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Abstract: Estimating the calorie content of fruits is critical for weight management and maintaining 
overall health as well as aiding individuals in making informed dietary choices. Accurate 
knowledge of fruit calorie content assists in crafting personalized nutrition plans and preventing 
obesity and associated health issues. In this paper, we investigate the application of deep learning 
models for estimating the calorie content in fruits from digital images, aiming to provide a more 
efficient and accurate method for nutritional analysis. We create a dataset comprising images of 
various fruits and employ random data augmentation techniques during training to enhance model 
robustness. We utilize the RT-DETR model integrated into the ultralytics framework for implemen-
tation and conduct comparative experiments with YOLOv10 on the dataset. Our results show that 
the RT-DETR model achieved a precision rate of 99.01% and mAP50-95 of 94.45% in fruit detection 
from digital images, outperforming YOLOv10 in terms of F1- Confidence Curves, P-R curves, pre-
cision, and mAP. Conclusively, in this paper, we utilize a transformer architecture to detect fruits 
and estimate their calorie and nutritional content. The results of the experiments provide a technical 
reference for more accurately monitoring an individual’s dietary intake by estimating the calorie 
content of fruits. 
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1. Introduction 
Nowadays, obesity has emerged as a significant global health issue due to its associ-

ation with an increased risk of diseases such as heart disease, diabetes, and hypertension 
[1]. An effective method to prevent obesity is through controlling the calorie intake in 
foods [2]. In daily diets, fruits and vegetables play a crucial role as primary sources of 
nutrition. However, a great number of individuals lack understanding regarding the cal-
orie and nutritional content of various foods, necessitating a method to help them easily 
comprehend the calorie content of their food intake [3]. With the advancement of technol-
ogy, various artificial intelligence systems have been investigated to help people under-
stand the daily calorie intake of fruits and vegetables, aiding them in beGer diet control, 
such as the research of Begum et al. [4]. 

In this project, we propose a Transformer-based deep learning model to calculate the 
calories in fruits. Transformer architecture [5] was initially devised for tasks related to 
natural language processing (NLP) but has been so successful that deep learning models 
based on it have flourished and exhibited exceptional performance across various com-
puter vision tasks, notably in object detection. The framework we used for the real-time 
detection of objects utilizing the transformer architecture is Real-Time Detection Trans-
former (RT-DETR) [6], which has achieved impressive accuracy in real-time object detec-
tion. The motivation of our project is to utilize the features of the RT-DETR model to create 
a system that is able to detect fruits in real time using a camera feed and estimate their 
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calorie content. By automating these processes, we streamline workflows, improve effi-
ciency, and provide users with valuable insights into their dietary habits. 

This project aims to explore the capabilities of the RT-DETR model in fruit detection 
and calorie estimation, evaluate its performance compared to existing methods like 
YOLOv10, and showcase its potential for practical use in dietary monitoring and nutrition 
analysis. Hence, the research query addressed in this paper is how well deep learning 
technology performs in estimating the calorie content of fruits. Three hypotheses are in-
troduced to guide our research: 

Hypothesis 1: The RT-DETR model will achieve higher accuracy and precision across various 
performance metrics in fruit detection compared to the YOLOv10 model. 

Hypothesis 2: The RT-DETR model will produce lower loss values in the detection of fruits com-
pared to the YOLOv10 model. 

Hypothesis 3: The RT-DETR model will provide a beCer user experience and effectiveness in 
practical applications compared to the YOLOv10 model. 

2. Materials and Methods 
In this section, we describe the methods we used to achieve relevant results. We will 

provide a literature review of relevant background studies, followed by a description of 
the methods used in this project. 

2.1. Transformer 
Transformer architecture [5] is specifically crafted for processing data of sequence, 

such as the words in a sentence. It processes incoming sequences and converts them into 
other sequences. It utilizes self-aGention exclusively to calculate the input and output rep-
resentations, eliminating the need for sequence-aligned RNNs (Recurrent Neural Net-
works) [7] or convolution. The architecture comprises an encoder and a decoder, illus-
trated in Figure 1. 

 
Figure 1. The transformer architecture. 

In Figure 1, the encoder consists of N (equal to 6) identical layers; each contains two 
sub-layers: multi-head self-aGention and a fully connected feed-forward network (FFN). 
These sub-layers include residual connections [8] and layer normalization [9]. The multi-
head aGention mechanism involves projecting queries, keys, and values through linear 
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transformations and then concatenating the resulting aGention results. Each sub-layer out-
put is computed as the layer normalization of the sum of the sub-layer input and its output. 

