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Abstract 

Estimating the calorie content of fruits is critical for weight management and maintaining 

overall health as well as aiding individuals in making informed dietary choices. Accurate 

knowledge of fruit calorie content assists in crafting personalized nutrition plans and 

preventing obesity and associated health issues. In this project, we investigate the 

application of deep learning models for estimating the calorie content in fruits, aiming to 

provide a more efficient and accurate method for nutritional analysis. We create a dataset 

comprising images of various fruits and employ random data augmentation techniques 

during training to enhance model robustness. We utilize the RT-DETR model integrated 

into ultralytics framework for implementation and conduct comparative experiments with 

YOLOv9 on the dataset. Our results show that the RT-DETR model achieved a precision 

rate of 99.01% in fruit detection, outperforming YOLOv9 in terms of F1 score, precision, 

and mAP. The results of our experiments provide a technical reference for more 

accurately monitoring individuals' dietary intake through estimating the calorie content 

of fruits. 
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Chapter 1 

Introduction 

 

 

This chapter consists of five parts. The background and 

motivations are presented in the first section, followed by the 

research inquiry in the second part. Subsequently, the 

contributions, aims, and organization of this document are 

delineated. 
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1.1 Background and Motivation 

Nowadays, we are more concerned about their health than ever before, and obesity has 

emerged as a significant global health issue due to its association with an increased risk 

of diseases such as heart disease, diabetes, and hypertension (Mansoor et al., 2022). An 

effective method to prevent obesity is through controlling the calorie intake in food (Rolls, 

2007). In daily diets, fruits and vegetables play a crucial role as primary sources of 

nutrition. However, many individuals lack understanding regarding the calorie and 

nutritional content of various foods, necessitating a method to help them easily 

comprehend the calorie content of their food intake (Veni et al., 2021). With the 

advancement of technology, various artificial intelligence systems have been researched 

to facilitate people in understanding the daily calorie intake of fruits and vegetables, 

aiding them in better diet control, such as the research of Begum et al., (2022). This 

project proposes a deep learning model to calculate the calories in fruits. 

    According to Vaswani et al., (2023), transformer architecture was initially devised for 

tasks related to natural language processing (NLP) but has been so successful that deep 

learning models based on it have flourished and exhibited exceptional performance across 

various computer vision tasks, notably in object detection. The framework for real-time 

detection of objects utilizing the transformer architecture is Real-Time Detection 

Transformer (RT-DETR) (Lv et al., 2023), which has achieved impressive accuracy in 

real-time object detection. The motivation behind our project is to utilize the features of 

the RT-DETR model to create a system that can detect fruits in real-time using a camera 

feed and estimate their calorie content. By automating these processes, we can streamline 

workflows, improve efficiency, and provide users with valuable insights into their dietary 

habits. 

    Through this project, we explore the capabilities of RT-DETR in fruit detection and 

calorie estimation, evaluate its performance with existing methods like YOLOv8, and 

showcase its potential for practical use in dietary monitoring and nutrition analysis. 
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1.2 Research Questions 

The report aims to investigate the application of deep learning models based on 

transformer architecture for estimating calorie content in fruits. Hence, the research 

queries addressed in this document are as follows,  

(1) What techniques can be utilized for fruits calorie estimation utilizing deep 

learning? 

(2) How well does deep learning technology perform in estimating the calorie content 

of fruits. 

The project focuses on utilizing deep learning for fruits detection and calorie estimation. 

Therefore, appropriate techniques need to be selected for fruits identification, detection, 

and calorie estimation. In addition, the methods used in this research project require 

evaluation. 

1.3 Contributions 

The focus of this project is on utilizing the real-time detection capabilities of the model 

of object detection RT-DETR, employed the transformer architecture, for detecting fruits 

and estimating their calories. Moreover, we compare the performance of RT-DETR and 

other state-of-art object detection model YOLOv9. By evaluating these models using real-

world fruit images captured from videos, we provide insights into their performance and 

weaknesses in practical scenarios. the project contributes to the advancement of computer 

vision research by showing how well transformer-based models such as RT-DETR 

perform in challenging detection tasks with various objects like fruits.  
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1.4 Objectives of This Report 

The primary aim of the project is to investigate the application of deep learning techniques 

for estimating the calorie content of fruits. This involves utilizing a diverse dataset of fruit 

images captured from videos and implementing random augmentation techniques during 

training to enhance model robustness. The project aims to use the RT-DETR model 

integrated into the ultralytics framework for fruit detection and calorie estimation, aiming 

to achieve higher accuracy and efficiency compared to traditional methods. Additionally, 

comparative experiments between the RT-DETR model and YOLOv9 model are 

conducted to evaluate performance metrics such as F1 score, precision, recall, and mAP. 

1.5 Structure of This Report 

We outline the structure of the report here: 

§ In Chapter 2, We conduct an extensive literature review and delve into the research 

progress related to object detection, particularly its applications in food and fruit 

detection.  

§ In Chapter 3, We provide a detailed overview of our research methodology. This 

chapter encompasses the specifics of experimental design, data collection, and 

evaluation methods. 

§ In Chapter 4, We display the collected training and practical detection outcomes, 

illustrating them through visual aids such as charts and graphs. Additionally, we 

delve into the limitations of our study. 

§ In Chapter 5, We offer a comprehensive review and in-depth analysis of the 

experimental outcomes, aiming for a thorough understanding of our research 

findings. 

§ In Chapter 6, We summarize our research and its findings, and propose directions 

for future studies 



5 
 

 

Chapter 2 
Literature Review 

 

 

This report centers fruit detection using transformer-based 

methods. In the section, we will delve into the utilization of 

deep learning techniques in the evolution of object detection 

methods and explore related research.  
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2.1 Introduction 

The detection of visual objects remains the cornerstone task in the realm of computer 

vision. Broadly, current object detection frameworks can be divided into two main groups: 

CNN-based and Transformer-based. Within CNN-based frameworks, a further division 

can be made between two-stage detection methods and one-stage detection methods. 

Two-stage detection methods include models like Faster R-CNN, while one-stage 

detection methods encompass SSD and the YOLO series. As for Transformer-based 

frameworks, the DETR series, such as Swin Transformer, represents the primary example 

(Arkin et al., 2023). 

