategy 

is also applicable to Transformer-based models. 

Overall, our research project not only achieved remarkable results in improving 

model performance in waste classification tasks, but also demonstrated the superiority of 

our method through comparison with a series of other advanced methods. Furthermore, 

we further validate the broad applicability and flexibility of our approach by exploring 

the impact of different network architectures on model performance. 

Table 7.17 The results of different models. 

Method Supervision Validation Test 

Ours (U-Net+Resnet-50) semi 49.27 55.37 

Ours (U-Net+EfficientNet) semi 49.01 54.98 

Ours (DeepLabv3+) semi 48.89 54.77 

CLUSTERFORMER semi 47.95 53.21 

Swin Transformer semi 46.98 52.76 

U-Net full 46.02 51.88 

DeepLabv3+ full 45.61 52.30 

DeepLabv3+ semi 46.13 51.63 

UniMatch semi 48.53 54.65 
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AugSeg semi 47.12 53.88 

Reco full 51.30 52.28 

Reco semi 49.49 44.12 

CCT full 30.79 29.32 

CCT semi 28.70 32.49 

EPS weak-f 13.75 13.91 

After adopting the DeepLabv3+ method, we observe that the mean IoU value is only 

0.6% lower than that using U-Net method. Although this performance improvement is 

not significant, we decided to choose the U-Net model as the core architecture of our 

semantic segmentation network. The main reason for choosing U-Net is its unique 

encoder-decoder structure. This design can not only restore the spatial details of the image 

effectively, but also capture the global features of the image, making it suitable for 

processing smaller datasets (DeepLabv3+ is more suitable for processing larger datasets).  

 

Figure 7.11 The mean(IoU) values of NUNI-Waste model 

Through our experimental verification, U-Net demonstrates excellent performance 

and advantages in our application scenarios. In terms of result display, Figure 7.11 and 

Figure 7.12 show the performance of our method in terms of mean IoU value and loss 

plots in detail. These figures record every change in IoU and loss values. Through the 

curves, we can clearly observe the overall trend of model performance. In order to better 
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highlight the key changes in these curves, we also added a curve with a darker color and 

less undulating fold to approximately represent the changing trends of the mean IoU and 

loss values, making the changes easy to understand.  

 

Figure 7.12 The loss values of NUNI-Waste model 

In terms of optimization strategy, we also experimented with using the SGD 

optimizer. Although in theory, the Adamw optimizer performs better than the SGD 

optimizer in terms of efficient, the SGD optimizer can usually provide more stable 

training results in practical applications. However, in our model experiment, the 

performance of the SGD optimizer unexpectedly did not meet expectations. Compared 

with using the Adamw optimizer, the loss value caused by SGD is higher on average. This 

phenomenon is reflected in Figure 7.13. This finding prompted us to re-evaluate the 

strategy of optimizer selection in future work in order to find a solution more suitable for 

our model needs. 

 

Figure 7.13 The loss values of NUNI-Waste model with SGD optimizer 
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7.2.2 Ablation Studies 

Analysis of the Adaptive Weighted Loss Function 

The loss function plays a key role in evaluating the difference between the model's 

prediction results and the true value in deep learning, and its selection has a direct impact 

on the success or failure of model training. Therefore, we innovatively designed an 

adaptive weighted loss function and verified its effectiveness through a series of 

experiments. The results are shown in Table 7.18. After applying the loss function we 

designed, the mean(IoU) of the model is improved by 1.25% compared to the case without 

this loss function. This result proves that by introducing a simple weighting strategy, we 

not only improve the performance of the model, but also enhance the model's ability and 

efficiency to process data. 

Table 7.18 Experimental results related to adaptive weighted loss function. 