In the first sub-layer, multi-head self-aGention is employed, where aGention is calcu-
lated for a set of queries concurrently by using a scaled dot-product mechanism. The out-
put is obtained by multiplying the softmax function of the scaled dot product of the query 
and key with the value matrix. This process is repeated for each head and then concate-
nated and linearly transformed. 

The second sub-layer is a position-wise fully connected feedforward neural network 
(FFN) that provides linear transformations. It applies a nonlinear activation function after 
the linear transformation to introduce complexity. 

The decoder also consists of N layers, which were split into sub-layers. The first sub-
layer utilizes masked multi-headed aGention to ensure that the predictions for each posi-
tion depend only on previous positions. The second sub-layer is an encoder–decoder 
multi-head aGention, where the input comes from the encoder’s output and the decoder’s 
previous layer output. This layer facilitates information exchange between the encoder 
and decoder. 

2.2. DETR 
Transformer initially was designed for natural language processing, which has ap-

plications in visual object detection tasks owing to its robust modeling capability and ef-
ficient parallel computing [5]. Visual object detection from digital images involves identi-
fying objects within images or videos, determining their positions, and assigning corre-
sponding categories. 

Compared to convolutional neural networks (CNNs), transformer-based backbone 
networks offer advantages such as larger receptive fields, more adaptable weight seGings, 
and beGer global modeling capabilities [10]. In 2020, Google introduced the Vision Trans-
former (ViT) (URL:hGps://github.com/google-research/vision_transformer, accessed on 4 
August 2024), which proved successful in image classification, marking a significant mile-
stone in applying transformer models to computer vision (CV) [10]. 

Another notable development is the DETR model (URL: hGps://github.com/face-
bookresearch/detr, accessed on 4 August 2024), which employs an end-to-end transformer 
architecture to transform object detection into a sequence-to-sequence problem [11]. DETR 
simplifies the detection process by eliminating the need for manually crafted components 
like Non-Maximum Suppression (NMS) or anchor generation, achieving good perfor-
mance. However, DETR suffers from drawbacks such as slow training, high computa-
tional overhead, and poor performance in detecting small objects [11]. To address these 
limitations, variants of DETR models have been proposed, each targeting specific chal-
lenges: PnP-DETR introduces a “poll and pool” sampling module to adaptively sample 
features of different granularity, balancing computational overhead and performance [12]. 
Deformable DETR reduces computational overhead by altering the aGention mechanism 
calculation method, leveraging deformable convolutions to improve small object detec-
tion performance [13]. Sparse DETR further reduces computational costs by selectively 
updating only a portion of encoder tokens, maintaining detection performance [14]. Con-
ditional DETR decouples appearance and position features to speed up convergence by 
learning conditional space queries [15]. The Anchor DETR model shows a new object 
query design by using anchor points to guide optimization and accelerate convergence 
[12]. DAB-DETR builds on Anchor DETR by introducing 4D reference points to further 
accelerate convergence [16]. DN-DETR addresses slow convergence by stabilizing train-
ing with noisy ground truth and query inputs [17]. 

These methods aim to expedite DETR convergence and have demonstrated effective-
ness in experiments conducted on the COCO dataset. Through innovative approaches tar-
geting different aspects of the detection process, these variants contribute to advancing 
the performance and efficiency of object detection models. 
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2.3. Our Methods 
2.3.1. Dataset 

Data Collection 
Due to the seasonal variations in data collection, the neural network in this project is 

trained by utilizing the fruit categories covering the fruits most likely to be encountered 
when using the calorie detection system: Royal Gala Apple, Rose Apple, Granny Smith 
Apple, Ambrosia Apple, JAZZ Apple, Orange, and Kiwifruit. 

We created a dataset comprising 1866 images of various fruits for fruit detection. By 
using a camera, we captured videos of each fruit from multiple angles at equidistant dis-
tances and the images were obtained by extracting frames from the videos. The dataset 
consists of seven classes of local fruit products. To identify fruit categories and estimate 
their calorie content, each fruit was classified into weight categories of equal intervals, 
resulting in a total of 22 categories. For example, for Royal Gala Apples, weight categories 
were defined as follows: “Royal_Gala_Apple 1” for weights up to 140 g, “Royal_Gala_Ap-
ple 2” for weights between 140 g and 180 g, and “Royal_Gala_Apple 3” for weights ex-
ceeding 180 g. 

