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 I 

Abstract 

The currency exchange rate is a crucial link between the economic and trade activities of 

all countries. With increasing volatility, exchange rate fluctuations have become frequent 

under the combined effects of global economic uncertainty and political risks. 

Consequently, accurate exchange rate prediction is significant in managing financial risks 

and economic instability. However, conventional time series models cannot efficiently 

predict the complex and variable nature of exchange rates. In recent years, the 

Transformer models have achieved outstanding performance in natural language 

processing and computer vision, and has also attracted attention in the field of time series 

analysis. Transformer models such as Informer and TFT (Temporal Fusion Transformer), 

have also been extensively studied. 

In this project, we evaluate the performance of the Transformer, Informer, and TFT 

models based on our four exchange rate datasets: NZD/USD, NZD/CNY, NZD/GBP, and 

NZD/AUD. The results indicate that the TFT model has achieved the highest accuracy in 

exchange rate prediction, with an R² value of up to 0.94 and the lowest RMSE and MAE 

errors. However, the Informer model offers faster training and convergence speeds than 

the TFT and Transformer, making it more efficient. Furthermore, our experiments on the 

TFT model demonstrate that integrating the VIX index can enhance the accuracy of 

exchange rate predictions. 
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Chapter 1 

Introduction 

 

 

This chapter consists of five parts. It starts with an 

introduction to the relevant background and the motivation 

behind the project, followed by the research question and 

the project's contributions. Lastly, it outlines the purpose 

of this report and its overall structure. 
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1.1 Background and Motivation 

The exchange rate is a fundamental economic factor, significantly impacting both 

domestic and international economic relations. The exchange rate acts as a bridge for 

financial communication between various countries (Pradeepkumar & Ravi, 2018). Its 

instabilities will not only affect the country's international trade and capital flows but also 

directly impact the international investment of enterprises, foreign trade and individual 

investment. Forecasting exchange rate trends is an essential basis for judging the timing 

of exchange rate transactions. 

Accurate exchange rate forecasts can provide a reasonable reference for investors 

and policymakers to formulate strategies. From a personal perspective, by accurately 

analyzing the exchange rate market and determining the overall trend, investors can grasp 

the appropriate buying and selling opportunities and thereby obtain more profits in the 

exchange rate trading market (Patel, Patel, & Patel, 2014). For the government, accurate 

exchange rate forecasts provide a solid basis for relevant management departments, which 

is beneficial for the government to adjust resource allocation effectively, reduce economic 

pressure caused by violent exchange rate fluctuations, and is of outstanding significance 

to stabilizing the market (Alagidede & Ibrahim, 2017). 

The exchange rate market is a non-linear dynamic market characterized by 

complexity, diversity and uncertainty. This makes exchange rate forecasting more 

challenging. Currently, two well-known analysis methods are employed in forecasting 

the exchange rate market research: fundamental analysis and technical analysis (Ranjit, 

Shrestha, Subedi, & Shakya, 2018). Fundamental analysis focuses on studying basic 

information, generally based on the status of macro factors, changes and their impact on 

exchange rate trends (De Grauwe & Grimaldi, 2018). It then outlines conclusions about 

currencies' supply and demand relationship to judge the exchange rate trend. Basic 

information mainly includes the economic growth level of the country, the balance of 

payments situation, the inflation rate and other information in the economic report, such 

as political events, national economic data, investor sentiment, and the intervention of 
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various central banks. For example, the U.S. Non-Farm Payroll data is one of the 

economic data that the exchange rate market needs to focus on monthly. After the data is 

released, it may cause a turning point in the direction of the foreign exchange market and 

even bring violent fluctuations to the exchange market (Pearce & Solakoglu, 2007). 

However, technical analysis predicts exchange rate trends by studying historical 

exchange rate prices and trading volumes (Cavalcante, Brasileiro, Souza, Nobrega, & 

Oliveira, 2016). Popular techniques include Moving Averages, Relative Strength Index, 

RSI, Moving Average Convergence Divergence, and Exponential Smoothing.  

With the introduction of artificial intelligence, research on related technologies in 

financial time series forecasting has also obtained more and more attention. Unlike 

traditional time series methods, these techniques can handle the non-linear, chaotic, noisy 

and complex data of exchange rate markets, allowing for more effective forecasts (Rout, 

Dash, Dash, & Bisoi, 2017). The dataset is crucial in exchange rate forecasting, mainly 

including exchange rate prices, volatility, etc. However, if the selected time series is long 

and has high dimensions, it is tough to achieve the expected results using existing models 

for prediction. Afterwards, with the rapid growth of artificial intelligence technology, the 

usage of deep learning models to process time series-related tasks became the recent 

mainstream, and a series of neural network models for time series tasks appeared. Early 

proposed models such as Recurrent Neural Networks (RNN), Long Short-Term Memory 

(LSTM) and Gated Recurrent Unit (GRU) are considered suitable for processing time 

series tasks (Pirani, Thakkar, Jivrani, Bohara, & Garg, 2022). Islam and Hossain (2021) 

proposed the GRU-LSTM model. By comparing and evaluating the results of independent 

LSTM and GRU models, the proposed GRU-LSTM model achieved the best results in 

the two currency pairs. 

1.2 Research Questions 

The exchange rate significantly impacts the country as a whole, as well as companies and 

individuals. Therefore, using deep learning technology to accurately and effectively 

predict exchange rates is of tremendous value. As the most popular mainstream 
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architecture in deep learning in recent years, the Transformer models are widely adopted 

in typical tasks such as text classification, sentiment analysis, target detection, speech 

recognition, etc. However, there are few related works in the field of time series analysis, 

and multiple financial time series analysis research still uses traditional sequence 

prediction methods. Therefore, this report proposes the research questions as follows: 

(1) How does the Transformer model perform in predicting the exchange rate?  

(2) By comparing the Transformer, Informer and Temporal Fusion Transformer, 

which algorithm performs best in predicting the exchange rate? 

The fundamental idea of this report is to predict the exchange rate of the New Zealand 

dollar (NZD) against several other currencies. By utilising three models, Transformer, 

Informer, and Temporal Fusion Transformer (TFT), compare, analyze, and evaluate the 

performance of these three models on forecasting exchange rates. 

1.3 Contributions 

The focus of this report is mainly on effectively achieving accurate prediction of exchange 

rates based on deep learning. Here are contributions of this report listed below: 

� Firstly, we collected several related exchange rate datasets, NZD/USD, 

NZD/GBP, NZD/AUD, and NZD/CYN. Each dataset contains 4980 samples of 

data and seven classes. By preprocessing the data, we experimented with the 

Transformer model and analyzed the model's performance based on the four 

datasets. This also fills the research gap of the Transformer model in financial 

time series analysis.  

• Secondly, we presented two novel models established on the Transformer 

framework, Informer and TFT. Through utilising the same datasets, models were 

trained and tested. We compared and analyzed the advantages and disadvantages 

of the three models.  
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Finally, after accomplishing the experiment, the evaluation results demonstrate the well-

trained model, which would be beneficial to exchange rate prediction in the New Zealand 

financial market. 

1.4 Objectives of This Report 

Overall, this project aims to achieve exchange rate predictions based on NZD and 

discover the most advanced algorithms fitting for exchange rate predictions through deep 

learning. 

Firstly, based on Transformers, we study two recent algorithms, Informer and TFT. 

During experiments on Google Colab, we will train the model, adjust parameters, and 

obtain results established on four processed datasets. Subsequently, the performance of 

the three algorithms is compared and analyzed to determine the optimal forecast exchange 

rate model. Eventually, this report will explore the pros and cons of the model, summarize 

the experimental results, and provide references for other related research 

1.5 Structure of This Report 

The main structure of this article is as follows: 

In Chapter 2, we conduct a literature review on exchange rate prediction, focusing 

on traditional exchange rate forecasting methods and others using neural networks. 

Additionally, we explore the models employed in our experiments. 

In Chapter 3, we elaborate on the methodologies of the three models. Then, we 

describe the processes of data collection and processing. Besides, the three models' 

experimental procedures and the model evaluation measures are also clearly explained. 

In Chapter 4, we analyze the four datasets. Through experiments in the three models, 

we explain and analyze according to the evaluation criteria. Afterwards, we conduct 

ablation experiments on the TFT model to demonstrate the significance of the VIX 

parameter in exchange rate prediction. 
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In Chapter 5, we comprehensively compare the performance of the three models and 

analyze them in conjunction with their own characteristics. At the same time, we also 

discuss the limitations of this project. 

In Chapter 6, we summarize the experimental project and outline future work 

directions. 
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Chapter 2 
Literature Review 

 

 

This chapter primarily consists of a literature review on 

methods for predicting exchange rates. It explores three 

main areas: Traditional forecasting methods and methods 

related to neural networks. It also investigates the three 

models used in this experiment: Transformer, Informer, 

and TFT. 
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2.1 Introduction 

The research blossoming of exchange rate forecasting has undergone several stages, such 

as exchange rate determination theory, linear time series analysis, and nonlinear 

forecasting. Since the exchange rate is non-stationary in mean and variance, its 

relationship with other data series changes dynamically due to nonlinear and dynamic 

changes in the exchange rate over time (Xu, Han, Wan, & Yin, 2019). As international 

trade continues to grow at an increasing rate, it is becoming more and more common, and 

the factors affecting exchange rates gradually increase (Eichengreen, 2007). Predicting 

exchange rate changes accurately is a challenging task that cannot be achieved through a 

single model alone. Therefore, the combination of nonlinear and multivariate models has 

evolved a trend in exchange rate forecasting (Sutcu & Gulbahar, 2023). 

