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Abstract: The currency exchange rate is a crucial link between all countries related to economic and 6 
trade activities. With increasing volatility, exchange rate fluctuations have become frequent under 7 
the combined effects of global economic uncertainty and political risks. Consequently, accurate ex- 8 
change rate prediction is significant in managing financial risks and economic instability. In recent 9 
years, the Transformer models have attracted attention in the field of time series analysis. Trans- 10 
former models, such as Informer and TFT (Temporal Fusion Transformer), have also been exten- 11 
sively studied. In this paper, we evaluate the performance of the Transformer, Informer, and TFT 12 
models based on four exchange rate datasets: NZD/USD, NZD/CNY, NZD/GBP, and NZD/AUD. 13 
The results indicate that the TFT model has achieved the highest accuracy in exchange rate predic- 14 
tion, with an R² value of up to 0.94 and the lowest RMSE and MAE errors. However, the Informer 15 
model offers faster training and convergence speeds than the TFT and Transformer, making it more 16 
efficient. Furthermore, our experiments on the TFT model demonstrate that integrating the VIX in- 17 
dex can enhance the accuracy of exchange rate predictions. 18 

Keywords: Transformer, Informer, TFT, Currency exchange rate 19 
 20 

1. Introduction 21 
The exchange rate is a fundamental economic factor, significantly impacting domes- 22 

tic and international economic relations. The exchange rate acts as a bridge for financial 23 
communication between various countries (Pradeepkumar & Ravi 2018). Its instabilities 24 
will not only affect the country's international trade and capital flows but also directly 25 
impact the international investment of enterprises, foreign trade and individual invest- 26 
ment. Forecasting exchange rate trend is an essential basis for judging the timing of ex- 27 
change rate transactions. 28 

The exchange rate market is a nonlinear dynamic market characterized by complex- 29 
ity, diversity and uncertainty (Niu & Zhang 2017). This makes exchange rate forecasting 30 
more challenging. With the advent of artificial intelligence, the existing research work in 31 
financial time series forecasting has also obtained more and more attention. In contrast to 32 
traditional time series methods, they can manage the nonlinear, chaotic, noisy and com- 33 
plex data of exchange rate markets, allowing for more effective forecasts (Rout, Dash, 34 
Dash, and Bisoi 2017). The dataset is crucial in exchange rate forecasting, mainly including 35 
exchange rate prices, volatility, etc. However, if the selected time series is long and has 36 
high dimensions, it is tough to achieve the expected results by using the existing models 37 
for exchange rate prediction (Lai et al. 2018). Afterwards, with the rapid growth of artifi- 38 
cial intelligence (AI), the usage of deep learning models to process time series-related 39 
tasks became the recent mainstream, and a series of neural network models for time series 40 
tasks appeared. Early proposed models such as Recurrent Neural Networks (RNN), Long 41 
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) are considered suitable for 42 
processing time series tasks (Pirani, Thakkar, Jivrani, Bohara, and Garg 2022). 43 

As the most popular mainstream architecture of deep learning in recent years, the 44 
Transformer models are widely adopted in typical tasks such as text classification, 45 
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sentiment analysis, target detection, speech recognition, etc. However, there are few re- 46 
lated works in the field of time series analysis, and multiple financial time series analysis 47 
research work still is use of traditional sequence prediction methods. Therefore, this paper 48 
proposes the research questions as follows: 49 

 50 
• Question 1: How does the Transformer model perform in predicting the exchange 51 

rate? 52 
• Question 2: By comparing the Transformer, Informer and Temporal Fusion Trans- 53 

former, which algorithm performs best in predicting the exchange rate? 54 
 55 

This paper aims to achieve exchange rate predictions based on NZD and discover the 56 
most advanced algorithms fitting for exchange rate predictions through deep learning. 57 
Based on Transformers, we have studied two recent algorithms, Informer and TFT. Dur- 58 
ing our experiments on Google Colab, we trained the model, adjust parameters, and ob- 59 
tain results established on four processed datasets. Subsequently, the performance of the 60 
three algorithms was compared and analyzed to determine the optimal forecast exchange 61 
rate model. Eventually, this paper explored the pros and cons of the model, summarized 62 
the experimental results, and provided references for other related research work. 63 

