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Abstract. Face mask detection has become crucial for public health and
safety, especially during the COVID-19 pandemic. The existing methods,
relying on large datasets of labeled human faces, pose privacy concerns
and may not achieve high accuracy in diverse environments. In this pa-
per, we present an innovative approach namely VICL-CLIP, which in-
corporates the Visual In-Context Learning (V-ICL) paradigm into the
CLIP model to enhance face mask detection. By leveraging standard-
ized cartoon images as learning context, our method addresses privacy
issues while it also significantly improves detection accuracy. Specifically,
we design effective multimodal prompts for in-context learning. Cartoon
images with and without masks are proposed as the image prompts,
while their corresponding text prompts are curated as the positive and
negative contexts for the CLIP model. In this way, the model is able to
be refined to generalize the capability from abstract representations to
real human faces, through the inherent visual-text linkage. Our extensive
experiments were conducted based on an real-world COVID Face Mask
Detection Dataset. Our VICL-CLIP model achieves an excellent detec-
tion accuracy of 97%, outperforming all conventional methods and other
state-of-the-art models. Moreover, this work underscores the potential of
integrating the V-ICL learning paradigm into powerful vision-language
foundation models to improve the mask detection accuracy while pre-
serving privacy.

Keywords: Multimodal learning models · Visual in-context learning ·
Face mask detection

1 Introduction

Recent advances in the domain of Visual Language Models (VLMs) have led
to significant advances in the field of machine learning [23]. The Contrastive
Language-Image Pre-training (CLIP) method [15] has attracted much attention
owning to its strong ability to understand and generate multimodal data. CLIP
leverages a dual encoder architecture to improve the performance of the proposed
method. Despite the recent progress, a great number of particular applications
in a constrained scenarios, such as face mask detection, still pose significant
challenges in terms of privacy and the need for high detection accuracy.
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Face mask detection has been an essential task in a variety of public health
and safety situations, especially in the context of a global health crisis such as the
COVID-19 pandemic. Conventional face mask detection techniques often rely on
large datasets of real human faces [6], which can raise privacy issues and ethical
concerns. Furthermore, such techniques can struggle to achieve high accuracy
when applied to diverse and unconstrained environments.

In order to solve those problems, we present an innovative method, namely
VICL-CLIP, which incorporates the novel idea of Visual In-Context Learning
(V-ICL) [24] into the powerful CLIP model. It can successfully improve the
precision of face mask detection while simultaneously resolves the privacy issue.
Specifically, our method relies on cartoon images of characters wearing and not
wearing masks as visual contextual inputs. The introduction of cartoon images
does not require any real human for training, thus effectively protecting personal
privacy. To generalize the model capability from cartoon images to real faces,
we further leverage the characteristics of zero-shot learning by designing positive
and negative textual prompts aligned with the cartoon images. These aligned
textual prompts explore the multimodal connection between image and text
information, significantly facilitating the model performance by simultaneously
leveraging the visual and textual contexts.

Visual In-Context Learning [24,25,10] is an emerging technique that improves
the performance of large foundation models by incorporating relevant contextual
information. For VLMs, this includes providing additional visual or textual cues
to help the model understand the application context and process the target
data. After applying visual in-context learning to the VLMs (e.g., CLIP [15]), our
method is capable of bridging the gap between abstract representations and real-
world applications. This enables our model to perform accurate mask detection
without directly using sensitive personal data. Furthermore, by leveraging the
vision-language model, our method also benefits from the zero-shot learning
capability of VLMs, which enables the model to apply knowledge from unseen
contexts to new datasets.