2.2 Traditional Exchange Rate Prediction Solutions 

2.2.1 ARIMA 

ARIMA is one of the most universal linear methods for forecasting time series, and its 

research has achieved great success in academic and industrial applications. In the study 

of the USD/TRY exchange rate forecast, Yıldıran and Fettahoğlu (2017) generated long-

term and short-term models based on the ARIMA framework. Through comparison, it 

was found that ARIMA is more fitting for short-term forecasts. Similarly, Yamak, Yujian, 

and Gadosey (2019) used a data set of Bitcoin prices and applied with ARIMA, LSTM 

and GRU models for prediction analysis. The results showed that ARIMA delivered the 

best results among these models, with MAPE and RMSE of 2.76% and 302.53, 

respectively. 

In the framework ARIMA (p, d, q) model, the variable value is predicted to be a 

linear function of the past several observations and random errors, and it demands that 

the input to the ARIMA model is linear and fixed data. ARIMA performs a stationarity 

check on the given time series data to determine whether the mean value and 

autocorrelation coefficients are constant over time (Qonita, Pertiwi, & Widiyaningtyas, 
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2017). If not fulfilling as a fixed attribute, Arima intends to utilise the d-th variance 

method until the sequence evolves fixed attributes and the model difference order is set 

to d. Eventually, an autoregressive moving average is applied to the resulting data. 

 In the modelling process, given a time series, the value at time t is 𝑦!, and the random 

error term is 𝜖!. 𝑦! is a linear function of the past p observation values 𝑦!"#, 𝑦!"$, ..., 

𝑦!"% and q random error terms 𝜖!, 𝜖!"#, ..., 𝜖!"&. 

𝑦! =	𝑎#𝑦!"# +	𝑎$𝑦!"$ +⋯+	𝑎%𝑦!"% +	𝜖! −	𝜃#𝜖!"# −	𝜃$𝜖!"$ −	⋯−	𝜃&𝜖!"&   (2.1) 

where 𝑎#, 𝑎$, …,	𝑎%	are the corresponding autoregressive coefficients, 𝜃#, 𝜃$, …, 𝜃& 

are the moving average coefficients. The random error term 𝜖𝑡 is a distribution with zero 

mean and constant variance. 

Similar to the differential order 𝑑, 𝑝 and 𝑞 are also orders of the model. When 𝑞 

equals zero, the model simplifies to the AR model of order 𝑝 (AR (𝑝)). If 𝑝 equals zero, 

the model is an MA model of order 𝑞[MA (𝑞)]. 

The ARIMA model accurately predicts stationary time series data but assumes that 

future data values depend linearly on current and past data values. However, multiple 

real-world time series data indicate complex nonlinear patterns, so ARIMA cannot 

effectively model based on them (Pahlavani & Roshan, 2015). 

2.2.2 GARCH 

The GARCH model is mainly employed to describe the volatility of sequence data 

(Lahmiri, 2017). Therefore, it is often widely used to analyze and investigate financial 

data. This model is able to predict volatility using a similar modelling approach to 

ARIMA. The model is generally considered reliable due to its interpretability and 

theoretical guarantees. In recent outcomes, Lin (2018) collected data based on Shanghai 

stocks and used GARCH and ARIMA models to compare the forecasting effects. The 

results revealed that the GARCH model performs better, reflecting the stock market's 

volatility. 
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GARCH model is a refinement based on the limitations of the ARCH model 

(Almisshal & Mustafa, 2021). It modifies the conditional variance function to obtain a 

GARCH model with better application outcomes. Therefore, the GARCH model is also 

called the generalized ARCH model. The definition of GARCH(p, q) is: 

 𝑅! = 	𝜇 + 𝑎!  

 𝑎! =	𝜀!𝜎! (2.2) 

 
𝜎!$ =	𝑎' +	4𝑎(𝑎!"($ +	4𝛽)𝜎!")$

&

)*#

%

(*#

  

where 𝑎+ > 0, 𝑎( ≥ 0, 𝑖 = 1, 2,⋯ , 𝑝, 𝛽) ≥ 0, 𝑗 = 1, 2,⋯ , 𝑞 , therefore, the conditional 

variance of GARCH (p,q) is always positive. 

2.3 Typical Neural Network Methods for Predicting Exchange 

Rate 

2.3.1 RNN 

Artificial neural networks can only process inputs separately, meaning there is no 

relationship between the previous and next inputs. For exchange rate time series, dealing 

with the connection between previous and subsequent inputs is essential. Ordinary neural 

networks are unable to solve this problem. RNN is one of the neural networks specifically 

designed to handle time series problems (Hu, Zhao, & Khushi, 2021). It has the ability to 

extract information from a time series, allow the information to persist, and use previous 

knowledge to infer subsequent patterns. Traditional neural networks such as the 

Backpropagation Neural Network (BPNN) are also used for time series modelling, while 

the time series information of such models is usually less than RNN.  

Differing from Fully Connected Neural Networks (FNN), RNN utilises internal 

memory to execute inputs and is capable of analyzing time series data in multiple natural 

language processing fields, such as handwriting recognition and speech recognition (Hori, 

Cho, & Watanabe, 2018). 
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RNN models consist of varying numbers of layers, each containing different types of 

units. The model processes data at any time according to an entire input sequence. Figure 

2.1 shows the RNN model structure. 

 

Figure 2.1 The structure of RNN 

In Figure 2.1, 𝑠! is the hidden state of node s at time t, 𝑥! means the input at the 

current moment, and the output is 𝑜! . The parameters U, W, and V are all shared at 

different times. 

During the training process of RNN, the Backpropagation Through Time (BPTT) 

algorithm is commonly employed (Ernoult, Grollier, Querlioz, Bengio, & Scellier, 2019). 

The error between the model prediction result and the actual answer is reflected in the 

input and output weight over time t. Training an RNN is tricky due to its architecture, 

which includes backward temporal dependencies. Therefore, as the duration of the 

learning process extends, the complexity of RNN will progressively increase. Eq. (2.3) 

illustrates the learning process of RNN. 

 ℎ! = 𝑊𝑓(ℎ!"#) +𝑊(-.)𝑥[!]  

 𝑦! = 𝑊(2)𝑓(ℎ!) (2.3) 

 𝜕𝐸
𝜕𝑊 =4

𝜕𝐸!
𝜕𝑊

3

!*#

  

where E denotes the loss function, W represents the weights in the neural network, and t 

defines the time step. 
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The architecture of RNN is also defined by its hyperparameters, and the choice of 

parameters influences its performance (Yu, Kim, & Mechefske, 2021). These 

hyperparameters include the number of hidden layers and units in each layer, 

regularization techniques, network weight initialization, activation functions, learning 

rates, batch size (minimum batch size) and optimization algorithm, etc. 

2.3.2 LSTM 

Although RNN has outstanding advantages in dealing with time series problems, as the 

training time rises and the number of network layers increases after the nodes of the neural 

network have been calculated in many stages, the features of the previous relatively long 

time slice have been covered, so problems such as vanishing gradient or exploding 

gradient are prone to occur, which leads to the incapability to learn the relationship 

between information, thereby losing the ability to process long-term series data (Li, Li, 

Cook, Zhu, & Gao, 2018). 

In order to resolve the problem of RNN's difficulty in learning long-term 

dependencies, an improved RNN model was created, namely LSTM (Hochreiter & 

Schmidhuber, 1997). LSTM introduces a memory unit into each neuron module within 

the RNN network's hidden layer and utilises three gate control units, input gate, output 

gate, and forget gate, to control the state of each memory unit, respectively (Bai, 2018). 

Generally speaking, RNN only has the function of short-term memory, while LSTM has 

the function of long-term memory. LSTM is primarily used for language modelling, 

translation, speech recognition, sentiment analysis, predictive analysis and financial time 

series analysis. 

The working approach of the LSTM model is as follows: Firstly, the input and output 

data from the previous moment in the hidden layer jointly influence the forgetting gate. 

The forgetting gate filters the above information, memorises important feature 

information in the time series, and discards irrelevant information. Then, the input and 

output data of the hidden layer at the previous moment are used and updated as input 

information for the input gate. Secondly, the memory unit updates its state through the 
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input data, the output data of the hidden layer at the previous moment and the state of the 

memory unit at the previous moment. Finally, the input data, the output data of the hidden 

layer at the previous moment, and the memory unit state at the current moment are used 

concurrently on the output gate to output the hidden layer information at the present 

moment. The structure diagram of LSTM is as follows: 

 
Figure 2.2 The structure of LSTM 

The information transmission process of neurons in the LSTM model is shown in the 

following way. 

 𝑓! = 𝜎(𝑊4 ∙ [ℎ!"#, 𝑋!] + 𝑏4)  

 𝑖! = 𝜎(𝑊( ∙ [ℎ!"#, 𝑋!] + 𝑏()  

 𝐶N! = tanh	(𝑊5 ∙ [ℎ!"#, 𝑋!] 	+ 𝑏5) (2.4) 

 𝐶! = 𝑓! ∗ 𝐶!"# + 𝑖! ∗ 𝐶N!  

 𝑂! = 𝜎(𝑊+ ∙ [ℎ!"#, 𝑋!] + 𝑏+)  

 ℎ! = 𝑂! ∗ tanh	(𝐶!)  

where 𝑓! is the output of the forget gate at time t, 𝜎 is the sigmoid activation function, 

𝑊4 is the weight of the forget gate, ℎ!"# is the outcome of the hidden layer at time t -1, 

𝑋! is the input of the input gate at time t, 𝑏4 is the deviation of the forget gate, 𝑖! is the 

output of the input gate at time t, 𝐶! is the candidate cell state at time t, tanh is the tanh 
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activation function, 𝑂! is the output of the output gate at time t, ℎ! is the output of the 

hidden layer at time t. 

