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Abstract 

In agriculture, timely and accurate assessment of fruit ripeness is crucial to optimize 

harvest planning and reduce waste. In this report, we explore the integration of two 

cutting-edge deep learning models, YOLOv9 and Swin Transformer, to develop a 

complex model for detecting strawberry ripeness. Trained and tested on a specially 

curated dataset, our model achieves a mean precision (mAP) 87.3% by using the metric 

intersection over union (IoU) at threshold 0.5. This performance outperforms over the 

model by using YOLOv9 alone, which achieved an mAP 86.1%. Our model also 

demonstrated the improved Precision and Recall, with Precision rising to 85.3% and 

Recall rising to 84.0%, reflecting its ability to accurately and consistently detect different 

stages of strawberry ripeness. 

Keywords: Transformer, YOLOv9, Swin Transformer, Deep Learning, Computer Vision 

  



 II 

Table of Contents 

 

Chapter 1 Introduction .................................................................................................................. 1 

1.1 Background and Motivation ......................................................................................... 2 

1.2 Research Questions ....................................................................................................... 3 

1.3 Contributions ................................................................................................................ 3 

1.4 Objectives of This Report ............................................................................................. 4 

1.5 Structure of This Report ............................................................................................... 4 

Chapter 2 Literature Review ........................................................................................................ 6 

2.1 Introduction .................................................................................................................. 7 

2.2 You Only Look Once (YOLO) ..................................................................................... 7 

2.2.1 Version Iterations of YOLO ......................................................................................... 7 

2.2.2 YOLOv9 Model ............................................................................................................ 8 

2.3 Transformer ................................................................................................................ 10 

2.4 Transformer in Computer Vision ................................................................................ 12 

2.5 Deep Learning in Agriculture ..................................................................................... 13 

2.6 Fruit Ripeness Detection ............................................................................................ 14 

Chapter 3 Methodology .............................................................................................................. 16 

3.1 Introduction ................................................................................................................ 17 

3.2 Research Design ......................................................................................................... 17 

3.2.1 Overall of the Proposed Model ................................................................................... 17 

3.2.2  Research Design of YOLOv9 Model .......................................................................... 18 

3.3 Evaluation Methods .................................................................................................... 24 

Chapter 4 Results ........................................................................................................................ 28 

4.1 Data Preparation ......................................................................................................... 29 

4.2 Performance of Strawberry Ripeness Detection Model .............................................. 32 

4.3 Demos and Discussions .............................................................................................. 39 

Chapter 5 Analysis and Discussions ........................................................................................... 41 

5.1 Analysis ...................................................................................................................... 42 

5.2 Discussions ................................................................................................................. 42 

5.3 Extra research ............................................................................................................. 42 

Chapter 6 Conclusion and Future Work ..................................................................................... 44 



 III 

6.1 Conclusion .................................................................................................................. 45 

6.2 Limitations .................................................................................................................. 45 

6.3 Future Work ................................................................................................................ 45 

References .................................................................................................................................. 47 

 
  



 IV 

List of Figures 

Figure 2.1. YOLOv9 structure ……………………………………………………….....9 

Figure 2.2. Transformer structure………………………………………………………11 

Figure 3.1 Overall structure of the strawberry ripeness detection model.………………18 

Figure 3.2 YOLOv9 structure…………………………………………………………...19 

Figure 3.3 Swin Transformer structure………………………………………………....21 

Figure 3.4. Swin Transformer blocks……………………………………………….….21 

Figure 3.5. Patch merging…………………………...…………………………….……22 

Figure 3.6 MSA and W-MSA ………………... ……………... ……………... ………..23 

Figure 3.7 An example of bounding box……………………………………………......25 

Figure 3.8 Calculation method of IoU……………………………………………….....25 

Figure 4.1 The sample of our dataset……………………………………………………30 

Figure 4.2 The example of the results after labeling……………………………………31 

Figure 4.3 Data splitting pie chart………………………………………………………32 

Figure 4.4 The true label situation of the validation set…………………………………34 

Figure 4.5 Results of our model on the validation set…........…………………..............35 

Figure 4.6 PR curve of YOLOv9+Swin Transformer model……………………………35 

Figure 4.7 PR curve of YOLOv9 model………………….……………….....……….…36 

Figure 4.8 Plots of results of YOLOv9+Swin Transformer model………………….….37 

Figure 4.9 Strawberry ripeness detection demo……………………………………..….39 

Figure 4.10 Different ripeness stages of strawberries……………………………….......40 

 

 

 

 



 V 

List of Tables 

Table 2.1 Performance of various versions of YOLO on the MS COCO dataset………10 

Table 4.1 Experimental environment…………………………………………………...32 

Table 4.2 Parameters of model training…………………………………………………33 

Table 4.3 Performance comparison of the two models…………………………………37 

Table 4.4 Comparison of strawberry ripeness detection models………………………..38 

Table 5.1 Nutritional value of 500g strawberry juice…………………………………...42 

 
  



 VI 

Attestation of Authorship 

 

I hereby declare that this submission is my own work and that, to the best of my 

knowledge and belief, it contains no material previously published or written by another 

person (except where explicitly defined in the acknowledgments), nor material which to 

a substantial extent has been submitted for the award of any other degree or diploma of a 

university or other institution of higher learning. 

 

 

 

Signature:                           Date:  14 April 2024  

 

 

 

 

 

 

 

 

 
  



 VII 

Acknowledgment 

Fisrt of all, I would like to thank my parents for their finanical support. Owing to the 

unselfish and generous sponsor from them, I have this invaluable opportunity to complete 

my Master’s study with the Auckland University of Technology (AUT), New Zealand. 

I would also like to express my deepest gratitude to my primary supervisor Wei Qi Yan. 

In this study, he not only provided me with professional knowledge support and careful 

guidance, but also helped me enrich my learning experience. I believe I could not 

complete my study without Dr Yan’s supervision and instructions. 

Finally, my cordial thanks also go to my girlfriend and my best friends who love and care 

me and whom I love and care. 

Zhiyuan Mi 

Auckland, New Zealand 

April 2024



1 
 

 

 

 

Chapter 1 

Introduction 

 

 

This chapter is composed of five parts: The first part 

introduces the background and motivations, the second part 

includes the research question, followed by the 

contributions, objectives, and structure of this report. 

 



2 
 

1.1 Background and Motivation 

The agricultural sector is at a critical juncture, facing global challenges such as population 

growth, climate change, and the need for sustainable development practices, which 

urgently require innovative solutions. Strawberries, as a high-value crop, symbolize these 

challenges. They are highly perishable, sensitive to environmental conditions, and require 

precise harvest timing to ensure optimal quality and yield. Traditionally, assessing 

strawberry ripeness has been a manual process relying on labor-intensive testing, which 

is time-consuming and error-prone. This approach faces significant challenges in terms 

of scalability, efficiency, and objectivity, especially in large-scale commercial farming. 