Our method, VICL-CLIP, extends the capabilities of CLIP model to the spe-
cific task of mask detection. By leveraging the robust text and image encoders of
CLIP, we are able to distinguish between masked and unmasked faces in a zero-
shot setting. Firstly, we introduce a novel prompt generation technique using
ChatGPT to create descriptive prompts for both masked and unmasked faces.
These prompts are used to guide the text encoder in the CLIP model, enhanc-
ing its ability to differentiate between the two classes. Secondly, we develop a
contrastive learning framework that effectively maximizes the similarity between
matched pairs of text and image representations, e.g., a prompt description of
a masked face and an image of a masked face, while minimizing the similar-
ity between mismatched pairs. This approach ensures that the model learns to
accurately associate the correct textual and visual features. Furthermore, we
apply L2 regularization to the combined feature vectors. This step is crucial
for enhancing model generalization and preventing overfitting, thereby ensuring
robust performance when the model is exposed to unseen data. Finally, we con-
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duct extensive evaluations using the COVID Face Mask Detection Dataset [7].
These evaluations demonstrate the effectiveness and efficiency of our proposed
approach, highlighting its potential for real-world applications in mask detection
during the pandemic.

To evaluate the effectiveness of the proposed method, we conduct exten-
sive experiments on the COVID Face Mask Detection Dataset, which comprises
diverse real human face images. The dataset includes various configurations
of masked and unmasked faces to simulate real-world conditions. Our method
demonstrated excellent performance in face mask detection, achieving an overall
accuracy of 97%. This marks a substantial enhancement over state-of-the-art
large visual and visual-language models, underscoring the potential of V-ICL in
improving model performance through zero-shot learning techniques [10]. More-
over, we provide a feasible solution for applications where user privacy is crucial
by using cartoon characters as context inputs.

The remainder of this paper is organized as follows. Section 2 reviews re-
lated work in mask detection, multimodal methods and in-context learning. In
Section 3, we detail the methodology of our approach, including prompt gen-
eration, text encoder, image encoder, contrastive learning and mask detection.
In Section 4, we describe the implementation details of the training and evalu-
ation stages. In Section 5, we present our experimental results, comparing the
performance of various face mask detection models and our enhanced VICL-
CLIP method. Finally, Section 6 concludes the paper with a summary of our
key contributions, and discusses future directions.

2 Related work

Face Mask Detection Face mask detection has gained prominence due to the
COVID-19 pandemic, necessitating reliable systems to ensure public health and
safety [5]. Traditional face mask detection methods rely heavily on deep learn-
ing models trained on large datasets of labeled images. These methods typically
employ convolutional neural networks (CNNs) [19] for feature extraction [13],
followed by classifiers to determine whether a face is masked or unmasked. De-
spite of the effectiveness, traditional methods face several limitations, such as
requiring extensive labeled datasets and potential privacy issues. DINO (DIstil-
lation with NO labels) employs a self-supervised learning method using vision
transformers [18] to capture and distill essential visual features without labeled
data [2]. This method is currently a commonly used zero-shot object detection
method.
Multimodal Learning Models (MLLMs) MLLMs are designed to process
and integrate information from multiple modalities, typically visual and textual,
to perform a variety of tasks [22]. Early models such as Visual Semantic Em-
bedding (VSE) [3] and Neural Image Caption (NIC) [4] laid the groundwork
by learning joint representations of images and their textual descriptions. Re-
cent advances have introduced models such as CLIP and BLIP (Bootstrapped
Language Image Pre-training) [11]. CLIP model utilize large-scale datasets of
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unstructured web images paired with text to learn more generalizable repre-
sentations, significantly improving zero-shot learning tasks. BLIP focuses on en-
hancing the relationship between visual and textual data through a bootstrapped
training approach.
Contrastive Language-Image Pre-training (CLIP) CLIP is a novel MLLMs
approach. It leverages contrastive pre-training on diverse datasets of image-text
pairs [17], providing robust zero-shot learning capabilities. The model consists
of two encoders: One for images and one for text. Both encoders are trained to
map their respective inputs into a shared multimodal embedding space. During
inference, CLIP can match images with their corresponding textual descriptions
without explicit training on the target task. This enables effective zero-shot clas-
sification.
Zero-Shot Learning Zero-shot learning (ZSL) is a challenging machine learn-
ing paradigm [16]. Its goal is to recognize previously unseen objects or concepts.
Traditional models require extensive datasets for each expected category. In
contrast, ZSL uses supplementary data, such as semantic attributes, to infer the
properties of unseen categories. CLIP’s ability to embed images and text into
a shared space naturally extends this concept. It enables effective knowledge
transfer from seen to unseen categories.
In-Context Learning In-Context Learning (ICL) is an emerging paradigm [20].
It enhances a model’s learning ability by integrating relevant contextual infor-
mation. This technique has shown promise in various natural language process-
ing (NLP) tasks [8]. In these tasks, providing additional context significantly
improves performance. In the visual domain, V-ICL extends this concept by in-
corporating visual context to aid in understanding and processing target images.
Our approach involves using both positive and negative cartoon images and cor-
responding prompts as visual context. This enhances the model’s ability to learn
distinguishing features related to masked and unmasked faces.