Adaptive weighted loss function Mean (IoU) 

w/o 54.12 

w/ 55.37 

Analysis of the w parameter 

In this thesis, we adopt the ZeroWaste dataset, which covers four waste classifications, 

including “Metal”, “Rigid Plastic”, “Cardboard”, and “Soft Plastic”. To adapt to the 

requirements of semantic segmentation tasks, we additionally consider background as an 

independent category, bringing the total number of categories to five. However, after our 

analysis of the dataset, it was found that the two classes of Rigid Plastic and Metal have 

relatively small amounts of data, accounting for only 16.6% and 3.6% of the total data 

volume respectively. This finding points to a significant imbalance in the dataset. In the 

initial training stage, we observed that the mean(IoU) of these two categories was only 

about 20.00%. This performance was far lower than other categories, which significantly 

pulled down the overall training effect of the model. 
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To address this challenge, we design and implement an adaptive weighted loss 

function that solves the data imbalance problem by assigning higher weights to these two 

categories. We conduct ablation studies on the weight value w in the adaptive weighted 

loss function, initially setting w value for all categories to 1.0. After the model was trained 

under this setting, it achieved a mean IoU value of 52.69%. We expect that the mean IoU 

value will not increase linearly as w value increases. In particular, if only Rigid Plastic 

and Metal are given too high a weight, it may lead to overfitting of the model. Therefore, 

we avoid setting too high weight values for these two classes, and the specific values are 

shown in Table 7.19. Our experimental results show that when the w value is set to 3, the 

model achieves the best training effect, with a mean IoU value as high as 55.37%. 

However, when the w value increases to 5, the mean IoU value drops to the lowest, 

52.60%, which is only 0.09% higher than the mean IoU value when the w value is 1. Then, 

the mean IoU value when the w value is 3.5 is 54.02%, which is 1.35% lower than the 

highest value, which further confirms our hypothesis that the w value cannot be too high. 

Table 7.19 Experimental results related to w parameter. 

w value Mean(IoU) 

1 52.69 

2 53.07 

2.5 53.55 

3 55.37 

3.5 54.02 

4 53.18 

5 52.60 

Considering that there is a difference in the amount of data between “Rigid Plastic” 

and “Metal”, we assign different weight values to them, such as setting the w value to 2 

and 3 or 2 and 4 respectively. However, this more detailed weight adjustment did not 

bring about the expected increase in mean IoU value, but stabilized at about 53%, which 
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was contrary to our initial expectations. We speculate that this may be because the 

difference in data volume between the two categories is not significant, and when the 

difference in data volume is small, the simplified weight value allocation strategy is not 

enough to significantly improve the mean IoU value.  

In future research, we plan to deeply explore the impact of different weight value 

settings on model performance and further optimize our adaptive weighted loss function. 

Figure 7.14 represents how the model loss changes under some different weight settings. 

 

Figure 7.14 The loss values with w values of 2.5, 3, 4, and 5 respectively 

Analysis of the Adoption of Different Data Augmentation Strategies 

Furthermore, we conduct a comprehensive discussion of non-uniform data augmentation 

technology and carry out a detailed comparative analysis with several other data 

augmentation strategies. In Table 7.20, we summary the results of each experiment in 

detail. Among them, the non-uniform data augmentation technology we implemented 
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showed the best effect, and its mean(IoU) value reached a high of 55.37%. Thereafter, to 

further verify the effectiveness of our method, we chose to keep using the U-Net model 

as the baseline, and tried to conduct experiments using different data enhancement 

methods such as Mixup, Cutmix, and Cutout. The mean IoU values obtained by these 

methods were 54.08%, 53.86%, and 52.21%, respectively, which cannot surpass our 

method. 

Table 7.20 Experimental results related to the adoption of different data augmentation 

strategies. 

Methods Data augmentation strategies Mean(IoU) 

ZeroWaste 

baseline 

Non-uniform 

data 

augmentation 

Cutout Cutmix Mixup 

DeepLabv3+ √     51.63 

 √    52.88 

Ours 

(DeepLabv3+) 
√     53.52 

 √    54.77 

Ours 

(Unet) 
√     52.88 

 √    55.37 

  √   52.21 

   √  53.86 

    √ 54.08 

To ensure a fair comparison, we also conducted a special experiment and selected 

DeepLabv3+ as the segmentation network to perform the task. It should be pointed out 

that the main purpose of this experiment is to directly compare our non-uniform data 

augmentation method with the strategy adopted in ZeroWaste, so we did not test Mixup, 

Cutmix, and Cutout in this experiment. Experimental results confirm the significant 

advantages of our non-uniform data augmentation method, which can achieve an overall 
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improvement of approximately 2.49% in the mean IoU value of the model. In addition, it 

is also verified that choosing a suitable data augmentation method has a crucial impact 

on optimizing model performance. Our research provides a valuable reference for future 

applications of data augmentation techniques in semantic segmentation and other related 

deep learning fields. 