    The emergence of precision agriculture empowered by artificial intelligence and 

machine learning offers a promising solution to these challenges. AI technologies, 

including deep learning, have shown great potential in transforming various industries by 

automating complex tasks efficiently and accurately. In agriculture, these technologies 

have started paving the way for applications such as automated plant disease detection, 

yield prediction and crop monitoring.  

YOLOv9 and Swin Transformer are two popular models in the field of artificial 

intelligence (AI) and computer vision.YOLOv9, the latest iteration of the models “You 

Only Look Once" series, is known for its real-time object detection capabilities, which 

have been significantly improved over its predecessors in terms of speed and accuracy. 

On the other hand, Swin Transformer introduces a layered transformer with an 

architecture suitable for efficient processing of image data, especially for tasks requiring 

detailed visual understanding. 

Therefore, integrating these technologies for strawberry ripeness detection is a leap 

forward for precision agriculture. By automating ripeness detection, this approach aims 

to reduce reliance on manual labor, minimize human error, and make more accurate and 

timely harvest decisions. This is especially important for strawberries, which have a 

narrow window of optimal ripeness and whose quality directly impacts market value and 
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consumer satisfaction.  

1.2 Research Questions 

The main objective of this report is how to effectively integrate and apply YOLOv9 and 

Swin Transformer technologies for strawberry ripeness detection, so the main research 

questions of this report are: 

How can we effectively combine YOLOv9 and Swin Transformer for strawberry 

ripeness detection? 

In order to solve this research question, we split it into the following questions: 

(1) How can the integrated YOLOv9 and Swin Transformer model be trained, validated？ 

(2) What role does the Swin Transformer play in enhancing the accuracy of ripeness 

detection, and how does it complement the object detection capabilities of YOLOv9? 

(3) How do we evaluate the model and prove that our improvements to the model are 

effective? 

The core concept of this project is to utilize the complementary advantages of YOLOv9 

and Swin Transformer to develop a robust, efficient, and highly accurate strawberry 

ripeness detection system. We need train the dataset to get the best results and evaluate 

the model thoroughly. 

1.3 Contributions 

The focus of this report is to train a strawberry ripeness detection model. The main 

contributions of this report will be: 

(1) Dataset creation and enhancement: We will create, annotate, and preprocess a 

dataset of strawberry images and videos. The dataset will contain images under 

various environmental conditions to enhance the robustness and applicability of 
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detection models in different agricultural environments. 

(2) Integration of YOLOv9 and Swin Transformer: This report will integrate YOLOv9 

with Swin Transformer to create a powerful strawberry ripeness detection model. This 

model will take advantage of the efficient object detection capabilities of YOLOv9 

and the powerful feature extraction capabilities of Swin Transformer to significantly 

improve the accuracy of ripeness detection. 

(3) Model evaluation: We will evaluate the model using comprehensive evaluation 

methods, including precision recall analysis, intersection of unions (IoU), and mean 

average precision (mAP). We compare it with the YOLOv9 model to prove the 

effectiveness of our model improvements. 

1.4 Objectives of This Report 

This report aims to demonstrate the application of advanced deep learning technology in 

the agricultural field, focusing on strawberry ripeness detection. Firstly, a comprehensive 

review of related technologies and their applications in agriculture is provided, with a 

focus on deep learning. Secondly, a model for detecting strawberry ripeness based on 

YOLOv9 and Swin Transformer is trained. Thirdly, rigorous methods are employed to 

evaluate the performance of the proposed model against the existing benchmarks. At the 

end of the report, we will discuss limitations and future work. 

1.5 Structure of This Report 

This report is organized into six chapters, each focuses on a specific aspect of the research 

and development process: 

In Chapter 2, we introduce the relevant technologies in this report based on the 

literature. The research outcomes related to the application of deep learning in agriculture 

and current fruit ripeness detection methods are also discussed. 

In Chapter 3, we describe the technical approach and experimental design, including 
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the integration of YOLOv9 and Swin Transformer as well as the evaluation metrics to 

evaluate model performance. 

In Chapter 4, we present the results of the experiments, including the performance 

comparison of the proposed model with the standard model. 

In Chapter 5, we will analyze and discuss the experimental results. We will dosome 

extra research to analyze the nutritional value of strawberries. 

Finally, in Chapter 6 we conclude this report and discuss our limitations and future 

work. 

: 
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Chapter 2 
Literature Review 

 

 

In this chapter, we will introduce the technology appeared 

in this report. The application of deep learning in 

agriculture and existing fruit ripeness detection technology 

will also be discussed.  
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2.1 Introduction 

The field of computer vision has made significant progress in deep learning techniques, 

especially in object detection. The application of these technologies in agriculture is also 

becoming widespread. 

2.2 You Only Look Once (YOLO) 

YOLO (You Only Look Once) is a popular real-time object detection system first 

proposed in 2016 by Joseph Redmon et al. The core idea of YOLO models lies in 

transforming the object detection task as a single regression problem directly from image 

pixels to bounding-box coordinates and category probabilities, an approach that, 

compared to previous systems, dramatically increases the speed and efficiency, allowing 

it to run in real time(Redmon et al., 2016).     

2.2.1 Version Iterations of YOLO 

YOLOv1 is the first version of the YOLO family, which takes use of GoogLeNet as its 

backbone. It was characterized by its speed and ability to perform real-time detection. 

However, its accuracy was slightly lower compared to other detection systems available 

at the time(Redmon et al., 2016). 

YOLOv2 is the second version of the YOLO algorithm, which was proposed in 2016. 

The YOLOv2 model improves on YOLOv1 by increasing the detection precision and 

recall while maintaining high speed detection. YOLOv2 is use of Darknet-19 as the 

backbone network, which is faster and more accurate than GoogLeNet. It also introduces 

anchor boxes to improve detection accuracy(Redmon & Farhadi, 2016). 

YOLOv3 makes use of Darknet-53 as its backbone, which is more accurate than 

Darknet-19. It also takes advantage of multi-label classification to detect multiple target 

categories. These improvements have led to further improvements in detection accuracy, 
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especially on small objects(Redmon & Farhadi, 2018). 

The YOLOv4 algorithm is improved based on YOLOv3. It adopts CSPDarknet as 

the backbone network, which is faster and more accurate than Darknet-53. YOLOv4 also 

takes in the Bag of Freebies (BoF) strategy, which further improves the detection accuracy 

and speed(Bochkovskiy et al., 2020). 

YOLOv5 has the Focus module to dramatically improve network efficiency. At the 

same time YOLOv5 provides models of multiple sizes, which greatly improves flexibility 

and ease of use, and is widely used in industrial and research projects(Cao et al., 2023). 

The YOLOv6 algorithm is improved on YOLOv5, mainly includes: Using 

EfficientRep as the backbone network to improve the model inference speed; Using Rep-

PAN as the neck network to enhance feature fusion(Li et al., 2022). 