3 Methodology

Previous methods for face mask detection relies on a large dataset to train the
deep neural networks. For example, MaskedFace-Net [1] includes 133,783 images
for correctly or incorrectly worn mask detection. Yu et al. [21] curated a dataset
of 10,855 images for face mask wearing detection. The reliance on such large
datasets has two challenges: (1) There is potential privacy concerns about re-
vealing the person identities in the training set, (2) The performance will drop
significantly when applied to unseen application scenarios.

To address the above challenges, we propose an innovative method called
VICL-CLIP, as shown in Fig. 1. The introduction of visual in-context learning
with cartoon images tackles the first challenge, while the adoption of large vision-
language models with visual-textual prompts address the second challenge.

The overall network architecture comprises two primary components: The
text encoder and the image encoder. The text encoder processes positive and
negative prompts, while the image encoder processes cartoon images representing
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Fig. 1. The structure of our VICL-CLIP method. We design effective visual-textual
prompts to finetune the large multimodal model such as CLIP. Specifically, cartoon
images free from privacy concerns are adopted with aligned textual prompts to serve
as the positive and negative multimodal prompt pairs. For inference, relevant questions
are asked to match the positive (mask) or negative (no mask) prompts.

masked and unmasked faces. These encoded representations are utilized in a
contrastive learning framework to facilitate effective mask detection.

3.1 Prompt Generation

The first step in our framework involves designing effective visual-textual prompts
for the concrete face mask detection task. For visual prompts, we leverage the
cartoon images depicting characters both wearing and not wearing masks to
serve as the context to finetune the model for mask detection. However, cartoon
images have a domain gap with realistic human faces. Therefore, we fix this
gap by paring those cartoon images with meaningful and corresponding textual
prompts.

To generate the prompts used in our model, we utilized the ChatGPT lan-
guage model. We input the phrase “Generate a pair of prompts for wearing a
mask and not wearing a mask ” into ChatGPT, which generated the following
descriptive prompts:

– Positive Prompt: “Someone with a mask covering their face”
– Negative Prompt: “Someone with their face fully visible”

These prompts are employed to guide the text encoder in distinguishing between
masked and unmasked faces.

We pair the cartoon character wearing a mask with the prompt “Someone
with a mask covering their face”, whereas the (cartoon, text) pair serves as a
positive example. In contrast, we generate the negative example by paring the



6 X. Gao et al.

cartoon without a mask with the prompt “Someone with their face fully visible”.
By leveraging the proposed multimodal prompts (visual-textual) to finetune the
model, the linkage between image and text can be explored to mitigate the gap
between cartoon and real images.

3.2 Text Encoder

The text encoder processes the generated prompts. The prompts are firstly tok-
enized into word tokens, which are then embedded into high-dimensional vectors
using a token embedding layer. To incorporate positional information, positional
encoding is applied to these token embeddings. The resulting embeddings are
fed into a transformer block comprising 12 layers. Each layer of the transformer
block includes the following sub-layers:

1. Layer Normalization: Normalizes the input to stabilize and accelerate
training.

2. Multi-Head Attention: Applies attention mechanisms to capture relation-
ships between different tokens.

3. Layer Normalization: Another normalization step post-attention.
4. Multi-Layer Perceptron(MLP): Applies a feed-forward network to trans-

form the input representations.