Due to the equidistant capture method, the images of fruits of different weights have 
varying dimensions, allowing the deep learning model to estimate calorie content based 
on image dimensions. The calorie and nutrient composition data for the 7 classes of fruits 
were sourced from “The Concise Food Composition Tables” [18]. These datasets are uti-
lized for energy estimation during the fruit detection process. Additionally, by starting 
with these 1866 fruit images as a foundation, we employed various data augmentation 
techniques to generate a dataset comprising 4478 images. This dataset was subsequently 
partitioned into training, validation, and testing sets in the proportions of 88%, 8%, and 
4% (100% in total), respectively. Specifically, the dataset includes 3918 images for the train-
ing, 374 images for the validation, and 186 images for the testing. 

Data Preprocessing 
To ensure neural networks for tasks like image classification and object detection are 

trained effectively, it is crucial to resize images to match the input layer’s predetermined 
size. This is the reason why convolutional layers in neural networks analyze images pixel 
by pixel and the interactions with neighboring pixels to identify features. Given the use of 
the ultralytics framework in this project, we have standardized image dimensions to 640 
by 640 pixels, compatible with ultralytics specifications. 

Data augmentation plays a key role in diversifying training data, enhancing model 
generalization and resilience. This involves transforming inputs to enlarge the scale and 
variety of annotated training datasets [19]. In this paper, various data augmentation meth-
ods were employed: (1) horizontal flipping with a 50% probability; (2) no rotation, clock-
wise rotation, and anti-clockwise rotation in 90-degree increments; (3) random cropping 
of 0% to 20% of image size; (4) random rotation between −15 and +15 degrees; (5) horizon-
tal shearing between −10° and +10°, and vertical shearing between -10° and +10°; (6) ran-
dom brightness adjustment between −15% and +15%; (7) random grayscale application to 
a subset of the training set with a 15% probability. If these data augmentation techniques 
are applied to the images, we can obtain results similar to Figure 2. It is important to apply 
the augmentation only to the training dataset, not the validation or testing datasets. 
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Figure 2. The images used in data augmentations. 

Furthermore, in the training process, we utilized some default hyperparameters of 
the framework, including an initial and final learning rate of 0.01. The framework offers a 
variety of optimizers, such as SGD (URL: hGps://github.com/CU-UQ/SGD, accessed on 4 
August 2024), Adam, Adamax, AdamW, NAdam, RAdam, and RMSProp. For our exper-
iments, we opted to allow the model to automatically select the most suitable optimizer. 
Moreover, in order to enhance the robustness of this proposed model, we utilized random 
data augmentation from the ultralytics framework during model training. Specifically, the 
data augmentation approaches include the random Affine transformation which involves 
translating, shearing, rotating, and scaling the image based on specified parameter values. 
In this transformation, we set the parameters as follows: degrees: 30.0, translate: 0.1, shear: 
10, and scale: 0.5. Random 4-image mosaic augmentation combines four random images 
into a single mosaic image. HSV augmentation stands for hue, saturation, and value, 
collectively representing a color space used for describing colors. Figure 3 demonstrates 
the combined enhancement effect when we set the HSV parameters to hsv_h: 0.015, hsv_s: 
0.7, and hsv_v: 0.4. We used the Albumentations toolkit to incorporate the techniques Blur, 
MedianBlur, ToGray, and CLAHE. Figure 4 showcases the effects of employing these 
augmentation techniques. 

 

Figure 3. Applying HSV augmentation randomly. 
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Figure 4. The effects of four augmentation techniques from the Albumentations Library. 

2.3.2. RT-DETR Architecture 
In this project, a DETR model named RT-DETR is employed for fruit detection and 

calorie estimation from digital images. RT-DETR [6] not only resolves the “two sets of 
thresholds” issue but also significantly improves practical utility, streamlining deploy-
ment processes. These advancements enable RT-DETR to meet real-time detection de-
mands, leading to widespread adoption in practical applications. The architecture of RT-
DETR is illustrated in Figure 5. In terms of structure, RT-DETR consists of three blocks: 
backbone network, neck network, and decoder. 

 
Figure 5. The architecture of RT-DETR. 

Backbone. The backbone network of RT-DETR takes use of ResNet50, ResNet101 
[8,10,20], and HGNet-v2 [21]. RT-DETR extracts outputs at three scales, 𝑆!, 𝑆", and 𝑆#, 
from the backbone network. In this project, we trained the RT-DETR model on our dataset 
by using the HGNetv2 backbone. 