2.2 Convolutional Neural Network-Based Architecture 

A specialized deep learning architecture tailored for image identification and 

classification tasks is the Convolutional Neural Network (CNN) (Bhatt et al., 2021). Its 

core architecture consists of hidden layers and a classification section. In the hidden layers, 

convolutional and pooling layers play crucial roles. Convolutional layers identify 

different characteristics in the image, including textures, edges, and shapes, by applying 

filters. Pooling layers decrease the dimensions and intricacy of the image, reducing 

computational load and helping the network better understand the overall structure of the 

image. In the classification section, fully connected layers transform the extracted 

features into prediction results, using activation functions to introduce non-linearity, 

allowing the network to better fit the data. Additionally, regularization layers are often 

used to prevent overfitting by limiting the complexity of the model, thereby improving 

generalization.  

    Training a CNN model typically involves two stages: Forward propagation and 

backward propagation. In the forward propagation stage, input images are passed through 

each network layer, generating prediction results. In the backward propagation stage, 

network parameters are updated using the gradient descent algorithm to minimize the loss 
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function based on the difference between the prediction results and the ground truth labels, 

continuously optimizing the model's performance. CNNs have wide applications in the 

fields of image processing and image classification. They have been successfully applied 

in various domains such as face recognition, object detection, and medical image analysis, 

achieving significant results. 

2.2.1 Two-Stage Detectors 

Visual object detectors based on CNN are classified into two main groupings: One-stage 

and two-stage. The primary difference between the two approaches lies in whether region 

proposals are generated. In general, two-stage detector methods typically consist of two 

stages: The first stage involves extracting deep features from the input images utilizing a 

backbone network like ResNet. Following that, the Region Proposal Network (RPN) is 

employed to generate potential regions, categorizing the image into background and 

target regions, and making preliminary predictions about position of the target. In the 

second stage, the Roi_pooling layer is utilized to precisely locate and refine the positions 

within the potential regions. These candidate targets are then mapped to corresponding 

feature regions on the feature map, followed by passing through a fully connected layer 

(FC) to acquire the respective feature vectors. Finally, the classification and regression 

branches are utilized to identify the class and position of candidate targets (Du et al., 2020; 

Lu et al. 2020).   

    The two-stage models include R-CNN (Region-based Convolutional Neural Network) 

(Bharati, & Pramanik, 2020), Fast R-CNN (Girshick, 2015), Faster R-CNN, R-FCN 

(Region-based Fully Convolutional Network) (Dai et al., 2016), FPN (Feature Pyramid 

Network) (Lin et al., 2017), and Mask R-CNN. Two-stage detectors typically achieve 

higher accuracy levels but operate at a slower speed compared to one-stage detectors. 

(Carranza-García et al., 2020).  

Wasif et al. (2021) accommodated the Faster R-CNN method to detect ten different 

types of food and calculate their calories. They chose the Faster R-CNN algorithm 



8 
 

because it offers faster speed compared to other available algorithms. Faster R-CNN is a 

specialized method for object detection, comprising three main components: a backbone 

network (CNN) that is to extract features of objects. Another component is the Region 

Proposal Network (RPN), which generates target bounding boxes. Lastly, the detection 

network performs classification and regression of targets (Sarda et al., 2020). The 

detection algorithm obtained over 90% precision for all images. 

2.2.2 One-Stage Detectors 

One-stage object detectors, which utilize a single feedforward fully convolutional 

network to directly provide target bounding boxes and classifications. Early models like 

Single Shot MultiBox Detector (SSD) (Liu et al., 2016) and You Only Look Once (YOLO) 

(Jiang et al., 2022) pioneered this unified architecture, eliminating the need for per-

proposal computation. However, these models often struggle with extreme foreground-

background class imbalances, limiting their accuracy. This disparity poses a challenge in 

real-world scenarios where object and background proportions vary significantly. To 

address this, researchers propose enhancement techniques like sample weighting and 

adjusted loss functions to improve detector performance and accuracy (chen et al., 2021). 

    YOLO relies on CNN models and is predominantly employed for tasks like object 

identification, character segmentation, and precise target localization through annotations. 

This algorithm stands out as a well-established approach for extracting features in real-

time scenarios (Jiang et al., 2022). 

Xiao et al. (2024) conducted a study on identification of fruit ripeness utilizing the 

YOLOv8 model. The research involved extracting visual features from images of fruit 

and analysing peel characteristics to predict fruit categories. They utilized a custom 

dataset created by themselves and employed PyTorch as the experimental platform. It was 

observed that using all the dataset for model training led to redundant visual features, 

prompting manual removal of some data. Ultimately, they trained the model using two 

thousand samples. Experimental results showed a significant improvement in 
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classification accuracy, reaching 99.5%, with the application of the C2f module in the 

YOLOv8 model. During the training process, the authors also evaluated the model's 

performance and noted that insufficient training iterations could affect the convergence 

of the model. 

To leverage the benefits of both one-stage and two-stage detectors while addressing 

their respective limitations, some studies have explored the effectiveness of hybrid 

architectures in object detection (Arkin et al., 2021). For instance, Agarwal et al., (2023) 

employed a hybrid architecture to predict food calories. In this study, image segmentation 

was initially conducted using Mask R-CNN, followed by feature extraction and food 

classification using the YOLOv5 framework. Subsequently, the dimensions of food items 

were determined by identifying them, and their quantities and calories were computed 

using the estimated dimensions. These methods achieved an accuracy of 97.12% on the 

training dataset, surpassing other classification models such as CNN, YOLO, and Mask 

RCNN across various evaluation criteria, leading to higher accuracy and fewer errors. 

Mask RCNN is an extension of Faster RCNN that adds a segmentation task to the original 

classification and regression tasks. It introduces a binary mask for each region of interest, 

enabling precise image segmentation alongside object classification and bounding box 

regression. This approach improves accuracy by accurately delineating object boundaries 

in images (He et al., 2017). 

Two-stage detectors typically achieve higher accuracy but are slower in comparison to 

one-stage detectors, as noted by Carranza-García et al. (2020). One-stage detectors excel 

in quick processing, making them suitable for real-time applications. However, their 

lower precision poses challenges for tasks requiring high accuracy. The future trend is 

more centered on combining precision and speed in real-time applications to achieve high 

accuracy (Cao et al., 2021; Bharati, & Pramanik, 2020). 

2.3 Transformer-Based Architecture 

Since the successful application of the transformer in NLP tasks, there has been ongoing 
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effort within the industry to adapt the Transformer architecture for applications in 

computer vision (CV) (Jamil et al., 2023; Bi et al., 2021). 