Analysis of the Initial Offset Value 

In this section, we detail the determination of the optimal initial values of 70 for the non-

uniform offset data augmentation technique through ablation study. This result is based 

on the evaluation of model performance under different initial value settings. As shown 

in Table 7.21, when the initial value is established at 30, the mean (IoU) of the model will 

drop to the lowest, only 51.97%. At the same time, increasing the initial value to 100 will 

also cause the mean(IoU) value to decline. Figure 7.15 visually compares the difference 

in mean(IoU) value when the initial value is set to 30 and 100, showing the performance 

changes under different settings. 

 

Figure 7.15 The IoU values with different initial offset values 

Table 7.21 Experimental results related to initial offset value. 

Initial offset value Mean(IoU) 

30 51.97 

50 53.12 
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70 55.37 

100 53.93 

We speculate that if the initial value of our method is too small or too large, it may 

have a negative impact on model performance. In the case where the pixel value of an 

image usually ranges from 0 to 255, a small or a large initial value may prevent the model 

from capturing the global information of the image, making the network unable to fully 

utilize the image features, thereby reducing the model's recognition ability. Thus, in our 

study, after considering various factors, we decided to use 70 as the best initial value for 

non-uniform offset data augmentation. By choosing appropriate initial values, we aim to 

maximize the positive impact of data augmentation techniques on model performance, 

thereby ensuring model accuracy. 

Analysis of the Nonuniform Offset Augmentation Technology 

The nonuniform data augmentation technology introduced in our research includes both 

of changes pixel position and adjustment in pixel color. Based on this, we conducted a 

detailed comparative analysis of these two different augmentation methods. When using 

the non-uniform offset augmentation technology, compared with the baseline, the mean 

IoU value of the model increased by 1.08%. When using non-uniform color data 

augmentation alone, we observed that the mean IoU value of the model can reach 54.39%, 

which is an improvement of 1.41% compared to the ZeroWaste baseline.  

According to the data shown in Table 7.22, our method is indeed effective, and in 

terms of improving model performance, the method of simulating lighting effects is more 

effective than the method of simulating polymorphism changes. The cause of the 

performance difference between these two data augmentation strategies is a question 

worthy of further investigation, and we suspect that it may be related to the difference in 

hyperparameter configuration between these two methods. Therefore, in future work, we 

plan to conduct more in-depth optimization and adjustment of the model to further 

improve the accuracy and generalization ability of the model through more refined 
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hyperparameter settings.  

Table 7.22 Experimental results related to non-uniform offset augmentation technology. 

Non-uniform data augmentation Mean(IoU) 

Non-uniform color data augmentation 54.29 

Non-uniform offset data augmentation 53.96 

Both 55.37 

7.3 Semi-supervised Learning Results of Waste Classification 

7.3.1 Basic Results 

For this experiment, the dataset we applied is WasteNet. While evaluating model 

performance, we adopted mAP as the main metric. Experimental results show that the 

model proposed in this study achieved a mAP value of 58.86%. Figure 7.16 shows the 

mAP value obtained during the training process. In addition, we also compared our results 

with existing research. It can be seen that the semi-supervised model is effective, but it 

still needs further optimization and adjustment to reach the industry-leading level. 

 

Figure 7.16 Mean average precision results of our model 

In recent years, the field of semi-supervised object detection has gradually become 
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a research hotspot. To further explore the effectiveness and stability of the CISO model, 

we also conducted our experiments based on the MS-COCO dataset. Besides, we have 

carefully compared our method CISO with some other leading semi-supervised object 

detection technologies, and detailed listed AP and mAP performance indicators under 

different experimental settings, the results are shown in Table 7.23. Ours (CISO) indicates 

that we applied Swin Transformer as the backbone network. Then, it shows that the 

ResNet-50 was selected as the backbone network. Through comparative analysis, it can 

be clearly seen that our CISO method performs best among all compared semi-supervised 

object detection methods, achieving remarkable performance, which fully proves that 

mean threshold and collaborative iteration strategies are effective in improving semi-

supervised object detection performance. 

Table 7.23 Experimental results related to different models using MS-COCO. 