The structure of this paper is outlined as follows: Section 2 presents the related works 64 
and elaborates on the methodologies of the three models. Section 3 displays the results 65 
through experiments in the three models. Section 4 contains the conclusion by comparing 66 
the performance of the three models and analyzing them in conjunction with their own 67 
characteristics. 68 

2. Materials and Methods 69 
This section consists of related work based on traditional time series models and pro- 70 

posed models: Transformer, Informer, and TFT. Besides that, it illustrates the correspond- 71 
ing methodologies. Subsequently, the experimental processes are presented, and the 72 
measures for model evaluation are clarified. 73 

2.1. Related Work Based on Traditional Time Series Models 74 
Since the exchange rate is non-stationary in mean and variance, its relationship with 75 

other data series changes dynamically due to nonlinear and dynamic changes in the 76 
exchange rate over time (Xu, Han, Wan, & Yin 2019). As international trade continues to 77 
grow at an increasing rate, it is becoming more and more common, and the factors 78 
affecting exchange rates gradually increase (Eichengreen 2007). 79 

2.1.1. ARIMA 80 
ARIMA is one of the most universal linear methods for forecasting time series, and 81 

its research has achieved great success in academic and industrial applications (Khashei 82 
& Bijari 2011). In the study of the USD/TRY exchange rate forecast, Yıldıran and 83 
Fettahoğlu (2017) generated long-term and short-term models based on the ARIMA 84 
framework. Through comparison, it was found that ARIMA is more fitting for short-term 85 
forecasts. Similarly, Yamak, Yujian, and Gadosey (2019) used a data set of Bitcoin prices 86 
and applied with ARIMA, LSTM and GRU models for prediction analysis. The results 87 
showed that ARIMA delivered the best results among these models, with MAPE and 88 
RMSE of 2.76% and 302.53, respectively. 89 

2.1.2. RNN 90 

RNN is one of the neural networks specifically designed to handle time series prob- 91 
lems (Hu, Zhao, & Khushi, 2021). It can extract information from a time series, allow the 92 
information to persist, and use previous knowledge to infer subsequent patterns. 93 
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Traditional neural networks such as the Backpropagation Neural Network (BPNN) are 94 
also used for time series modelling, while the time series information of such models is 95 
usually less than RNN. 96 

2.1.3. LSTM 97 
Although RNN has outstanding advantages in dealing with time series problems, as 98 

the training time rises and the number of network layers increases after the nodes of the 99 
neural network have been calculated in many stages, the features of the previous rela- 100 
tively long time slice have been covered, so problems such as vanishing gradient or ex- 101 
ploding gradient are prone to occur, which leads to the incapability to learn the relation- 102 
ship between information, thereby losing the ability to process long-term series data (Li, 103 
Li, Cook, Zhu, & Gao, 2018). 104 

2.2. Related Work Based on Transformer, Informer, and TFT 105 

2.2.1. Transformer 106 
Transformer was initially explored by Vaswani et al.(2017), no longer stuck to the 107 

framework of RNN and CNN, and attention is applied to the seq-to-seq structure to form 108 
the Transformer model and applied to process natural language tasks. Since then, the 109 
Transformer model has generated outstanding results in fields such as computer vision 110 
(Han et al. 2022). Besides, the research work on Transformer in time series has also 111 
aroused great interests (Wen et al. 2023). Through experimental research on 12 public da- 112 
tasets with time series, it was found that Transformer can capture long-term dependencies 113 
and obtain the best accurate prediction results in five of the dataset training (Lara-Benítez, 114 
Gallego-Ledesma, Carranza-García, and Luna-Romera 2021). However, its calculation is 115 
more complex than CNN, so the training process is relatively slow. 116 