Xiao et al. (2023) utilized Swin Transformer model to identify apple ripeness from 

digital images. The Swin Transformer was developed by the research team at Microsoft 

Research Asia. It is a deep learning model that utilizes a transformer architecture and 

employs hierarchical grouping attention mechanisms. It has demonstrated impressive 

efficacy across numerous tasks of CV, like image categorization, target identification, and 

semantic partitioning (Liu et al., 2021). In the research the researchers also evaluated the 

detection outcomes of the Swin Transformer with the results of the YOLOv5 model and 

DETR. Based on the detection outcomes, the YOLO model exhibits superior detection 

performance and greater stability. The Mask RCNN and Swin Transformer both 

demonstrate rapid and consistent detection capabilities. Nevertheless, integrating the 

transformer mechanism into the YOLO model did not result in improved outcomes. 

Based on recent publications, transformers show significant promise in tackling 

computer vision tasks. Additionally, the integration of CNNs and transformers has led to 

enhanced efficiency (Arkin, 2023). The key lies in combining the strengths of Object 

detection techniques employing CNNs and Transformers to achieve rapid and precise 

detection of targets in real-world scenarios. 
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Chapter 3 
Methodology 

 

 

This part primarily elaborates on the methodology of research 

adopted in this report, encompassing the detection of fruits 

using models based on the Transformer architecture, along with 

the evaluation methods employed in this project.  
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3.1 Transformer 

Transformer architecture (Vaswani et al., 2017), is specifically crafted for processing data 

of sequence, for example, the words in sentence. It processes incoming sequences and 

converts them into other sequences. It utilizes self-attention exclusively to calculate its 

input and output representations, eliminating the need for sequence-aligned RNNs 

(Recurrent Neural Networks) (Manaswi, 2018) or convolution. The architecture 

comprises an encoder and a decoder, illustrated in Figure 3.1.  

 
Figure 3.1: The transformer architecture 

3.1.1 Encoder 

The Encoder is composed of N (equal to6) identical layers, where each layer corresponds 

to a unit depicted on the “Encoder” block of the diagram, denoted as Nx where x ranges 

from 1 to 6. Each layer contains two sub-layers: A multi-head self-attention and a FFN 

(fully connected feed-forward network). Both sub-layers include residual connection (He 

et al., 2016) and layer normalization (Yu et al., 2023), allowing the output of the sub-layer 

to be represented as follows:  

𝑠𝑢𝑏_𝑙𝑎𝑦𝑒𝑟_𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 + 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥))                (3.1)	
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where Sublayer(x) is defined as the operation performed by the sub-layer itself. 
 

The LayerNorm isrepresented as follows, illustrating in the diagram: 

𝑥!" = 𝛾 ⊙ #!$%
√'()

+ 𝛽                                                   (3.2) 

where 𝑥 ∈ 𝑅*×, represents a target tensor consisting of N tokens 𝑥! ∈ 𝑅-×,, x(i), 𝑚 and 

𝜎 indicate the mean and variance of 𝑥!, respectively. The variable ϵ represents a small 

constant used for division stability, and the operation ⊙  indicates element-wise 

multiplication. The trainable affine transformation coefficients are denoted by γ and β 

belonging to R1×D. 

(1) Encoder sub-layer 1: Multi-head self-attention mechanism 

An attention function can be described as a mechanism that takes a query and a collection 

of pairs of key-value as input and produces an output. This process involves vectors 

representing the query, keys, values, and output. In practice, we calculate the attention 

function for a set of queries concurrently, which are arranged into a matrix Q. 

Correspondingly, matrices K and V organize the keys and values. The output can be 

represented as, 

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉)                            (3.3) 

where the attention calculation takes use of a scaled dot-product mechanism: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 E./
"

01#
F 𝑉                             (3.4) 

where 𝑑2 represents the dimensions of the queries and keys. 

 

    Multi-head attention involves projecting Q, K, and V through h distinct linear 

transformations, followed by concatenating the resulting attention results: 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑! , … , ℎ𝑒𝑎𝑑3)𝑊4                          (3.5) 

where ℎ𝑒𝑎𝑑! = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊!
. , 𝐾𝑊!

/ , 𝑉𝑊!
5)        (3.6) 

where the projections consist of matrices that act as parameters 𝑊!
. ∈ 𝑅1$%&'(×1# ,𝑊!

/ ∈

𝑅1$%&'(×1# ,𝑊!
5 ∈ 𝑅1$%&'(×1) 	𝑎𝑛𝑑	𝑊6 ∈ 𝑅31)×1$%&'(	, 

However self-attention uses the same Q, K, and V. 
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(2) Encoder sub-layer 2: position-wise fully connected feed-forward network 

This layer is a fully connected layer and mainly provides linear transformations.  

𝐹𝐹𝑁(𝑥) = max(0, 𝑥𝑊- + 𝑏-)𝑊7 + 𝑏7)                          (3.7) 

While the linear transformations remain consistent regardless of the position, they 
employ distinct parameters from one layer to another. 

3.1.2 Decoder 

The decoder, akin to the encoder, also comprises N layers stacked together, being 

divided into 3 sublayers (as shown in the right part of Figure 3.1). From the diagram we 

can see that:  

(1) Decoder sub-layer 1 utilizes masked Multi-Headed Attention. This masking, along 

with the adjustment of shifting the output embeddings at each position, guarantees 

that the forecasts for position i can depend entirely on the established outputs at 

positions prior to i. For instance, as illustrated in the bottom right corner of the Figure 

3.1, the inputs 𝑞-, 𝑘-, 𝑣- from 𝑥-, and	𝑞7, 𝑘7, 𝑣7 from 𝑥7 are processed to compute 

the output 𝑦7, while 𝑥8 is masked and not included in the computation. 

(2) Decoder sub-layer 2 is an encoder-decoder multi-head attention. The input to this 

layer comes from the encoder's key and value, as well as the query of the next layer 

in the decoder. 

3.2 DETR 

The transformer was primarily developed for natural language processing, but due to its 

powerful modeling capability and parallel computing ability, researchers have applied it 

to fields such as visual object detection (Samplawski & Marlin, 2021). The task of Visual 

object detection from digital images involves identifying objects in images and 

determining their positions and categories, typically involving image or video data 

(Carion et al., 2020).  
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    In the aspect of feature acquisition, transformers have larger receptive fields, more 

adaptable weight settings, and better global modeling capabilities compared to CNNs, 

making Transformer-based backbone networks potentially deliver feature inputs of 

superior quality inputs for subsequent tasks. In 2020, Google introduced the Vision 

Transformer (ViT) developed by Dosovitskiy et al. (2021), successfully applying this 

model to image classification tasks. Subsequently, transformer innovations in the realm 

of CV emerged.  