Hybrid Encoder. For the neck network, RT-DETR employs a solitary layer of Trans-
former encoder, exclusively processing the 𝑆#features outpuGed from the backbone net-
work, as shown in Figure 2, called AIFI (i.e., the AGention-based Intra-scale Feature Inter-
action) module. The mathematical operations of AIFI are represented as follows: 

𝑄 = 𝐾 = 𝑉 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑆#) (1) 

𝐹# = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝐴𝑡𝑡𝑛(𝑄, 𝐾, 𝑉)) (2) 

where ACn means the multi-head self-aGention; Reshape is utilized to revert the feature’s 
shape back to that of 𝑆#. 

The two-dimensional S5 features undergo flaGening into a vector before being passed 
to the AIFI module. The computational process entails multi-head self-aGention and FFN 
(Feed-Forward Network). Subsequentially, the output is reshaped back into two dimen-
sions, represented as 𝑆#, for further “cross-scale feature fusion.” According to the RT-
DETR research team, the decision of RT-DETR to only process the final S5 feature through 
AIFI is based on two considerations: (1) Previous DETR models, such as Deformable 
DETR, concatenated features from multiple scales into one long sequence vector. While 
this approach facilitates ample interaction between features at different scales, it also leads 
to significant computational overhead and time consumption. RT-DETR is considered one 
of the primary reasons for the slow computation speed of the existing DETR models. (2) 
In RT-DETR, compared to shallower features like 𝑆!  and 𝑆" , the 𝑆#  features possess 
deeper, more advanced, and enhanced semantic information. These semantic features of-
fer greater value and utility for Transformers to distinguish between different objects. In 
contrast, shallow features lack significant semantic information and are less effective. 
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The RT-DETR demonstrates that applying the encoder only to the 𝑆# features can 
significantly reduce computational complexity, improve computation speed, and main-
tain model performance. 

IoU-aware query selection. IoU-aware query selection is introduced to guide the 
model during training. This approach enhances the classification by assigning higher 
scores to features with high IoU [22] scores and lower scores to those with low IoU scores. 
This improves the quality of initial object queries for the decoder, thereby enhancing de-
tection performance. 

To address the latency issues caused by NMS (Non-Maximum Suppression) [23] in 
current real-time detectors, RT-DETR introduces a real-time end-to-end detector. This de-
tector comprises two key critical enhancements. Firstly, a hybrid encoder is designed to 
efficiently process multiscale features. Secondly, IoU-aware query selection enhances the 
initialization of object queries. The combination of these improved components enhances 
the performance of our detector in real-time scenarios. 

Decoder. RT-DETR supports flexible tuning of inference speed by employing varying 
numbers of decoder layers and eliminating the necessity for retraining, thus enabling the 
model to adapt to various real-time scenarios. 

2.4. Operating Environment 
The operating environment required in this paper includes Microsoft Windows 10 or 

later versions, Python 3.10 or later versions for the programming language, PyTorch 2.1.0 
or later versions for the deep learning framework, and the ultralytics object detection 
framework and CUDA 11.7 or later versions for accelerated computing. 

2.5. Evaluation Method 
We evaluated the effectiveness of RT-DETR by conducting a comparative analysis 

with YOLOv10 on our dataset since YOLOv10 is the cuGing-edge object detector con-
structed upon CNN architecture. The training performance of YOLOv9 and YOLOv8 [22] 
is also used for comparison, as they are high-performance versions of the YOLO models. 

YOLO (You Only Look Once) has become mainstream in the field of real-time object 
detection due to its effective balance between detection speed and performance. The 
YOLO series [24] includes YOLOv1 through YOLOv10. YOLOv10 [25] is proposed after 
exploring various aspects of the YOLO series, aiming to further broaden the performance-
efficiency frontier of YOLO through advancements in post-processing techniques and 
model design. 