Despite of in-depth research outcomes on the Transformer, it is evident from the lit- 117 
erature that most studies primarily focus on reducing the computational requirements of 118 
the Transformer model (Tay, Dehghani, Bahri, and Metzler 2022). However, they overlook 119 
the importance of capturing the dependencies among neighbouring elements, addressing 120 
the heterogeneity between the values of time series data, the temporal information corre- 121 
sponding to the time series, and the positional information of each dimension within the 122 
time series. 123 

2.2.2. Informer 124 
To solve the heterogeneity of time information, position information and numbers, a 125 

model based on Transformer architecture and attention mechanism was offered (Zhou et 126 
al. 2021). For the first time, time coding, position coding and scalar were introduced in the 127 
embedding layer to crack the long sequence input problem. ProbSparse self-attention cap- 128 
tures long-distance dependencies and lessens the time complexity in the computation pro- 129 
cess. Using the distillation mechanism can effectively decrease the time dimension of the 130 
feature map and lower memory consumption. Although Informer outperforms LSTM in 131 
time series forecasting tasks, its inability to capture dependencies among neighboring el- 132 
ements with the multihead attention mechanism leads to insufficient capture of the time- 133 
series local information. This results in lower prediction accuracy and higher memory 134 
consumption, which could be more conducive to large-scale deployment. A relative cod- 135 
ing algorithm (Gong et al., 2022) was based on the Informer framework to predict the 136 
heating load. The experimental results indicate that the improved Informer model is more 137 
robust. Besides, based on Informer and the proposed Autoformer (Wu, Xu, Wang, and 138 
Long, 2021), a new decomposition architecture was designed with an autocorrelation 139 
mechanism. The model breaks the preprocessing convention of sequence decomposition 140 
and updates it into the fundamental internal blocks of the deep model. This design enables 141 
Autoformer to progressively decompose complex time series. Moreover, inspired by the 142 
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random process theory, Autoformer designed an autocorrelation mechanism based on se- 143 
quence periodicity, replacing the Self-Attention module in Transformer with autocorrela- 144 
tion mode. In long-term forecasting, Autoformer achieves outstanding accuracy. 145 

2.2.3. TFT 146 
Transformer model has demonstrated its outstanding performance in both natural 147 

language processing and computer vision (Bi, Zhu, and Meng 2021). Applying this model 148 
to capture long-term dependencies and data interaction in time series has become the fo- 149 
cus. The general method for processing time series data is to treat data in all dimensions 150 
with equal weight. This may cause the model to ignore critical input information or be 151 
interfered with by noise, which is also a shortcoming of traditional processing methods. 152 
Temporal Fusion Transformer (TFT) is a Transformer model for multistep prediction 153 
tasks, which is developed to effectively process different types of input information (i.e., 154 
static, known or observed inputs) and construct feature representations to achieve high 155 
predictive performance (Lim, Arık, Loeff, and Pfister 2021). The TFT model (Zhang, Zou, 156 
Yang, and Yang, 2022) was proposed to predict short-term highway speed by collecting 157 
Minnesota traffic data and applying it to the training and testing of the model. Compared 158 
with traditional models, the TFT model performs best when the prediction range exceeds 159 
30 minutes. 160 

2.3. Methods Based on Transformer, Informer, and TFT 161 
2.3.1. Transformer 162 

In Transformers, the self-attention mechanism has received more recognition rate 163 
compared to other neural network models that utilize the attention mechanism. The at- 164 
tention mechanism in Transformers excels at capturing the internal correlation within 165 
data and features, and more effectively solves the problem of long-distance dependence 166 
(Wang, Pi, Zhang, Liu, and Guo 2022).  167 

