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Abstract 

With the development of deep learning and computer vision, daily activities are rapidly 

being replaced by computers or robots, for example, unmanned vehicles.  Recently, with 

the advanced Microsoft Copilot, even coding work can be replaced by machines, there’s 

no doubt that our lives become more and more convenient based on that technological 

development.  

    In this thesis, we conduct research work on fruit freshness detection from digital images. 

In the first step, we take use of YOLOv6, YOLOv7, and YOLOv8 to detect a variety of 

fruits from digital images, this can incredibly improve the efficiency and accuracy of fruit 

classification compared with human work. To generate the final outcomes, we train the 

three architectures individually, and we adopt a majority vote to get a better performance 

for fresh fruit detection. Compared with the previous work, our clustering method has 

higher accuracy and is faster than the previous architectures. Because we are use of the 

clustering method to generate our final results, it will be easy for us to change the 

backbone and get a better result in the future. 

    Pertaining to the dataset, we selected a dataset from Kaggle which includes 6 classes 

for the fruits, namely, “fresh apple”, “fresh banana”, “fresh orange”, “rotten apple”, 

“rotten banana”, and “rotten orange”. Based on this dataset, the proposed deep learning 

models are able to detect visual objects from digital images taken by ourselves, which 

can be easily fine-tuned with a larger dataset in the near future. 
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Chapter 1 

Introduction 

 

 

This chapter is composed of five parts: The first part encompasses 

the background and motivations, the second part includes the 

research question, followed by the contributions, objectives, and 

structure of this thesis.  
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1.1 Background and Motivation 

Fruit freshness detection is a topic that attracts a lot of attentions in computer science which is 

also a very important task for human lives, since in our daily life, we need to know which food is 

safe, which is pathogenicity. Rotten foods may cause terrible food poisoning and always have a 

very bad taste, eating those food may cause some serious health issue, such as acute gastroenteritis 

or even death, and normally it is hard for a person to identify if a fruit is rotten or not. Our human 

developed many ways to detect or make a prediction of freshness, we conduct visual object 

detection based on the colors of fruits. It is also possible for people to detect watermelon quality 

just by tapping on the watermelon that looks like magic (Zou, 2023). In a factory, it is impossible 

to hire a lot of "fruit experts" to classify a substantial number of fruits every day , but identify the 

freshness of the fruit is very important for society, selling rotten food will not only loss the brand 

credibility but also will cause some lawsuit from users and resulting in large amounts of 

compensation, for the above reasons, our community really needs an automated method to 

identify fruit freshness.  

    The first choice of pattern classification (Yu, 2019) was that we make use of a computer to 

detect fruit freshness, but for fruit freshness detection, the method may be restricted, because for 

now, a computer can't smell or taste the fruit (maybe in the future, it is possible). In this thesis, 

we plan to use the contactless method to conduct fruit freshness classification, thus the most 

straightforward way is to conduct object detection based on digital images of fruit. Through these 

image data, we expect a computer can classify fresh or rotten fruits based on the given fruit images 

by using computer vision (Zhao, 2019; LeCun, 2013; Matsugu, 2003; Sa, 2016; Wu, 2020). From 

the previous method, the traditional way is to use the shape or color to classify the rotten or fresh 

fruit, these method is running fast and performs well for some kind of fruit, like banana, grapes 

and so on, because those fruits will change their color or shape when they are rotten, but for some 

other fruit, like apple or watermelon, it is hard to identify if the fruit is rotten only based on color 

or shape; recently, with the development of convolution neural network, we can use a new method 

to detect the rotten fruit based on the features from the image, features include color and shape, 

and will also include some information hard to describe from the image by our human. 

    In this thesis, we collect a considerable number of deep learning models for fruit freshness 
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detection. YOLO is a very famous architecture that can be proffered for almost all types of pattern 

classification and object detection tasks (Zhao, 2019, Krizhevsky, 2017). Meanwhile, we also 

introduce those potential methods for this thesis (for example, the hottest “Transformer”) 

(Chen,2021). In this project, we have advanced methods (Chen, 2022; He, 2021; Moghaddam, 

1995; Krizhevsky, 2012) for fruit classification. 

1.2 Research Questions 

In this thesis, we mainly concentrate on deep learning methods (like YOLO) (Li, 2022) to classify 

digital images for fresh or rotten fruits, we will apply three YOLO architectures and compare their 

outcomes, our research questions are: 

(1) Is it possible to use YOLO to detect fruit freshness? 

(2) Which architecture is the fastest one? 

(3) Which model has the highest accuracy in fruit freshness detection?    

(4) Which kind of majority vote method has the best performance? 

    The main idea of this thesis is to verify whether YOLO models can be employed to detect the 

freshness of the given fruits and find out the YOLO version with the best performance. There are 

multitude of the state-of-the-art methods that can be proffered for this project, but caused by the 

time limit and background knowledge, we only take advantage of YOLO models.  

1.3 Contributions 

The focus of this thesis is to detect or classify fresh or rotten fruits from the input images.  

According to the most advanced YOLO models, it will be easy for us to get high precision and 

recall for fruit freshness detection even compared with the human labeling method. By the end of 

this thesis, we are able to: 
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(1) Collect a large dataset for 3 different types of fruit (apple, banana, and orange) 

(2) Process each image with YOLOv6, YOLOv7, and YOLOv8. 

(3) Have a general understanding of the Transformer. 

(4) Prove machine learning methods to detect the freshness of the fruit. 

(5) Find an ensemble method to combine the detection result from different architectures and 

obtain the best clustering weights for different architectures. 

 

    Meanwhile, the core method for this thesis will be using different YOLO models to classify a 

variety of fruits, we take use of different types and different augmentation images for our 

experiments. 

1.4 Objectives of This Thesis 

Thanks to the development of machine vision, there are a large volume of methods to conduct 

fruit freshness detection based on digital images, for example, AlexNet (Krizhevsky, 2017), Fast 

R-CNN (Girshick, 2015), Faster R-CNN (Ren, 2015), Autoencoder (Zhang, 2016), Transformer 

(Chen, 2021, Cheng, 2022), the models already got the state-of-the-art outcomes. Considering the 

utility and convenience in the future, we plan to use YOLO (Redmon, 2016) models for this 

project.  The reason is that YOLO is a light-weight architecture (can be used on a mobile device) 

and has a similar performance compared with Faster R-CNN or transformer, training YOLO 

models is also much faster and easier than training an R-CNN or transformer model. The most 

important thing is that YOLO is not only an architecture, but also a toolbox for image 

classification, detection, or segmentation. There are millions of instructions and applications, 

which can help us train and test YOLO models with a diversity of image datasets easily.  

     In this thesis, we apply YOLOv6 (Li, 2022), YOLOv7 (Wang, 2022), and YOLOv8 to conduct 

fruit freshness detection and classification based on digital images, all these architectures will 

have a similar structure and can process the same dataset, we will discuss the details about the 

dataset and YOLO models in the later chapters. 
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1.5 Structure of This Thesis 

The structure of this thesis is described as follows: 

(1) In Chapter 2, we show a literature review and discuss the relevant studies of visual object 

detection and classification (like autoencoder). Meanwhile, we also introduce the details about 

encoder-decoder and majority vote method. 

(2) In Chapter 3, we detail our research methods and depict the details of our dataset. 

(3) In Chapter 4, we implement the proposed algorithms, collect experimental data, and 

demonstrate the research outcomes in the form of figures and tables. Additionally, the limitations 

of these proposed methods will be described. 

(4) In Chapter 5, we summarize and analyze the experimental results. 

(5) We will the conclusion and vision of our future work in Chapter 6.         
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Chapter 2 Literature 

Review 

 

 

The focus of this thesis is on fruit freshness detection based on 

YOLO models, this chapter will introduce plenty of methods 

(conventional and advanced method) and the relevant knowledge in 

visual object classification and detection.  
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2.1 Visual Object Classification 

Visual object classification is a long-history issue and attracts much attention in the research area. 