Typically, during training, YOLO uses a one-to-many label assignment approach, 
where a single ground truth object is matched with multiple positive samples. This 
method requires using NMS (Non-Maximum Suppression) during inference to choose the 
most promising positive prediction. This process reduces the inference speed and makes 
the performance dependent on NMS hyperparameters, preventing YOLO from achieving 
truly optimal end-to-end deployment. To address this, YOLOv10 introduces a training 
approach that eliminates the need for Non-Maximum Suppression, utilizing a dual-label 
assignment strategy with consistent matching criteria instead. Departing from the one-to-
many assignment paradigm, YOLOv10 adopts a one-to-one matching scheme, which 
avoids the need for NMS during inference but introduces the drawback of weaker super-
vision, hampering both model accuracy and training convergence rate [26]. Thus, 
YOLOv10 adds another one-to-one head, retaining the same structure as the original one-
to-many branch and adopting the same optimization objectives but utilizing one-to-one 
matching for label assignment. In the training procedure, dual heads are optimized to-
gether with the model, enabling the backbone and neck networks to take advantage of the 
extensive supervisory information offered by the one-to-many assignments. At inference 
time, the one-to-many head is discarded, and predictions are made using the one-to-one 
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output head, allowing end-to-end deployment with no added computational burden, 
achieving high efficiency and competitive performance. 

Additionally, YOLOs exhibit significant computational redundancy, with inefficient 
parameter utilization and suboptimal efficiency. YOLOv10 implements a comprehensive 
model design from the perspectives of both efficiency and accuracy. 

Efficiency-driven model design. Firstly, YOLOv10 employs a lightweight architec-
ture for the classification head, reducing the overhead without significantly affecting per-
formance. Secondly, it decouples spatial downsampling and channel increase operations 
to achieve more efficient downsampling, reducing computational cost and parameter 
count while maximizing preservation and downsampling to achieve strong performance 
with less delay. Lastly, YOLOv10 uses a rank-guided block design strategy instead of ap-
plying the same module design for all stages. It introduces a compact inverted block (CIB) 
structure, using affordable depthwise convolutions for spatial integration and cost-effec-
tive pointwise convolutions for channel mixing. A module allocation strategy guided by 
ranks is employed to achieve optimal efficiency while preserving competitive capability, 
adapting a compact module design to reduce complexity in stages showing redundancy 
without compromising performance. 

Accuracy-driven model design. YOLOv10 uses large-kernel depthwise convolutions 
in the deep stages of the CIB [25] for small model scales to expand the receptive field and 
enhance model capability. Furthermore, it introduces an effective Partial Self-AGention 
(PSA) [25] module design, where a portion of features is fed into NPSA [25] blocks com-
prising multi-head self-aGention (MHSA) [5] and feed-forward networks (FFN) [5] after 
the lowest-resolution Stage 4. The two segments are subsequently combined and inte-
grated using a 1 × 1 convolution. This approach incorporates the global modeling ability 
of self-aGention into YOLOs while keeping the computational cost low, effectively en-
hancing model capability and improving performance. 

3. Results  
In this section, we provide a detailed analysis of the results produced by the models 

we trained. All training results refer to the model being trained on our dataset for 100 
epochs, with a batch size of 4. The performance metrics include precision, P-R curves, and 
loss values. Additionally, we conduct real-time experiments to evaluate the detection per-
formance of the model.  

3.1. Benchmark Tests 
We utilize four metrics to evaluate the performance of the model: precision, recall, 

mAP50, and mAP50-95. Precision refers to the capability of this proposed model to cor-
rectly identify and classify only visual objects that are pertinent to the given task. Recall 
assesses the fraction of all true positive samples that the model can identify. mAP is short 
for mean average precision, indicating the mean precision across different classes. mAP50 
denotes the value of mAP at a 50% threshold of IoU. In formal terms, the average precision 
(AP) for a specific class is derived from the region under the precision–recall curve [27]. 

𝐴𝑃 = 5𝑝(𝑟)𝑑𝑟 (3) 

The term mAP is utilized to calculate the mean values of AP across all classes. 

𝑚𝐴𝑃 =
1
𝑛𝑐;𝐴𝑃 (4) 

where nc is the total count of classes. 
The term mAP50-95 is a stricter evaluation metric as it computes the value of mAP 

across the range of 50–95% IoU thresholds (e.g., from 0.5 to 0.95, with increments of 0.05, 
i.e., 0.5, 0.55, 0.6..., 0.95), and then takes the average. 
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Table 1 displays the best performance of these three models across the four metrics 
for 100 epochs. The RT-DETR model has higher precision, recall, and mAP50 compared 
to YOLOv8, YOLOv9, and YOLOv10, with values of 99.01%, 99.20%, and 99.17%, respec-
tively. Furthermore, the RT-DETR model achieves higher mAP50-95 than YOLOv8 and 
YOLOv9; however, it is slightly lower than that of YOLOv10, with values of 94.45% and 
95.35%, respectively. In addition, the training time for RT-DETR is shorter than that of 
YOLOv9 but is three times longer than YOLOv10 and five times longer than YOLOv8. 