The output of the text encoder generates two representations: T1 for the
positive prompt and T2 for the negative prompt.

3.3 Image Encoder

The image encoder processes visual input in the form of cartoon images, one
depicting a masked face and the other an unmasked face. These two cartoon
images were generated through the GPT-4 language model. The images are
first divided into fixed-size patches, each of which is embedded into a vector
representation through a patch embedding layer. Positional encoding is applied
to these patch embeddings to retain spatial information. The encoded patches are
then processed through a series of 12 transformer blocks, identical in structure
to those used in the text encoder.

The output of this image encoder produces two representations: I1 for the
masked image and I2 for the unmasked image.

3.4 Contrastive Learning

Contrastive learning forms the core of our method, aiming to align corresponding
text and image representations while pushing apart non-corresponding pairs. The
objective is to maximize the similarity between T1 and I1 (masked pairs) and T2

and I2 (unmasked pairs), while minimizing the similarity between mismatched
pairs such as T1 and I2. The contrastive loss function is formulated as follows:
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L = − log
exp(sim(T1, I1)/τ)∑2

i=1

∑2
j=1 exp(sim(Ti, Ij)/τ)

, (1)

where sim(a, b) represents the cosine similarity between vectors a and b, and τ
is a temperature parameter adopted from the CLIP model to scale the logits.

Additionally, we apply L2 regularization to the tensor outputs of both the
text and image encoders to enhance stability and generalization of the embed-
dings. This is achieved by scaling the tensors to mitigate overfitting. This ensures
that the model generalizes well to unseen data.

3.5 Mask Detection

Image
Encoder

𝑇𝑇1 𝑇𝑇2

𝐼𝐼1 𝐼𝐼1 ⋅ 𝑇𝑇2𝐼𝐼1 ⋅ 𝑇𝑇1

Text
Encoder

Mask
No Mask

Mask

Fig. 2. The process of mask detection: The “mask” and “no mask” prompts are input
into the text encoder, while the image to be detected is input into the image encoder.
The similarity between the encoded representations is calculated through contrastive
learning to determine whether the person in the image is wearing a mask.

Fig. 2 shows the process of mask detection. In real-world mask detection, the
trained text and image encoders are utilized. Given an input image, its represen-
tation is obtained using the image encoder. This representation is then compared
with the representations of the “mask” and “no mask” prompts through the con-
trastive learning framework. By assessing the similarity scores, we determine
whether the individual in the image is wearing a mask.

By employing the new model, we enhance the accuracy of face mask detection
while simultaneously addressing privacy concerns. We take use of cartoon images
and corresponding prompts as context pairs. Our methodology demonstrates the
potential of combining advanced machine learning techniques to improve model
performance in a privacy-preserving manner. Future work will explore additional
applications and further refinements to our approach.

4 Training and Evaluation Details

To evaluate the effectiveness of our approach for detecting face masks, we car-
ried out comprehensive experiments by using the COVID Face Mask Detection



8 X. Gao et al.

Dataset [7]. In this section, we provide a detailed explanation of the dataset, the
preprocessing steps, the model training procedures, the evaluation metrics, and
the baseline comparisons.

4.1 Dataset Description

The COVID Face Mask Detection Dataset contains real human face images di-
vided into masked and unmasked classes [7]. The dataset is divided into training,
validation, and test sets. Fig. 3 shows some examples from the dataset. This split
simulates real-world conditions and ensures our model evaluation is robust. For
our experiments, we specifically used the test dataset to validate the performance
of our VICL-CLIP model.

Fig. 3. Sample images from the COVID Face Mask Detection Dataset.