Classification is a complex task for machine but detecting a visual object is a natural instinct for 

humans and all animals around the world. We have sight, smell, hearing, taste and touch feeling, 

but for a computer, the mainstream and available way of doing object detection is to make a 

classification through computer vision and image processing. The computer will decide the class 

of the given images based on visual features from the image (Ren, 2015; Sun, 2021); the most 

famous example of this kind of method is AlexNet (Krizhevsky, 2017). In the following section, 

we will introduce the details of AlexNet, the model has surpassed our human vision. 

2.2 AlexNet 

In AlexNet, convolutional layers (Galvez R L, 2018) were deployed to make visual object 

detection for the first time in history. In eq. (2.1), convolution is always shown as ‘*’, f is the 

input image, g is the kernel, 

                                                [𝑓 ∗ 𝑔](𝑡) =  ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏                                                           (2.1)
𝑡

0

 

where f is the input image, g () is the convolutional kernel. 

    Convolutions on the time domain are a multiplication of kernels on the given windows. In 

digital image processing, a convolution with a kernel that will offer us special information about 

the image, we call the information as “features”. 

    Before AlexNet, we only apply MLP (i.e., multilayer perception) to classify digital images, and 

always has low accuracy which is much lower than human vision. With convolutional layers, the 

net can extract visual features from the original images, as a human looks at the image from local 

details to the global image, this strategy incredibly increases the accuracy around 20%, finally 

getting a classification accuracy higher than human in 2018 based on convolutional neural 
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network. 

 
Figure 2.1 An example of the AlexNet model 

  
 

    In this model, the large-size boxes mean the convolutional layers. In each layer, there are 

multiple kernels. On the right side of Figure 2.1, the 2D squares refer to multilayer perceptron 

which is used to classify the features output from the previous convolution layer. 

2.3 Autoencoder  

After the convolutional neural networks, a new model was designed and created based on a 

convolutional strategy for visual object detection, which is named Autoencoder (Chong, 2017). 

Autoencoder is a very powerful object detection architecture, instead of using MLP to conduct 

the final classification, autoencoder replaces the later MLP layers to convolutional layers. The 

convolutional layers always look like an inverse of the input convolutional layers, we call the 

input convolutional layers as encoder and the convolutional layers as decoder. The encoder always 

conducts downsampling operations for the original input image to get visual features, the decoder 

always works an upsampling for the visual features to reconstruct an image with the same size as 

the input, the final outputs include the bounding box for visual object identification.  

    In general, autoencoder is employ of encoder to extract the features from the image, and then 

takes advantage of the decoder to conduct the classification. 
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Figure 2.2 The example of autoencoder 

    In Figure 2.2, the multiple planes mean pre and post-convolutional layers, the blue box 

indicates the features we extract from the input, then we will employ it as an input for the decoder 

layer.  Figure 2.2 shows the general architecture of the autoencoder, normally it only includes the 

encoder layer, feature, and decoder layer. For autoencoder, we always express the encoder as E 

and decoder as D, an estimation function d (•) to measure the error between the prediction and 

ground truth, then the loss function of autoencoder is, 

𝐿(𝜃, 𝜙) =  𝐸𝑥 ∼ µ𝑟𝑒𝑓 
[𝑑 (𝑥, 𝐷𝜃(𝐸𝜙(𝑥)))] (2.2)  

where x is the input, µ  is the mean function and L (•) is the loss function. The function E() 

indicates the expectation of the error. To train the auto-encoder, we need to minimize the loss. 

2.4 Majority Vote 

Majority vote is a method with very long history, compared with transformer or encoder-decoder, 

majority vote is very easy to use and understand, instead of use deep learning architecture, 

majority vote will directly combine different result, as we shown in Figure 2.6. 

As shown in Figure 2.6, firstly we will have different models, and then we will use a same 

input as the input for each of the model, then we will collect the output from each of these models, 

the final result will be same as the most classes from all our results, for example, if we have 4 

different outputs, then 3 of them is apple, only one of them is banana, then our final result will be 

apple, because over 75% predictions are apple. Through this way, if we add a new model result, 

we can only add this result to our result collection and directly generate the final result instead of 

adding the new architecture to our previous model. 
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Figure 2.3 The majority vote 
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Chapter 3 Methodology 

 

 

 The main content of this chapter is to clearly articulate research 

methods, which satisfy the objectives of this thesis. The chapter 

mainly covers the details of the research methodology for fruit 

freshness detection by using YOLOv6, YOLOv7 and YOLOv8 

models.  
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3.1 YOLO 

YOLO (Fang, 2019; Fang, 2021; Redmon, 2021; Parico, 2021) is the abbreviation of “You Only 

Look Once”, which is a very famous and popularly spread deep learning model. There are a lot 

of advantages of YOLO models, firstly, YOLO is a “lightweight” architecture, which indicates it 

will be trained very fast, and the trained weights will not be stored in a large space. Secondly, 

YOLO can provide real-time detection of visual objects, what we mean in real-time is the network 

can conduct object detections based on the input image much faster and more accurate than human 

reaction. The network “suddenly” generates the output, though compared with Faster R-CNN 

network, the accuracy of YOLO is not very high, and the differences in the performance between 

YOLO and other architecture are pretty small. For the visual object detection task in this project, 

it is perfect to have a little bit lower accuracy but much faster during training and testing time. 

 

Figure 3.1 YOLO architecture 

   In Figure 3.1, the sequential trapezoidal is convolutional layers, the middlebox is residual layers, 

the right three boxes are the upsampling layer, which is employed to increase the size of the 

feature, the white box with “Predict” is the concatenate layer, this layer is used to concatenate the 

output from the previous layers. There are four very important components of YOLO:   

Part 1. Residual blocks. 

Part 2. Bounding box regression.  

Part 3. Intersection over Union (IOU). 
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Part 4. Non-maximum suppression (NMS) 

We will discuss each main component individually. 

3.1.1 Residual Block  

In the residual block, the main idea is to find the correct position of a visual object. In order to 

accomplish this, firstly, it will segment the given image into various regions, each region will 

have a dimension NN. The network will conduct visual object detection based on each grid. If 

an object appears in one grid, then the network will label this grid as a candidate for the final 

detection.  

3.1.2 Bounding Box Regression 

A bounding box is an indicator that always tells us where visual objects are, every bounding box 

has the following four most important components: 

Part 1. Width of the box. 

Part 2. Height of the box. 

Part 3. Center of the box. 

Part 4. Class information for the box. 

YOLO is the network with a single-box regression to predict the four pieces of information for 

a bounding box. Figure 3.2 is shown as an example.  
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Figure 3.2 An example of bounding box. 

In Figure 3.2, 𝜎 indicates the offset of bounding box, with the parameters for bounding box, 

we will have the following equations: 

𝑏𝑢 =  𝜎(𝑡𝑥) +  𝑐𝑥 (3.1) 

𝑏𝑣 =  𝜎(𝑡𝑦) +  𝑐𝑦 (3.2) 

𝑏𝑤 =  𝑝𝑤𝑒𝑡𝑤 (3.3) 

𝑏ℎ =  𝑝ℎ𝑒𝑡ℎ (3.4) 

σ(to) =  P r(object)IOU (b, object) (3.5) 

𝐵 =  𝑏𝑜𝑥 (𝑏𝑢, 𝑏𝑣, 𝑏𝑤, 𝑏ℎ) (3.6) 

where B indicates bounding boxes, IOU is the intersection over union, we will introduce it in the 

next section. 
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3.1.3 Intersection over Union (IOU) 

Intersection over union (IOU) is a concept in visual object detection that describes how the 

bounding boxes are overlapped. In the YOLO model, we employ IOU to provide an output box 

that surrounds the visual objects perfectly. 

Each grid cell in Fig.3.3 is responsible for predicting bounding boxes and confidence scores. 