   YOLOv7 is the sequel of YOLOv4 team, which mainly focuses on the optimization 

of model structure re-referencing and dynamic label assignment issues(Wang, 

Bochkovskiy, et al., 2022). 

 YOLOv8, from the same team as YOLOv5, is a cutting-edge, state-of-the-art (SOTA) 

model that builds on the success of the previous YOLOv5 version and introduces new 

features and enhancements to further improve performance and flexibility.YOLOv8 was 

designed to be fast, accurate, and easy to use, making it an excellent choice for a wide 

variety of object detection and tracking, instance segmentation, image categorization, and 

pose estimation tasks. YOLOv8(Hussain, 2023). 

2.2.2 YOLOv9 Model 

YOLOv9 (Wang et al. , 2024) has taken significant advances in the field of deep learning 

target detection. The proposed concept of programmable gradient information (PGI) was 

employed to cope with the various variations required for deep networks to achieve 
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multiple goals. Meanwhile, a new lightweight network structure was designed based on 

gradient path planning, the generalized efficient layer aggregation network 

(GELAN)(Wang et al., 2024) . 

 

Figure 2.1. YOLOv9 structure 

Figure 2.1 is a structural diagram based on YOLOv9.yaml. On the left side of the 

figure are consecutively numbered convolutional layers (Conv) that are typically used for 

feature extraction. The backbone is composed of Silence, Conv and RepNCSPELAN4. 

YOLOv9 proposed a new network architecture, GELAN.GELAN designs a 

generalized and efficient layer aggregation network by combining two neural network 

architectures, CSPNet(Wang et al., 2019) and ELAN(Wang, Liao, et al., 2022). GELAN 

combines lightweight, inference speed, and accuracy, and its design allows for the flexible 
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integration of a variety of computational modules. This allows YOLOv9 to be adapted to 

a wide range of applications without sacrificing speed or accuracy 

Table 2.1 The performance of various versions of YOLO on the MS COCO dataset 

Model mAP (50-95) mAP (50) FLOPs 
YOLOv9t 38.3 53.1 7.7 
YOLOv9s 46.8 63.4 26.7 
YOLOv9m 51.4 68.1 76.8 
YOLOv9c 53.0 70.2 102.8 
YOLOv9e 55.6 72.8 192.5 
YOLOv7 53.9 72.2 181.7 
YOLOv7-X 55.0 73.2 307.9 
YOLOv6-N 37.5 53.1 11.4 
YOLOv6-S 45.0 61.8 45.3 

Table 2.1 shows the performance of each version of YOLO on the MS COCO dataset. 

The lightweight model YOLOv9s improves on mAP, the significant progress has been 

made in balancing the trade-off between model complexity and detection performance in 

the medium- to large-scale models YOLOv9m and YOLOv9e, which improves the 

accuracy while significantly reducing parameters and computation. The results 

demonstrate strategic advances in model design for YOLOv9, emphasizing that it 

improves efficiency without degrading the accuracy necessary for real-time object 

detection tasks. The model not only pushes the boundaries of performance metrics, but 

also emphasizes the importance of computational efficiency, making it a key development 

in computer vision. 

2.3 Transformer  

The Transformer model has become a revolutionary technology in the field of Natural 

Language Processing (NLP) since it was firstly introduced (Vaswani et al., 2017). The 

core idea is to utilize the Self-Attention mechanism to capture long-distance dependencies 

in the input sequence, which is crucial for understanding and generating natural 

language(Woo et al., 2018).The success of the Transformer model has spawned a series 

of models based on this architecture. Figure 2.3 shows the transformer structure. 
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Figure 2.3. Transformer structure 

BERT (Bidirectional Encoder Representations from Transformers) is an approach 

for pre-training language representations, proposed by the Google AI team in 2018.The 

innovation of the BERT model is its ability to capture context based on both sides of the 

entire input data (i.e., bi-directionally). It has significant implications for improving the 

performance of natural language processing (NLP) tasks. This model marks an important 

advancement in the field of deep learning and NLP by setting a new performance standard 

in multilingual comprehension tasks(Devlin et al., 2019). 

XLNet is an advanced natural language processing model proposed at Google Brain 

and Carnegie Mellon University in 2019. It is an improvement on the BERT model and 

aims to address some of the limitations inherent in the Masked Language Model (MLM) 

by BERT in the pre-training process. XLNet proposes a new pre training method: 

Permutation Language Model (PMLM)(Z. Yang et al., 2020). 

RoBERTa (Robustly optimized BERT approach) is a language representation model 

based on the BERT architecture, proposed by Facebook AI in 2019. RoBERTa has 

achieved significant performance gains in several natural language processing (NLP) 
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tasks, keyed by several Key Improvements(Y. Liu et al., 2019). 

GPT (Generative Pre-trained Transformer) is the first one in a series of Natural 

Language Processing (NLP) models developed by OpenAI, designed to understand, and 

generate natural language text through deep learning techniques. The first generation of 

GPT models which introduced the Transformer architecture to the NLP domain, 

demonstrating the potential for strong performance on a wide range of NLP tasks through 

pre-training and fine-tuning (Radford et al., 2018). Based on GPT, GPT-2 significantly 

improves the quality and diversity of text generation by increasing the model size and 

training dataset. The release of GPT-2 has led to a wide-ranging discussion on the 

potential impact of AI text generation(Radford et al., 2019). GPT-3 further scales the 

model with 175 billion parameters.GPT-3 demonstrates amazing text comprehension and 

generation capabilities that can be adapted to multiple language tasks with little or no 

fine-tuning(Brown et al., 2020). GPT-4 is the latest generation of natural language 

processing models introduced by OpenAI, inheriting, and significantly improving the 

capabilities of its predecessor, GPT-3. As a large-scale multimodal model, GPT-4 not only 

makes significant progress in text generation and comprehension, but also adds the ability 

to process image input, further extending the model's range of applications(OpenAI et al., 

2024). 

2.4 Transformer in Computer Vision  

Transformer architecture was originally designed to handle Natural Language Processing 

(NLP) tasks but has been shown to be well suited for processing image data as well. The 

introduction of Transformer has brought innovative approaches and models to the field 

of computer vision (Bi et al., 2021). 

Vision Transformer (ViT) segments the input image into multiple fixed-size patches, 

which are tiled and converted into a series of vectors (analogous to word embeddings in 

NLP) via a linear projection layer, and these vectors are then fed into the standard 

Transformer model for processing. By pre-training on large-scale image datasets, ViT 
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demonstrates impressive performance, especially on image classification 

tasks(Dosovitskiy et al., 2021). 

DETR utilizes Transformer's self-attention mechanism to handle the task of target 

detection, and by directly predicting object bounding boxes and categories throughout the 

image, it simplifies the process of target detection by removing many of the complex 

steps that need to be manually designed (Carion et al., 2020). 