4.2 Preprocessing

In order to ensure the consistency and applicability of the image input CLIP
model, we implemented a rigorous pre-processing process. Firstly, all images were
resized to the standard size of 224× 224 pixels to match the input requirements
of the CLIP model. Next, pixel values were normalized to a mean of 0.5 and
a standard deviation of 0.5 to ensure a standard distribution across all images.
We fine-tuned the pre-trained CLIP model using selected context image pairs
and their corresponding text prompts. The training process involved several key
steps. We created: (1) Positive pairs consisting of cartoon images wearing masks
paired with the prompt “Someone with a mask covering their face”; (2) Negative
pairs consisted of cartoon images not wearing masks paired with the prompt
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“Someone with their face fully visible”. The context images and prompts were
encoded using the CLIP model’s image and text encoders, respectively. This
process mapped the inputs into a shared embedding space. Finally, the encoded
image and text features are contrastively learned.

The evaluation process uses the COVID Face Mask Detection Dataset test
set. During inference, for each test image, we computed similarity scores between
the image representation and the representations of the “mask” and “no mask”
prompts. Based on these similarity scores, the image was classified as either
“mask” or “no mask”. The evaluation metrics were then calculated based on the
classification results.

4.3 Evaluation Metrics

In order to evaluate the performance of our VICL-CLIP model, we adopted the
following evaluation metrics: Accuracy, Precision, Recall, and F1 score.

Accuracy measures the proportion of correctly classified images out of the to-
tal number of images. It provides an overall measure of the model’s performance.
The formula for accuracy is given by:

Accuracy =
TP + TN

TP + TN + FP + FN
, (2)

where TP is the number of true positives, TN is the number of true negatives,
FP is the number of false positives, and FN is the number of false negatives.

Precision is the ratio of true positive predictions to the sum of true positive
and false positive predictions. It indicates the accuracy of the positive predictions
made by the model. The formula for precision is:

Precision =
TP

TP + FP
. (3)

Recall measures the ratio of true positive predictions to the sum of true
positive and false negative predictions. It reflects the model’s ability to capture
all relevant instances in the dataset.

Recall =
TP

TP + FN
. (4)

The F1 score is the mean of precision and recall, providing a balanced mea-
sure of the model’s performance. It is particularly useful when dealing with
imbalanced datasets. The formula for F1-Score is:

F1Score = 2 · Precision · Recall
Precision + Recall

. (5)

These metrics collectively offer a comprehensive evaluation of the model’s
performance, ensuring it accurately distinguishes between masked and unmasked
faces in various scenarios.
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4.4 Comparison Methods

To demonstrate the effectiveness of our proposed methodology, we compared the
performance of our VICL-CLIP model with the baseline CLIP [15], BLIP [11],
and DINO [2] models. The baseline models took use of the standard pre-trained
versions without additional fine-tuning. Our VICL-CLIP model, which incorpo-
rates visual in-context learning with context pairs, showed significant improve-
ments over the baseline models. This comparison highlighted the enhancements
achieved through our approach, particularly in terms of accuracy, precision, re-
call, and F1 score.

Our model was implemented by using PyTorch and the Hugging Face Trans-
formers library. The steps included initializing the model and processor, prepar-
ing context images and prompts, encoding features, applying L2 regularization,
and evaluating the model on the test dataset. All experiments are conducted on
a Windows 11 machine with an NVIDIA RTX 4080 GPU and 48GB RAM.

5 Experimental Results

In this section, the experimental results are presented to elaborate on the en-
hancement in performances with our approach as proposed. The performance of
the VICL-CLIP method measured by accuracy, precision, recall and F1 scores
are compared with the strong baselines such as CLIP, BLIP and DINO. Further-
more, we analyze the results in depth and backed them up using graphs.

5.1 Performance Metrics

The main evaluation metrics for evaluating model performance are accuracy,
precision, recall, and F1 score. These metrics provide a comprehensive under-
standing of the model’s ability to accurately distinguish between faces with and
without masks.

Table 1. Performance Comparison of Different Models.