Contrary to other models that only take use of a single attention module, the Trans- 168 
former employs multihead attention modules to operate in parallel (Sridhar and Sana- 169 
gavarapu 2021). In this step, the original queries, keys, and values of dimension 𝐷!	are 170 
each mapped into spaces of dimensions 𝐷#	, 𝐷!	, and 𝐷$		using H different learned vec- 171 
tors. The model computes each of these mapped queries, keys, and values according to 172 
eq. (1), outputting attention weights for each. Then, it concatenates all these outputs and 173 
converts them back into an 𝐷!	dimensional representation. 174 

 175 

 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑛(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑%, ⋯ , ℎ𝑒𝑎𝑑&)𝑊', 
(1) 

 
𝑤ℎ𝑒𝑟𝑒			ℎ𝑒𝑎𝑑( = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛=𝑄𝑊(

) , 𝐾𝑊(
* , 𝑉𝑊(

+> 
 

where ℎ𝑒𝑎𝑑( is computed by applying the attention function to the transformed inputs. 176 
𝑊' represents the weight matrix applied after concatenating the outputs of all attention 177 
heads. 178 

2.3.2. Informer 179 
Informer model has been proposed to address the long-sequence forecasting issues 180 

in the Transformer. This model provides an improved self-attention module to reduce 181 
time complexity (Sun, Hou, Lv, and Peng 2022). 182 

In the Informer network, probabilistic sparse self-attention replaces traditional self- 183 
attention. Each input vector is utilised to calculate query, key, and value vectors in the 184 
self-attention mechanism. Then, attention weights are calculated by computing the dot 185 
product of query vectors and key vectors. The attention weights represent the similarity 186 
between each and all input vectors. In the probabilistic sparse self-attention mechanism, 187 
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query vectors compute the similarity with each key vector, generating an attention distri- 188 
bution. The probabilistic sparse self-attention calculation is shown in the eq. (2). 189 

 
𝑃𝑟𝑜𝑏𝐴𝑡𝑡𝑛=𝑄A , , 𝐾( , 𝑉(> = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(

𝑄A ,𝐾(!

√𝑑
)𝑉( (2) 

where 𝑄A ,	represents the distance calculated using KL divergence among the attention dis- 190 
tribution and the uniform distribution to determine the value of each query point, thus 191 
specifying which queries should be allocated computational resources, it selects the active 192 
query with the most significant distance. 193 

In general, in probabilistic sparse self-attention calculation, attention is only given to 194 
the far-active queries. In contrast, the dot products for other queries are substituted with 195 
the mean of the value vectors, thus reducing the computational task. 196 

2.3.3. TFT 197 
Temporal Fusion Transformer (TFT) is a time series prediction model based on the 198 

Transformer architecture, aiming to solve the limitations of traditional time series predic- 199 
tion models (Lim et al. 2021). TFT introduces a novel to capture features and nonlinear 200 
relationships across multiple time scales (Fayer et al. 2023). TFT employs recurrent layers 201 
for localized processing and interpretable attention layers to manage long-term depend- 202 
encies. The algorithm also leverages specialized components for feature selection and a 203 
sequence of gating layers to filter out unnecessary elements, thereby maintaining the op- 204 
timal performance of this model across various scenarios. The main components of this 205 
TFT model are: Gating mechanism and variable selection network, Static covariate en- 206 
coder, and Temporal fusion decoder. 207 

2.4. Data Collection and Preprocessing 208 
Due to the changes in the exchange rate being impacted by multiple aspects, they 209 

display diverse characteristics of change. We selected four representative currencies, USD, 210 
GBP, CNY, and AUD, as training and test samples because of their significant impact on 211 
the global economy, widespread usage in international trade, and substantial influence 212 
on foreign exchange markets. These currencies are representative of major economic re- 213 
gions, providing a comprehensive and diverse dataset for robust predictive modelling. 214 
The datasets of NZD against these four currencies are all from Yahoo! Finance 215 
(https://nz.finance.yahoo.com) and Investing website (www.investing.com). To enhance 216 
the learning ability of our proposed model for unexpected fluctuations, each sample in- 217 
cludes daily data from January 3, 2005, to February 2, 2024, totalling 4,980 entries. The 218 
primary variables of the dataset include closing, opening, highest, lowest, and floating 219 
prices of the day. We select the closing price as the experimental objective. 220 