2.5 Deep Learning in Agriculture 

Deep learning has emerged as a powerful tool in the field of agriculture, offering 

innovative solutions to various challenges faced in the industry. A slew of studies have 

highlighted the potential of deep learning in agriculture(Kamilaris & Prenafeta-Boldu, 

2018). 

The effectiveness of using pretrained deep neural networks (DNN) on agricultural 

datasets was explored(Espejo-Garcia et al. 2020) to improve weed identification accuracy 

in precision agriculture. 

Convolutional Neural Networks (CNN) are particularly effective in analyzing plant 

disease images (Sharma et al., 2023)). The Faster R-CNN model they designed achieved 

a detection rate of 99.39% in pepper plants, highlighting the potential of deep learning 

models to revolutionize agricultural disease management. 

The application of machine learning and deep learning has been explored in crop 

biomass feedstock production (Peng & Karimi Sadaghiani, 2023), including optimization 

of photosynthesis, crop improvement, and overall sustainability of crop production. The 

important role these technologies play in improving the sustainability and efficiency of 

agricultural practices is highlighted. 

The applications of deep learning in agriculture have been exposed (Ren et al., 2020) 

(Bharman et al., 2022). They all highlighted the potential of deep learning to enhance 
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precision agriculture by enabling real-time decision-making and optimizing agricultural 

operations. The challenges have been discussed such as the need for large data sets and 

the high computational costs associated with training complex models. Despite these 

challenges, integrating deep learning into agriculture is expected to drive innovation that 

will significantly increase the productivity and sustainability of the industry. 

2.6 Fruit Ripeness Detection 

Fruit ripeness detection is an important aspect in agriculture as it affects the quality and 

shelf life of the fruit. Various technologies and sensors have been developed to detect fruit 

ripeness at different stages of ripeness.  

A photon ripeness detection system (Hasanuddin et al., 2015)) was introduced that relies 

on light reflectance to differentiate between ripe and unripe fruits. The use of non-invasive 

a thermal microwave spectroscopy (Korostynska et al., 2018) has been employed for real-

time fruit ripeness detection, particularly focusing on automated strawberry picking. 

Astuti et al. (2019) addressed the lack of ripeness knowledge among farmers by 

developing a tool for oil palm fruit ripeness detection using the K-Nearest Neighbor 

algorithm. Jiao et al. (2021) introduced a miniature spectral sensor for fruit ripeness 

detection, emphasizing the importance of accurately assessing fruit maturity during 

picking and transportation processes. Several studies have focused on the detection of 

fruit ripeness using deep learning algorithms. 

    A method (Mu et al., 2020) was proposed to automatically detect unripe tomatoes 

by using Faster Region-based Convolutional Neural Network (Faster R-CNN) and 

ResNet-101 model to learn from the COCO dataset through transfer learning. The method 

performed well on immature and occluded tomatoes that are difficult to detect through 

traditional image analysis methods. 

    A CNN was introduced for automated, lossless classification of mulberry maturity 

(Ashtiani et al., 2021). The method improved the accuracy and efficiency of the sorting 
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process by automatically classifying fruit into different ripeness categories based on 

visual cues. 

    The application of transfer learning using the VGG-16 model in fruit ripeness 

detection (Pardede et al., 2021). Their study highlights the effectiveness of deep learning 

relative to traditional machine learning for this task, with particular emphasis on the 

important role regularization techniques play in enhancing model performance. 

    A powerful CNN model was proposed to detect citrus black spot disease and evaluate 

fruit ripeness through deep learning (Momeny et al., 2022). One of their key innovations 

is the use of a learning augmentation strategy that generates new data from noisy and 

recovered images to enhance model training. Momeny et al. utilized Bayesian algorithm-

optimized noise parameters to create noisy images and then took use of convolutional 

autoencoders to restore these images, effectively augmenting the training data. 

 A systematic review of methods was conducted for oil palm fresh fruit bunch ripeness 

detection (Lai et al., 2023). Significantly, they identify computer vision combined with 

deep learning as the most promising approach for field applications due to its real-time 

operation, cost-effectiveness, and non-contact nature. This method outshines others in 

terms of adaptability and accuracy, offering substantial improvements over traditional 

visual assessments by workers, which are subjective and labor-intensive. 

In summary, it is very feasible to use deep learning for fruit ripeness detection. The 

potential of deep learning in fruit ripeness detection represents an important step forward 

in agricultural technology, with the potential not only to reduce labor costs but also to 

increase efficiency and reduce waste. 
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Chapter 3 
Methodology 

 

 

The main content of this chapter is to clearly articulate 

research methods which satisfy the objectives of this report. 

This chapter mainly introduces YOLOv9 and Swin 

Transformer. We will also introduce our evaluation methods. 
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3.1 Introduction 

In this chapter, we outline the research methodology for the development and evaluation 

of a deep learning-based system for dynamic detection of strawberry ripeness through 

video analysis. The integration of YOLOv9 and Swin Transformer technologies forms the 

core of our approach, leveraging their capabilities to achieve real-time, accurate ripeness 

detection. 

3.2 Research Design 

3.2.1 Overall of the Proposed Model  

In this report, we propose a strawberry ripeness detection method based on YOLOv9 

network and Swin Transformer. The method can automatically detect the position of the 

strawberries from a video with multiple frames and track their movement trajectory to 

mark the strawberries at the site and predict their ripeness. This method will be a great 

convenience for growing and picking strawberries. 

We trained a hybrid model by combining YOLOv9 and Swin Transformer, which 

enhances the model's ability to generalize and rely on modeling capabilities at a distance, 

resulting in better overall performance(S. Yang et al., 2023). 

The overall structure of the strawberry ripeness detection model is shown in Figure 

3.1. Firstly, YOLOv9 model is trained by using the pre-prepared dataset. The model is 

improved by combining Swin Transformer, which can better extract the target feature 

information(Liu et al., 2022). Then, the video was processed using a fusion network of 

YOLOv9 and Swin Transformer to detect strawberry ripeness with high accuracy. The 

model will classify the strawberries as the classes “Unripe”, “Half-ripe”, and “Ripe”, and 

outputs detection frames and feature vectors for each frame of the given video. 
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Figure 3.1 Overall structure of the strawberry ripeness detection model 

3.2.2 Research Design of YOLOv9 Model 

YOLOv9 is the latest version of the YOLO algorithm family. YOLOv9 is improved on 

its predecessor with the aims to address the problem of information loss in deep learning 

and to improve the performance of the model on a variety of tasks. YOLOv9 introduces 

Programmable Gradient Information (PGI), which preserves important data throughout 

the depth of the proposed network, ensuring more reliable gradient generation and thus 

improving model convergence and performance. Meanwhile, YOLOv9 designs a new 

lightweight network structure based on gradient path planning: generalized efficient layer 

aggregation network (GELAN). By using only conventional convolution, GELAN 

achieves higher parameter utilization than deeply differentiable convolutional designs 

based on state-of-the-art techniques, while demonstrating the great advantages of being 

lightweight, fast, and accurate. 
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Figure 3.2 YOLOv9 structure 

Figure 3.2 illustrates the convolutional neural network architecture of YOLOv9 

model. This model is divided into three main parts: Backbone, Neck, and Head. The 

Backbone is the main feature extraction part of the model. It consists of multiple 

convolutional layers that are responsible for extracting useful features from the input 

image. Backbone consists of multiple layers that progressively reduce the spatial 

dimensions and increase the number of channels through different depth and step 

configurations, which helps in capturing features at different levels of abstraction of the 

image.  