    The DETR (Carion et al., 2020) model was investigated in the same year, employing 

an end-to-end transformer architecture to transform the object detection task into a 

sequence-to-sequence problem, simplifying the detection process and effectively 

eliminating the necessity for many manually crafted components like NMS or anchor 

generation, achieving good performance. However, DETR has a few drawbacks, such as 

slow training, large computational overhead, and poor performance on detection of small 

objects. (Carion et al., 2020). As a result, various variants of DETR have been proposed, 

each targeting specific challenges: PnP-DETR introduces a “poll and pool” sampling 

module to adaptively sample features of different granularity, balancing computational 

overhead and performance (Wang et al., 2022).  

    Deformable DETR reduces computational overhead by altering the attention 

mechanism calculation method, leveraging deformable convolutions to improve small 

object detection performance (Zhu et al., 2021). Sparse DETR further reduces 

computational costs by selectively updating only a portion of encoder tokens, maintaining 

detection performance (Roh et al., 2022). Conditional DETR decouples appearance and 

position features to speed up convergence by learning conditional space queries (Meng et 

al., 2023). Anchor DETR model shows a new object query design by using anchor points 

to guide optimization and accelerate convergence (Wang et al., 2022). DAB-DETR builds 

on Anchor DETR by introducing 4D reference points to further accelerate convergence 

(Liu et al., 2022). DN-DETR addresses slow convergence by stabilizing training with 

noisy ground truth and query inputs (Li et al., 2022). These methods aim to expedite 

DETR's convergence speed and have demonstrated significant effectiveness in 
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experiments conducted on the COCO dataset. Throughout innovative approaches 

targeting different aspects of the detection process, these variants contribute to advancing 

the performance and efficiency of object detection models. 

3.3 RT-DETR 

In our project, a DETR model named RT-DETR is employed for fruit detection and 

calorie estimation. 

While the DETR series has made significant progress in recent years and has to some 

extent disrupted the dominance of CNNs in the realm of detection of objects, in terms of 

“practicality” DETR still cannot fully replace, or even match, the YOLO series. The high 

computational expenses and typically extended training durations associated with DETR 

have imposed limitations on its broad implementation within practical production 

operations. However, with the advent of RT-DETR (Li et al., 2023), this impasse was 

decisively overcome. RT-DETR not only effectively tackled the issue of "two sets of 

thresholds" but also made substantial strides in enhancing its practical utility, thereby 

simplifying deployment processes. These advancements have empowered RT-DETR to 

fulfill the demands of detection of real-time and have found extensive utilization in 

practical applications.  

The architecture of RT-DETR is illustrated in Figure 3.2. In terms of structure, RT-

DETR consists of three blocks: Backbone network, neck network, and decoder.  

Figure 3.2: The architecture of RT-DETR 
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3.3.1 Backbone 

The backbone network of RT-DETR takes use of ResNet50, ResNet101 (Dosovitskiy et 

al., 2021; He et al., 2019; He et al., 2016), and HGNet-v2 (Yao et al., 2023). These 

backbone networks all utilize CNN architecture. The table 3.1 lists backbones used in RT-

DETR. The backbone can be scaled, and the publicly available HGNetv2 has two versions: 

L and X. Like previous detectors, RT-DETR also extracts outputs at three scales, S3, S4, 

and S5, from the backbone network. In this project, we trained the RT-DETR-L model on 

our dataset by using the HGNetv2 backbone. This choice was motivated by the limitations 

of our training environment, which consists of only one GPU. Given the lower parameter 

count of the RT-DETR-L model, it was deemed more suitable for our setup. 

Table 3.1 Backbones used in RT-DETR 

Model Backbone Parameters 

RT-DETR-R50 R50 42 

RT-DETR-R101 R101 76 

RT-DETR-L HGNetv2 32 

RT-DETR-X HGNetv2 67 

3.3.2 Neck: Hybrid Encoder 

For the neck network, RT-DETR employs a solitary layer of Transformer encoder, 

exclusively processing the S5 features outputted from the backbone network, as shown 

in Figure 3.2, called AIFI (i.e., the Attention-based Intra-scale Feature Interaction) 

module. The mathematical operations of AIFI can be represented as follows: 

𝑄 = 𝐾 = 𝑉 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑆9)                                             (3.8) 

𝐹9 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝐴𝑡𝑡𝑛(𝑄, 𝐾, 𝑉))                                        (3.9) 

where Attn means the multi-head self-attention, and Reshape is utilized to revert the 

feature's shape back to that of 𝑆9. 



18 
 

 The two-dimensional S5 features undergo flattening into a vector before being passed 

to the AIFI module. The computational process entails multi-head self-attention and FFN 

(Feed-Forward Network). Subsequentially, the output is reshaped back into two 

dimensions, represented as S5, for further “cross-scale feature fusion.” According to the 

RT-DETR research team, the decision of RT-DETR to only process the final S5 feature 

through AIFI is based on two considerations: 

(1) Previous DETR models, such as Deformable DETR, concatenated features from 

multiple scales into one long sequence vector. While this approach facilitates ample 

interaction between features at different scales, it also leads to significant computational 

overhead and time consumption. RT-DETR considers this as one of the primary reasons 

for the slow computation speed of existing DETR models. 

(2) In RT-DETR, compared to shallower features like S3 and S4, the S5 features possess 

deeper, more advanced, and enhanced semantic information. These semantic features 

offer greater value and utility for Transformers to distinguish between different objects. 

In contrast, shallow features lack significant semantic information and are less effective.  

The RT-DETR demonstrates that applying the Encoder only to the S5 features can 

significantly reduce computational complexity, improve computation speed, and 

maintain model performance.  

IoU-aware Query Selection. IoU-aware query selection is introduced to guide the 

model during training. This approach enhances the classification by assigning higher 

scores to features with high IoU (Yan, 2023) scores and lower scores to those with low 

IoU scores. This improves the quality of initial object queries for the decoder, thereby 

enhancing detection performance.  

Therefore, to address the latency issues caused by NMS (Non-Maximum 

Suppression) (Jiang et al., 2019) in current real-time detectors, RT-DETR introduces a 

real-time end-to-end detector which comprises two critical enhancements. Firstly, a 

hybrid encoder is designed to efficiently process multi-scale features. Secondly, IoU-
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aware query selection enhances the initialization of object queries. The combination of 

these improved components enhances the performance of our detector in real-time 

scenarios. 

3.3.3 Decoder 

RT-DETR supports flexible tuning of inference speed by employing varying numbers of 

decoder layers, eliminating the necessity for retraining, enabling the model to adapt to 

various real-time scenarios. 