Method 1% 5% 10% 

Supervised 9.05±0.16 18.47±0.22 23.86±0.81 

CSD 10.20±0.15 18.90±0.10 24.50±0.15 

STAC 13.97±0.35 24.38±0.12 28.64±0.21 

DETReg (Bar et al., 2022) 14.58±0.30 24.80±0.20 29.12±0.20 

Instant Teaching 18.05±0.15 26.75±0.05 30.40±0.05 

ISMT (Yang et al., 2022) 18.88±0.38 26.37±0.24 30.53±0.52 

Unbiased Teacher 20.75±0.12 28.27±0.11 31.50±0.10 

Soft Teacher 20.46±0.39 30.74±0.08 34.04±0.14 

LabelMatch 25.81±0.28 32.70±0.18 35.49±0.17 

HT (Tarvainen and 

Valpola, 2017) 
16.96±0.36 27.70±0.15 31.61±0.28 

Ours (CISO*) 21.04±0.18 29.50±0.21 34.20±0.12 

Ours (CISO) 22.00±0.17 30.90±0.15 36.20±0.26 

More specifically, as shown in Table 7.23, the mAP value of our method reaches 
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36.20, which is 2.16 higher than mAP value of 34.04 of the Soft Teacher result (Xu et al., 

2021), under 10% protocol. After that, the mAP value of our method reached 30.90 under 

5% protocol. Finally, CISO was proposed to increase the mAP value of the Soft Teacher 

method by 1.54 to 22.00. At the same time, compared to the latest semi-supervised 

learning method LabelMatch (Chen et al., 2022), our mAP value under 10% protocol is 

0.71 higher. Even when using ResNet-50, CISO outperforms all other compared models, 

with mAP values of 34.20, 29.50, and 21.04 at 10%, 5% and 1% data protocols 

respectively. In addition, when using Swin Transformer with self-attention mechanism as 

the backbone of the model, our CISO method also shows good adaptability and 

superiority. 

It is worth noting that as the amount of available labeled data increases, CISO shows 

increasingly obvious performance improvements, especially in the transition from the 1% 

protocol to the 10% protocol, where the mAP improvement increases from 1.54 to 2.16. 

This result shows that releasing pseudo-label data into unlabeled data has a positive 

impact on model performance, possibly because this strategy increases the chance that 

the model will reuse valid pseudo-label data in iterations. This hypothesis will be further 

explored in future research. In addition, Figure 7.17 shows our prediction results. Our 

research provides valuable experience for future research in this field. 

 

Figure 7.17 The prediction results 
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7.3.2 Ablation Studies 

Analysis of the Number of Iterations 

In this section, we will explore the specific impact of different iteration numbers on model 

performance. To this end, we choose to test the model under the MS-COCO dataset 

protocol containing 10% labeled data and 90% unlabeled data. The detailed results of the 

experiments are recorded in Table 7.24. In our experiments, a total of six rounds of testing 

were conducted, with the number of iterations set to 1, 2, 3, 4, 5 and 6 times respectively. 

We found that as the number of iterations increased from 1 to 6, the overall performance 

of the model improved significantly. However, it is worth noting that when the number 

of iterations reaches 5, the model performance begins to stabilize, and the performance 

improvement brought by increasing the number of iterations becomes very limited.  

Table 7.24 Experimental results related to the number of mean iterations. 

The number of mean iterations mAP 

1 27.40 

2 29.80 

3 33.60 

4 36.20 

5 36.40 

6 36.46 

    Specifically, after the 6th iteration, the mAP value of the model only increased by 

0.06. Based on this, we concluded that setting the number of iterations to 4 can enable the 

model to maintain optimal performance while ensuring high efficiency. We not only 

revealed the positive impact of increasing the iteration number on model performance, 

but also found that when the iteration number increases to a certain level, the effect of 

performance improvement gradually weakens. Future work will further explore why the 

mAP value does not change when the number of iterations reaches a certain level, and 

how to adjust the iteration strategy according to specific task requirements and data 
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characteristics, to ensure the accuracy and practicality of the model. 

Analysis of the Strong Data Augmentation strategy 

In the process of exploring the optimization of semi-supervised object detection models, 

we recognized the critical impact of data augmentation strategies on model performance. 

Therefore, in the CISO model, we adopted the weak-strong data augmentation method. 

Some data augmentation strategies can be seen in Figure 7.18. In particular, solid data 

augmentation has a positive effect that cannot be ignored in improving the performance 

of the model. In order to achieve a fair comparison baseline, we introduced the Cutmix 

and also considered the combined strategy of Color+Cutout. 