2.3.3 GRU 

Compared with LSTM, the Gated Recurrent Unit Neural Network (GRU) has a more 

straightforward network structure (Munir, Ren, Mustafa, Siddique, & Qayyum, 2021). At 

the same time, GRU is also a neural network that introduces a “gating” mechanism. 

However, the difference between GRU and LSTM is that it only has one leading line 

responsible for memory and does not require the assistance of other memory units (Munir 

et al., 2021). In terms of function, GRU is similar to LSTM, both of which are designed 

to solve the inherent gradient problem of RNN (Gharehbaghi, Ghasemlounia, Ahmadi, & 

Albaji, 2022). The following is the GRU structure diagram. 

 
Figure 2.3 The structure of GRU 

The update gate and reset gate in GRU instantly replace the previous input gate and 

forget gate. The calculation of the update gate is as follows: 

 ℎ! = 𝑧! ∗ ℎ!"# + (1 − 𝑧!) ∗ 𝑔(𝑥! , ℎ!"#; 𝜃) 
(2.5) 

 𝑧! = 𝜎(𝑊6𝑥! + 𝑈6ℎ!"# + 𝑏6) 
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where 𝑧! ∈ [0,1]7 represents the update gate. The calculation method of the candidate 

state ℎ!	at the current moment: 

 ℎZ! = tanh	(𝑊-𝑥! + 𝑈-(𝑟! ∗ ℎ!"#) + 𝑏-) (2.6) 

where 𝑟! ∈ [0,1]7 represents the reset gate, which can control the dependence of the 

current candidate state ℎZ! on the input information of the previous state.  

GRU updates are calculated as 

 ℎ! = 𝑧! ∗ ℎ!"# + (1 − 𝑧!) ∗ ℎZ! (2.7) 

GRU can also be considered an LSTM with a more compact structure with fewer 

internal parameters. Based on this characteristic, GRUs are more accessible to fit during 

training. With less experimental data, GRU will have better prediction results than LSTM. 

When there is a large amount of experimental data, the LSTM model will execute better 

than GRU. In the study of predicting traffic flow, Hussain, Afzal, Ahmad, and Mostafa 

(2021) utilised the GRU model to train one month's traffic data. They applied the 

optimizer ADAM to optimize the hyperparameters and adjust the window step size during 

the experiment. By comparing the test results of the LSTM and ARIMA models, GRU 

takes relatively less training time, reduces errors, and improves overall performance by 

4.5% compared to other models. 

2.4 Attention Mechanism 

The attention mechanism is one of the most widespread techniques in the current field of 

deep learning, employed to enhance the expressiveness of the model when processing 

sequence data (Song, Luktarhan, Shi, & Wu, 2023). Traditional models such as RNN and 

LSTM face challenges in capturing long-term dependencies within extended sequential 

data. Nevertheless, the attention mechanism enhances the model's capacity to train on 

lengthy sequences by learning to assign different weights to input information at distinct 

positions (Niu, Zhong, & Yu, 2021).  

Specifically, the attention mechanism assigns a weight or score to each input position 

during calculation. These weights or scores represent which input positions the model 
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should focus on when calculating the output. This allows the model to process inputs 

more flexibly, thereby improving the model robustness and performance.  

General attention mechanisms include Luong attention and Bahdanau attention, 

which are frequently employed in machine translation, speech recognition, and natural 

language processing (T. Wang et al., 2020). Figure 2.4 illustrates the attention mechanism 

as a process that maps a query along with a collection of key-value pairs to output, with 

the query, keys, values, and output all represented as vectors. The output is a weighted 

sum of values. The weight of each value is calculated by the query's compatibility 

function with the corresponding key. 

 
Figure 2.4 The overview of the attention mechanism 

In the computation process, the first step involves determining the similarity between 

the query and each key to calculate the respective weight, as shown in eq.(2.8). Function 

options for calculating similarity include the dot product, splicing, and perceptron, among 

others, where Q represents the query, and K represents the key. 

 
𝑓(𝑄, 𝐾() =

⎩
⎨

⎧ 𝑄
3𝐾( 																																																														𝑑𝑜𝑡

𝑄3𝑊8𝐾( 																																															𝑔𝑒𝑛𝑒𝑟𝑎𝑙
𝑊8[𝑄; 𝐾(]																																														𝑐𝑜𝑛𝑐𝑎𝑡
𝑣9tanh	(𝑊8𝑄 + 𝑈8𝐾()																𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛

 (2.8) 

Then, the softmax function to normalize the above weights as 
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𝑎( = 𝑠𝑜𝑓𝑡maxh𝑓(𝑄, 𝐾()i =

exp	(𝑓(𝑄, 𝐾())
∑ exp	() 𝑓h𝑄, 𝐾)i)

 (2.9) 

Eventually, the normalized weights and related values are weighted and summed to 

obtain the final attention calculation result. 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) =4 𝑎(𝑉(
(

 (2.10) 

By incorporating an attention mechanism, the model can prioritize critical 

information while disregarding unimportant details. Based on Hong Kong stock price 

prediction (Chen and Ge, 2019), the attention mechanism was applied and achieved 

favourable results. Their experiments indicate that due to the incorporation of the 

attention mechanism, the LSTM's memory cell structure decreases the long-term 

dependency of sequences, making the LSTM with attention mechanism superior to 

conventional LSTM models.  

In sequence-to-sequence situations, the attention mechanism mainly relies on the 

encoder-decoder architecture. The encoder encodes the input into a fixed-length context 

vector, and the decoder gradually obtains the complete target output based on the context 

vector and the currently decoded output. The encoder compresses all the input 

information into a fixed-length latent vector, which may cause the model's performance 

to drop sharply when the input sentence length is lengthy, especially when it is more 

extended than all the sentences in the training set. During the encoding process, each 

observation point in the sequence is given the same weight, leading to model limitations 

in some tasks. 

2.5 Transformer 

Transformer was initially explored by Vaswani et al. (2017), no longer stuck to the 

framework of RNN and CNN, and attention is applied to the seq-to-seq structure to form 

a transformer model and applied it to process natural language tasks. Since then, 
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Transformer model has achieved outstanding results in fields such as computer vision 

(Han et al., 2022). 

Transformer model is extensively applied to the field of natural language processing. 

Compared with LSTM, its main innovation is realized through self-attention. It adds a 

parallel computing mechanism compared to feedback neural networks (FNN) such as 

RNN and LSTM (Yang, Cen, Liu, Xiong, & Chen, 2022). After that, the improvement of 

the self-attention part includes two parts: Firstly, lowering the attention framework's 

computational complexity so that the input data's length can be increased and more 

extended learning for time dependence. The second is to improve the model's calculation 

efficiency and the effect of corresponding prediction tasks through structural 

advancements.  

Sukhbaatar, Grave, Bojanowski, and Joulin (2019) proposed the application of 

adaptive attention length attention to Transformer. This also extends the input length of 

the Transformer model, learning longer context dependencies while maintaining the same 

memory space and computing speed as the original model. Guo et al. (2019) presented 

the Star-Transformer model, a star architecture consisting of a relay node and n satellite 

nodes. Related to the standard Transformer model, Star-Transformer is suitable for data 

sets of various sizes, reducing computational complexity, faster task processing, and more 

satisfactory performance. 

 Besides, the research work on Transformer in time series has also aroused great 

interest among scholars. Through experimental research on 12 public datasets with time 

series (Lara-Benítez, Gallego-Ledesma, Carranza-García, and Luna-Romera, 2021), it 

was found that Transformer can capture long-term dependencies and obtain the best 

accurate prediction results in five of the dataset training. However, its calculation is more 

complex than CNN, so the training process is relatively slow. Shiyang Li et al. (2019) 

discovered in their research that the self-attention of the traditional transformer model is 

insensitive to the local context, which would cause the model to have exceptions in 

prediction accuracy, and lengthy unnecessary information will limit the computational 

memory of the model, making the computational complexity of Transformer increases 
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with sequence length. To address this problem, they proposed LogSparse Transformer, 

which assigns numbers to input data and selects log(N) data points according to the 

principle of log(N), thus forming a sparse attention mechanism. From the result of the 

experiment, it indicates that the newly introduced model offers superior benefits 

compared to the conventional Transformer. 

Although numerous scholars have conducted in-depth research outcomes on the 

Transformer, it is evident from the literature that most studies primarily focus on reducing 

the computational requirements of the Transformer model (Tay, Dehghani, Bahri, & 

Metzler, 2022). However, they overlook the importance of capturing the dependencies 

among neighbouring elements, addressing the heterogeneity between the values of time 

series data, the temporal information corresponding to the time series, and the positional 

information of each dimension within the time series. 

2.6 Informer 

In order to solve the heterogeneity of time information, position information and numbers,  

A model based on Transformer architecture and attention mechanism was offered (Zhou 

et al., 2021). For the first time, time coding, position coding and scalar were introduced 

in the embedding layer to crack the long sequence input problem. ProbSparse self-

attention captures long-distance dependencies and lessens the time complexity in the 

calculation process. Using the distillation mechanism can effectively reduce the time 

dimension of the feature map and lower memory consumption. Although Informer 

outperforms LSTM in time series forecasting tasks, its inability to capture dependencies 

among neighbouring elements with the multi-head attention mechanism leads to 

insufficient capture of the time-series local information. This results in lower prediction 

accuracy and higher memory consumption, which could be more conducive to large-scale 

deployment. 