 221 
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Figure 1. The trend of NZD against the four selected currencies. 222 

We adopt eq. (4) for imputing missing values. 223 
 

𝑋( =
𝑋(-% + 𝑋(.%

2  (3) 

where 𝑋( defines the data to be imputed, 𝑋(-% represents the data from the day before 224 
the missing data, and 𝑋(.% illustrates the data from the day after the missing data. 225 

The most common method, min-max standardization, is also utilized in data prepro- 226 
cessing. The calculation process is  227 

 

𝑋∗ = 0-0"#$
0"%&-0"#$

. (4) 

Among them, 𝑋∗represents the dimensionless data after normalization, X means the 228 
observation value, 𝑋!(1	denotes the minimum value, and 𝑋!23	tells the maximum value. 229 
Denormalization is restoring normalized data to facilitate subsequent data analysis and 230 
other operations. 231 

2.5. Data Description 232 
After preprocessing the four datasets, the total number of samples for each is 4,980. 233 

To better understand the data's characteristics and distribution features and utilize the 234 
relevant data for modelling, it is essential to conduct a descriptive statistical analysis be- 235 
fore modelling. Table 1 provides the descriptive statistics for the four datasets.  236 

Table 1. The descriptive statistics of NZD against four currency exchange rates 237 

Currency Mean Min Max Median 
Standard 
Deviation 

Kurtosis Skewness 

USD 0.709 0.494 0.882 0.703 0.073 -0.369 0.118 

CNY 4.827 3.371 6.163 4.79 0.484 -0.148 0.258 

GBP 0.473 0.328 0.597 0.497 0.063 -0.726 -0.693 

AUD 0.884 0.728 0.997 0.91 0.064 -0.886 -0.686 

 238 
Table 1 shows that the standard deviation for NZD/USD is 0.073, indicating that the 239 

exchange rate fluctuates within a narrow range. A kurtosis value of -0.369 and a skewness 240 
value of 0.118 suggest that the distribution of NZD/USD deviates slightly from a normal 241 
distribution, showing slight flatness and right skewness. Still, overall, it is close to sym- 242 
metry. Compared to NZD/CNY, there is a significant difference between its minimum and 243 
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maximum values, which are 3.371 and 6.163, respectively. The median of 4.79 is slightly 244 
lower than the average, implying a skewed distribution to the right. The standard devia- 245 
tion is 0.484, indicating the volatility is higher than the other three currency pairs. The 246 
kurtosis and skewness are -0.148 and 0.258, respectively, indicating a relatively flat and 247 
slightly right-skewed distribution. The statistical results for NZD/GBP show that the av- 248 
erage exchange rate for NZD/GBP is 0.473, with a minimum of 0.328 and a maximum of 249 
0.597, revealing a smaller fluctuation range and, hence, a relatively stable exchange rate. 250 
The median of 0.497 is very close to the mean, reflecting the central tendency of the data. 251 
Its standard deviation of 0.063 is the smallest among the four currency pairs, showing the 252 
lowest volatility. The average exchange rate for NZD/AUD is 0.884, with a fluctuation 253 
range from 0.728 to 0.997, which is relatively moderate. The median of 0.91 is higher than 254 
the average, exhibiting more data points in the higher value range. A standard deviation 255 
of 0.064 indicates lower volatility. The kurtosis of -0.886 and skewness of -0.686 present a 256 
skewed and peaked distribution, suggesting a frequent occurrence of lower values. 257 

Throughout this detailed analysis, we summarize that these four datasets demon- 258 
strate diverse levels of volatility and distribution characteristics. NZD/GBP and 259 
NZD/AUD show relatively lower volatility, while NZD/USD and NZD/CNY exhibit 260 
higher volatility. In the experiment, we divided the dataset into two parts for the training 261 
process of the three models: 80% for training and 20% for testing. 262 