3.4 Training Data 

3.4.1 Data Selection 

Due to seasonal variations in data collection, the artificial neural network in this project 

is trained utilizing the following fruit categories to cover the most fruits likely to be 

encountered by the calorie detection system: Royal Gala Apple, Rose Apple, Granny 

Smith Apple, Ambrosia Apple, JAZZ Apple, Orange and Kiwifruit. 

3.4.2 Dataset  

We created a dataset comprising 1,866 images of various fruits for fruit detection. 

Through using a camera, we captured videos of each fruit from multiple angles at 

equidistant distances and the images were obtained by extracting frames the videos. The 

dataset consists of seven classes of local fruits products. To identify fruit categories and 

estimate their calorie content, each fruit was classified into weight categories of equal 

intervals, resulting in a total of 22 categories.  

    For example, for Royal Gala Apples, weight categories were defined as follows: 

“Royal_Gala_Apple 1” for weights up to 140g, “Royal_Gala_Apple 2” for weights 

between 140g and 180g, and “Royal_Gala_Apple 3” for weights exceeding 180g. Due to 

the equidistant capture method, the images of fruits of different weights have varying 
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dimensions, allowing the deep learning model to estimate calorie content based on image 

dimensions. The calorie and nutrient composition data for the 7 classes of fruits were 

sourced from “The Concise Food Composition Tables” jointly own by The New Zealand 

Institute for PFR (Plant & Food Research Limited) and MoH (the Ministry of Health, 

New Zealand) (Lister, 2018). These data are utilized for energy estimation during the fruit 

detection process. Additionally, starting with these 1,866 fruit images as a foundation, we 

employed various data augmentation techniques to generate a dataset comprising 4,478 

images. This dataset was subsequently partitioned into training, validation, and testing 

sets in the proportions of 87%, 8%, and 4% respectively. Specifically, the dataset includes 

3918 images for the training, 374 images for the validation, and 186 images for the testing. 

3.4.2 Data Pre-processing 

To ensure the neural networks for tasks such as classification of images and object 

detection are trained effectively, it is essential to adjust the size of the images to a 

predetermined size that matches the initial input layer of the neural network. This is the 

reason why convolutional layers in neural networks analyze images pixel by pixel and 

the interactions with neighboring pixels to identify features. Given the use of the 

ultralytics framework in this project, we have standardized image dimensions to 640*640, 

compatible with ultralytics specifications. 

In the field of deep learning, data augmentation is a method to increase the scale and 

diversity of training data by transforming inputs. These transformations involve 

operations such as rotation, flipping, scaling, cropping, and color transformations. By 

exposing the model to variations in angles, lighting, and scales, data augmentation aids 

in learning diverse features. Additionally, it reduces the model's reliance on specific 

samples, thereby improving the model's generalization ability and robustness. (Shorten & 

Khoshgoftaar, 2019) In this report, we employed various data augmentations, (1) 

Horizontal flipping with a 50% probability. (2) No rotation, clockwise rotation, and anti-

clockwise rotation in 90-degree increments. (3) Random cropping of 0% to 20% of image 

size. (4) Random rotation between -15 and +15 degrees. (5) Horizontal shearing between 
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-10° and +10°, and vertical shearing between -10° and +10°. (6) Random brightness 

adjustment between -15% and +15%. (7) Random grayscale application to a subset of the 

training set with a 15% probability. If these data augmentation techniques are applied to 

the images, we can obtain results similar to the Figure 3.3. 

 

Figure 3.3: The images used in data augmentations 

The augmentation mentioned should only be utilized on the training dataset and 

should not be applied to the validation or testing datasets. It is advised to maintain the 

testing and validation datasets as similar to the original dataset as feasible to evaluate the 

robustness of the training conducted using augmented data. 

3.5 Program Implementation 

The operating environment required in this thesis includes Microsoft Windows 10 or 

above, Python 3.10 or above programming language, PyTorch 2.1.0 or above deep 

learning framework, ultralytics object detection framework and CUDA 11.7 or above for 

accelerated computing. 

Furthermore, in order to enhance the robustness of this proposed model, we utilized 

random data augmentation from the ultralytics framework during model training. 

ultralytics employs various approaches of data augmentation, and during training process, 
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we can enhance the generalization ability of the model and reduce overfitting by setting 

parameters in the configuration file to utilize these random data augmentation techniques. 

Furthermore, random data augmentation techniques not only generate training samples 

with different variations, thus enhancing the variety of the training dataset but also help 

the model generalize better to unobserved data and improve robustness. Moreover, they 

can generate more training samples by transforming existing data without the need to 

store additional raw data. Specifically, these data augmentation techniques include: 

3.5.1 Random Affine Transformation 

This technique involves translating, shearing, rotating, and scaling the image based on 

the specified parameter values. Then, these transformations are combined to form a 

comprehensive transformation matrix. 

3.5.2 Random Mosaic Augmentation 

In the ultralytics framework, mosaic augmentation for both 4-image and 9-image mosaics 

is defined. We chose to implement random mosaic augmentation using 4 images. To 

augment training data, four images are randomly cropped and then stitched together into 

a single image for training purposes. The effect is shown in Figure 3.4: 

 
Figure 3.4: Random mosaic augmentation 
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3.5.2 HSV Augmentation 

HSV stands for hue, saturation, and value, collectively representing a color space used to 

describe colors. HSV enhancement adjusts the values of these three parameters to modify 

the color and brightness of an image, aiming to improve image quality and enhance the 

robustness of models without altering the image geometry or structure (Liu et al., 2023). 

Figure 3.5 demonstrates the combined enhancement effect when these three parameters 

are applied together as perturbations. 

 

Figure 3.5: Combining HSV augmentation randomly 

3.5.4 Albumentations Libraries 

Albumentations is a Python library that provides powerful and concise interfaces tailored 

for various computer vision tasks such as object classification, segmentation, and 

detection. It surpasses other popular image enhancement tools in terms of speed and also 

offers a wide range of optimized transformation functions. This adaptability enables users 

to select augmentation techniques as needed and integrate them into more complex 

preprocessing pipelines, simplifying the process of establishing data augmentation 

workflows for various computer vision tasks. Albumentations rapidly enhances model 

generalization and its performance improvements enhance the efficiency of image 

enhancement, saving computational resources and time. (Buslaev et al., 2020). We 

harnessed the Albumentations toolkit for image augmentation, incorporating techniques 

such as Blur, MedianBlur, ToGray, and CLAHE. During training, we adjusted these 

parameters to enhance the images. It is essential to install this toolkit before using it.  
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Figure 3.6 showcases the effects of employing these augmentation techniques: 

 
Figure 3.6: Effects of four augmentation techniques from the Albumentations Library 

3.6 Evaluation Methods 

In this report, we will evaluate RT-DETR by comparing its detection performance with 

that of YOLOv9 on our dataset since YOLOv9 is the cutting-edge object detector 

constructed upon CNN architecture. The training performance of YOLOv8 (Yan, 2023) 

is also used for comparison, as it is a high-performance and relatively stable version of 

the YOLO model.  