Gong et al. (2022) introduced a relative coding algorithm based on the Informer 

framework to predict the heating load. The experimental results showed that the improved 

Informer model is more robust. Wu, Xu, Wang, and Long (2021) conducted research 
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based on Informer and proposed Autoformer, a new decomposition architecture designed 

with an autocorrelation mechanism. The model breaks the preprocessing convention of 

sequence decomposition and updates it into the basic internal blocks of the deep model. 

This design gives Autoformer the ability to decompose complex time series progressively. 

In addition, inspired by the random process theory, Autoformer designed an 

autocorrelation mechanism based on sequence periodicity, replacing the Self-Attention 

module in Transformer with autocorrelation mode. In long-term forecasting, Autoformer 

achieves outstanding accuracy. 

2.7 TFT 

Transformer model has achieved excellent results in natural language processing and 

computer vision tasks (Bi, Zhu, & Meng, 2021). Applying this model to capture long-

term dependencies and data interaction in time series has become the focus of many 

scholars. The general method for processing time series data is to treat data in all 

dimensions with equal weight. This may cause the model to ignore some critical input 

information or be interfered with by noise, which is also a shortcoming of traditional 

processing methods. 

Temporal Fusion Transformer (TFT) is a Transformer model for multi-step 

prediction tasks, which is developed to effectively process different types of input 

information (i.e., static, known or observed inputs) and construct feature representations 

to achieve high predictive performance (Lim, Arık, Loeff, & Pfister, 2021). Zhang, Zou, 

Yang, and Yang (2022) utilised the TFT model to predict short-term highway speed. They 

collected Minnesota traffic data and applied it to the training and testing of the model. 

Compared with traditional models, the TFT model performs best when the prediction 

range exceeds 30 minutes.  

In the electricity load forecasting study, Huy, Minh, Tien, and Anh (2022) compared 

the TFT with traditional statistical prediction models. The results demonstrated that deep 

learning methods exceed statistical models, and the forecasting results of TFT were 

significantly better than those of traditional methods. In addition, Hu (2021) proposed 
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that in the study of predicting stock prices based on the TFT model, it was discovered that 

compared with the SVM and LSTM models, TFT had the lowest error. 
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Chapter 3 
Methods 

 

 

This chapter illustrated the methodologies of Transformer, 

Informer, and TFT models. Subsequently, we describe the 

datasets and the preprocessing methods. The experimental 

processes of the three models are presented, and the 

measures for model evaluation are clarified. 
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3.1 Transformer 

In Transformers, the self-attention mechanism has received more recognition compared 

to other neural network models that utilize the attention mechanism. The attention 

mechanism of Transformers is better at capturing the internal correlation of data and 

features, and more effectively solves the problem of long-distance dependence (Wang, Pi, 

Zhang, Liu, & Guo, 2022). In the Transformer, query is 𝑄 ∈ ℝ:×7! 	, key is 𝐾 ∈ ℝ<×7", 

value is 𝑉 ∈ ℝ<×7", the scaled dot-product attention is defined as: 

 
𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 q

𝑄𝐾3

r𝑑=
s𝑉 (3.1) 

where N and M define the length of the query and key (or value), 𝐷= 	and 𝐷> indicate 

the dimensions of the key (or query) and value. Normalization is achieved using the 

scaling factor 1/r𝑑=  to separate the vector dimension from the softmax distribution, 

ensuring stable gradients during training and preventing gradient vanishing issues. 

Consistency in the dimensions of the query and key is necessary, and the lengths of the 

key and value should match. This process somewhat represents the same sequence in 

different spaces. 

Contrary to other models that only take use of a single attention module, the 

Transformer employs multi-head attention modules to operate in parallel (Sridhar & 

Sanagavarapu, 2021). In this step, the original queries, keys, and values of dimension 

𝐷?	are each projected into spaces of dimensions 𝐷=	, 𝐷?	, and 𝐷>		using H different 

learned vectors. The model computes each of these projected queries, keys, and values 

according to formulas 3.2, outputting attention weights for each. Then, it concatenates all 

these outputs and projects them back into an 𝐷?	dimensional representation. 

 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑛(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑#, ⋯ , ℎ𝑒𝑎𝑑A)𝑊B , 
(3.2)  

𝑤ℎ𝑒𝑟𝑒			ℎ𝑒𝑎𝑑( = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊(
C , 𝐾𝑊(

D , 𝑉𝑊(
E) 
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As shown in Figure 3.1, a Transformer model for sequence-to-sequence tasks 

typically includes an encoder and a decoder, each comprising multiple layers. Initially, 

the model transforms each input sequence element into a vector by combining its 

embedding with its positional embedding. This creates a matrix of representation vectors 

for the input sequence. The encoder processes this matrix through six layers, resulting in 

an encoded matrix of the exact dimensions, which captures the contextual information of 

each element in the sequence. This encoded matrix feeds into the decoder. During 

generating the sequence, the decoder forecasts the i+1th observation point based on the 

first i observation points, with the i+1th and following observation points being masked. 

 

Figure 3.1 The overview of Transformer 

In the encoder-decoder structure, the input 𝑋! passes through the encoder and is 

converted into a hidden state 𝐻!, and the output 𝑌!	is obtained from 𝐻! = {ℎ#! , ⋯ , ℎF! } 

during the decoding process. This inference involves a sequential process known as 
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‘dynamic decoding’, where the decoder updates to a new hidden state ℎ=G#!  using the 

prior state ℎ=! 	and additional outputs from the 𝑘!-  step, subsequently predicting the 

(𝑘 + 1)!- sequence 𝑦=G#! .  

In Figure 3.2, the Transformer is composed of an interconnected encoder (left) and a 

decoder (right) including repeatedly stacked blocks. Here is a simplified illustration of 

the encoder and decoder. For simplification, only one block in both the encoder and the 

decoder is shown here. Each encoder module primarily comprises a multi-head self-

attention module, a Position-wised Feedforward Network (PFFN), and residual 

connection and layer normalization modules. The multi-head self-attention module 

consists of multiple self-attention modules and is used to obtain the relationship between 

the current generated sequence and the previously generated context. 

In constructing the stacked model, a residual connection surrounds each module, 

followed by a layer normalization module, represented as Add&Norm in Figure 3.2. The 

residual connection is commonly utilised to address the training issues of deep networks, 

allowing the network to focus only on the current difference and preventing network 

degradation. Layer normalization is utilised to normalize the activation values of the layer, 

ensuring that the mean and variance of the inputs to each neuron are consistent across 

layers to accelerate convergence. In eq. (3.3), X represents the input of multiple-head 

attention or FNN, 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑛(𝑋) and 𝑃𝐹𝐹𝑁(𝐻′) defines the output, where the 

output and input dimensions remain equal. 

 𝐻H = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑛(𝑋) + 𝑋) 
(3.3) 

 𝐻 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚h𝐻H + 𝑃𝐹𝐹𝑁(𝐻H)i 

PFNN processes a three-dimensional tensor with dimensions (batch_size, seq_length, 

feature_size) and features two fully connected layers. The activation function for the first 

layer is ReLU, while the second layer lacks an activation function and operates along the 

last dimension. Given that each position in the sequence is updated independently, this 

operation is analogous to a 1´1 convolution. 
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Figure 3.2 The network structure of Transformer 

The architecture of decoders resembles the encoder's, though there are distinctions. 

Firstly, the decoder includes two multi-head attention layers: The first layer masks the 

input, while the query and value matrices of the second layer are derived from the output 

of encoders encoding information matrix. The query matrix for this second layer is 

generated from the output of the prior decoder module. Second, before producing its 

output, the encoder applies a Softmax layer to compute the probability of the following 

predicted observation. Nevertheless, a number of characteristics of the initial Transformer 

result in poor performance on long sequence forecasting tasks, including: 

1) The self-attention operation of the model makes its computation relatively slow. 

2) The multi-layer stacking design of its encoder/decoder causes the space 

complexity to increase quadratically in relation to the sequence length, leading to 
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excessive memory usage when processing long sequences, making direct modelling 

of long-time sequences impractical. 

3) In the generation process of long sequences, the dynamic encoding mechanism of 

this proposed model results in slow generation speeds, similar to RNN models. 

3.2 Informer 

The Informer model has been proposed to address the long-sequence forecasting issues 

in the Transformer. This model provides an improved self-attention module to reduce 

time complexity (Sun, Hou, Lv, & Peng, 2022). During the convolution process, the 

Informer halves the feature maps before concatenating them. Additionally, the Informer 

model takes only a tiny portion of the input sequence from the end as the starting tokens 

and uniformly generates the forecast sequence during output. Figure 3.3 demonstrates the 

structural diagram of the Informer model. 

 

Figure 3.3 The structure of Informer model 

The conventional self-attention mechanism in the Transformer network requires 

storing a large amount of computation and quadratic equations for dot product 

calculations (Al-Ali et al., 2023). In the Informer network, probabilistic sparse self-
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attention replaces traditional self-attention. Each input vector is utilised to calculate query, 

key, and value vectors in the self-attention mechanism.  

Then, attention weights are calculated by computing the dot product of query vectors 

and key vectors. The attention weights represent the similarity between each and all input 

vectors. Probabilistic research has demonstrated that self-attention is sparsely allocated 

and adheres to a long-tail distribution. In the probabilistic sparse self-attention mechanism, 

query vectors compute the similarity with each key vector, generating an attention 

distribution.  