The IOU is equal to 1.0 if the predicted bounding box is as same as the real box. If we assume the 

blue square presents the prediction, and the red one is the ground truth. This mechanism eliminates 

bounding boxes that are not equal to the real box. we display an example of IOU in Figure 3.4.  

 

Figure 3.3 An example of intersection of union (IOU) 

In Figure 3.3, the red bounding box is the ground truth, we need to conduct object detection, and 

the blue square is the prediction that the architecture works on the image. On the right side, the 

green box indicates that our prediction is overlapped with the ground truth (GT). In order to 

calculate IOU, we are use of equation (3.7), 

𝐼𝑂𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛
(3.7) 

After calculating the IOU, we set a threshold t to determine whether we will keep both of these 

detectors or only keep one of them: 
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3.1.4 Non-maximum Suppression (NMS) 

Normal object detection always is described by using a lot of bounding boxes around a visual 

object, but this kind of result will confuse the estimation functions.  In order to eliminate this kind 

of false alarms, a method named Non-Maximum Suppression (NMS) was developed. Firstly, it 

will calculate the IOU between each pair of the detection bounding box, then we will eliminate 

the bounding boxes based on the IOU. If the IOU score is high, this indicates two bounding boxes 

are very close, this indicates they may detect the same object, so we can then neglect the bounding 

box with a lower score. An example of NMS is shown in Figure 3.4. 

 

Figure 3.4 Example of NMS. (left is before NMS, right is after NMS) 

The pseudocode for non-maximum suppression is shown as follows.  
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    For the pseudocode about NMS, B indicate the input bounding boxes, and I is the ground truth. 

Hence, we can find the bounding box of visual objects for each image. 

3.1.5 The Whole Pipeline 

The whole pipeline of YOLO model is not very complicated, in this section, we introduce the 

architecture for the general YOLO model, because all the others just add more parts or change 

the backbone compared with the general one. The general architecture of YOLO is just a 

combination of the previous methods with deep learning models, there are four main steps in the 

whole architecture.  

    Firstly, we should resize any arbitrary image to a size of 448448, then we forthput the second 

part which is the residual block. This model will help us segment the whole input image into 

blocks, normally, we will split the whole image into 1616 blocks. The third part has two branches, 

the first one is to predict the classes for each block, we call it as a classification network. The 

second branch is the bounding box regression network, this part will predict the confidence for 

each bounding box. The final result will only keep the bounding box with high confidence. After 

we get the prediction bounding boxes, then we can utilize IOU to calculate the score for each two 



18 
 

bounding boxes, we apply NMS to only keep the bounding box with high confidence and less 

overlap. 

    The final result from YOLO architecture will have three parts, the first one is the bounding box, 

and the second one is the confident value for the bounding box. The confidence value is from 0 

to 1.0 which indicates how confident we trust there is a target in the bounding box, the last part 

of the output is the classification result, which will indicate the class of visual objects in the 

bounding box. The details about the network are listed:  

(1)  24 convolutional layers, 2 multilayer perceptron 

(2) The size of kernels in the first layer is 77, with 64 kernels. 

(3) The second layer has 192 33 kernels. 

(4) The third is 11128, 33256, 11256, 33512. 

(5) The fourth is 11256, 33512, 11512, and 331024. 

(6) Then is 11512, 331024, and 331024 

(7) The last convolution layer is two 331024 

(8) Then is the linear layer, with a size 4,096 

 

3.2 YOLOv6 

Compared with the previous architecture like YOLO or YOLOv5, YOLOv6 is utilizes almost the 

whole same dataset to be pre-trained, but the backbone has been changed to EfficientRep, and the 

neck has been changed to Rep-PAN. 
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Figure 3.5 Architecture of YOLOv6 model 

    Figure 3.5 shows the model of YOLOv6, the input of this model is the normal RGB image, the 

efficient rep backbone is just multiple convolutional layers, the rep-PAN is the layer to combine 

the outputs from the backbone. After the rep PAN step, the network will utilize a pyramid 

architecture to conduct the classification and apply a regression network to generate a regression 

score estimation. 

    Compared with the previous network, YOLOv6 model added one more term in the loss function, 

which is a KL divergence between the predictions from teacher model and the student model, the 

KL divergence is, 

                                               𝐿𝐾𝐷 =  𝐾𝐿(𝑝𝑎𝑙𝑠||𝑝𝑐𝑙𝑠)  +  𝐾𝐿(𝑝𝑟𝑒𝑔||𝑝𝑟𝑒𝑔)                         (3.8) 
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where pals is the part to make the classification, and preg is the part to make a bounding box 

prediction.  

    From In equation (3.8), pcls is the part to conduct the classification, preg is the part to be 

designed for bounding box prediction and confidence generation. KL is the abbreviation of the 

KL divergence, which can estimate the similarity between two different distributions, with the 

KL divergence, the final loss function is, 

𝐿𝑡𝑜𝑡𝑎𝑙 =  𝐿𝑑𝑒𝑡 +  𝛼𝐿𝐾𝐷 (3.9) 

where Alpha is a hyperparameter to leverage the KL loss,  Ldet is the loss function as same as the 

previous YOLO. If we add them all together, we can get the final loss. In this thesis, we use of 

this loss function to train the whole network. 

3.3 YOLOv7 

Compared with the previous YOLO architecture, like YOLOv6, YOLOv7 has a higher accuracy 

for multiple tasks shown in the thesis. The main difference is that YOLOv7 modifies the ELAN 

architecture (i.e., efficient layer aggregation network). The modified ELAN network is called E-

Ellan, and it is just a combination of multiple convolutional layers and two more concatenation 

layers, as shown in Figure 3.6. 

 

 

Figure 3.6 Architecture of YOLOv7 
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Figure 3.6 shows the new architecture added to YOLOv7 compared with the previous YOLO 

models., Figure 3.6(a) is the illustrates the original architecture, and CSP, ELAN and E-ELAN 

are the new architecture. ELAN and E-ELAN will have the best performance, compared with the 

previous architecture, In ELAN, a convolutional layer is deleted, so it has a faster training and 

testing ability. E-ELAN splits the architecture into multiple convolutional layers. This will reduce 

the number of parameters in the network which will help the network make a better prediction. 

Compared with the previous ELAN architecture used in YOLOv6, E-Ellan changes the 

architecture in the computational block, but the transition layer is just kept as same as before. 

Although the architecture of YOLOv7 seems more complex than the general architecture of 

YOLO, the core components keep as same as before. The general architecture is still a backbone 

network, classification network and bounding box regression network. The weights for the 

backbone network will also be kept as same as before. In this way, the whole architecture will be 

pretty easy to be understood if we already know the YOLOv6 architecture, this is also an 

advantage for YOLO models. 

 

Figure 3.7 Architecture of YOLOv7 model 

Figure 3.7 shows the details of the architecture of YOLOv7 model, the first backbone part is 

multiple convolutional layers that have a residual connection. The second part is called the “head” 

part of the architecture, it is just a combination of multiple MLP and convolutional layers. 
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3.4 YOLOv8 

YOLOv8 published in 2022 is the newest version of YOLO models. Compared with YOLOv6 

and YOLOv7, YOLOv8 can be installed as a Python toolbox which can directly be used employed 

as a Python package. YOLOv6 and YOLOv7 were created by some individuals various 

organizations, but YOLOv8 is was created built by a company name is ultralytics. At present, 

YOLOv8 is an open-source architecture model for general architecture. The architecture of 

YOLOv8 looks similar to YOLOv7, the only difference is YOLOv8 replaces C3 architecture with 

C2f architecture (Lin, 2017), compared with C3, C2f has two backbones, C3 only has one 

backbone. In YOLOv8, we will use different backbones for different tasks such as object detection 

or pattern classification, so compared with YOLOv7 or YOLOv6, YOLOv8 can be used for more 

different tasks. In general, YOLOv8 looks like a combination of the previous YOLO architecture, 

but with the C2f architecture, YOLOv8 is running much faster than the previous version of YOLO 

models. 