Model Accuracy (%) Precision (%) Recall (%) F1 Score (%)
BLIP 47.00 46.94 46.00 46.46
DINO 45.00 45.28 48.00 46.60
CLIP 56.00 100.00 12.00 21.43
VICL-CLIP 97.00 97.96 96.00 96.97

Table 1 provides a comparative analysis of the performance metrics of various
models. The models evaluated include BLIP, DINO, CLIP, and our proposed
VICL-CLIP. The performance metrics considered for comparison are Accuracy,
Precision, Recall, and F1-Score, each expressed as a percentage.
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The BLIP model achieved an Accuracy of 47.00%, with a Precision of 46.94%,
a Recall of 46.00%, and an F1 score of 46.46%. This indicates a balanced perfor-
mance across all metrics, but with relatively low overall effectiveness in distin-
guishing between masked and unmasked faces. The DINO model demonstrated
slightly lower Accuracy at 45.00%, but it exhibited a marginally higher Precision
of 45.28%, Recall of 48.00%, and F1 score of 46.60%. This suggests that while
DINO had a higher recall rate, indicating it was more successful in identifying
all relevant instances, it did not perform as well in terms of precision and overall
accuracy. The CLIP model showed a significant disparity between its Precision
and Recall metrics. It achieved a high Precision of 100.00%, but this was accom-
panied by a notably low Recall of 12.00%, resulting in an F1-Score of 21.43%.
The overall Accuracy for CLIP was 56.00%. The high precision indicates that
when CLIP predicted a masked face, it was almost always correct, but its low
recall suggests it failed to identify a large number of masked faces correctly.

In contrast, our proposed VICL-CLIP model demonstrated superior perfor-
mance across all metrics. It achieved an impressive Accuracy of 97.00%, with
a Precision of 97.96%, a Recall of 96.00%, and an F1-Score of 96.97%. These
results indicate that VICL-CLIP not only correctly identified masked and un-
masked faces with high precision but also had a high recall rate, making it the
most effective model among those evaluated. Overall, the experimental results
highlight the robustness and effectiveness of the VICL-CLIP model in accurately
distinguishing between masked and unmasked faces, outperforming BLIP, DINO,
and CLIP by a substantial margin across all key performance metrics.

The confusion matrices shown in Fig. 4 for the BLIP, DINO, CLIP, and VICL-
CLIP models illustrate their respective abilities to distinguish between masked
and unmasked faces. The BLIP and DINO models exhibit balanced but mod-
erate performance, with significant misclassifications in both categories. Specifi-
cally, the BLIP model correctly identified 46.00% of masked faces and 48.00% of
unmasked faces, while misclassifying 54.00% of masked faces and 52.00% of un-
masked faces. Similarly, the DINO model correctly identified 48.00% of masked
faces and 42.00% of unmasked faces, with misclassification rates of 52.00% and
58.00%, respectively.

In contrast, the CLIP model, though accurately identifying 100.00% of masked
faces, struggled significantly with unmasked faces, correctly identifying only
12.00% and misclassifying 88.00%. The VICL-CLIP model demonstrated su-
perior performance, accurately identifying 98.00% of masked faces and 96.00%
of unmasked faces, with minimal misclassifications of 2.00% and 4.00%, respec-
tively. This indicates that the VICL-CLIP model effectively enhances face mask
detection accuracy by leveraging visual in-context learning with context pairs.

5.2 Ablation Study of Context Pairs

The integration of different prompt pairs significantly influenced the performance
of the VICL-CLIP model in face mask detection. As shown in Table 2, the use of
the prompt pair “Someone with a mask covering their face” and “Someone with
their face fully visible” yielded the highest performance metrics, with an accuracy
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Fig. 4. The confusion matrix for BLIP, DINO, CLIP, and the proposed VICL-CLIP.

of 97.00%, precision of 97.96%, recall of 96.00%, and F1-score of 96.97%. This
indicates that more descriptive and contextually relevant prompt pairs substan-
tially enhance the model’s ability to accurately classify masked and unmasked
faces. In contrast, the approach using a single prompt, where only one type of
textual description (either masked or unmasked) is provided, resulted in notably
lower performance. Additionally, approaches that employ either two positive
prompts (both masked) or two negative prompts (both unmasked) also show
poor performance. This highlights the effectiveness of using contrasting context
pairs (both masked and unmasked descriptions) for improving the model’s gen-
eralization and robustness. Our ablation study demonstrates that the optimal
performance is achieved when contrasting prompts are used, as this setup facili-
tates a stronger alignment between the image and text encoders. By identifying
this optimal prompt pair, we aim to reduce the sensitivity of the model to the
choice of prompts, thereby ensuring that future applications of the model are
not disproportionately influenced by prompt design.