In the field of object detection, You Only Look Once (YOLO) combines the 

conventional two-stage process of predicting the location and classification into a single-

stage process, making it very fast in terms of detection speed. The YOLO series (Redmon 

et al., 2016) include YOLOv1 through YOLOv9. YOLOv9 (Aziz et al., 2024), based on 

YOLOv7 (Wang et al., 2023), provides two novel technologies, PGI (Programmable 

Gradient Information) and GELAN (Generalized ELAN), which not only address the 

issue of information bottleneck but also further push the boundaries of improving the 

accuracy and efficiency of object detection. 

    Deep neural networks may encounter problems such as information loss and unreliable 

gradients when dealing with complex tasks, especially as the network layers increase, 

leading to potential loss of original data, incomplete information usage during training 

process, and the generation of unreliable gradients and poor convergence. PGI, as a new 

auxiliary supervision framework, addresses these issues by introducing an auxiliary 

reversible branch and multi-level auxiliary information. The auxiliary reversible branch 
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aims to generate reliable gradients and update network parameters to avoid information 

loss problems. Multilevel auxiliary information aggregates gradient information 

containing all target objects and passes it to the main branch to address error accumulation 

issues. These methods enable the network to better retain information and generate 

reliable gradients, thereby improving the training effectiveness of deep neural networks. 

PGI does not require additional connections during inference, thus fully preserving the 

advantages of speed, parameter quantity, and accuracy. 

    GELAN integrates the design concepts of CSPNet (Wang et al., 2020) and ELAN 

(Wang et al., 2023), while considering computational complexity, lightweight, inference 

speed, and accuracy. This design allows users to choose suitable computation blocks 

according to various inference devices. Compared to the state-of-the-art depth-wise 

separable convolution design, GELAN makes use of only traditional convolutions but 

achieves a higher parameter utilization rate, while also possessing the advantages of being 

lightweight, fast, and accurate. 

  

  



26 
 

 

 

 

 

Chapter 4 

Results 

 

 

. This chapter primarily validates our research model by 

analyzing training and experimental results. Additionally, it 

explores the constraints of the project. 
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In this report, we evaluated the effectiveness of RT-DETR by conducting a comparative 

analysis with YOLOv9 on our dataset. In this thesis, we utilize several performance 

metrics, like confusion matrix, F1 curve, P-R curves, precision, loss-curves, etc. 

Additionally, all training results refer to the model being trained on our dataset for 100 

epochs, with a batch size of 4. 

4.1 Confusion Matrix 

A confusion matrix serves as a concise overview of the classification outcomes in a given 

problem. It summarizes the counts of accurate and inaccurate predictions, segmented by 

each class, which is the pivotal aspect of the confusion matrix. The columns in the 

confusion matrix denote the predicted classes, while the rows correspond to the real 

classes. The entries along the diagonal of the matrix indicate the ratio of accurate 

predictions, while those off the diagonal represent the inaccurate predictions. Optimal 

performance is reflected by higher values along the diagonal, indicating a multitude of 

correct predictions (Fahmy, 2022). A typical binary classification confusion matrix is 

represented as follows:  

True Positive (TP): The count of positive instances accurately predicted as positive, i.e., 
true positive when the actual is 0 and predicted as 0. 

False Negative (FN): The count of positive instances inaccurately predicted as negative, 
i.e., false negative when the actual is 0 and predicted as 1. 

False Positive (FP): The count of negative instances mistakenly classified as positive, i.e., 
false positive when the actual is 1 and predicted as 0. 

True Negative (TN): The count of negative instances accurately predicted as negative, 
i.e., true negative when the actual is 1 and predicted as 1. 

For a multi-class confusion matrix, the background is also listed as a separate class, 

so it also has its own TP, FP, TN, FN, etc. The last column and the last row both represent 

the FN and FP of the background class predictions. Hence, the bottom-right corner has 

no significance and no values.  
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Figures 4.1 and Figure 4.2 respectively display the confusion matrices for the 

YOLOv9 and RT-DETR models. It is apparent that the RT-DETR model demonstrates a 

reduction in misclassifications and fewer calorie estimation errors compared to the 

YOLOv9 model. Additionally, there are fewer missed and false detections for the 

background class in the RT-DETR model compared to YOLOv9, indicating that RT-

DETR is less likely to misclassify the background as fruits. These performances suggest 

that the RT-DETR model achieves higher detection accuracy.  

 

Figure 4.1: Confusion matrix for YOLOv9 
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Figure 4.2: Confusion matrix for RT-DETR 

4.2 F1-Confidence Curves 

The F1 curve represents the harmonic mean of precision and recall (Zhao, & Li, 2020). It 

ranges from 0 to 1, where a value of 1 indicates optimal performance and 0 indicates poor 

performance. The F1 score curve shows how the F1 score changes at different thresholds. 

It is mathematically represented by eq.(4.1) and eq.(4.2) (Padilla et al., 2021):  

𝐹- = 2 × :;<=!>!6?×;<=@AA
:;<=!>!6?(;<=@AA

                                            (4.1) 

𝐹- = 2𝑇𝑃/(2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃)                                  (4.2) 

where precision measures the accuracy of detections by indicating the proportion of 

predicted bounding boxes that correspond to ground truth objects. It reflects how many 

of the predicted objects are correct. Recall evaluates the capacity of the model to detect 
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ground truth objects by indicating the proportion of actual objects that are accurately 

identified.  

Figure 4.3 (a), (b) depict the F1-Confidence curves for the YOLOv9 and RT-DETR, 

respectively.  

(1) The peak F1 score is higher, signifying the model's optimal performance. The 

maximum F1 score for the YOLOv9 is 0.93, while RT-DETR achieves 0.99, indicating 

an improvement of 0.06. 

(2) The region beneath the F1-Confidence curve provides a summary of performance 

across all thresholds. A greater region indicates superior model performance. The results 

show that RT-DETR outperformed YOLOv9. 

  

(a)                                                                   (b) 

Figure 4.3: F1 curves for YOLOv9 (a) and RT-DETR (b) 

4.3 P-R curves 

The PR curve showcases the trade-off between precision and recall as well as mAP stands 

for Mean Average Precision, indicates the average precision across all classes as proposed 

by Padilla et al. in 2020. It is observed that as precision increases, recall tends to decrease. 