 

Figure 7.18 Visualization of weak-strong data augmentation strategies 

As summarized in Table 7.25, we compare the mAP performance of our models 

using different robust data augmentation methods in detail, which is based on 5% protocol. 

When applying Geometric and Color+Cutout methods, our CISO method achieves a 
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limited mAP improvement of only 1.26. However, after the Cutmix strategy was 

introduced, the performance of the model was significantly improved. Compared with 

utilizing the Mosaic and Mixup strategies, the mAP value increased by 0.50. Then, the 

CISO model taking use of the Cutmix data augmentation method finally achieved the 

highest mAP value of 29.70. This finding confirms the effectiveness of the Cutmix 

strategy in improving the performance of models. Through this series of experiments, we 

not only gained a deep understanding of the impact of different data augmentation 

strategies on the performance of semi-supervised object detection, but also explored 

effective ways to improve model accuracy. 

Table 7.25 Experimental results related to strong data augmentation strategy. 

Methods Strong data augmentation strategies mAP 

Color+Cutout Geometric Mixup Mosaic Cutmix 

STAC √ √    23.14 

Instant Teaching √  √ √  25.60 

CISO 

√ √    24.40 

√  √ √  29.20 

√    √ 29.70 

Analysis of parameter 𝝉 

The parameter τ plays a crucial role in the semi-supervised object detection task, and its 

setting method directly determines the performance of the model. Different from the fixed 

τ value used in other semi-supervised object detection models, we propose to set τ as a 

dynamically changing parameter, and generate pseudo-label by setting the τ value to be 

greater than or equal to the mean value of the data. This experiment is based on 10% MS-

COCO protocol. Moreover, our method takes into account the dynamic changes of 

unreliable data and reliable data in each iteration process of the model, allowing us to 

adjust the τ value according to the actual situation, thereby optimizing the generation 

process of pseudo-label. 
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Through the data analysis in Table 7.26, we found that when the τ value is 

dynamically averaged, the model can achieve optimal performance, with a mAP value as 

high as 36.20. In addition, we also observed that as the τ value decreases, the mAP value 

of the model also shows a downward trend. This result supports our initial hypothesis: 

dynamically adjusting τ that can effectively improve the quality of pseudo-label, thereby 

enhancing the performance of the model. Finally, besides the mean value, exploring more 

appropriate dynamic τ value setting methods to further improve the performance of model 

will become the focus of our future research. 

Table 7.26 Experimental results related to different parameter τ. 

𝜏 mAP 

0.30 29.4 

0.50 31.60 

0.70 33.60 

0.90 34.80 

Mean (IoU) 36.20 

Analysis of parameter 𝛌𝐮 

Furthermore, we explore the impact of introducing the parameter 𝜆Pinto the loss function 

on model performance. The specific experiments were performed under the 10% MS-

COCO protocol. By dynamically adjusting the mean value of the confidence threshold τ, 

the impact of 𝜆F (including 0.25, 0.50, 1.00, 2.00, 3.00, and 4.00) on model performance 

was tested. According to our experimental results, as presented in Table 7.27, when λP	is 

set to 1.0, the best performance of the model can be obtained. However, if 𝜆F	increases 

to 2.0, although the model performance decreases, the mAP value still reaches 35.80, 

which is only a decrease of 0.40 compared with the highest value of 36.20. It is worth 

noting that if 𝜆F	is set to other values, the performance of the model generally decreases, 

especially if 𝜆F	is 0.25, the mAP value decreases most significantly, with a decrease of 

5. This finding shows that our proposed model is relatively robust to changes in 𝜆F.  
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Table 7.27 Experimental results related to different parameter λP. 

𝜆F mAP 

0.25 30.20 

0.50 32.50 

1.00 36.20 

2.00 35.60 

3.00 32.90 

4.00 31.40 

Analysis of Mean Iteration Strategy 

 

Figure 7.19 The pseudo-label visualization effect of unlabeled data 

Table 7.28 Experimental results related to mean iteration. 

Mean iteration mAP 

 33.10 

√ 36.20 

Additionally, we also introduce a Mean Iteration strategy, which is executed based on the 

dynamically adjusted mean τ value (under 10% MS-COCO protocol). It focuses on 
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reintegrating the extracted pseudo-label into the unlabeled data in each iteration, aiming 

to maximize the utilization of unlabeled data to improve pseudo-label quality. 