Neck is the part that connects Backbone and Head, which serves to perform feature 

fusion and realignment for object recognition by the detector. This part consists of Up 

sample and Concat operations, which combine high level, smaller feature maps with low 

level, larger feature maps, thus preserving spatial information at different scales. This 
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helps to detect objects at different scales of the image. Head is the last part of the model 

and is responsible for object detection based on the features coming from Backbone and 

Neck. 

In deep learning networks, information loss may occur as data passes through each 

layer. This loss of information may lead to bias in the gradient flow, which in turn affects 

the learning of the model. The PGI (Programmable Gradient Information) proposed by 

YOLOv9 aims to solve this problem. The core idea of PGI is to incorporate an auxiliary 

reversible branch in the model that generates reliable gradients for deeper features to use, 

even though these deeper features may have lost critical information due to information 

bottleneck effects. Auxiliary reversible branching ensures that critical features are 

maintained even in deep networks to perform the target task. One of the main advantages 

of PGI over traditional deep supervision methods is its wider applicability, which makes 

it suitable not only for very deep neural networks, but also for lightweight models. GI 

allows the model to generate reliable gradient updates to the network parameters and is 

free to choose a loss function that is suitable for the target task, overcoming the problems 

encountered in masked modeling. With the PGI mechanism, even lightweight models can 

benefit from an auxiliary supervision mechanism. In YOLOv9, PGI enables models to 

achieve or even surpass the results of existing models pre-trained with large datasets even 

when trained from scratch. YOLOv9 is able to obtain complete information on models of 

different sizes, enabling highly accurate target detection. 

3.2.3 Research Design of Swin Transformer 

Swin Transformer (Shifted Window Transformer) is a computer vision model based on 

Transformer. Swin Transformer overcomes the problems of computational inefficiency 

and difficulty in handling high-resolution images of traditional Transformer models(Z. 

Liu et al., 2021). 
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Figure 3.3 Swin Transformer structure 

  

Figure 3.4. Swin Transformer Blocks 

Figure 3.3 shows the structure of the Swin Transformer. At the beginning, the image 

is divided into multiple small blocks, each small block is usually a small square. These 

patches are flattened into vectors and passed into the model for processing. The model 

adopts a layered design and consists of four stages, each stage will reduce the resolution 

of the input feature map. The four stages construct feature maps of different sizes. Except 

for the first stage, which first passes through a Linear Embedding layer, the remaining 

three stages first pass through a Patch Merging layer for down sampling. The four stages 

construct feature maps of different sizes. Except for the first stage, which first passes 
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through a Linear Embedding layer, the remaining three stages first pass through a Patch 

Merging layer for down sampling. Each stage has repeatedly stacked Swin Transformer 

Blocks.  

Transformer Block has two structures, as shown in Figure 3.4. The difference 

between the two structures is that one uses the W-MSA structure and the other uses the 

SW-MSA structure. Moreover, these two structures are used in pairs, first using a W-MSA 

structure and then using a SW-MSA structure. 

 

Figure 3.5. Patch merging 

Patch Merging: As shown in Figure 3.5, assume that the input to Patch Merging is a 4´4 

size single-channel feature map. Patch Merging will divide each 2´2 adjacent pixel into 

a patch, and then divide the same position in each patch (The same color) pixels are put 

together to get 4 feature maps. Then these four feature maps are concat spliced in the 

depth direction, and then passed through a LayerNorm layer. Finally, a fully connected 

layer is used to make a linear change in the depth direction of the feature map, changing 

the depth of the feature map from C to C/2. In other words, after passing the Patch 

Merging layer, the height and width of the feature map will be halved, and the depth will 

be doubled. 

W-MSA: Another important improvement of Swin Transformer is the window-based 

self-attention layer, which is W-MSA (Windows Multi-head Self-Attention). As shown in 

Figure 3.6, the left side is the ordinary Multi-head Self-Attention (MSA) module. For 

each pixel in the feature map, it needs to be calculated with all pixels during the Self-

Attention calculation process. However, when using the Windows Multi-head Self-

Attention (W-MSA) module, first divide the feature map into windows according to the 

size of M´M (e.g., M=2 in Figure 3.6), and then perform self-attention inside each 
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windows individually.  

Eq. (3.1) and Eq. (3.2) are the calculation formulas of MSA and W-MSA, h is the 

height of the feature map, w is the width of the feature map, C is the depth of the feature 

map, and M is the size of each window. Since the number of patches inside the window 

is much smaller than the number of image patches, and the number of windows remains 

unchanged, the computational complexity of W-MSA is linearly related to the image size, 

thus greatly reducing the computational complexity of the model. 

 

Figure 3.6 MSA and W-MSA 

𝛺(𝑀𝑆𝐴) = 4ℎ𝑤𝐶! + 2(ℎ𝑤)!𝐶                  (3.1) 

𝛺(𝑊 −𝑀𝑆𝐴) = 4ℎ𝑤𝐶! + 2𝑀!ℎ𝑤𝐶                  (3.2) 

SW-MSA: While using the W-MSA module, self-attention calculation will only be 

performed within each window, so information cannot be transferred between windows. 

To solve this problem, Swin Transformer introduces Shifted Windows Multi-Head Self-

Attention (SW-MSA). 

In this report, we built the strawberry ripeness detection model based on YOLOv9. 

We propose a method to replace the backbone network in YOLOv9 with Swin 

Transformer. This hybrid model combines the fast and efficient detection capabilities of 
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YOLOv9 with the powerful and flexible feature representation of Swin Transformer, 

designed to enhance the system's ability to accurately identify and classify strawberry 

ripeness from video input. 

In the hybrid model, Swin Transformer acts as a powerful feature extractor by 

capturing the details and variations of strawberry appearance. These details and changes 

mark different stages of maturity. Swin Transformer ensures that global and local features 

are effectively captured and used for prediction. This is particularly useful for detecting 

strawberries under varying lighting, occlusion, and background complexity conditions. 