Table 1. Performance values of YOLOv8, YOLOv9, YOLOv10, and RT-DETR. 

 Precision  Recall mAP50 mAP50-95 Training Time 
YOLOv8 
YOLOv9 
YOLOv10 

94.57% 
96.63% 
96.27% 

 
95.17% 
91.32% 
97.11% 

97.87% 
98.56% 
99.07% 

93.01% 
94.64% 
95.35% 

54 min 
9 h 23 min 
3 h 11 min 

RT-DETR 99.01%  99.20% 99.17% 94.45% 6 h 35 min 

3.2. F1–Confidence Curves 
The F1 curve represents the harmonic mean of precision and recall. It ranges from 0 

to 1, where a value of 1 indicates optimal performance and 0 indicates poor performance. 
The F1 score curve shows how the F1 score changes at different thresholds. It is mathe-
matically represented by Equations (5) and (6) [27]:  

				𝐹$ = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (5) 

𝐹$ = 2𝑇𝑃/(2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃) (6) 

where precision measures the accuracy of detections by indicating the proportion of pre-
dicted bounding boxes that correspond to ground truth objects. It reflects how many of 
the predicted objects are correct. Recall evaluates the capacity of the model to detect 
ground truth objects by indicating the proportion of actual objects that are accurately iden-
tified. Figures 6a and 6b depict the F1–confidence curves for the YOLOv10 and RT-DETR, 
respectively.  

(1) The maximum F1 score for the YOLOv10 is 0.95, while RT-DETR achieves 0.99, 
indicating an improvement of 0.04. 

(2) The region beneath the F1–confidence curve provides a summary of performance 
across all thresholds. A greater region indicates superior model performance. The results 
show that the region beneath the curve of the RT-DETR model is larger than that of the 
YOLOv10 model. 

  
(a) (b) 

Figure 6. F1–confidence curves for YOLOv10 (a) and RT-DETR (b). The graylines are our F1-confi-
dence curves with different parameters and datasets. 
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3.3. P-R Curves 
The P-R curve showcases the trade-off between precision and recall. We aim at the 

curve to approach the point (1.0,1.0) by indicating maximum precision and recall, thus 
maximizing the area under the mAP curve as close to 1.0 as possible. 

Figures 7a and 7b illustrate the P-R curves for YOLOv10 and RT-DETR, respectively. 
We see that the curve of the RT-DETR model is higher than that of YOLOv10. Furthermore, 
the curve of the RT-DETR model is closer to the upper right corner compared to YOLOv10. 
In addition, the RT-DETR model has a higher AUC than YOLOv10, indicating that the RT-
DETR model exhibits beGer performance. 

  
(a) (b) 

Figure 7. The P-R curves for YOLOv10 (a) and RT-DETR (b). The graylines indicate the different 
parameters and datasets for testing our proposed models. 

3.4. Loss Values 
We use three loss functions to measure the extent to which the model’s predictions 

deviate from the ground truth, aiming to extensively evaluate the performance of the pro-
posed model. 
• GIoU loss (Localization Loss)/box_loss: This loss function calculates the difference 

between predicted bounding boxes and ground truth bounding boxes. 
• Cls_loss (Classification loss): The model uses classification loss to measure the accu-

racy of classification. 
• L1 loss (Feature Point Loss): The model utilizes it to directly measure the absolute 

differences between the predicted and ground truth bounding box coordinates. 
• dfl_loss (Distribution Focal Loss): It aims to enhance the model’s accuracy, especially 

in complex object detection scenarios by focusing more on hard-to-detect objects. Es-
sentially, it adjusts how the model weighs errors differently depending on their dif-
ficulty, helping the model to beGer estimate object categories. It is a loss metric uti-
lized by YOLO models but not applied in RT-DETR. 
Note: For the regression loss, we use GIoU loss (be presented as bos_loss in YOLO 

models) as the main loss metric for comparison, as GIoU loss takes correlation into ac-
count compared to L1 and L2.  

Tables 2 and 3 show that, overall, the GIoU loss (Localization Loss) and Cls_loss 
(Classification Loss) of the RT-DETR model are smaller than those of YOLOv10, YOLOv9, 
and YOLOv8 during both the training and validation phases. Specifically, during the 
training phase, the GIoU loss and Cls_loss for the RT-DETR model are 0.04 and 0.1, re-
spectively, while YOLOv10 has values of 0.34 and 0.31. In the validation phase, the GIoU 
loss and Cls_loss for the RT-DETR model are 0.09 and 0.21, compared to 0.65 and 0.37 for 
YOLOv10. 
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Table 2. Loss values for YOLOv10, YOLOv9, and YOLOv8. 