 

Figure 3.8 Architectures of C2 and C3f 

Compared to the architecture of C3 and C2f, there are a few changes: 
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(1) The kernel size of the first convolution layer change to 6x6 instead of 3x3; 

(2) Two convolutional layers are deleted in the neck; 

(3) The number of blocks in the backbone is changed to 3-6-6-3; 

(4) A split part was added before the bottleneck; 

(5) The residual connections between the input and output are added; 

(6) The kernel parameters have been changed; 

(7) Instead of using the parallel bottleneck layers, the serial layers are connected; 

(8) The head of YOLOv8 was changed to the anchor-free architecture, but the previous YOLO 

is anchor-based architecture. 

 

Figure 3.9 Architecture of YOLOv8 model 
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3.5 Dataset Preprocessing 

From the original fruit dataset, we find that it only has image data for different types of images, 

but there's no information about labels for each image. This is a big problem, sincethe label is the 

most important part, without a label, the network will never know where the correct position is 

for the visual object. There are multiple ways to label the original image, the first method is to 

label it by ourselves, this is the method that will have no wrong labels, but it costs a very long 

time. In the whole dataset, there are around 15,000 image samples, it is impossible for us to label 

the whole dataset manually. 

Instead of labeling manually, we write source code for programming to automatically label the 

images. Fortunately, all images in the dataset just have a clean background, and the foreground 

objects always have a color compared with the background, so we can easily utilize the color 

difference to find the contour of this object. We mark a bounding box for the contour as the 

position of the object , then we extract the average color in this area, and we assume a same kind 

of fruit should have a similar mean color. We will show the automatically labeled results in Figure 

3.10, where the rectangle is the automatically labeled result. 

 

Figure 3.10 An example of auto-labeling 

    After the labeling, the preprocessing has been accomplished. We save all the bounding box 

information. This includes the coordinates of the left corner and the right corner as well as the 
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labeling result in a “.txt” file. During the training and testing time, we can directly load this .txt 

file to find the information on the position of the bounding box as well as the labeling information 

for the object in the image. Our result correctly crops the object area inside the image, and the 

pseudocode for auto-labeling is shown in Algorithm 3. 

 

3.6 Combination of Different Results 

We already have three different backbones, using their result individually will be a waste of the 

results. Pertaining to a single input image, YOLOv6 and YOLOv8 give us a correct detection 

result, but YOLOv7 provides us with a wrong result. For another image, the results from YOLOv7 

and YOLOv8 are correct, but the results from YOLOv6 are incorrect. For the third image, 

YOLOv8 is wrong, but YOLOv6 and YOLOv7 make use of correct detection. If we only estimate 

the result individually, then the performance for each architecture will not be good. If we can 

combine their result, for example, we can put the three outcomes together for voting the final 

result, then the object detection will have a great result. Using a combination method to combine 

the detection result will be a good idea for object detection and pattern classification. 

    Through model combination, there have a lot of different ways to ensemble multiple outputs, 

but the most general one is the voting method, the theory of voting method is pretty, there are 

three steps for it:  

Step 1. We get the prediction result from all different architectures,  

Step 2. Based on these results, for each record, we apply the result from different architectures to 
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vote for the classification.  

Step 3. We choose the highest vote class as our final classification decision.  

    For example, YOLOv6 classified the first record to fresh apples, YOLOv7 classified the first 

record as fresh apple, but YOLOv8 classified the first record as fresh banana. Then for the first 

record, we choose fresh apple for 2 and fresh banana for 1, all the other types of fruit will have a 

vote that equals zero.  

We will finally classify record one as fresh apple. Through this method, there’s no doubt that we 

will have a better result during the testing. And in order not to make confuse, this combination 

method will only be used during testing. 

3.7 Data Augmentation 

Data argumentation is a popular method to improve network performance, it is used to add more 

types or more different appearance training data in the training set based on previous training 

datasets. We add more different types of training data that will make the network more robust. If 

we can get more different information from an object, it will help us better to understand the 

object. 

 For image classification with data arguments, the normal method is always related to rotating 

or flipping the original images. In that of the previous experiments, these two methods are very 

simple and can increase the performance of the proposed method. But for the network we adopted, 

only two kinds of argumentations may not be enough, on account of our fruit detection task, the 

fruit will not be put with an arbitrary angle in the image.  

    This case will always be happened in our daily lives, detecting fruit freshness will be happened 

at any time.  In order to deal with this problem, we make sure that our network will have a good 

performance on the real dataset, we also add a blurring method in our augmentation. For this 

blurring method, we just easily apply a Gaussian kernel to convolute with the original image, then 

we will get a blurred image with the same fruit location and classes as the original input. Because 

we are use of the kernel to process the image, it is also easy for us to apply different blurry degrees 
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to the image. We can find out that the best degree to help us increase the network performance as 

more as possible, we will show our results in Figure 3.11.  

 

Figure 3.11 An example of augmentation 

    In Figure 3.11, the original input image is shown on the top left, we add three different methods 

in data augmentation, namely, horizontal flipping, vertical flipping, and image blurring. These 

two kinds of flipping methods will add more features to the network.  While we take photos for 

the objects with various view angles, it is okay for us to add rotated images (not only 180 degrees 

or 90 degrees). 

    The step will add “ambiguous” features to the architecture, then the network will have the 

ability to process the images with various shapes and colors, instead of just detecting a specific 

type of the fruits we have. From our experiments, we add image blurring for data augmentation 

that will always help our models a lot increase the performance in precision and accuracy. 
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Chapter 4 

Experimental Results 

 

 

The main content of this chapter is to collect image data and 

demonstrate the experimental results. At the end of this chapter, we 

will discuss the limitations of this project. 
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4.1 Dataset Collection 

4.1.1 Dataset Distribution 

The dataset is the most important part of the model training. With a good dataset, the model will 

perform much better even with the same architecture. Regarding a good dataset, it should not 

include invalid input, the input image should be clear and correctly labeled. After all of this, a 

good dataset should also be easily utilized. what we mean easily used is we can conveniently 

preprocess the input image to the format which our network can directly adopt to model training 

and testing. 

    For the sake of time limitations, we find a dataset from Kaggle, since datasets on Kaggle always 

have very superior quality, no invalid data and with annotations and explanations. There have a 

lot of datasets correlated with fruit freshness on Kaggle, in order to make the network become 

more powerful and practical, we finally choose to select a dataset with three different kinds of 

fruits, namely, apple, banana, and orange. Each class of the fruits will have two sub-folders 

including the fresh or rotten image data for the fruits. Fortunately, they already split the dataset 

into training and test datasets, the whole data structure is shown in Figure 4.1. 

 

Figure 4.1 Structure of the dataset 

 

    Regarding the details of the dataset, in the training folder, there is a total of 10,901 images (all 

types). In the test folder, there are 2,698 images in total. In the training data folder, we have 1,693 

images for fresh apples, 1,581 images for fresh bananas, 1,466 for fresh oranges, 2,342 images 

for rotten apples, 2,224 images for rotten bananas, and 1,595 images for rotten oranges. For the 

test data folder, we have 395 images for fresh apples, 381 images for fresh bananas, 388 images 
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for fresh oranges, 601 images for rotten apples, 530 images for rotten bananas, and 403 images 

for rotten oranges. The distribution of the data samples is shown in Figure 4.2. 

 

Figure 4.2 The distributions of train dataset 

   Figure 4.2 shows the distribution of the samples in the training dataset. From Figure 4.2, we 

know, on average, we have an almost equally number of images for fresh apples, fresh bananas, 

and fresh oranges. But for rotten fruits, the condition is a little bit different, we have a lot of rotten 

bananas and rotten apples, and we only have a few rotten orange images. 