The query vectors may be more active in this process, i.e., they have higher similarity 

scores with more key vectors. In contrast, others may be more idle, i.e., they have higher 

similarity scores with fewer key vectors. For this situation, only the dot products of active 

queries are calculated, that is, only the dot products between query vectors with higher 

similarity scores and their corresponding key vectors are calculated. Their dot products 

are replaced with an average value for idle queries, thus avoiding unneeded calculations 

for unnecessary query vectors and improving computational efficiency. The probabilistic 

sparse self-attention calculation is shown in the eq. (3.4). 

 
𝑃𝑟𝑜𝑏𝐴𝑡𝑡𝑛h𝑄� I , 𝐾( , 𝑉(i = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(

𝑄� I𝐾(#

√𝑑
)𝑉( (3.4) 

where 𝑄� I 	represents the distance computed by the KL divergence among the attention 

distribution and the uniform distribution to determine the value of each query point, thus 

specifying which queries should be allocated computational resources, it selects the active 

query with the most significant distance from Top-u. In accordance with the sampling 

factor c, define 𝑢 = 𝑐 ∙ ln𝐿C . Where 𝐿C 	means the length of the query vector. When 

computing dot products in probabilistic sparse self-attention, the method of dot product 

sparsification diminishes the memory to 𝑂(𝐿$) , where L is the sequence length. 

Nevertheless, the time complexity still corresponds to 𝑂(𝐿$). Calculations based on KL 

divergence are approximate values. Under a long-tail distribution, query vectors, key 

vectors, and value vectors of equal length should be selected for dot product calculations 
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while setting other dot products to 0 for distance comparison. Typically, 𝐿C 	= 	 𝐿D 	= 	𝐿, 

making the time complexity evolve 𝑂(𝐿	ln𝐿). 

In general, in probabilistic sparse self-attention calculation, attention is only given to 

some far-active queries. In contrast, the dot products for other queries are substituted with 

the mean of the value vectors, thus reducing the computational task. 

On the encoder side, the Informer network's self-attention produces outcomes 

equivalent to redundant value vector aggregates. Inspired by dilated convolutions, 

distillation techniques are used to compress the temporal aspect of the input, facilitating 

the processing of lengthy sequences. Priority is given to sequences with prominent 

features, and at the subsequent level, self-attention feature maps are created. Equation 

(3.5) illustrates the progression from layer i to layer i +1. 

 𝐹(G# = 𝑀𝑎𝑥𝑝𝑜𝑜𝑙(𝐸𝐿𝑈(𝐶𝑜𝑛𝑣1𝑑([𝐹(]𝑃𝑆𝐴))) (3.5) 

where [𝐹(]𝑃𝑆𝐴  represents the fundamental operation of performing multi-head 

probabilistic sparse self-attention among them. 𝐹(G# is the feature representation of the 

𝑖!- layer, and the input sequence is diminished by half in each layer through convolution 

and maximum pooling, thereby progressively reducing the feature layer to achieve the 

shorten of the input sequence. Memory usage drops to 𝑜((2 − 𝜀)𝐿	log𝐿). The encoder 

stack consists of multiple attention and convolutional layers with sequential sub-layer 

connections. The central stack structure diagram is displayed in Figure 3.4. 

 

Figure 3.4 The structure of Informer encoder 
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The secondary stack is half the size of the primary stack, with both the encoding and 

convolutional layers decreased by one to strengthen the distillation operation's robustness. 

Moreover, each stack maintains identical output dimensions. Eventually, the outputs from 

all stacks are combined to produce the final hidden output of the encoder. 

The decoder part performs attention operations on the intermediate results output by 

the encoder, reshapes the output data using a fully connected layer, and ultimately delivers 

the prediction results. The typical decoder comprises two multi-head self-attention 

mechanisms: the first employs probabilistic sparse self-attention, while the second 

utilizes conventional self-attention. Employing generative inference prediction, the input 

vector of the decoder is as shown in eq.(3.6). 

 𝑋4JK5 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑋!+=KL, 𝑋%-+I) ∈ 𝑅(F$%!&'GF()×J)%*&+ (3.6) 

where 𝑋4JK5 represents the input sequence of the decoder, 𝑋!+=KL	is the starting mark of 

the sequence, and 𝑋%-+I 	symbolises the placeholder of the target sequence. Zeros are 

padded to timestamps to keep the dimensions consistent as the prediction sequence is 

entered. Masked multi-head self-attention is utilized, which obscures future information 

to guarantee that each position concentrates on present data and prevents autoregressive 

behaviours. 

3.3 TFT 

Temporal Fusion Transformer (TFT) is a time series prediction model based on the 

Transformer architecture proposed by Lim et al. (2021), aiming to solve the limitations 

of traditional time series prediction models. TFT introduces a novel to capture features 

and nonlinear relationships across multiple time scales (Fayer et al., 2023). TFT employs 

recurrent layers for localized processing and interpretable attention layers to manage 

long-term dependencies. The algorithm also leverages specialized components for feature 

selection and a series of gating layers to suppress unnecessary components, thereby 

maintaining the model's high performance in various scenarios. The framework of TFT 

specifically includes gated mechanisms, variable selection networks, static covariate 
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encoders, an encoder-decoder-based LSTM model, an interpretable multi-head attention 

mechanism for integrating information, and a temporal fusion decoder. The model 

architecture of TFT is displayed in Figure 3.5: 

 
Figure 3.5 The architecture of the TFT model 

The main components of this TFT model are: 

(1) Gating mechanism and variable selection network  

The input data features first pass through the GRN module to split and filter variables, 

assigning corresponding weights to the split vectors to form new feature vectors. This 

vector integrates the selected information of all input feature vectors, representing a high-

level abstraction of a series of input features. GRN utilises skip-connection and GLU 

functions to control the contribution of feature information of linear and nonlinear 

features, especially by adding static covariates to train model learning. The variable 

selection network cooperates with GRN and Softmax for feature selection. 
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(2) Static covariate encoder  

After filtering and sorting variables, the classic LSTM model that processes sequence 

data is used as the encoder/decoder. The forgetting, memory, and selective output 

mechanisms of the LSTM can better capture the long-term information of the sequence. 

In the static covariate encoder, one part of the module transfers the past features to the 

LSTM encoder, the other part passes the future features to the LSTM decoder, and finally, 

the LSTM encoder and decoder are combined to form a unified temporal feature and 

assigned to the next module. 

(3) Temporal fusion decoder. This structure is conducted to capture both the long-

term and short-term temporal relationships that exist in the dataset and consists of three 

sub-layers: 

� Static Enrichment Layer (SEL). The GRN module introduces static covariates to 

enhance the timing features. 

� Temporal Self-Attention Layer (TSL). This module can learn the long-term 

dependencies of time series data and provide model interpretability by fulfilling 

the self-attention mode in the attention mechanism. 

� Position-wise Feed-forward Layer (PFL). Perform nonlinear processing on the 

information output by TSL. 

The overall operation process of the TFT can be summarized as follows: Firstly, skip-

connection and GLU processing are implemented through GRN, and then feature 

selection is performed through the variable selection network with the GRN and SoftMax 

functions. Ultimately, the final output of the model prediction is derived from the multi-

head self-attention module within the temporal fusion decoder, which offers 

interpretability and the capacity to grasp long-term dependencies. 

3.4 Dataset Collection 

Due to the changes in the exchange rate between NZD and various currencies being 

impacted by multiple aspects, they display diverse characteristics of change. Therefore, 

we select four representative currencies, USD, GBP, CNY, and AUD, as training and test 
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samples. The datasets of NZD against these four currencies are all from Yahoo Finance 

and Investing website (www.investing.com). To enhance the learning ability of our 

proposed model for unexpected fluctuations, each sample includes daily data from 

January 3, 2005, to February 2, 2024, totalling 4,980 entries. This period captures 

exchange rate variations during significant global market changes, such as the 2008 

financial crisis, the COVID-19 pandemic in 2020, and the early 2022 Russia-Ukraine 

conflict. The primary variables of the dataset include closing, opening, highest, lowest, 

and floating prices of the day. We select the closing price as the experimental object.  

  

  

Figure 3.6 The trend charts of NZD against the four currencies 

In addition to fundamental data, this study also chose the widely used VIX index in 

financial research applied for the NZD/USD dataset, a volatility index derived from the 

weighted average of the implied volatility of index options proposed by the Chicago 

Board Options Exchange, with the S&P 500 index as its reference index. In an era of 

increasing economic globalization and global stock market linkage, it is also widely used 

to indicate investor sentiment fluctuations in the international financial market. In the 

research work (Xu et al. , 2023), the VIX index was also included as a sentiment indicator 

of the exchange rate market to improve prediction precision and accurately fit the trend 
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of exchange rate fluctuations under sudden events. Figure 3.6 shows the trend charts of 

NZD against the four currencies. 

3.5 Dataset Preprocessing 

3.5.1 Handle Missing Value 

While collecting these four datasets, the timing of the exchange rate data and the VIX 

index data are not aligned due to the differences in holidays and market closure days 

across regions. To ensure uniformity in the time selection, we gather the VIX index data 

based on the timing of the exchange rate data, which results in missing values in the VIX 

index data. To facilitate the smooth progress of subsequent experiments and improve the 

accuracy of the experiments, it is necessary first to address these missing values. 

Two primary approaches to managing missing values are deletion and imputation. 