3.3 Evaluation Methods 

Our evaluation is a critical step for computer vision models, which helps measure model 

performance and guide future improvements. In deep learning, all evaluation methods are 

based on confusion matrix. Table 3.1 shows the confusion matrix. In Table3.1, True 

Positive(TP) means that the true category of the sample is a positive example, and the 

result predicted by the model is also a positive example, so the prediction is correct. True 

Negative (TN) means that the true category of the sample is a negative example, and the 

model predicts it as a negative example, so the prediction is correct. False Positive (FP) 

means that the true category of the sample is a negative example, but the model predicts 

it as a positive example, so the prediction is wrong. False Negative (FN) means that the 

true category of the sample is a positive example, but the model predicts it as a negative 

example, so the prediction is wrong (Caelen, 2017). 

Table 3.1 Confusion matrix 

 Positive Negative 

True TP TN 

False FP FN 

IoU (Intersection over Union) is a general evaluation index in the field of computer 
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vision, especially in tasks such as target detection and image segmentation. IoU mainly 

reflects the degree of overlap between the predicted bounding box and the ground truth 

bounding box. As shown in Figure 3.7, the green box is the truth bounding box, which is 

the box marked when labeling the data set. The red box is the predicted bounding box, 

which is the prediction box predicted by the trained model. As shown in Figure 3.8, IoU 

is the result of dividing the overlapping part of two areas by the set part of the two 

areas(Everingham et al., 2010). 

𝐼𝑜𝑈 = "#$%	'(	)*$#+%,
"#$%	'(	-./'.

                       (3.3) 

 

Figure 3.7 An example of bounding box 

 

Figure 3.8 The method of IoU 

 

Precision is an indicator for evaluating the performance of a classification model. It 
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measures the proportion of items that the model correctly identifies as positive out of all 

items that the model identifies as positive(Buckland & Gey, 1994). 

Precision = 𝑇𝑃
𝑇𝑃+𝐹𝑃                         (3.4) 

Although precision is an important metric, it does not provide a complete view of 

model performance on its own. Therefore, precision is often combined together with 

recall. 

Recall = 𝑇𝑃
𝑇𝑃+𝐹𝑁                          (3.5) 

To take into consideration of both Precision and Recall, F1 score is usually employed 

as an indicator to measure the overall performance of the model. The F1 score is the 

harmonic mean of the Precision and Recall. 

F1	score = 2 × 56789:9;<×>78?@@
56789:9;<A>78?@@

                  (3.6) 

where mAP (mean Average Precision) is an indicator widely used to evaluate model 

performance in computer vision tasks, especially in the fields of target detection and 

image retrieval. The mAP provides a single performance metric to evaluate the overall 

effectiveness of the model by comprehensively considering the precision and recall of the 

model under different categories and different detection difficulties. By plotting the curve 

of Precision versus Recall and calculating the area under the curve (AUC), the AP value 

of a single category is obtained. The mAP value is the average of the AP values of all 

categories. The higher the value, the better the performance of the model. The 

mathematical expressions are shown in Eq. (3.7) and Eq. (3.8). In this report, because the 

prediction results are divided into three classes, k=3. 

𝐴𝑃 = ∫ 𝑝(𝑟)𝑑𝑟B
C                          (3.7) 

𝑚𝐴𝑃 = ∑ "E!
"
!#$
F

                          (3.8) 

where mAP@IoU represents the mAP value calculated under a specific IoU threshold. 
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For example, mAP@0.5 means that the result is considered correct only when IoU≥0.5. 

mAP@0.5 is a very popular evaluation metric because it considers the recognition 

accuracy and positioning accuracy of the model. 

mAP@[.5:.95] is also a commonly used evaluation index, which calculates the 

average of all mAP values with IoU from 0.5 to 0.95 (in steps of 0.05). This approach is 

more rigorous as it considers a range of different IoU thresholds, providing a more 

comprehensive perspective on model performance. 
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Chapter 4 

Results 

 

 

The main content of this chapter is to collect video data and 

demonstrate the experimental results. In the end, this chapter will 

also discuss the limitations of the project. 
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4.1 Data Preparation 

In deep learning, data collection is a critical step in the effective models. The performance 

of deep learning models largely depends on the quality and diversity of data used for 

training. 

In this report, we collected various strawberry images and videos datasets to ensure 

the quality and accuracy of our models. For the data set, we used pre-processing 

techniques such as image cropping, resizing, and labeling to ensure that the data set is 

processed into the form required by the model. 

We downloaded test videos of strawberry plantations from the internet and performed 

images extraction on the videos. We are use of a Python script to assist us in extracting 

images. This script allows us to split the video into images at set intervals. This is helpful 

for reducing data redundancy. Additionally, we downloaded strawberry images from the 

Internet to increase robustness. 

As shown in Figure 4.1, we collected a total of 722 strawberry images. In addition, we 

also downloaded the strawberry image dataset, open sourced by the StrawDI team and 

selected images that met our requirements(Pérez-Borrero et al., 2020). Finally, we 

collected a total of 2,000 strawberry images from different regions and under different 

lighting and weather conditions, which helped to enhance model diversity. 
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Figure 4.1 Samples of our dataset 

Data labeling is an important part of preparing training data for machine learning 

models. This process involves assigning an accurate label or category to each sample in 

the dataset, enabling the model to learn from these labels and make predictions. In this 

report, we are use of EISeg to label the collected strawberry images. Figure 4.2 illustrates 

the results after labeling. EISeg (Efficient and Interactive Segmentation) is an efficient 

interactive image segmentation tool, mainly used in geospatial analysis, remote sensing 

image processing, medical image processing and other fields. EISeg provides a method 

to achieve precise segmentation with minimal user interaction, greatly improving the 

efficiency and accuracy of image segmentation (Xian et al., 2016).  
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Figure 4.2 The example of the results after labeling 

Data splitting is a fundamental technique in machine learning for training models and 

evaluating model performance. It involves dividing the dataset into separate subsets to 

provide an honest assessment of the performance of our proposed models on unseen data. 

The three main subsets commonly used are: Training dataset, validation dataset and test 

dataset.  The training set is the largest part of the dataset used to train the model. The 

validation set is employed to provide an unbiased assessment of the model which fits on 

the training data set when adjusting the model's hyperparameters. After the model has 

been trained and validated, the test set is used for an unbiased evaluation of the final 

model. The correct data splitting can avoid model overfitting problems and significantly 

improve the validity and reliability of model evaluation. 

In this report, we also split the data. We take use of 80% of the dataset for training, 
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10% for validation, and 10% for testing. Figure 4.3 clearly illustrates the dataset splitting. 

 
Figure 4.3 Data splitting pie chart 

4.2 Performance of Strawberry Ripeness Detection Model 

In this report, we trained a YOLOv9 network and Swin Transformer hybrid model for 

strawberry ripeness detection. We will analyze and discuss the results of the YOLOv9 

model combined with Swin Transformer. In addition, we also used the dataset to train a 

model using only YOLOv9, and we compared the results of the two models to verify the 

advantages of adding Swin Transformer. 