 

 

  

Figure 4.3 The distributions of test dataset 
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   Compared with the dataset distributions for model training, the test dataset almost has the same 

distributions as the training dataset, only the numbers of sample images in different datasets have 

a small difference, like the number of images in the training dataset is four times more than the 

number of images in the test dataset. 

    From the distributions, we see that the training and test datasets have similar distributions 

among different classes of images. This is good for our model testing, this dataset is a "nearly 

balanced" dataset, which indicates the datasets have similar numbers of sample images for 

different classes of fruits. If we train our network based on a "balanced" dataset, it will always 

perform better than an "unbalanced" dataset. We can find out this from the pie chart shown in 

Figure 4.4.  

 

Figure 4.4 Pie graph for train data 

 

                                            

Figure 4.5 Pie graph for test data 
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    It is also very important to determine the size difference between the training set and test set 

for the reason that if the training set is much larger than the test dataset or the test set is much 

larger than the training set, then the results could not tell us the real performance objectively. 

From our estimation, in this project, we choose to keep the original split ratio, which indicates the 

training data will occupy 80% of the whole dataset, and the test set only occupies 20%.  Hence, 

we choose a great ratio between training samples and test samples is important.  

 

 

Figure 4.6 Pie graph for whole dataset  

4.1.2 Dataset Visualization 

In this section, we will show our image samples from the dataset. With these images, we can have 

a straightforward understanding of the dataset. In our dataset, our samples have been rotated at 

different angles. This is a normal augmentation for the original images. With this kind of 

augmentation methods, our network can become more robust. As we see from the image shown 

in Figure 4.7, almost all the “fresh fruit” images will have a very “beautiful” appearance. What 

we mean by “beautiful” is the fruits have no black dots or rotten regions in the image.  In real 

reality, we know if there are flaws in fruit skin, it does not mean the fruits are 100% rotten.  
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Figure 4.7 Example of dataset 
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Figure 4.8 Combining different objects in the same image 

 

    Figure 4.8 shows the results from the training step, different color indicates prediction labels 

for the object, for example, 

 

(1) The green box indicates the rotten orange, the red box is the fresh apple (red or green 

apple), 

(2) The yellow box refers to the rotten apple. 

(3) The orange box is to indicate the fresh banana. 

 

    In Figure 4.8, we also know that for model training, instead of just training the network with 

only one image, we will randomly combine images and employ these combined images to train 
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the network. Our network will have the ability to detect multiple objects from the image, training 

the network in this way will also help the network become more robust. 

 

 

Figure 4.9 Combining different types of fruits in the same image 

 

    Figure 4.9 demonstrates the result from the training step, as same as the previous result. In 

Figure 4.9, different colors mean different prediction labels for the visual object, for example, 

 

(1) The green box indicates the rotten orange,  

(2) The red box is the fresh apple (red or green apple), 

(3) The yellow box displays the rotten apple. 

(4) The orange box indicates the fresh banana. 
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4.2 Experimental Results 

4.2.1 Experiment Details 

In order to accomplish the experiments, we are using of our test dataset to test three YOLO models 

(e.g., YOLOv6, YOLOv7 and YOLOv8), respectively. We will generate the precision and recall 

curves, F1 curves and confusion matrices to showcase the results. Regarding precision and recall, 

we calculate them with: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(4.1) 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4.2) 

where TP indicates True Positive (correct classification), FP indicates False Positive (background 

classified as a fruit), and FN indicates False Negative (fruit classified as a background). 

 

Figure 4.10 The explanation of FP, FN, TP, and TN 
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    Pertaining to the experiments, we test YOLOv6, YOLOv7 and YOLOv8 models with the same 

dataset. For the performance estimation, instead of just calculating the precision and recall, we 

also count the F1 score. The confidence curve and confusion matrix are to better estimate the 

performance. The equation to calculate F1 is shown in equation (4.3), 

𝐹1 =  ∑
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
(4.3) 

    The summation sign in equation (4.3) indicates we will sum up all the products from each point 

related to the PR curve. The confusion matrix will show the error rate with a heat map, the color 

in the heat map will give us information about the value for each block. 

4.2.2 YOLO Architecture Comparison 

We test our test image on three different architectures, they are YOLOv6, YOLOv7 and YOLOv8, 

in order to get a better understanding of the performance between different architecture, we will 

use precision, recall and F1 score to estimate the network performance, first, we will compare the 

precision and recall result between different architecture. 

Figure 4.11 PR curves for YOLOv6 
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  Figure 4.12 PR curve for the YOLOv7 result 

Figure 4.13 PR curve for YOLOv8 model  
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    In Figure 4.11, the blue line shows the PR curve for fresh apples, the orange line shows the 

results for fresh bananas, and the green line shows the results for fresh oranges. Other three lines 

show the results for rotten fruits. The red line indicates apples, the purple line shows oranges, and 

the brown line reflects the results for bananas. The bold blue curve shows the result for the average 

performance of all classes. In YOLOv6 model, the worst prediction is rotten bananas. Predicting 

fresh fruits always has a satisfactory performance. 

    From the legend shown in the PR curve in Figure 4.11, the number following the classes of 

objects is the AUC (area under the curve). If a network has a good performance, we always want 

the network to have high precision and recall, which indicates a higher AUC indicates better 

performance. From the PR cure, we can know, normally, it will have an average precision higher 

than 0.9 and recall higher than 0.9 at the same time among all the different types of fruits. 

Detecting fresh apples and fresh bananas usually has the highest precision and recall. The blue 

bold line is the average curve among all the classes of fruits. As we can see, the average 

performance is very high, with an AUC of 0.975. In summary, YOLOv6 model has a better 

performance for fruit freshness classification, especially for apples. 

    Pertaining to the results of YOLOv7 model, the legend of lines in Figure 4.12 is as same as 

what we show in the YOLOv6 model. From the figure, based on the rotten bananas, it still is the 

worst result. But for YOLOv7 it is much worse than the results from YOLOv6. The bold blue 

curve still shows the results for the average performance for all classes. 

    From the PR curve, it is easy for us to know that the AUC curve of all classes for the YOLOv7 

model is less than 0.972. Compared to the same type of AUC curve of YOLOv6 model, we know 

the performance of YOLOv7 and YOLOv6 is similar. From the curve for YOLOv7, it is obvious 

that the PR curve is the curve for YOLOv6, and the AUC for YOLOv6 is also large than the AUC 

for YOLOv7 mode. From both YOLOv6 results and YOLOv7 results, we know that detecting the 

rotten orange is the hardest project compared with detecting other types of fruits, this may be 

caused by the shapes and the colors of the fruits, because there are three types of fruits in our 

dataset.  

    From Figure 4.13 (PR curve for YOLOv8), the meaning for all lines is kept same as before. 

Compared with YOLOv6 andv7, YOLOv8 has much better performance, even for the worst case 

(rotten banana), YOLOv8 still has a high F1 score (0.937) 
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    From the PR curve of YOLOv8, we know the AUC for YOLOv8 is higher than both YOLOv6 

and YOLO v7, this indicates YOLOv8 may give a better classification result. From the average 

PR curve (the blue bold line), the performance of YOLOv8 really looks like the performance of 

YOLOv6, but, if we compare other types of fruit, for example, rotten banana or rotten orange, 

obviously, the YOLOv8 has a better detection result compared to YOLOv6, as for YOLOv6, the 

AUC for rotten orange is 0.96, and for rotten banana is 0.918, but for YOLOv8, the AUC for 

rotten banana is 0.937, rotten orange is 0.969; the performance for YOLOv8 increases a lot, this 

is great, which indicates for fruit detection, using YOLOv8 instead of using YOLOv6 should be 

a good idea, especially when the test image includes orange or banana; but if the user only wants 

to detect fresh apple or rotten apple, YOLOv6 or YOLOv8 will have a similar performance, if 

they want to put the network in a mobile machine, they are better to apply an architecture with 

fewer parameters. 

    After comparing the results from different architectures with precision and recall, we also 

compare the F1 score from different architectures. 