Deletion requires eliminating entries that have missing attribute values to obtain a 

complete dataset. Although this method is straightforward, opting for completeness of 

information by reducing historical data may disrupt the patterns in subsequent data 

(Pratama, Permanasari, Ardiyanto, & Indrayani, 2016). On the other hand, imputation 

applies by filling in missing values with typical values to achieve the information. 

Typically grounded in statistical principles, this approach fills in missing values based on 

the distribution of values from other entries in the decision table, for example, by 

supplementing with the average value of the remaining attributes, among other methods. 

We adopt eq. (3.7) for imputing missing values. 

 𝑋( =
𝑋("# + 𝑋(G#

2  (3.7) 

where 𝑋( defines the data to be imputed, 𝑋("# represents the data from the day before 

the missing data, and 𝑋(G# illustrates the data from the day after the missing data. 
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3.5.2 Data Normalization 

In our datasets, it is required to use close price, open price, high price, low price, change, 

and VIX index as input data. As shown in Figure 3.5, there is a significant numerical 

difference between the input data, leading to inconsistent data scales and affecting the 

learning efficiency of the model. Therefore, data normalization is critical to be performed 

before training the model. 

 

Figure 3.7 The original dataset of NZD/USD 

Data normalization refers to scaling data to a small decimal between (0, 1) and (-1, 

1). The purpose is to simplify data comparison and analysis, and also reduce the potential 

impact of outliers or extreme values on the analysis (Zyprych-Walczak et al., 2015). 

Additionally, normalized data can be more efficiently plotted, as it eliminates scale 

differences that could make it difficult to see trends or patterns. Normalized data can 

accelerate the convergence speed of models, improve data consistency, and convert multi-

dimensional values to dimensionless values, making comparison and calculation much 

more manageable. In this report, we adopt the most common method, min-max 

standardization, which is scaling the data to the range [0,1] to simplify calculations. The 

calculation process is as 

 𝑋∗ =
𝑋 − 𝑋?(L

𝑋?N. − 𝑋?(L
 (3.8) 
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Among them, 𝑋∗represents the dimensionless data after normalization, X means the 

observation value, 𝑋?(L	denotes the minimum value, and 𝑋?N.	tells the maximum value. 

Denormalization is restoring normalized data to facilitate subsequent data analysis and 

other operations. The calculation process of denormalization is as 

 𝑦 = 𝑋∗ ∙ (𝑋?N. − 𝑋?(L) + 𝑋?(L (3.9) 

Among them, 𝑦  signifies the data after denormalization, 𝑋∗ symbolises the 

dimensionless data after normalization, 𝑋  means the observation value, 𝑋?(L	is the 

minimum value, and 𝑋?N.		illustrates the maximum value. 

3.6 Experiment Implementation 

We chose Google Colab as our experimental platform, where its powerful GPU makes 

model training simpler and more effective. In the experiments, three models, Transformer, 

Informer, and TFT, were utilised for training on four datasets, respectively. The following 

Table 3.1 presents the relevant parameters and configurations of the experimental 

environment. 

Table 3.1 The configurations of the experiment 

Operating System Ubuntu 22.04.3 LTS 

Python 3.10.12 

CUDA 12.2 

PyTorch 2.2.1 

RAM 15G 

Hard Disk Drive 225G 

GPU Tesla P100-PCIE-16GB 

3.6.1 The Experimental Implementation of Transformer 

In the training process of the Transformer model, it is vital to set essential parameters, 

which are continuously adjusted and optimized. The related parameters are ultimately 

determined, as shown in Table 3.2. Due to the complexity of the Transformer, we employ 
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a lower learning rate parameter of 0.0005. Although this means that the model learns 

more slowly, it can help the model adapt more finely to the training data, leading to better 

stable and accurate predictions. The value of input_window is set to 7, which allows for 

more suitable capturing of weekly patterns or trends in the data for time series data like 

exchange rates, a typical setting in financial sequences. We experimented with the 

multiple training epochs, setting them at 50, 100, 150, and 200, and finally found that 150 

is the best, avoiding the risk of overfitting. 

Table 3.2 The parameter setting of Transformer 

Parameters Settings 

input_window 7 

batch_size 100 

learning_rate 0.0005 

epochs 150 

3.6.2 The Experimental Implementation of Informer 

Unlike the parameter settings of the Transformer, through multiple attempts, we have set 

the number of epochs to 60. Since the Informer optimizes computational complexity, 

reducing unnecessary computations and parameter usage, it achieves better results in a 

shorter training time. The table below details the model parameters of the Informer. 

Table 3.3 The parameter setting of Informer 

Parameters Settings 

sequence_length 64 

predict_length 5 

batch_size 128 

learning_rate 5e-5 

epochs 60 
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3.6.3 The Experimental Implementation of TFT 

The model training of TFT is conducted within a PyTorch-lightning framework. In this 

environment, it is possible to adjust the model's hyperparameters promptly during the data 

training process. This setup integrates with the Early-Stopping mechanism to obtain an 

outstanding combination of parameters. For the TFT model, a learning rate of 0.001 is a 

moderate value that supports balanced training speed and convergence quality. Setting 

the hidden layer's size to 32 means the TFT model is relatively simple and 

computationally efficient. Since no overly complex recognition tasks exist, we set the 

number of attention heads to 1. After multiple debugging and screening rounds, the initial 

parameters of TFT model are finally determined, as demonstrated in Table 3.4. 

Table 3.4 The parameter setting of TFT 

Parameters Settings 

learning_rate 0.001 

hidden_size 32 

attention_head_size 1 

output_size 8 

batch_size 128 

epochs 150 

3.7 Evaluation Methods 

In the experiment of exchange rate prediction, to reflect the reliability of the predictive 

performance accurately and objectively, we utilise four different evaluation metrics, 

including root mean square error (RMSE), mean absolute error (MAE), coefficient of 

determination (R$), mean absolute percentage error (MAPE). The smaller the RMSE and 

MAE, the closer the predictions are to the actual values. A larger R$	indicates a better fit 

of the model. MAPE provides a comprehensive indication of the model's overall 

predictive effectiveness. 
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(1) RMSE 

The RMSE is calculated in Equation 3.10, where 𝑦�(	 represents the predicted values, and 

𝑦( means the corresponding actual values. The closer the predicted values are to the exact 

values, the closer the RMSE is to 0, indicating better prediction accuracy. Conversely, a 

higher RMSE signifies a poorer model performance, reflecting larger deviations between 

predictions and actual observations. RMSE measures the discrepancy between predicted 

and actual values and is more intuitive on a magnitude scale than MSE. 
 

𝑅𝑀𝑆𝐸 = �
1
𝑛4(𝑦�(	 − 𝑦()$

L

(*#

 (3.10) 

(2) MAE 

The MAE is computed as indicated in Equation 3.11, where 𝑦�(	 is the predicted value, 

and 𝑦(  is the corresponding actual value, with the range being [0, +∞) . MAE is 

employed to describe the error between the predicted and actual values. The closer the 

MAE is to 0, the closer the predicted values are to the exact values. Contrarily, the greater 

the prediction error, the larger the MAE. 
 

𝑀𝐴𝐸 =
1
𝑛4|𝑦( − 𝑦�(	|

L

(*#

 (3.11) 

(3) R$ 

The coefficient of determination, R$, is calculated as shown in the formula 3.12, where 

𝑦�(	  represents the predicted values, 𝑦(  means the actual values, and 𝑦�(	  is the mean 

value of 𝑦(. Usually, R$	values range between [0, 1]. The closer R$	is to 1, the better the 

model fits the data, indicating a more substantial explanatory power of the model. 

 
𝑅$ = 1 −

∑ (𝑦( − 𝑦�(	)$L
(*#

∑ (𝑦( − 𝑦�(	)$L
(*#

 (3.12) 

(4) MAPE 

The calculation process for MAPE is exhibited in the formula, where 𝑦( is the actual 

value, 𝑦�(	  is the predicted value, and 𝑛 represents the total number of observations. 

MAPE measures the mean absolute percentage error of the predictions, indicating the 
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degree of deviation between the model's predicted values and the actual values. The 

smaller the metric, the higher the precision of the forecast and the less deviation from the 

actual values (Saigal & Mehrotra, 2012). 

 
𝑀𝐴𝑃𝐸 =

1
𝑛4�

𝑦( − 𝑦�(	
𝑦(

� × 100%
L

(*#

 (3.13) 
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Chapter 4 

Results 

 

 

In this chapter, we present descriptive statistics for the four 

datasets and clarify the experimental results of these 

datasets across the three models. Additionally, we 

demonstrate the ablation experiment conducted on the TFT 

model. 
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4.1 Data Description 

4.1.1 Descriptive analysis 

After preprocessing the four datasets, the total number of samples for each is 4,980. To 

better understand the data's characteristics and distribution features and utilize the 

relevant data for modelling, it is essential to conduct a descriptive statistical analysis 

before modelling. Table 4.1 provides the descriptive statistics for the four datasets. 

Table 4.1 The descriptive statistics of NZD against four currency exchange rates 

 

From Table 4.1, we notice that the standard deviation for NZD/USD is 0.073, 

indicating that the exchange rate fluctuates within a narrow range. A kurtosis value of -

0.369 and a skewness value of 0.118 suggest that the distribution of NZD/USD deviates 

slightly from a normal distribution, showing slight flatness and right skewness. Still, 

overall, it is close to symmetry. Compared to NZD/CNY, there is a significant difference 

between its minimum and maximum values, which are 3.371 and 6.163, respectively. The 

median of 4.79 is slightly lower than the average, implying a skewed distribution to the 

right. The standard deviation is 0.484, indicating the volatility is higher than the other 

three currency pairs. The kurtosis and skewness are -0.148 and 0.258, respectively, 

indicating a relatively flat and slightly right-skewed distribution.  