The experimental environment for the strawberry ripeness detection model is shown 

in Table 4.1. CUDA supports performing multiple operations in parallel by leveraging the 

power of the GPU, which can effectively improve the efficiency of training models. 

Table 4.1 Experimental environment 

Platform ASUS TUF3 

Python vision 3.9 

Pytorch vision 2.2.1 

CUDA vision 12.1 

GPU RTX3060 

As shown in Table 4.2, the parameters of model training are listed. The training 

Training Set Validation set Test set
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process includes 100 epochs, and the image batch processed in each epoch is 8. The initial 

value of the learning rate is 0.01. The table also details the parameters of various data 

enhancement techniques, such as HSV color space adjustment, scaling, and translation of 

images. Together, these parameters define how the model is trained, with the goal of 

optimizing the model's performance on a specific data set so that it can detect strawberry 

ripeness more accurately. 

Table 4.2 Parameters of model training 

Parameters Values Parameters Values 

models yolov9-c.pt lr0 0.01 

cfg yolov9_swin_ 

transfomrer.yaml 

lrf 0.01 

data strawberry.yaml momentum 0.937 

epoch 100 weight_decay 0.0005 

batch_size 8 warmup_epochs 3 

warmup_momentum 0.8 warmup_bias_lr 0.1 

box 7.5 cls 0.5 

obj 0.7 dfl 1.5 

iou_t 0.2 fl_gamma 0 

hsv_h 0.015 hsv_s 0.7 

hsv_v 0.4 degrees 0 

translate 0.1 scale 0.9 

shear 0 perspective 0 

flipud 0 fliplr 0.5 

mosaic 1.0 mixup 0.15 

Figure 4.4 shows the true labels of the validation set in the strawberry ripeness data 

set. These validation sets can be employed to evaluate the performance of our detection 

model. As we know, in the dataset, the strawberries of different ripeness levels have 

completely different sizes, shapes, orientations, and environments, which is helpful for 

evaluating model predictions. 



34 
 

 

 

Figure 4.4 The true label situation of the validation set 

Figure 4.5 shows the results of our model on the validation set. In the same validation 

dataset, our model is able to detect most strawberries of different sizes, orientations, 

environments, and ripeness. By comparing Figure 4.4 and Figure 4.5, it shows that our 

model is very effective. 

We plotted the Precision-Recall (PR) curves of the two models as shown in Figures 

4.6 and 4.7. The PR curve represents the relationship between precision and recall, where 

the thin line represents the PR curve of each category, and the thick line represents the 

average PR curve of all categories. The area under the PR curve (AUC) can be used to 

reflect the performance of the model. In the two figures, comparing the AUC values can 

compare the performance gap between the two models(Davis & Goadrich, 2006). For the 

two figures , comparing the AUC values can show how much the performance of the 

model has been improved by adding Swin Transformer. For the "ripe", the AUC increased 

from 0.925 to 0.933. For the "half- ripe", the AUC increased from 0.789 to 0.804. For the 

"unripe", the AUC increased from 0.868 to 0.882. For the sum of all, the AUC of mAP 
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@0.5 improves from 0.861 to 0.873. It is obvious that the performance of the model with 

Swin Transformer is improved at all ripeness, with higher precision and recall values. In 

short, the PR curve of our model performs well, can accurately detect the ripeness of 

strawberries, and is significantly improved compared to the YOLOv9 model. 

 

Figure 4.5 Results of our model on the validation set 

 

Figure 4.6 PR curve of YOLOv9+Swin Transformer model 



36 
 

 
Figure 4.7 PR curve of YOLOv9 model 

  Figure 4.8 shows the evaluation metrics of the model. The “box loss” illustrates 

the bounding box regression loss for the training and validation datasets. The loss is 

significantly reduced in Figure 4.7, indicating that the model is getting better at predicting 

the correct bounding box of the object. Similarly, “obj loss” and “cls loss” represent 

objectivity loss and classification loss in model training. Their same losses decrease over 

time, which is positive.  

The Precision and Recall of our model are both high and stable, indicating that the 

model performs well. mAP@0.5 is the average average accuracy with IoU threshold 0.5. 

mAP@[.5:.95] This shows the average accuracy calculated over multiple IoU thresholds 

from 0.5 to 0.95 in steps of 0.05. Figure 4.8 shows that mAP@ and mAP@[.5:.95] 

continue to increase, indicating that the model performs well under different levels of 

detection stringency. Overall, the model shows improvement over time in all aspects: 

bounding box prediction, object presence confidence, and classification. Precision and 

recall are both high. mAP is also excellent, reflecting excellent model performance. 
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Figure 4.8 Plots of results of YOLOv9+Swin Transformer model 

Based on the performance metrics provided in Table 4.2 for the two models, YOLOv9 

with Swin Transformer and YOLOv9, at epoch 100, we make the following observations: 

YOLOv9+Swin Transformer has a higher Precision (0.853) compared to YOLOv9 (0.777) 

This means that the YOLOv9+Swin Transformer  has a higher prediction rate. 

YOLOv9+Swin Transformer also scores higher on recall (0.840) compared to YOLOv9 

(0.800). This indicates that YOLOv9+Swin Transformer is better at detecting all relevant 

objects in the dataset. The mAP@0.5 of YOLOv9+Swin Transformer (0.873) is slightly 

higher than that of YOLOv9 (0.861). And mAP@[.5:.95]: YOLOv9+Swin Transformer 

(0.627) is higher than YOLOv9 (0.610). Taken consideration of all these metrics, the 

YOLOv9+Swin Transformer model outperforms the standard YOLOv9 model on all 

listed performance metrics. This shows that our addition of Swin Transformer to YOLOv9 

has significantly improved model performance. 

Table 4.3 Performance comparison of the two models 

Model Epoch Precision Recall mAP@0.5 mAP@[.5:.95] 

YOLOv9+Swin 

Transformer 

100 0.853 0.840 0.873 0.627 

YOLOv9 100 0.777 0.800 0.861 0.610 
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Table 4.4 Comparison of strawberry ripeness detection models 

Model Precision Recall mAP@0.5 mAP@[.5:.95] 

YOLOv9 0.777 0.800 0.861 0.610 

YOLOv8 0.774 0.749 0.823 0.552 

YOLOv8+Swin Transformer 0.815 0.831 0.861 0.613 

YOLOv9+Swin Transformer 

 

0.853 0.840 0.873 0.627 

From Table 4.4, we can analyze the performance of different versions of the YOLO 

model in terms of Precision, Recall and mAP. The YOLOv9+Swin Transformer model 

has the highest Precision, reaching 0.853. In comparison, the Precision of the original 

YOLOv8 and YOLOv9 is slightly lower, with YOLOv9 being 0.777 and YOLOv8 being 

0.774. YOLOv9+Swin Transformer reaches 0.840 in Recall, higher than the other three 

models. YOLOv9+Swin Transformer also has the highest mAP@0.5, reaching 0.873. On 

the more stringent mAP@[.5:.95], YOLOv9+Swin Transformer also showed the best 

performance, reaching 0.627. In summary, the YOLOv9+Swin Transformer model we 

proposed performs optimally on all major performance indicators. This further 

demonstrates that our method combining YOLOv9 and Swin Transformer can improve 

the performance of the strawberry detection model. 