5.3 Comparison with Other Methods

The performance comparison with other state-of-the-art models demonstrates
the superiority of the VICL-CLIP model. Specifically, VICL-CLIP achieved an
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Table 2. Impact of Positive and Negative Context.

Prompt Pair Accuracy (%) Precision (%) Recall (%) F1 Score (%)
Single Prompt 50.00 0.00 0.00 0.00
"A person wearing a mask” and
"Someone with a mask covering
their face”

43.00 46.24 86.00 60.14

"A person without a mask” and
"Someone with their face fully
visible”

80.00 87.50 70.00 77.78

"A person wearing a mask” and
"A person without a mask”

94.00 95.83 92.00 93.88

"A face with a mask” and "A
face without a mask”

95.00 95.92 94.00 94.95

"Someone with a mask covering
their face” and "Someone with
their face fully visible”

97.00 97.96 96.00 96.97

accuracy of 97.00%, which is significantly higher than that of the other models.
Additionally, VICL-CLIP reached a precision of 97.96% and a recall of 96.00%,
outperforming the other methods. In terms of the F1 score, VICL-CLIP achieved
96.97%, indicating its strong balance between precision and recall.

In contrast, other models performed relatively less well. For example, SS-
DMNV2 [14] achieved an accuracy of 92.64%, with a precision and recall of
94.00% and 93.00%, respectively, while YOLOv3 [9] had an accuracy of 93.90%.
Although SwinTransformer+YOLOv8 [5] achieved a precision of 96.10%, its re-
call was only 90.60%.

Table 3. The Comparison with Other Face Mask Detection Methods.

Model Accuracy (%) Precision (%) Recall (%) F1 Score (%)
SSDMNV2 [14] 92.64 94.00 93.00 93.00
YOLOv2+ResNet50 [12] - 81.00 - -
YOLOv3 [9] 93.90 - - -
SwinTransformer+YOLOv8 [5] - 96.10 90.60 -
VICL-CLIP (Ours) 97.00 97.96 96.00 96.97

In conclusion, the results of our experiments clearly indicate that the integra-
tion of Visual In-Context Learning with CLIP, using carefully selected positive
and negative context pairs, significantly enhances the accuracy and robustness
of face mask detection. Our approach not only outperforms the baseline CLIP
model but also demonstrates superior performance compared to other face mask
detection methods.
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6 Conclusion and Future Work

In this paper, we present VICL-CLIP, a novel approach to enhancing face mask
detection accuracy by integrating Visual In-Context Learning with the Con-
trastive Language-Image Pre-training model. Our method leverages context pairs
using cartoon images of characters with and without masks paired with corre-
sponding prompts to provide clear distinctions between masked and unmasked
faces, addressing privacy concerns while improving generalization capabilities.
Extensive experiments on the COVID Face Mask Detection Dataset, particu-
larly focusing on real human face images, demonstrate that VICL-CLIP sig-
nificantly outperforms the baseline CLIP model, achieving an overall accuracy
of 94% compared to 56.0%. Precision, recall, and F1-score metrics also showed
marked improvements. The use of positive and negative context pairs is crucial
for enhancing model performance, enabling better generalization to real-world
scenarios. VICL-CLIP also surpasses other leading methods such as YOLOv8
and Swin Transformer-YOLOv8 in accuracy, precision, recall, and F1-score, un-
derscoring its substantial potential in improving face mask detection accuracy
and reliability compared to current advanced techniques.

Our future research work will explore this methodology in other domains,
such as emotion recognition, gesture recognition, and object detection, where
context pairs provide valuable distinctions.
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