Therefore, the ideal scenario is to achieve high precision while detecting as many 

instances of all classes as possible. Consequently, we aim for the curve to approach the 

point (1,1), indicating maximum precision and recall, and thus maximizing the area under 

the mAP curve as close to 1 as possible.  Figure 4.4 (a), (b) illustrate the P-R curves for 
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the YOLOv9 and RT-DETR, respectively. 

  (1) We see that the curve of the RT-DETR model is higher than that of YOLOv9, 

indicating that the RT-DETR detector exhibits greater precision at different recall levels. 

(2) The curve of the RT-DETR model is closer to the upper right corner compared to 

YOLOv9, suggesting that the overall precision and recall of the RT-DETR detector are 

better. 

(3) The RT-DETR model has a higher AUC than YOLOv9, indicating that the RT-DETR 

model exhibits better performance. 

  

(a)                                                                 (b) 

Figure 4.4: The P-R curves for YOLOv9 (a) and RT-DETR (b) 

4.4 Loss curves 

We are use of three loss functions to measure the extent to which the model's predictions 

deviate from the ground truth, aiming to extensively evaluate performance of the 

proposed model. They are:    

(1) GIoU loss (Localization Loss): This loss function calculates the difference between 

predicted bounding boxes and ground truth bounding boxes. YOLOv9 model represents 

it as box_loss. The model employs Intersection over Union (IoU) as a metric to measure 

the overlap between two bounding boxes. GIoU loss measures the positional precision of 

the predicted boxes by computing the IoU between predicted and ground truth boxes and 
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converts it into a loss value. By minimizing the GIoU loss, the model can learn more 

accurate bounding box positions. 

(2) Classification loss (Cls_loss): The model uses classification loss to measure the 

accuracy of classification. Cls_loss calculates the loss value of classification by 

comparing the difference between predicted class distribution and actual class labels. By 

minimizing the classification loss, the model can learn more accurate class classification.  

(3) L1 loss (Feature Point Loss): The model utilizes feature points to predict object 

orientation and angle information, represented as dfl_loss in the YOLOv9 model. L1 loss 

is employed to compute the disparity between predicted feature points and ground truth 

feature points. By minimizing the L1 loss, the model can learn more accurate object 

orientation and angle information. 

Figure 4.5 and 4.6 illustrate the loss curves for YOLOv9 and RT-DETR, respectively. 

It can be observed that:  

(1) RT-DETR's giou_loss is smaller than YOLOv9 in both training and validation 

phases, indicating more precise localization.  

(2) RT-DETR's dfl_loss is smaller than YOLOv9 in both training and validation 

phases, indicating stronger capability in object detection.  

(3) RT-DETR's cls_loss is smaller than YOLOv9's in both training and validation 

phases, indicating more accurate classification.  

(4) The giou_loss and dfl_loss curves of RT-DETR exhibit more fluctuations during 

the validation process compared to YOLOv9, indicating that its localization and object 

detection during validation are more unstable. 

The loss values in Table 4.1 further validate the above results. 
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(a)                                                                 (b) 

Figure 4.5: The loss curves for YOLOv9 (a) and RT-DETR (b) 

Table 4.1: Loss values for RT_DETR, YOLOv9 and YOLOv8 
  train   val  

 giou_loss/
box_loss 

cls_loss 
l1_loss/ 
dfl_loss 

giou_loss/
box_loss 

cls_loss 
l1_loss/dfl_lo

ss 
YOLOv8 
YOLOv9 

0.20 
0.36 

0.29 
0.85 

0.89 
1.17 

0.36 
0.42 

0.26 
0.34 

0.92 
1.11 

RT-DETR 0.04 0.10 0.05 0.09 0.21 0.18 

4.5 Precision 

We utilize four performance metrics to describe the precision of the model: Precision, 

Recall, mAP50, and mAP50-95.  

(1) Precision refers to the capability of this proposed model to correctly identify and 

classify only the objects that are pertinent to the given task. Precision evaluates the 

proportion of correctly predicted positive samples (true positives/all predicted positives). 

In object detection, a prediction is deemed accurate if the predicted bounding box 

intersects with the ground truth bounding box (Padilla et al., 2021).  

(2) Recall assesses the fraction of all true positive samples that the model can identify. 

In object detection, a sample is considered correctly recalled if the ground truth bounding 

box overlaps with the predicted bounding box (Padilla et al., 2021).  

(3) mAP50: mAP shorts for mean Average Precision, indicating the mean precision 

across different classes. mAP50 denotes the value of mAP at a 50% threshold of IoU. In 
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formal terms, the average precision (AP) for a specific class is derived from the region 

under the precision-recall curve. AP is obtained by integrating values of precision across 

all recall levels utilizing numerical techniques (Padilla et al., 2021). 

𝐴𝑃 = ∫𝑝(𝑟)𝑑𝑟                                                     (4.3) 

The term mAP is utilized to calculate the mean values of AP across all classes. 

𝑚𝐴𝑃 = -
?=
∑𝐴𝑃                                                       (4.4) 

where nc is the total count of classes. 

(4) The term mAP50-95 is a stricter evaluation metric as it computes the value of 

mAP across the range of 50-95% IoU thesholds (from 0.5 to 0.95, with increments of 

0.05, i.e., 0.5, 0.55, 0.6, ..., 0.95), and then takes the average. This offers a more accurate 

evaluation of the effectiveness of the model at different IoU thresholds (Padilla et al., 

2021). The four plots in Figure 4.7(a) and four in (b) respectively depict the performance 

of these four metrics for the YOLOv9 and RT-DETR models. From the graphs, we 

observe:  

(1) The precision and recall achieved by the RT-DETR model surpass those of the 

YOLOv9 model. 

(2) The PR curves of the YOLOv9 model exhibit more fluctuations compared to 

those of RT-DETR, which show relatively fewer fluctuations. Both curves steadily rise.  

(3) The mAP50 and Map50-95 curves for both the RT-DETR and YOLOv9 models 

steadily increase.  
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(a)                                                                 (b) 

Figure 4.6: The precision, recall and mAP values curves for the YOLOv9 (a) and the RT-

DETR model (b). The blue line represents the real metrics values, illustrating how the 

actual metrics changes with each epoch. The yellow dots depict smoothed results derived 

from the blue line, capturing the overall trend of the metrics value. 