2.6. Experiment Implementation 263 

2.6.1. The Experimental Implementation of Transformer 264 

In the training process of the Transformer model, it is vital to set essential parameters, 265 
which are continuously adjusted and optimized. Due to the complexity of the Trans- 266 
former, we employ a lower learning rate parameter of 0.0005. Although this means that 267 
the model learns more slowly, it can help the model adapt more finely to the training data, 268 
leading to better stable and accurate predictions. The value of input_window is set to 7, 269 
which allows for more suitable capturing of weekly patterns or trends in the data for time 270 
series data like exchange rates, a typical setting in financial sequences. We experimented 271 
with the multiple training epochs, setting them at 50, 100, 150, and 200, and finally found 272 
that 150 is the best, avoiding the risk of overfitting. 273 

Table 2. The parameters setting of Transformer 274 

Parameters Settings 

input_window 7 

batch_size 100 

learning_rate 0.0005 

epochs 150 

2.6.2. The Experimental Implementation of Informer 275 

Unlike the parameter settings of the Transformer, through multiple attempts, we have set 276 
the number of epochs to 60. Since the Informer optimizes computational complexity, re- 277 
ducing unnecessary computations and parameter usage, it achieves better results in a 278 
shorter training time. The table below details the model parameters of the Informer. 279 

Table 3. The parameters setting of Informer 280 

Parameters Settings 

sequence_length 64 



Algorithms 2024, 17, x FOR PEER REVIEW 8 of 16 
 

predict_length 5 

batch_size 128 

learning_rate 5e-5 

epochs 60 

2.6.3. The Experimental Implementation of TFT 281 

The model training of TFT is conducted within a PyTorch-lightning framework. In this 282 
environment, it is possible to adjust the model's hyperparameters promptly during the 283 
data training process. This setup integrates with the Early-Stopping mechanism to obtain 284 
an outstanding combination of parameters. For the TFT model, a learning rate of 0.001 is 285 
a moderate value that supports balanced training speed and convergence quality. Setting 286 
the hidden layer's size to 32 means the TFT model is relatively simple and computationally 287 
efficient. Since no overly complex recognition tasks exist, we set the number of attention 288 
heads to 1. 289 

Table 4. The parameters setting of TFT 290 

Parameters Settings 

learning_rate 0.001 

hidden_size 32 

attention_head_size 1 

output_size 8 

batch_size 128 

epochs 150 

2.7. Evaluation Methods 291 
In our experiment of exchange rate prediction, to reflect the reliability of the predic- 292 

tive performance accurately and objectively, we utilize four evaluation metrics, including 293 
root mean square error (RMSE), mean absolute error (MAE), coefficient of determination 294 
(𝑅4), mean absolute percentage error (MAPE). The smaller the RMSE and MAE, the closer 295 
the predictions are to the actual values. A larger 𝑅4	indicates a better fit of the model. 296 
MAPE provides a comprehensive indication of the model's overall predictive effective- 297 
ness. 298 

3. Results 299 
3.1. Experimental Results of Transformer 300 

In this experiment, the initial model we trained on Google Colab for the four ex- 301 
change rate datasets was Transformer model. By considering both the training on the 302 
training set and the predictions on the test set, the Transformer has achieved satisfactory 303 
results. Figure 2 displays the actual and predictive results on the test set. 304 

NZD/USD NZD/CNY 
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Figure 2. The predictive result of each dataset by using Transformer. 305 

From the prediction results related to the four test sets, the trend of NZD/USD is very 306 
close to the actual result, reaching highs and lows at almost the same time, and the high 307 
degree of overlap between the two lines indicates that the Transformer can effectively 308 
capture the trends and seasonal changes of the exchange rate. However, from the 309 
NZD/CNY prediction graph, we discover the deviations during periods of high volatility, 310 
and the Transformer model has yet to capture the peaks and troughs of the exchange rate 311 
perfectly. Despite of this, the overall prediction trend still tracks the real exchange rate 312 
well. Similar to NZD/AUD, though the figure shows a strong correlation between predic- 313 
tion and reality, the Transformer still underestimates or overestimates the peaks in some 314 
intervals. Regarding the NZD/GBP trend, the prediction accuracy is high for most of the 315 
timeline, showing that the Transformer is robust. Table 1 shows more details of the exper- 316 
imental evaluation results of Transformer. 317 