  Train   Val  
 box_loss cls_loss dfl_loss box_loss cls_loss dfl_loss 

YOLOV8 0.2 0.28 0.89 0.36 0.26 0.98 
YOLOV9 
YOLOv10 

0.36 
0.34 

0.85 
0.31 

1.17 
1.75 

0.42 
0.65 
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0.37 

1.11 
1.79 

Table 3. Loss values for RT-DETR. 

  Train   Val  
 giou_loss cls_loss l1_loss giou_loss cls_loss l1_loss 

RT-DETR 0.04 0.1 0.05 0.09 0.21 0.18 

3.5. Real-Time Detection 
We used multiple fruits with varying weights for real-time prediction. Additionally, 

the juice content of fruits of equal weight to the detected fruits was also reflected in the 
experimental results. 

Figure 8a–e shows the detection outcomes generated by using RT-DETR (left side) 
and YOLOv10 (right side) models in diverse environments. Overall, the RT-DETR model 
has a higher detection accuracy than the YOLOv10 model. 
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Figure 8. (a–e) Prediction of RT-DETR model (left) and YOLOv10 model (right) in various back-
grounds. 

Additionally, while it might be due to insufficient sample diversity, the two models 
have calorie estimation errors. For instance, Figure 9a shows that an NZ Rose apple orig-
inally containing 264 kJ of energy was detected by RT-DETR as having 200 Kj (left) and by 
YOLOv10 models as having 136 kJ (right). Figure 9b shows that both the RT-DETR model 
and the YOLOv10 model detected an NZ Rose apple, which originally contained 136 kJ of 
energy, as having 200 kJ. 
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Figure 9. (a,b) Calorie estimation error for the RT-DETR model and the YOLOv10 model in differ-
ent environments. 

Furthermore, the two models occasionally exhibit detection errors. For instance, Fig-
ure 10a,b shows that the RT-DETR and YOLOv10 models both misidentified an Ambrosia 
apple or a Rose apple as a Gala apple. 

 
(a) 

 
(b) 

Figure 10. (a,b) Both RT-DETR and YOLOv10 models incorrectly detected an Ambrosia apple or a 
Rose apple as a Gala apple. (a) The case in misidentification for an Ambrosia apple (b) The case in 
misidentification for an Rose apple  

4. Discussion 
This project aims to investigate the application of deep learning models for estimat-

ing the calorie content in fruits. To achieve this goal, we generated a dataset from videos 
captured by ourselves. We trained the TR-DETR model on our dataset and performed 
detection in a real-time environment. We will discuss the results, explore the limitations 
of the project, and examine potential future directions based on the training and real-time 
detection outcomes and the three hypotheses. 
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4.1. Will the RT-DETR Model Overall Outperform YOLOv10 across Various Performance 
Metrics? 

Table 1 presents the performance metrics for four object detection models: YOLOv8, 
YOLOv9, YOLOv10, and RT-DETR. It highlights that RT-DETR generally outperforms the 
YOLO models in precision (99.01%), recall (99.20%), and mAP50 (99.17%), indicating bet-
ter detection accuracy. However, YOLOv10 has a slightly higher mAP50-95 score than the 
RT-DETR model, with values of 95.35% and 94.45%, respectively, showing marginally bet-
ter performance across different IoU thresholds. 

Figure 6 shows that the RT-DETR model has a higher peak F1 score than YOLOv10, 
indicating superior optimal performance. Additionally, the larger area under the F1–con-
fidence curve for RT-DETR compared to YOLOv10 suggests that RT-DETR consistently 
performs beGer across various confidence levels. 

As shown in Figure 7, the P-R curve of the RT-DETR model is higher and closer to 
the upper right corner (1.0, 1.0) compared to YOLOv10, indicating superior precision and 
recall across different levels. Additionally, RT-DETR has a higher area under the curve 
(AUC) than YOLOv10, demonstrating overall beGer performance. 

Additionally, for the real-time detection performance, Figure 8a–e shows that, over-
all, the RT-DETR model achieves higher precision than the YOLOv10 model across vari-
ous backgrounds. 

Based on our results, the first hypothesis is supported that the RT-DETR model over-
all outperforms YOLOv10 across various performance metrics. 