            

Figure 4.14 F1 versus confidence curves for YOLOv6 
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Figure 4.15 F1 versus confidence curve for YOLOv7 

 
Figure 4.16 F1 versus confidence curve for YOLOv8 

 

    The orange line displays the result for fresh bananas, the green line shows the result for fresh 

oranges, the blue line shows the PR curve for fresh apples, and the legend for other lines is as 
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same as the previous PR curve. The bold blue curve still shows the result for the average 

performance among all classes same as in Figure 4.11. As we find in the PR curve, rotten banana 

still has the worst result, we should label the rotten bananas as such a case.  

    In order to solve this problem, we can add more image samples for rotten bananas or train an 

individual network to detect rotten bananas in the future. We split the worst case and increased 

the performance a lot.  

    Figure 4.14 shows the curve for F1 score versus the confidence of YOLOv6. F1 score is a 

number that has a similar meaning as AUC, and confidence is a value from zero to one to show 

the confidence of the network prediction. Confidence always is employed as a threshold to make 

an accurate object detection, a low confidence always indicates the network is not very confident 

to make the detection, and a high confidence indicates the inversed thing (the network has a low 

confidence about the detection result), so it is better for us to choose a higher confident value as 

the threshold instead of a low value (best threshold should be 0.99).   

    What we want finally is a high F1 score with a relatively high confidence. We determine the 

most important parameters to estimate the performance is the F1 score, then the confidence value. 

Regarding the F1 score, we always want the network to have a high F1 score (the best should be 

1) when we choose a confident score as a threshold. In YOLOv6 results, the highest F1 score for 

the YOLOv6 model should be around 0.95 with a threshold of around 0.659. This is a relatively 

high confidence value and F1 score. We believe with such a confidence threshold and more than 

0.9 accuracy; we can directly apply it in the real scene.  

    For the rest of types of the fruits (for example, all fresh fruits etc.), they almost have similar 

performance, so it is not necessary to train them separately. Training a network with a variety of 

inputs and a lot of image samples will be better than the “trained single” network. 

    In Figure 4.15, from the confidence curve, the legend is as same as before. Compared with the 

YOLOv6 model, the performance of rotten oranges has been improved a little bit. For all the types 

of the fruits, the performance of YOLOv7 is a little bit worse than the performance of YOLOv6. 

The reason is that with the new architecture added to the YOLOv7, it is not good to process the 

fruit images. This always happened in deep learning, a much deeper network is not possible to 

get a better result.  

    From F1 score curve and confidence curve, it is obvious that the highest F1 for YOLOv7 model 
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is similar as YOLOv6 model, but the confidence threshold for YOLOv7 is around 0.3, which is 

much smaller than the threshold of YOLOv6 model. A lower confidence threshold may involve 

more false alarms, which will have a bad effect on the object detection results. So, compared with 

YOLOv6, YOLOv7 seems not a good architecture for the fruit detection task, this is caused by 

the new components add to YOLOv7, for the reason that sometimes a simple architecture may be 

much easier to train and much easier to converge. 

    Figure 4.15 is the result for the YOLOv8 model. Compared with the previous architecture, 

YOLOv8 has a similar performance shown on the F1 score compared with YOLOv6, so we think 

YOLOv6 and v8 are all good to make a classification for fruit. 

    From the F1-confidence curve, the highest F1 score is around 0.95 when we utilize of a 

confidence threshold of around 0.6. This is great that it indicates YOLOv8 has a high F1 score 

with a relatively high threshold. This indicates it will have fewer false alarms. From the YOLOv6 

result, when it gets the high F1 score, the confidence value for YOLOv6 is 0.659, but for YOLOv8, 

the confidence is 0.569, the difference between these two confident scores is a little bit large, 

which indicates YOLOv6 has a higher confidence to make a correct detection, it looks like 

YOLOv6 is better than YOLOv8. YOLOv8 has a better performance, a higher confidence score 

may only mean YOLOv6 can detect more different types of fruit, in view of with more types of 

fruits, there’s no doubt that in order to increase the correct detection, we should decrease the 

confidence score to let the network accept more detections compare with less types of fruit 

detection.   

    Then we can also compare the results for different confusion matrices, confusion matrix is a 

great method to compare the prediction result between different architectures. 
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Figure 4.17 The confusion matrix for YOLOv6 

 

 

 

Figure 4.18 The confusion matrix for YOLOv7 
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Figure 4.19 The confusion matrix for YOLOv8 

 

    The heat map shows a confusion matrix for YOLOv6, different colors mean different 

correlation scores. In Fig. 4.17, the white area indicates zero and the deep blue area refers to the 

one hundred percent. The rows and columns show different classes in our dataset. The rows mean 

the prediction results from our model, and the column refers to indicates the ground truth for our 

classification. 

    A confusion matrix always gives us general information about the performance of the detector. 

From the confusion matrix of YOLOv6 models, it is obvious that the network performs very well 

for apples, and a little bit worse on bananas. Classifying oranges will be the hardest task. From 

the last column, it seems like the network will also have error predictions for each type of fruit. 

For example, though the deep learning network successfully detects all rotten bananas, it also 

classified the background image (not the object image) as a rotten banana. 

    Figure 4.18 shows the confusion matrix for YOLOv7, from the confusion matrix of YOLOv7, 

we compared it with the confusion model of YOLOv6, YOLOv7 model has a better performance 

on orange classification. If we look at the details of the confusion matrix of YOLOv7 models, we 

find that for YOLOv7, the wrong classification is always related to the background, which 
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indicates our error is always a “missing detection”. This is great as the real scenario, we will 

always apply the architecture to conduct a fruit classification for fruits, it indicates there must be 

a fruit, and we can notice that and detect it manually.    For rotten oranges, it is still very hard for 

the network to make a classification, a lot of the backgrounds are classified as rotten oranges.  

   Figure 4.19 shows the confusion matrix, from the confusion matrix of YOLOv8, compared with 

YOLOv7, the classification accuracy of YOLOv8 increases a lot. With the YOLOv8 model, we 

can correctly classify apples with an error rate that is smaller than 1% to classify orange and 

banana. Compared with previous YOLOv7 or YOLOv8 results, regarding rotten bananas or rotten 

oranges, the network still has a high probability of detecting the background as a rotten orange, 

or rotten banana, this is a very interesting phenomenon.  

   We also show some of our result for precision and recall with confidence separately. 

 

Figure 4.20 The precision vs confidence curve for YOLOv6 
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Figure 4.21 The recall vs confidence curve for the YOLOv6 

 

Figure 4.22 The precision vs confidence curve for YOLOv7 
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Figure 4.23 The recall vs confidence curve for YOLOv7 

 
Figure 4.24 The precision vs confidence curve for YOLOv8 
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Figure 4.25 The recall vs confidence curve for YOLOv8 

4.2.3 Majority Vote 

A majority vote is a traditional method that has been adopted to improve the detection 

performance. Since the YOLOv8 model is very easy to be implemented, we plan to use it and get 

a better result. There are two main reasons why we take advantage of the majority vote as a 

method in this thesis.  

    The first reason is that the majority vote is a method that can be used “outside” of the 

architecture, what we mean by “outside” is the method that will only process the outputs from the 

architecture instead of manipulating the whole architecture. Compared with the method which 

will change the weights or add new layers to the original architecture, the majority vote is more 

much, because we always keep the architecture as same as before, so it will be easy for us to trace 

back. The best model weights are utilized to get the final results.  

    The second reason is with a majority vote, we can easily determine how many results we have, 

and which results we harness to generate the final outputs. This is a very useful idea to get a good 



50 
 

result.  Since with different weights, the network will have varying performance. With a majority 

vote, we can always choose the best performance as the input for the majority vote, there’s no 

doubt that we will always have the best performance. The majority vote method also has the best 

adaptability skill. Changing the backbone (like YOLOv8 we mentioned before) will not influence 

the architecture, we still can use the same code to change the input to the result we get from the 

new backbone, this will also help us easily change our architecture in the future. 