By evaluating the model with four different indicators, we notice that in the training 318 
and prediction of the Transformer model based on the four datasets, NZD/USD exhibits 319 
remarkably high precision and reliability. The very low RMSE and MAE values show that 320 
the forecast values are extraordinarily close to the actual values. Furthermore, the low 321 
MAPE value 0.0141 verifies that the error percentage is minor, representing an ideal out- 322 
come in currency prediction. In comparison, an R² value closes to 0.94 indicates that the 323 
model has strong predictive power and a high degree of explanatory capability regarding 324 
the fluctuating exchange rate trends. 325 

Table 5. The experimental results with four datasets using Transformer. 326 

Currency RMSE MAPE MAE 𝐑𝟐 
NZD/USD 0.011 0.0141 0.0092 0.9369 

NZD/CNY 0.0585 0.0113 0.0502 0.8589 
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NZD/AUD 0.0571 0.0048 0.0046 0.8891 

NZD/GBP 0.0051 0.0084 0.0042 0.8841 

Although the MAPE values are relatively low in the NZD/CNY and NZD/AUD pre- 327 
dictions, at 0.0113 and 0.0048, respectively, the increased RMSE and MAE indicate that 328 
the model faces more significant challenges in forecasting these currency pairs. Possible 329 
reasons may include higher market volatility, differences in trading volume, or the char- 330 
acteristics of these datasets. Nevertheless, the R² values for both currency pairs exceed 331 
0.85, reflecting the Transformer's powerful capability to capture essential information and 332 
trends. 333 

Compared to other results, NZD/GBP has the lowest RMSE and MAE, implying that 334 
the model is able to generate highly accurate predictions with minimal error for this cur- 335 
rency pair. An R² value 0.8841 demonstrates a satisfactory model fit, and though slightly 336 
lower than NZD/USD, it is still an excellent result, given the complexity of the currency 337 
market. 338 

The strong performance of Transformer model partly derives from its self-attention 339 
mechanism, which allows it to fully consider the influence of other points in time when 340 
predicting the exchange rate at any given moment. 341 

In summary, the Transformer performs outstandingly across all four datasets, espe- 342 
cially in NZD/USD predictions, where it achieves a very high level of accuracy. 343 

  

Figure 3. Visualisation of the experiment result on Transformer. 344 

3.2. Experimental Results of Informer 345 
The second model we conducted in this experiment was the Informer, an advance- 346 

ment based on the Transformer framework. The prediction trend charts are as follows 347 
through the training and prediction of four datasets. 348 

 349 

NZD/USD 

 

NZD/CNY 
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Figure 4. The predictive result of each dataset performed by using Informer. 350 

From the prediction trend charts, the actual and predicted values of NZD/USD are 351 
roughly similar, especially at the peaks and troughs. However, between July 2022 and 352 
January 2023, there is a relatively large gap between the predicted and actual lines. As for 353 
NZD/CNY, the overall prediction for this currency pair also maintained synchronicity, 354 
but the deviation at the beginning of 2023 was more extensive than that of NZD/USD. 355 
Similar to NZD/USD and NZD/AUD, where the prediction curve of this currency pair 356 
closely matches the actual price curve most of the time. Likewise, in a number of intervals, 357 
the prediction failed to capture the rapid changes in the exact exchange rate. Slightly dif- 358 
ferent from the trend results of the other three, the trend of NZD/GBP did not match as 359 
well as others, but it also captured the trend of the exchange rate. Table 2 illustrates the 360 
results based on the four evaluation metrics. 361 