In Table 7.28, if the Mean Iteration strategy is not adopted, the mAP value of the 

model is 33.10, which is lower than the result after applying the Mean Iteration. Figure 

7.19 further shows the pseudo-label visualization effect of unlabeled data depending on 

whether the Mean Iteration strategy is adopted or not. We observe that adopting the Mean 

Iteration can effectively generate more accurate pseudo-label, thereby significantly 

improving the overall performance of the model. In summary, by in-depth analysis of the 

impact of Mean Iteration strategy, our research demonstrates the effectiveness of dynamic 

adjustment strategies in improving model performance. 
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Chapter 8    

Conclusion and Future Work 

 

 

In this chapter, we summarize the contribution of this thesis to the 

field of waste classification and details the limitations of this 

research. Afterwards, directions for future work are also proposed, 

including adjustment of the dataset and further optimization of the 

model structure. 
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8.1 Conclusion 

In this thesis, we conduct research and innovation from three aspects on the issue of waste 

classification. These three aspects are waste datasets, data augmentation strategy, and 

semi-supervised learning models. We know that complex and changing environmental 

conditions, mutual obstruction of waste objects, and various types of waste are the current 

difficulties in waste classification. This makes collecting and annotating a large number 

of waste images a time-consuming and labor-intensive process, as the dataset needs to be 

diverse enough to cover different waste types and environmental conditions.  

    Therefore, we collected two domestic waste datasets, namely WasteData and 

WasteNet. Both datasets are collected according to waste classification standards and 

have four waste categories, namely dry waste, wet waste, recyclable waste, and hazardous 

waste. Each waste category covers several different waste objects. Taken recyclable waste 

as an example, cardboard, paper, metal, plastic, and glass are all included in the recyclable 

waste category, which ensures the diversity, comprehensiveness, and richness of the 

dataset. Among them, the WasteData dataset contains 1,560 waste images, and its 

characteristic is that each image contains only one waste object. The dataset in this case 

is easier to process, can reduce interference during model recognition. It is also beneficial 

to improving the accuracy of the model that can achieve faster training and verification 

of the model. The next is WasteNet dataset, which has a total of 1,326 images. This dataset 

is different from WasteData in that each image is occupied by different waste objects. 

And these waste objects are stacked and twisted, which is close to the waste state in the 

real world. This kind of dataset is closer to the real scene, because in actual applications, 

waste is often mixed together, and there may be mutual occlusion. The model trained 

using this kind of dataset has stronger generalization ability and can better cope with 

complex real-world environments. Our proposed dataset alleviates the problem of lack of 

diversity in waste datasets and helps improve the generalization ability and practicality 

of waste classification models. 
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Besides, if a small amount of waste data can be employed to train the model and 

achieve the desired result, the cost of manual collection and labeling of waste data can be 

greatly saved. Therefore, the starting point for the improvement of data augmentation 

methods and training models in this thesis is semi-supervised learning. Nonuniform color 

data augmentation and non-uniform offset data augmentation are proposed. The function 

of the nonuniform color data augmentation is to simulate natural light to change the color 

in the image. In the process of collecting waste data, we can observe that some waste 

images will show instant light changes. For example, a waste image may appear dark in 

the upper left corner and bright in the lower right corner, and the training of the model 

will also be affected by these factors.  

Then, nonuniform offset data augmentation changes the shape of waste in the image, 

such as distortion, to simulate the real waste state. Thus, we can utilize nonuniform data 

augmentation to expand the number of waste datasets and simulate real-world scenarios, 

which helps to improve the generalization ability and robustness of the model. Moreover, 

faced with the increasing cost of misclassification, we design an adaptive weighted loss 

function that allocates weights according to the data volume characteristics of different 

categories. Our experimental results show that our proposed data augmentation 

technology can help the model improve accuracy and correct for waste images 

recognition ability. 