                          

Figure 4.26 The major result of prediction 

 

 In Figure 4.26, the top row is the result of YOLOv6 and YOLOv7, and the bottom left is the 

result of YOLOv8. Based on the bottom right, we show the majority vote results different from 

all the previous results we have. As we see from the example, the result looks better than the 

previous results. We compare the previous result with the combination result as shown in Table 

4.1. 

For the majority vote method, by reason of we cannot calculate the combination probability, 

we cannot draw the precision vs recall curve when we vary the confidence for each network 

prediction result, so we just calculate the precision and recall for different methods. The first three 
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rows are the best precision and recall for different types of fruits, the last row is the majority vote 

result. From Table 4.1, it is obvious with the majority vote method, our network performance 

increases by at least 1% regarding to both precision and recall. We also compare our final result 

with other network architectures, and our result is the best. 

Table 4.1: Majority vote compared with other results 

Models Precision Recall 

YOLOv6 0.956 0.943 

YOLOv7 0.933 0.92 

YOLOv8 0.957 0.941 

Majority vote 0.961 0.957 

 

Table 4.2: our final result with other network architectures 

Architecture Accuracy Loss 

Convolution network  0.9417 0.1491 

For the baseline on Kaggles 0.9492 0.1329 

For our best result 0.96 0.113 

 

4.2.4 Ablation Study  

While we train the deep learning models, we are use of the original fruit images, because the 

network training with an augmented dataset will increase the performance of our proposed 

methods. In this section, we will show our ablation results if we train our proposed models with 

a variety of datasets. There are three types of datasets to compare, the first one is the original 

dataset, which includes the image without any manipulation of the image. The second dataset is 

that we add horizontal flipping and vertical flipping to the training dataset. The third dataset is to 

add flipping and blurring to the training dataset, the result is shown in Table 4.3. 

    From the results in Table 4.3, it is obvious that when we add flipping methods to the data 

augmentation, the performance increases a little bit. Compared with only flipping augmentation 
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dataset, we add the blurred images to the dataset, that increases the performance a lot. Both 

precision and recall from different architectures increase at least one percent, this indicates 

compared with the flipped images, blurred images are much effective for model training, we 

should continue training the deep neural network with blurred images in the future. 

 

Table 4.3: Ablation study results 

 Model training based 

on the original dataset 

Model training based 

on a dataset with 

flipping 

augmentation 

Model training based 

on a dataset with 

flipping and blurring 

augmentation 

Architectures Precision Recall Precision Recall Precision Recall 

YOLOv6 0.956 0.943 0.955 0.94 0.967 0.96 

YOLOv7 0.933 0.92 0.937 0.921 0.952 0.931 

YOLOv8 0.957 0.941 0.96 0.934 0.97 0.964 

 

    From the results we show in Section 4.2.5, it is obvious that with the majority vote method, our 

net can perform better than the individual net result, this is great for fruit freshness detection. As 

combining the results from different networks is very efficient and robust, we can always keep 

the high precision result and deny the worse results, the average performance will always be better 

than the previous single network result. In this section, we add our ablation study for this majority 

vote method, in general, the majority vote method is, 

𝑣𝑜𝑡𝑖𝑛𝑔(𝑤1 ∗ 𝑛𝑒𝑡1, 𝑤2 ∗ 𝑛𝑒𝑡2 … … 𝑤𝑛 ∗ 𝑛𝑒𝑡𝑛)                                           (4.4) 

where 𝑤1to 𝑤𝑛 shown in equation (4.1) are the weights for different architecture, the 𝑛𝑒𝑡1 to 𝑛𝑒𝑡𝑛 

are the networks from different network architectures. The weights will always be in range [0,1], 

0 indicates we will not utilize the detection result from such a network, 1.00 indicates we will 

directly believe the detection results. If a network has a high weight (high confidence), then we 

will believe that the result is more accurate than other results. With different weights, we can 

make the majority vote results become much accurate and robust. In Table 4.4, we show different 

weights after we combine YOLOv6, YOLOv7 and YOLOv8 model together. 
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    From Table 4.4, we easily make a conclusion that balancing the weights may not be the best 

way to generate satisfactory results. Given the best performance architecture, a relatively large 

weights will have a better performance, but increasing the weights too much will make the 

majority vote results get close to the single network result.  

 

Table 4.4: The ablation study after we change the weights 

Series Weight for 

YOLOv6 

Weight for 

YOLOv7 

Weight for 

YOLOv8 

Majority vote result 

    precision recall 

1 0.33 0.33 0.33 0.961 0.957 

2 0.6 0.2 0.2 0.96 0.942 

3 0.2 0.6 0.2 0.94 0.92 

4 0.2 0.2 0.6 0.97 0.963 

5 0.8 0.1 0.1 0.954 0.94 

6 0.1 0.1 0.8 0.955 0.942 

   

4.2.5 Prediction Results  

In this section, we show the prediction results generated by using deep neural network. In our 

dataset, various color bounding boxes mean different classifications, purple bounding box 

indicates rotten banana, green bounding boxes refer to fresh oranges, and orange bounding box 

indicates fresh bananas. From the test images, the images also have a rotation around the center, 

but this kind of argumentation of the dataset can give us a better estimation of the performance of 

the network in the real scenario, since in our real world, it is impossible for us or for a machine 

to take a photo for a fruit from a constant view angle.  
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(a) 

 

 

 

 

 

(b) 
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(c) 

 

 

(d) 

Figure 4.27 Results of YOLOv8 models 
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                   (a)  (b) 
      Figure 4.28 Prediction on the real video fresh apples 

 

                                   (a)  (b) 

Figure 4.29 Prediction on the real video fresh bananas 
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Chapter 5 

Analysis and Discussion 

 

 

In this chapter, our experimental results are analyzed and compared. 

Comparisons of the results under various conditions will be 

detailed. 
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To better compare the result, we will show the final prediction results from three different model 

architectures (YOLOv6, YOLOv7, and YOLOv8). Because this is a classification task, we finally 

utilize precision and recall to predict the average performance, as we discussed in the previous 

chapters, precision indicates how many targets the classifier can detect with the correct label from 

the images. Recall is the score to show the ratio of our correct detection, a good classifier should 

have a high precision and a high recall at the same time. In this fresh fruit detection project, due 

toa rotten fruit may cause terrible disease. In this case, we decide a high recall is more important 

than a high precision, and the results from different deep learning models are shown in Table 5.1. 

 

Table 5.1: The results for training our proposed models 

 

Architectures Avg precision Avg recall 

YOLOv6 0.846 0.884 

YOLOv7 0.852 0.879 

YOLOv8 0.861 0.892 

 

 

    The results in Table 5.1 are based on the trained model using the training dataset we discussed 

in Chapter 3 and Chapter 4. We get the training precision and recall. From the training results, we 

find that the precision for YOLO is always around 0.85, which indicates if there is a dataset 

including 100 different images, we can correctly label 85 of them, and the other 15 images may 

be classified as the wrong type or classified as a background. The recall for the YOLO model in 

the fruit detection is always around 0.88, which indicates if we detect fresh apples, finally the 

classifier can tell us that there are 50 images, then we can check manually there are 44 of them 

which are really the fresh apple images, the other 6 images are not fresh apples.  

    Table 5.2 shows the testing results. From Table 5.2, we know in the real scenario, if we can only 

apply a single classifier to conduct object detection on the fruit dataset, we highly recommend 
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using the YOLOv8 model. If the YOLOv8 model doesn’t give a good result, then it is also worth 

trying YOLOv6. 