The statistical results for NZD/GBP show that the average exchange rate for 

NZD/GBP is 0.473, with a minimum of 0.328 and a maximum of 0.597, revealing a 

smaller fluctuation range and, hence, a relatively stable exchange rate. The median of 

0.497 is very close to the mean, reflecting the central tendency of the data. Its standard 

deviation of 0.063 is the smallest among the four currency pairs, showing the lowest 
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volatility. The average exchange rate for NZD/AUD is 0.884, with a fluctuation range 

from 0.728 to 0.997, which is relatively moderate. The median of 0.91 is higher than the 

average, exhibiting more data points in the higher value range. A standard deviation of 

0.064 indicates lower volatility. The kurtosis of -0.886 and skewness of -0.686 present a 

skewed and peaked distribution, suggesting a frequent occurrence of lower values. 

Throughout this detailed analysis, we summarize that these four datasets demonstrate 

diverse levels of volatility and distribution characteristics. NZD/GBP and NZD/AUD 

show relatively lower volatility, while NZD/USD and NZD/CNY exhibit higher volatility. 

4.1.2  Correlation analysis 

Although exchange rates are a type of nonlinear time-series data, analyzing the strength 

of the relationship between target values and variables is critical before model training. It 

assists us in better understanding the importance of specific features, thereby enabling 

feature selection to simplify the model and avoid overfitting. Table 4.2 shows the 

correlation between the four datasets' opening price, highest price, lowest price, change, 

and target value closing price. 

Table 4.2 The correlation between closing price and other four variables in datasets 

 

Table 4.2 displays that in the four datasets, the respective “Close” prices have an 

extremely high correlation with the “Open”, “High”, and “Low” prices, with correlation 

coefficients above 0.997. This indicates that their relationships are very close during the 

trading day, almost moving in sync. However, compared to “Change”, the correlation 

coefficients between the “Closing” prices of the four currencies and “Change” are pretty 

low, ranging from 0.01795 to 0.03811, but they are still positively correlated. This means 
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that although “Change” can reflect the trend of the closing price to a certain extent, the 

direct relationship between “Change” and “Close” price is not as apparent as with other 

price indicators. 

After completing the analysis, we divided the dataset into two parts for the training 

process of the three models: 80% for training and 20% for testing. Figure 4.1 is the dataset 

division for the transformer code. 

 

Figure 4.1 The code of Transformer dataset division 

4.2  Experimental Results of Transformer 

In this experiment, the initial model we trained on Google Colab for the four different 

exchange rate datasets was the Transformer model. Considering both the training on the 

training set and the predictions on the test set, the Transformer has achieved satisfactory 

results. Figure 4.2 displays the actual and predictive results on the test set of four datasets. 

NZD/USD 

 

NZD/CNY 

 
NZD/AUD NZD/GBP 
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Figure 4.2 The predictive result of each dataset performed on Transformer 

From the prediction results related to the four test sets, the trend of NZD/USD is very 

close to the actual result, reaching highs and lows at almost the same time, and the high 

degree of overlap between the two lines indicates that the Transformer can effectively 

capture the trends and seasonal changes of the exchange rate. However, from the 

NZD/CNY prediction graph, we discover some deviations during periods of high 

volatility, and the Transformer model has yet to capture the peaks and troughs of the 

exchange rate perfectly. Despite this, the overall prediction trend still tracks the real 

exchange rate well. Similar to NZD/AUD, though the figure shows a strong correlation 

between prediction and reality, the Transformer still underestimates or overestimates the 

peaks in some intervals. Regarding the NZD/GBP trend, the prediction accuracy is high 

for most of the timeline, showing that the Transformer is robust. Table 4.3 shows more 

details of the experimental evaluation results of Transformer. 

Table 4.3 The Transformer experiment results with four datasets 

 

By evaluating the model with four different indicators, we notice that in the 

Transformer model's training and prediction for four datasets, NZD/USD exhibits 

remarkably high precision and reliability. The very low RMSE and MAE values show 
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that the forecast values are extraordinarily close to the actual values. Furthermore, the 

low MAPE value of 0.0141 verifies that the error percentage is minor, representing an 

ideal outcome in currency prediction. In comparison, an R² value close to 0.94 indicates 

that the model has strong predictive power and a high degree of explanatory capability 

regarding the fluctuating exchange rate trends. 

Although the MAPE values are relatively low in the NZD/CNY and NZD/AUD 

predictions, at 0.0113 and 0.0048, respectively, the increased RMSE and MAE indicate 

that the model faces more significant challenges in forecasting these currency pairs. 

Possible reasons may include higher market volatility, differences in trading volume, or 

the datasets' characteristics. Nevertheless, the R² values for both currency pairs exceed 

0.85, reflecting the Transformer's powerful capability to capture essential information and 

trends. 

Compared to other results, NZD/GBP has the lowest RMSE and MAE, implying that 

the model can generate highly accurate predictions with minimal error for this currency 

pair. An R² value of 0.8841 demonstrates a satisfactory model fit, and although slightly 

lower than NZD/USD, it is still an excellent result, given the complexity of the currency 

market. Figure 4.3 visualizes the experiment result of the Transformer. 

The strong performance of Transformer model partly derives from its self-attention 

mechanism, which allows it to fully consider the influence of other points in time when 

predicting the exchange rate at any given moment. 

In conclusion, the Transformer performs outstandingly across all four datasets, 

especially in NZD/USD predictions, where it achieves a very high level of accuracy. 
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Figure 4.3 Visualisation of the experiment result on Transformer 

4.3  Experimental Results of Informer 

The second model we conducted in this experiment was the Informer, an advancement 

based on the Transformer framework. The prediction trend charts are as follows through 

the training and prediction of four datasets. 

NZD/USD 

 

NZD/CNY 

 
NZD/AUD 

 

NZD/GBP 

 
Figure 4.4 The predictive result of each dataset performed on Informer 



48 
 

From the prediction trend charts, the actual and predicted values of NZD/USD are 

roughly similar, especially at the peaks and troughs. However, between July 2022 and 

January 2023, there is a relatively large gap between the predicted and actual lines. As 

for NZD/CNY, the overall prediction for this currency pair also maintained synchronicity, 

but the deviation at the beginning of 2023 was more extensive than that of NZD/USD. 

Similar to NZD/USD is NZD/AUD, where the prediction curve of this currency pair 

closely matches the actual price curve most of the time. Likewise, in a number of intervals, 

the prediction failed to capture the rapid changes in the exact exchange rate. Slightly 

different from the trend results of the other three, the trend of NZD/GBP did not match 

as well as the others, but it also captured the trend of the exchange rate to a certain extent. 

The below Table 4.4 illustrates the results based on the four evaluation metrics. 

Table 4.4 The Informer experiment results with four datasets 

 

In the NZD/USD results, the Informer model achieved a high level of precision, 

specifically reflected in the low RMSE value of 0.012. At the same time, the low MAPE 

and MAE values of 0.0144 and 0.0092, respectively, also demonstrate that the forecast 

errors are relatively minor. An R$ value of 0.925 further indicates that the Informer can 

broadly explain fluctuations in the exchange rate. 

In the NZD/CNY results, despite the low MAPE value of 0.0105, which explains a 

certain degree of accuracy, the higher RMSE and MAE values reveal the challenges faced 

by the Informer in predicting this currency pair. Nevertheless, an R$ value exceeding 

0.85 means that the Informer can still fit the data reasonably well despite the difficulties. 
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For NZD/AUD and NZD/GBP, the Informer performed exceptionally well, 

especially in NZD/AUD, where the very low RMSE and MAE values reflect the 

Informer's superior performance in terms of prediction accuracy. The MAPE value is 

nearly zero, almost achieving a perfect prediction effect. This shows that the Informer 

can accurately predict the exchange rate movements of these two currency pairs, even in 

the face of fluctuations in exchange rates.  

Overall, the Informer model demonstrates adaptability and accuracy under different 

market conditions in handling the exchange rate predictions of these four datasets. 

Particularly in predicting NZD/AUD and NZD/USD, it illustrates the advantages of being 

an improved model based on the Transformer. Although there are challenges in the 

NZD/CNY predictions, the model can still effectively capture and predict the dynamics 

of exchange rate changes. The below Figure 4.5 displays the visualization of evaluation 

results. 

 
Figure 4.5 Visualisation of the experiment result on Informer 

4.4  Experimental Results of TFT 

Our third trained model is the TFT, an enhancement of the Transformer model that 

specializes in processing time-series data. Figure 4.6 exhibits the TFT's prediction trends 

for the four test sets. 
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NZD/USD 

 

NZD/CNY 

 
NZD/AUD 

 

NZD/GBP 

 
Figure 4.6 The predictive result of each dataset performed on TFT 

From the trend chart of NZD/USD, the prediction curve closely follows the actual 

price curve most of the time, demonstrating the solid predictive capability of the TFT 

model for this currency pair, particularly in adapting quickly during significant trend 

changes. As for the trend charts of the other three currency pairs, we can observe some 

lag or deviation at critical turning points. Nevertheless, the TFT model generally follows 

the actual trends well. Table 4.5 below shows the result by using evaluation metrics. 