    Table 4.2 displays the best performance values of these three models across these four 

metrics for 100 epochs. Overall, the metrics of the RT-DETR model surpass those of 

YOLOv8 and YOLOv9, indicating better performance of the RT-DETR model with 

higher precision in target detection and classification. However, the mAP50-95 of the RT-

DETR model is slightly lower than that of YOLOv9, with values of 94.45% and 94.64% 

respectively. Specifically, the precision rates for RT-DETR, YOLOv9 and YOLOv8 are 

99.01%, 96.63% and 94.57%, respectively. In addition, the training time for RT-DETR is 

shorter than that of YOLOv9 but is five times longer than YOLOv8. 

Table 4.2: Performance values of YOLOv8, YOLOv9 and RT-DETR 
 Precision(B) Recall(B) mAP50(B) mAP50-95(B) Training Time 
YOLOv8 

YOLOv9 

RT-DETR 

94.57% 

96.63% 

99.01% 

95.17% 

91.32% 

99.20% 

97.87% 

98.56% 

99.17% 

93.01% 

94.64% 

94.45% 

54 ms 

9hrs23ms 

6hrs35ms 
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4.6 Real-Time Detection Results 

We took use several types of fruits with varying weights for real-time prediction. 

Additionally, the juice content of fruits of equal weight to the detected fruits were also 

reflected in the experimental results. Figures 4.7 (a) to (c) and Figure 4.8 (d) to (f) show 

the detection outcomes generated by using RT-DETR and YOLOv9 models, respectively. 

Overall, the RT-DETR model exhibits higher detection accuracy and better performance. 

Additionally, while it might be due to insufficient sample diversity, the two models have 

calorie estimation errors. For instance, Figures 4.9 (g) and (h) display that a NZ Rose 

apple originally containing 264kJ of energy is detected by both RT-DETR and YOLOv9 

models as 200kJ. The two models occasionally exhibit detection errors. For instance, 

Figure 4.10 (i) shows the RT-DETR model misidentifying an Ambrosia apple as a Gala 

apple, while Figure 4.10 (j) shows the YOLOv9 model misidentifying the same apple as 

a JAZZ apple. 

(a)

(b)
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              (c) 

Figure 4.7 (a) to (c) Prediction of RT-DETR model 

  (d) 

 (e)   

          (f) 
Figure 4.8: (d) to (f) Prediction of YOLOv9 model 
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             (g) 

             (h) 
 
Figure 4.9 (g) Calorie estimation error for RT-DETR model and (h) for YOLOv9 model 

 

            (i)

            (j) 
Figure 4.10: (i) and (j) RT-DETR and YOLOv9 models incorrectly detected an 

Ambrosia apple as a Gala apple and a JAZZ apple respectively 
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4.7 Limitations of the Research  

(1) Our dataset originates from videos capturing fruits in supermarkets, where fruits are 

typically selected and displayed for sale based on similar sizes. This uniformity in 

fruit sizes results in a lack of diversity in our samples, which may be insufficient for 

comprehensive training. 

(2) Currently, our project only considers estimating the calorie content of individual 

fruits. To further extend our capabilities to estimate the total calorie content of 

multiple types of fruits, we need to expand our approach. 

(3) While the research team claims that the model surpasses the YOLOv8 model in real-

time detection, the RT-DETR-L model we selected requires longer training time on 

our dataset compared to YOLOv8. Additionally, during real-time detection, it does 

not perform as smoothly as the latter, indicating the need for further improvement in 

this aspect. 

(4) The model exhibits false detections during real-time detection, highlighting the need 

for further improvement to enhance precision. 
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Chapter 5 

Analysis and Discussions 

 

 

This part primarily analyzes and discusses the outcomes of 

experiment along with the potential underlying reasons. 
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5.1 Analysis 

Firstly, from the training results, it is apparent that the RT-DETR model achieved a 

precision of 99.01% on our dataset, indicating excellent model performance. The 

utilization of random data augmentation during training played a crucial role in achieving 

this high accuracy. Secondly, regarding real-time detection results, the model performed 

as expected, accurately detecting fruits and estimating their calories. In addition, the 

model may experience false detections due to insufficient samples, a situation that can be 

remedied by either increasing the sample size or refining the model to enhance detection 

performance. 

5.2 Discussions 

While examining the curves representing model performance, such as F1-confidence 

curves, P-R curves, loss curves, precision, recall, and mAP curves derived from training 

results, the RT-DETR model outperforms the YOLOv9 and YOLOv8 models in terms of 

performance. Additionally, the real-time detection outcomes show that the RT-DETR 

model has higher accuracy compared to the YOLOv9 model. These results demonstrate 

that RT-DETR has been proven to be effective in our project. These achievements can be 

attributed to several improved components of RT-DETR. The design of the hybrid 

encoder in RT-DETR enables the effective learning of more comprehensive multi-scale 

fruit features., while IoU-aware query selection facilitates the model in locating target 

fruits within images more effectively. This combination not only enhances the real-time 

detection capabilities of the RT-DETR detector but also improves detection accuracy, 

thereby enhancing overall detection performance. 
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Chapter 6 

Conclusion and Future Work 

 

 

In this part, our main focus is to encapsulate the methodologies 

and findings of our project. Furthermore, we outline potential 

avenues for future research based on the results obtained and 

the prevailing technological landscape. 
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6.1 Conclusion 

This project aims to investigate the application of deep learning models for estimating the 

calorie content in fruits. To achieve this goal, we generated a dataset from videos captured 

by ourselves. We employed random augmentation during training to increase the 

robustness of the model in target detection. For the implementation, we adopted the RT-

DETR model and integrated it into the framework of ultralytics. We also compared the 

training results of the RT-DETR model, YOLOv9, and YOLOv8 on our dataset and 

conducted real-time detection experiments to evaluate the performance of the RT-DETR 

model. 

    The findings of the study are promising, with a precision rate of 99.01% and 94.45% 

mAP50-95 achieved in fruit detection from digital images. In comparison with the 

YOLOv9 and YOLOv8 models, our chosen RT-DETR model demonstrates higher F1 

score, precision, and mAP on our dataset. From various performance curves and real-time 

detection outcomes, it is apparent that the RT-DETR model surpasses the YOLOv9 and 

YOLOv8 models. 

6.2 Future Work 

Future research efforts can focus on collecting more diverse samples to improve detection 

precision. Additionally, incorporating fruit weight as a parameter in model training to 

estimate calorie content based on weight could be explored. Furthermore, detecting and 

estimating total calories of multiple fruits together could be considered. Lastly, there is 

still room for improvement in the model's detection precision and real-time performance. 

In the end, current efforts are focused on integrating CNN and Transformer architectures 

to achieve optimal results. In the future, it is plausible that Transformers may entirely 

replace CNNs in the realm of CV, as further fine-tuning progresses. 
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