All in all, our strawberry ripeness detection model can accurately detect the ripeness 

of strawberries. All indicators of the model are very good, and our improvements to the 

model have proven to be very effective. 
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4.3 Demos and Discussions 

 

Figure 4.9 The demo for strawberry ripeness detection  

Figure 4.9 is to show a strawberry ripeness detection demo based on our model. It 

clearly shows that our model can accurately identify the strawberries in the video and 

detect their ripeness. Even the strawberries in the image are not complete, which are 

blocked by a hand. However, our model can still clearly identify their ripeness, which 

shows that the performance of the model is robust and excellent. 
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Figure 4.10 Different ripeness stages of strawberries 

Figure 4.10 shows the model’s detection results of different ripeness stages of 

strawberries. Our model successfully detected the ripeness as shown in Figure 4.10 (a), 

Figure 4.10 (b), and Figure 4.10 (c). 

Based on the analysis of the two demos, our model has excellent performance and 

can detect strawberries of different ripeness in complex environments 
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Chapter 5 

Analysis and Discussions 

 

 

This chapter delves into a comprehensive analysis and 

discussion of the findings from the experimental results of the 

strawberry ripeness detection model. 
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5.1 Analysis 

In summary, the hybrid model of YOLOv9 and Swin Transformer effectively improves 

the accuracy and reliability of strawberry ripeness detection. Indicators such as precision, 

recall, and mAP all show that the hybrid model of YOLOv9 and Swin Transformer has 

better detection results for strawberries of various ripeness levels. 

5.2 Discussions 

As shown in the previous chapters, our experimental results show that the hybrid model 

of YOLOv9 and Swin Transformer performs better than the YOLOv9 model. The key 

factors enabling these advances include: 

Firstly, Swin Transformer can capture detailed and subtle features of strawberries, 

which greatly improves detection rates. This works particularly well in complex scenes 

where strawberries appear under various lighting and occlusion conditions. 

Secondly, the architecture of YOLOv9, especially the integration of Programmable 

Gradient Information (PGI) and its lightweight and powerful network structure (GELAN), 

is able to locate strawberries quickly and accurately within video frames. 

5.3 Further Research Work 

We also conducted further research work. We juiced 500g of strawberries and analyzed 

the nutritional content. We list the nutritional value of 500g of strawberry juice. We 

calculate the main nutritional values of 500g of strawberry juice in Table 5.1. 

Table 5.1 Nutritional value of 500g strawberry juice 

Water 450g 
Energy 680kJ 
Sugars 35g 
Fat 1.5g 
Vitamin B9(Folate) 120μg 
Vitamin C 295mg 
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Protein 0.25mg 

In Table 5.1, we found 95% strawberry juice is water. The fat content is very low at 

1.5 grams. The energy content is 680 kJ. This is equivalent to approximately 163 kcal. 

The calorie of 500 g kiwi juice is as high as 300 kcal (Dawes & Keene, 1999), while 500g 

apple juice is 240 kcal (Mattick & Moyer, 1983). Compared with other fruits, strawberries 

and strawberry juice are a low-calorie option and are more suitable for fitness and sports 

enthusiasts. 

In Table 5.1, we find 500 g of strawberry juice contains 35 g of sugar, this value is 

low compared to other fruits. The high-water content and low sugar content make 

strawberries very diabetic friendly. In addition, strawberries are rich in dietary fiber, 

which slows down the rise of blood sugar after meals and helps control blood sugar. It 

should be noted that juicing may destroy the dietary fiber of strawberries. Therefore, 

diabetics should refrain from juicing strawberries (Xi et al., 2014). 

The most important nutrients in strawberries are vitamins, of which, the most 

important are vitamin B9 and vitamin C. 

Vitamin B9, also known as folate, is an important water-soluble vitamin. Folate acid 

plays an important role in DNA synthesis and repair, red blood cell formation and healthy 

brain function. Therefore, folate is also one of the most important nutrients for pregnant 

women. For adults, the recommended daily intake is 400 μg. Pregnant women are advised 

to increase their intake to 600 μg to support fetal development. 500 g of strawberry juice 

provides up to 120 μg of vitamin B9 (Ebara, 2017). There is no doubt that strawberries 

are very suitable for pregnant women because of their high vitamin B9 content and low 

sugar content.  

Strawberries are also an excellent source of vitamin C, an antioxidant vital for 

immune and skin health. 

In conclusion, strawberries have great nutritional value, the fruits are very friendly to 

fitness enthusiasts, diabetics, pregnant women and babies. 
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Chapter 6 

Conclusion and Future Work 

 

 

In this chapter, we will summarize the main findings, 

contributions, limitations, and future work of this report. 
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6.1 Conclusion 

In this research project, we successfully demonstrated the integration of YOLOv9 and 

Swin Transformer models to detect strawberry ripeness with high accuracy. The hybrid 

model achieved a mean Average Precision (mAP) at an IoU of 0.5 of 87.3%, surpassing 

the performance of traditional models by using YOLOv9 alone, which registered a mAP 

of 86.1%. The Precision and Recall are better. This improvement underscores the 

effectiveness of combining these advanced deep learning technologies to enhance 

precision in agricultural applications. The ability of this proposed model to accurately 

categorize strawberries into unripe, half-ripe, and ripe stages can significantly aid in 

optimizing harvest times, thus reducing waste and increasing yield quality. 

6.2 Limitations 

While the results are promising, our research has several limitations: 

Firstly, though the dataset includes images of strawberries from a variety of 

conditions, they are primarily from one variety. This limitation may affect the 

applicability of the model to different varieties of strawberries, such as strawberries that 

are white when ripe. 

Secondly, our model has good performance. However, the performance of this 

proposed model in actual strawberry planting may be affected by external factors such as 

lighting and camera clarity. 

Finally, the strawberry dataset we have proposed is limited in size and variety, and 

using more datasets may further improve model performance. 

6.3 Future Work 

Our future work remains to solidify the findings of this report and address its limitations. 

Firstly, we will collect and integrate data from a wider range of climate and 
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geographic regions to improve the model's robustness and applicability in different 

agricultural settings. 

Secondly, we will improve the model according to different varieties of strawberries 

to improve the general applicability of our model to various varieties of strawberries. 

Finally, we will combine visual data with input from environmental sensors (e.g., 

humidity, temperature), which can improve the accuracy of maturity detection under 

different environmental conditions. 
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