Table 4.5 The TFT experiment results with four datasets 

Currency RMSE MAPE MAE 𝐑𝟐 

NZD/USD 0.0045 0.0055 0.0035 0.9892 

NZD/CNY 0.0312 0.0056 0.0041 0.96 

NZD/AUD 0.0041 0.0035 0.0032 0.9381 

NZD/GBP 0.0044 0.0075 0.0062 0.9122 
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The assessment results above show that the predictions for NZD/USD are the best, 

with shallow RMSE, MAPE, and MAE values of 0.0045, 0.0055, and 0.0035, 

respectively, revealing that the predicted values are very close to the actual values. The 

high R² value additionally confirms the nearness between the predicted and actual trends 

of exchange rate fluctuations for this currency pair. 

As for the results of NZD/CNY, though the MAPE remains at a low level of 0.0056, 

a relatively higher RMSE suggests significant deviations between the predicted and actual 

values at specific time points. However, the high R² value of 0.96 indicates that the TFT 

model can still capture most exchange rate changes. 

In the predictions for NZD/AUD, even though the R² value is slightly lower than that 

of NZD/USD, the remarkably low errors indicate the high accuracy of the TFT on this 

test set. 

Although NZD/GBP has the highest MAE among all the currency pairs at 0.0075, 

this does not mean that the model's overall performance is poor. An R² value of 0.9122 

points that the model successfully captures most of the dynamics of the pound's exchange 

rate changes, with a slight decrease in predictive accuracy, possibly due to the complexity 

of market fluctuations during specific periods. 

The TFT model performs reasonably well across all four test sets, especially in 

predicting NZD/USD and NZD/AUD, showing high accuracy and reliability. Despite the 

drop in predictive precision for NZD/CNY and NZD/GBP, the R² values still demonstrate 

that the model's predictions are pretty reliable for these currency pairs. Here, Figure 4.7 

visualizes the evaluation result of TFT. 
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Figure 4.7 Visualisation of the experiment result on TFT 

4.5  Ablation Experimental Result Performed on TFT 

We conducted an experiment on the NZD/USD dataset by using the TFT model to 

validate the rationality and effectiveness of the VIX index proposed in section 3.4 for 

improving prediction accuracy. We assess the results by comparing the prediction trend 

charts and suggested evaluation metrics. Figure 4.8 compares the predictive trend, 

including or excluding the VIX index. 

Include VIX index 

 

Exclude VIX index

 
Figure 4.8 The predictive result includes or excludes the VIX index 

We discover that although the predicted values are quite consistent with the actual 

value curves in the trend chart without the VIX index, there are apparent deviations at 

some extreme points and turning points. The peaks and troughs are not nicely captured, 
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especially in the significant price fluctuation intervals. However, in the chart with the 

VIX index included, the prediction curve follows the actual price trend more closely, 

particularly at some extreme points where deviations previously occurred. Table 4.6 

below shows the results of the related evaluation criteria. 

Table 4.6 The evaluation result of including VIX and excluding VIX 

NZD/USD RMSE MAPE MAE 𝐑𝟐 

Include VIX 0.0045 0.0055 0.0035 0.9892 

Exclude VIX 0.0312 0.0056 0.0041 0.96 

Comparing the results, we find that after integrating the VIX index, the RMSE, 

MAPE, and MAE values are all very low, at 0.0045, 0.0055, and 0.0035, respectively, 

indicating high accuracy of the predictions. Furthermore, an R² value of 0.9892 signifies 

an extremely high correlation between the predicted and actual values. In contrast, the 

RMSE value of 0.0312 for the excluded VIX index is high, suggesting a decrease in 

precision, and the MAE of 0.0041, slightly higher than when the VIX is included, 

indicates an increase in prediction error. 

The comprehensive assessment results conclude that the TFT model, when including 

the VIX index, performs better in forecasting the NZD/USD exchange rate, especially 

regarding accuracy and data fit. The significant reduction in RMSE demonstrates that 

introducing the VIX index can notably enhance the model's capability to capture market 

volatility and reduce large prediction deviations. The high R² value further validates the 

effectiveness of the VIX index in improving predictive performance. 
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Chapter 5 

Analysis and Discussions 

 

 

 

In this chapter, based on the experimental results, we conduct a 

detailed comparison and analysis of the performance of the 

Transformer, Informer, and TFT models, while also highlighting the 

limitations of this project. 
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5.1  Analysis and Discussion 

To compare the performance of the three models more thoroughly—Transformer, 

Informer, and TFT, we summarized the evaluation results of each model for the four test 

sets, taking the average for each evaluation criterion. The results are presented in the 

following Table 5.1. 

Table 5.1 The evaluation result of each model based on the test set 

Model RMSE MAPE MAE 𝐑𝟐 

Transformer 0.0329 0.0097 0.0171 0.8922 

Informer 0.0201 0.0095 0.016 0.8893 

TFT 0.0111 0.0055 0.0043 0.9499 

From the table, it is evident that the Transformer model has relatively high RMSE 

and MAE values. Nevertheless, an R² value of 0.8922 indicates a reasonable correlation 

between the predictions and actual values. Its explanatory power is slightly weaker 

compared to the other two models. As an improved version of the Transformer, the 

Informer has lower RMSE and MAE values, at 0.0201 and 0.016, respectively, while its 

MAPE is 0.0095 and R² is 0.8893. This suggests that the Informer performs better than 

the original Transformer in some respects, especially when dealing with time series data 

with high volatility. Lastly, the TFT exhibits the best performance among all the models, 

with an RMSE of only 0.0111, a MAPE of 0.0055, an MAE of 0.0043, and the highest 

R²  value of 0.9499. The TFT model integrates various techniques for time series 

forecasting, including time attention mechanisms and interpretable features, enabling it 

to excel across all evaluation metrics. Figure 5.1 visualizes the result of three model 

performances. 
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Figure 5.1 The visualization result of the three models’ performance 

These results imply that the TFT performs best in handling these currency exchange 

rate prediction tasks, possibly because it is designed to capture complex patterns in time 

series. The Informer and Transformer also perform well but cannot achieve outstanding 

results like TFT for this specific task. The differences may derive from the TFT's special 

treatment of the time dimension in its model architecture and its ability to capture and 

integrate various factors affecting the predictive variables. 

Additionally, from the perspective of training time and model convergence speed, 

the Informer can reach stable and accurate predictions within a relatively few 60 epochs, 

which might make it more efficient than the traditional Transformer and the TFT. 

However, considering the performance after model training, the TFT has demonstrated 

the highest R² value in currency exchange rate predictions. Although the TFT might 

require a more complex training process, its return on investment in model performance 

is optimal. 

5.2 Limitations of This Project 

The limitations of this project mainly fall into the following aspects: 

Firstly, the variables selected for this project are limited, only including primary 

exchange rate data. However, exchange rate trends are influenced by other complex 
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factors, such as national policies, inflation rates, and investor psychological expectations. 

Thus, the lack of comprehensive feature selection will inevitably lead to unavoidable 

errors in prediction. Based on this, it is possible to consider incorporating more factors 

that affect exchange rates in the data selection process. 

Secondly, we integrated the VIX index in the NZD/USD analysis and only 

experimented and verified it within the TFT model. However, more is needed to fully 

account for the explanatory power of the VIX index on exchange rate predictions. A way 

to overcome this limitation is to incorporate volatility indexes from different countries 

and conduct experiments and evaluations on multiple models, comparing and analyzing 

the significance of these indexes for exchange rate prediction. 

Moreover, due to limited time, each model's selection of parameters and functions 

was primarily based on relevant literature and materials, which may introduce subjectivity 

and randomness. Therefore, further research and experimentation are needed to select the 

optimal parameters. 

Finally, the experiments in this project are all based on the Transformer model 

framework. It is vital to conduct experimental comparisons with other cutting-edge 

models to comprehensively analyze and determine the best model for predicting exchange 

rates. 

 

 

  



58 
 

 

 

 

Chapter 6 

Conclusion and Future Work 

 

 

The conclusion based on the experiment's results is made 

in this chapter, and future work is proposed from a variety 

of aspects. 
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6.1 Conclusion 

This project aims to analyze and discuss the accuracy and performance of models through 

exchange rate predictions. This report employed three models: Transformer and its 

advanced versions, Informer and TFT. We collected four exchange rate datasets, 

NZD/USD, NZD/CNY, NZD/GBP, and NZD/AUD, and applied them to the three models 

for training and validation. Experiments were conducted on the Google Colab platform, 

and four evaluation criteria were utilised to analyze and compare the performance of the 

three models. 

All three models achieved satisfactory prediction effects on the four datasets from 

the results. However, comparisons indicated that the TFT model offered the best 

performance in exchange rate prediction, especially regarding accuracy and capturing 

trends in data changes. The Informer balanced efficiency and accuracy, demonstrating 

excellent predictive capabilities in fewer epochs. This is because of its sparse attention 

mechanism, which reduces computational complexity. Among the three models, the 

Transformer performed the least ideally, with relatively higher RMSE and MAE values 

and the lowest R²	value. 

Moreover, after introducing the VIX index into the TFT model for NZD/USD, we 

concluded from the comparison that the VIX index is significant for exchange rate 

prediction. As a measure of market volatility, using the VIX index in the model provided 

additional information, helping to improve the accuracy of exchange rate predictions. 

6.2 Future Work 

Although this study has made some progress in exchange rate prediction research, a 

number of shortages and issues still require further investigation. Therefore, our future 

research will be conducted in three aspects. Firstly, to enhance the accuracy of our models 

in predicting exchange rates, it is necessary to include more economic indicators and other 

relevant factors influencing exchange rates in the data collection process. Secondly, to 

verify the significance of the VIX index in exchange rate prediction, more models need 
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to be experimented with and tested. Lastly, further research and experimental validation 

are required to optimise model parameters. 
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