4.2. Will the RT-DETR Model Produce Lower Loss Values in the Detection of Fruits Compared 
to the YOLOv10 Model? 

In Tables 2 and 3, we see that the RT-DETR model consistently demonstrates lower 
GIoU loss (localization loss) and Cls_loss (classification loss) compared to YOLOv10, 
YOLOv9, and YOLOv8. This indicates that RT-DETR is more effective in both accurately 
localizing objects and classifying them. 

Furthermore, during the training phase, RT-DETR’s GIoU loss and Cls_loss are no-
tably lower (0.04 and 0.1) than those of YOLOv10 (0.34 and 0.31). This suggests that RT-
DETR achieves beGer performance and converges faster in terms of localization and clas-
sification than YOLOv10 during training. 

Lastly, in the validation phase, RT-DETR continues to show lower GIoU loss and 
Cls_loss (0.09 and 0.21) compared to YOLOv10 (0.65 and 0.37). This indicates that RT-
DETR maintains its superior performance and generalizes beGer to unseen data. 

According to the above analysis, the second hypothesis is confirmed that the RT-
DETR model exhibits lower loss values for fruit detection when compared to the 
YOLOv10 model. 

4.3. Will the RT-DETR Model Provide a BeCer User Experience and Effectiveness in Practical 
Applications Compared to the YOLOv10 Model 

Table 1 shows that the training time for RT-DETR is shorter than that of YOLOv9 but 
is three times longer than YOLOv10 and five times longer than YOLOv8. Additionally, in 
real-time detection, the RT-DETR model is also slower than the YOLOv10 model. Based 
on these, the third hypothesis is not supported that the RT-DETR model provides a beGer 
user experience and effectiveness in practical applications compared to the YOLOv10 
model. 

4.4. Detection Errors 
Figures 9 and 10 show that both the TR-DETR and YOLOv10 models exhibit calorie 

estimation errors and occasional detection errors. These issues are likely aGributable to 
insufficient sample diversity in the training data, which may affect the models’ perfor-
mance and accuracy. 
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4.5. Limitations and Future Work 
This research project has several limitations. The uniformity of our dataset, stemming 

from fruits typically being displayed in supermarkets based on similar sizes, leads to a 
lack of diversity, potentially hampering comprehensive training. Moreover, the current 
focus solely on estimating individual fruit calorie content limits the extension to 
estimating total calorie content across multiple fruit types. Although the RT-DETR-L 
model outperforms YOLOv10, YOLOv9, and YOLOv8 models in real-time detection, its 
longer training time and less smooth performance during real-time detection call for 
further enhancements. Additionally, false detections during real-time detection 
underscore the necessity for precision improvement. 

Our future work can focus on collecting more diverse samples to improve detection 
precision. Additionally, exploring the incorporation of fruit weight as a parameter in 
model training to estimate calorie content based on weight could be beneficial. 
Furthermore, the detection and estimation of total calories from multiple fruits 
simultaneously would broaden the scope of the project. Lastly, there is still room for 
improvement in the detection precision of our proposed model. Currently, our efforts are 
directed towards integrating CNN and Transformer architectures to achieve optimal 
results. Looking ahead, it is promising that Transformers may entirely replace CNNs in 
the realm of computer vision as further fine-tuning progresses. 

5. Conclusions 
This project aims to assess deep learning models for estimating fruit calorie content, 

focusing on the transformer-based RT-DETR model compared to the CNN-based 
YOLOv10 model. The RT-DETR model generally outperforms the YOLOv10 model in ac-
curacy and loss metrics, showing superior performance in detection precision and classi-
fication. Its higher F1 scores and larger areas under the precision–recall curves highlight 
its consistent superiority. 

However, the RT-DETR model faces practical challenges, including longer training 
times and slower real-time detection compared to the YOLOv10 model, impacting its us-
ability. Both RT-DETR and YOLO models also exhibit calorie estimation and detection 
errors, likely due to limited sample diversity in the training data, which affects their gen-
eralization ability. 

Future research should focus on increasing dataset diversity to improve detection 
precision and reduce errors. Incorporating additional parameters, like fruit weight, could 
refine calorie estimation further. Additionally, exploring new model architectures, such 
as integrating CNN and Transformer techniques, may enhance both accuracy and effi-
ciency. 

In summary, while the RT-DETR model demonstrates strong performance, further 
development is needed to enhance its practical application and real-time performance. 
Addressing these limitations and exploring advanced methodologies will be key to im-
proving the effectiveness of deep learning models in fruit calorie estimation. 
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