Table 5. 2: The results for testing the proposed classifiers 

 

Architecture All classes IOU All classes F1 The best 
threshold 

The accumulated error 
rate 

YOLOv6 0.975 0.96 0.659 12% 

YOLOv7 0.972 0.96 0.284 9% 

YOLOv8 0.979 0.96 0.569 14% 

 

 

    Table 5.2 shows the result for the test result, we see that YOLOv6 has a better result. From the 

confusion matrix, YOLOv8 has a better classification result. In YOLOv8, a large error only occurs 

for rotten orange detection, YOLOv8 has the highest average IOU, which indicates on average, 

the YOLOv8 model will have higher precision and recall. If we compare the best threshold, 

YOLOv7 has the lowest threshold, which indicates if we apply YOLOv7 to conduct classification, 

much more than the training set, the probability of wrong classification may increase. YOLOv7 

tends to keep a lot of them as the detection result, this will automatically decrease the recall value. 

    YOLOv6 may have a much better performance compared with YOLOv8. In the future, if we 

test the network with fruit images, instead of using YOLOv8, we would like to forthputting 

YOLOv6 for object detection. In ensemble learning, we combine all the results from multiple 

architectures, it is better that YOLOv6 will be assigned a higher weight during the ensemble step.  

    In Table 5.2, it shows the accumulated error rate, this score is calculated from the confusion 

matrix we showed in the last section, for each network, we will sum up all the ratios for wrong 

classification blocks (blocks not on the confusion matrix diagonal), it looks like the error rate for 

YOLOv8 is a little bit higher than the error rate of YOLOv6, looks like YOLOv6 is better than 

YOLOv8, but YOLOv8 has a higher AUC, so combine the result from YOLOv6 and YOLOv8 

may also be a good idea in the future work. If we combine the result we get from different 

architecture to the ensemble result, then we can get the following result: 
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Table 5.3: The average result 

Architecture Avg precision Avg recall 

Combine 0.912 0.924 

 

    Compared with the previous YOLOv6, YOLOv7, and YOLOv8 results, the combination of the 

result from three different architectures increases the precision and recall a lot, this is so great, 

which indicates our combination method really works for the fruit detection method, and the right 

now we only combine three different background to generate the final result. In the future, it is 

also worth trying to use more different architectures and combine all of their results together. 
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Chapter 6 Conclusion 

and Future Work 

  

 

 

In this chapter, we will summarize the subject and method of this 

project and propose a new research direction according to the result 

and insufficiency of the experiment, preparing for future work. 
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6.1 Conclusion 

In this thesis, we are using of fruit freshness dataset from Kaggle which includes six classes of 

images. We believe this dataset is general and widely used in the research area. In this dataset, 

fruit images were from fresh apples, fresh bananas, fresh oranges, rotten apples, rotten bananas, 

and rotten oranges. After obtaining the dataset, we split it into training and test datasets, following 

the normal preprocess steps. We split the dataset with as ratio of 8:2, which indicates we will 

randomly choose 80% data to train and the rest for testing our model. For the method to make the 

classification and detection, we also apply YOLOv6, YOLOv7, and YOLOv8 to generate the 

detection result automatically.  

    Compared to the results from different architectures, during the model training and testing, 

YOLOv8 will have the highest accuracy and training speed. Although just a 0.1 % increase, 

compared with YOLOv6 and a 0.5 % increase compared with YOLOv7. As we know YOLOv6 

spent 24 hours to train the model with 300 epochs, YOLOv7 took more than 28 hours to train 300 

epochs, but YOLOv8 spent 8 hours to train 300 epochs. Meanwhile, the YOLOv8 model is always 

very easy to employ as the whole architecture already has been built, we can easily apply the 

architecture with simple “import” command, but for YOLOv6 and YOLOv7 models, we need to 

build it by ourselves, but YOLO is very easy to employ compared with other types of architectures. 

And for we have multiple YOLO architectures that can detect the fruit freshness, we also 

creativity apply the majority vote method for those architectures result and generate a better result 

with higher precision and recall, what we find is when we use 20 percent of YOLOv6 and 

YOLOv7 individually and YOLOv8 result in 80 percent for the final result donations, then we 

will get precision with 0.97 and recall 0.963, which is the highest precision and recall we can get 

right now.  

    In the future, for base models, we are planning to apply YOLOv8 as a baseline of the 

architecture, we believe this will be a good choice, and we will also pay much attention to 

YOLOv6 detection results, since it can give us satisfactory results. For the YOLOv7 model, we 

will only employ it in the ensemble step if we need it in the future.  

    On the other side, in this project, the training and test datasets only include six different classes 

of visual objects, namely, “fresh apple”, “rotten apple”, “fresh banana”, “rotten banana”, “fresh 
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orange”, “rotten orange’, which are far less compared with the real scenario. There are perhaps 

more than thousands of types of fruits around the world, and the appearance of rotten or freshness 

of fruits will be normal.  

Regarding fruit skins, black may mean rotten, but for the datasets we use in this project, rotten 

apples will look black or yellow, rotten oranges appear grey or green, and rotten bananas will be 

black, it will also be pretty easy for us to classify them based on colors of the images.  

 In the next step, we will find a much larger dataset with more images and a greater number of 

classes of fruit images. We plan to have almost all types of fruits we can find in our daily life. For 

example, watermelon, grape, lemon, melon, strawberry and blueberry, and blueberry will be 

available in the image dataset.  

From the previous result, we find that with the majority vote method, we can get better 

performance compared with the previous best result of the YOLOv8 model. Because of the 

majority vote, for each detection, we can always keep the best detection result to make our final 

decision, as the proverb goes “Many hands make the light work”, if we add more detection results 

to make our final decision, the net performance can become better and better. So, we will continue 

working on this part and plan to add more powerful architectures to our final architecture. 

    We are also planning to use postprocessing methods. For example, the ensemble methods are 

used for different learners or classifiers, as we discussed in Chapter 5, with this new method, we 

can continue to increase the performance of our method, and we can harness different weights for 

different architectures to get a better result. 

6.2 Our Future Work 

In the future, we will collect more real fruit images for the model training which will be more 

effective to improve the accuracy of our proposed models, for a network, we can enlarge the 

dataset or add more classes of image data. For example, with a fruit dataset, we can add more 

fruits; or for each fruit class, we can add more classes, like “freshness”, “not freshness”, “a little 

bit rotten”, and “totally rotten”.  
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    For the training set, it will always be a good idea to improve the performance of the proposed 

architecture. With those new datasets, we plan to add more daily fruits in the dataset such as 

“strawberries”, “blueberry”, “grapes”, and “watermelon”. 

    This will be very hard, in the reason of a rotten blueberry will have the same color and shape 

as a ripe blueberry, we will determine whether the blueberry is rotten or ripe is also very hard 

even for a human, there are a lot of different grapes, some are green and some are purple, it is 

better for us to split them as some sub training set. 

    With the new dataset, we will add real backgrounds for each image, through this way, our 

dataset will be like the real scene, and the network trained with this dataset will also become more 

robust.  

    Meanwhile, in our future work, we will not only focus on the YOLO models for image 

classification and detection, but also embark on more and more new architectures, like auto-

encoder which are the hottest architecture in the research area. We will try even GPT architecture 

which is the most famous architecture right now. With GPT-4, it can also process the images. With 

the SAM (segmentation all model) network, we can segment all images for a specific demand, 

we will finetune the previous architecture.  

    Back to this project, for the next step, we will pay more attention to YOLOv6 and YOLOv8, 

we are use of YOLOv8 as our backbone, and YOLOv6 will be served as a reference for the result 

from YOLOv8. Throughout this project, we will conduct object detection with a higher accuracy. 

Although YOLOv7 does not have a good performance compared with YOLOv8 or YOLOv6, it 

will also be worth having a try, since YOLOv7 still has a very high detection accuracy, we will 

keep generating more results with the YOLOv7 model and make it as a part of our architecture 

during the ensemble step. We will also add more ensemble methods in the future, like voting with 

different weights, or even combine the network of YOLOv6, YOLOv7, and YOLOv8 directly to 

generate a new strategy for the fruit freshness detection (Lin, 2020).  
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