Finally, we propose CISO, an object detection model structure based on semi-

supervised learning. This method can learn data features through pseudo-label and a large 

amount of unlabeled data, and in some cases can show higher robustness to noise. Pseudo-

labeling, mean iteration, and data augmentation are the main strategies covered by this 

model. Our experimental results show that CISO performs well and the model accuracy 

is improved. The ablation experiments also prove the robustness of our model. CISO can 

effectively utilize limited labeled data and combine it with a large amount of unlabeled 

data to significantly reduce the workload of manual collection and labeling of data 

without sacrificing model performance. 
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Our research results not only provide effective solutions for waste classification and 

improve the automation level of waste treatment, but also have great significance in 

promoting environmental protection, resource utilization, and cost saving, thereby 

achieving sustainable development of resources. 

Although our research work has achieved pretty rich results, there are still a few 

challenges and limitations as follows: 

(1) Due to the wide variety of waste types, currently, the dataset we propose does not 

include all waste objects, such as durian peel (e.g., durian peel is not wet waste, 

it belongs to the dry waste category). In addition, for WasteData, though its 

advantage is that it can reduce interference during model recognition, but since 

there is only one object in each image, it is more suitable for simple waste 

classification tasks and can quickly complete model training. Furthermore, 

though WasteNet is closer to real scenes, it is more suitable for complex scene 

recognition. Therefore, both datasets also have room for improvement. 

(2) As for the nonuniform data augmentation technique, we believe that it still has 

scope for further enhancement. Currently, non-uniform color data augmentation 

only simulates natural light. If there are other situations, such as changes in the 

color of the waste object itself, these also need to be considered. In addition, the 

nonuniform data augmentation in this thesis has an initial value. This initial value 

is the best value obtained from the experiments based on the dataset we created. 

While changing the dataset or using this method on other classification tasks, 

multiple experiments are required to obtain the most appropriate initial value. 

Finally, our adaptive weighted loss function, while effective, simply assigns the 

weights of different waste categories. Perhaps there are more effective and 

appropriate loss function algorithms for waste classification that can be studied. 

(3) For the CISO model, our study did not involve the precise selection of training 

samples, but only randomly selected training samples from the dataset. However, 

in actual application scenarios, there is often a certain distribution difference 

between unlabeled data and labeled data, because unlabeled data may come from 



132 
 

a completely different environment than labeled data. This distribution 

inconsistency may affect the learning result and generalization ability of the 

model. 

Throughout the course of the research, some findings have been disseminated 

through publication of academic papers, such as at conferences and journals. This not 

only represents the results of our research on the topic of using deep learning for waste 

classification, but also highlights the importance and impact of our work. Each 

publication makes a unique contribution to the field of waste classification, and provides 

novel insights. These publications form the basis of our overall research objectives and 

the key findings presented from these publications provide directions for further research 

into waste classification. The publication list included in this thesis not only serves as 

evidence of our contribution but also serves as a guide for future inquiry, with both 

practical and academic value. 

8.2 Future Work 

In the future, we need to further improve our methods and datasets as follows: 

(1) The number of waste images in the dataset needs to continue to increase. 

Moreover, in the future, we may apply WasteData to train a basic model to 

quickly achieve high-accuracy classification, then utilize WasteNet to further 

train and optimize the model. We speculate whether this strategy, which combines 

the advantages of the two datasets, can improve the model's performance and 

generalization ability in complex scenarios while ensuring model accuracy. 

(2) For non-uniform data augmentation techniques, we will explore strategies to 

simulate other colors besides natural light. In addition, whether there is a better 

definition of the initial value of nonuniform data augmentation in different 

classification tasks also requires further research. Finally, a more effective and 

appropriate waste classification adaptive weighted loss function algorithm is also 

one of our future works. 
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(3) In CISO model, the impact of the number of iterations on model performance 

was verified. Our future work will still concentrate on how to adjust the iteration 

strategy according to specific task requirements and data characteristics to ensure 

the accuracy and practicality of the model. Besides, the precise selection of 

training samples also needs to be considered. 

To sum up, our future work will focus on further optimizing the model structure and 

training strategy, exploring new feature extraction and classification methods, and 

verifying the effectiveness and applicability of the model in a wider range of practical 

waste application scenarios. Additionally, considering the diversity and variability of 

waste classification standards, future research will also explore the adaptability and 

flexibility of the model so that it can quickly respond to updates and changes in 

classification standards. Through continuous exploration and improvement, we look 

forward to providing more accurate, efficient, and reliable solutions for waste 

classification tasks, and making greater contributions to environmental protection. 
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