Table 6. The experimental results with four datasets by using Informer. 362 

Currency RMSE MAPE MAE 𝐑𝟐 

NZD/USD 0.011 0.0141 0.0092 0.9369 

NZD/CNY 0.0585 0.0113 0.0502 0.8589 

NZD/AUD 0.0571 0.0048 0.0046 0.8891 

NZD/GBP 0.0051 0.0084 0.0042 0.8841 

In the NZD/USD results, the Informer model achieved a high level of precision, spe- 363 
cifically reflected in the low RMSE value 0.012. At the same time, the low MAPE and MAE 364 
values 0.0144 and 0.0092, respectively, also demonstrate that the forecast errors are rela- 365 
tively minor. An R2 value 0.925 further indicates that the Informer can broadly explain 366 
fluctuations in the exchange rate. 367 

In the NZD/CNY results, despite the low MAPE value 0.0105, which explains a cer- 368 
tain degree of accuracy, the higher RMSE and MAE values reveal the challenges faced by 369 
the Informer in predicting this currency pair. Nevertheless, an R2 value exceeding 0.85 370 
means that the Informer can still fit the data reasonably well despite the difficulties. 371 

Regarding NZD/AUD and NZD/GBP, the Informer performed exceptionally well, 372 
especially in NZD/AUD, where the very low RMSE and MAE values reflect the superior 373 
performance of Informer model in terms of prediction accuracy. The MAPE value is nearly 374 
zero, almost achieving a perfect prediction effect. This shows that the Informer can accu- 375 
rately predict the exchange rate movements of these two currency pairs, even in the face 376 
of fluctuations in exchange rates. 377 

Overall, the Informer model demonstrates adaptability and accuracy under different 378 
market conditions in handling the exchange rate predictions of these four datasets. 379 
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Particularly in predicting NZD/AUD and NZD/USD, it illustrates the advantages of being 380 
an improved model based on the Transformer. Although there are challenges in the 381 
NZD/CNY predictions, the model can still effectively capture and predict the dynamics 382 
of exchange rate changes. 383 

  

Figure 5. Visualisation of the experiment result on Informer. 384 

3.3. Experimental Results of TFT 385 
Our third trained model is the TFT, an enhancement of the Transformer model that 386 

specializes in processing time-series data. Figure 4 exhibits the TFT's prediction trends for 387 
the four test sets. 388 

NZD/USD 
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Figure 6. The predictive result of each dataset performed on TFT. 389 

From the trend chart of NZD/USD, the prediction curve closely follows the actual 390 
price curve most of the time, demonstrating the solid predictive capability of the TFT 391 
model for this currency pair, particularly in adapting quickly during significant trend 392 
changes. As for the trend charts of the other three currency pairs, we observe that the lag 393 
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or deviation at critical turning points. Nevertheless, the TFT model generally follows the 394 
actual trends well. Table 3 shows the result by using evaluation metrics. 395 

Table 7. The TFT experiment results with four datasets. 396 

Currency RMSE MAPE MAE 𝐑𝟐 

NZD/USD 0.0045 0.0055 0.0035 0.9892 

NZD/CNY 0.0312 0.0056 0.0041 0.96 

NZD/AUD 0.0041 0.0035 0.0032 0.9381 

NZD/GBP 0.0044 0.0075 0.0062 0.9122 

The assessment results in Table 3 show that the predictions for NZD/USD are the 397 
best, with shallow RMSE, MAPE, and MAE values 0.0045, 0.0055, and 0.0035, respectively, 398 
revealing that the predicted values are very close to the actual values. The high R² value 399 
additionally confirms the nearness between the predicted and actual trends of exchange 400 
rate fluctuations for this currency pair. 401 

As for the results of NZD/CNY, though the MAPE remains at a low level 0.0056, a 402 
relatively higher RMSE suggests significant deviations between the predicted and actual 403 
values at specific time points. However, the high R² value 0.96 indicates that the TFT 404 
model can still capture most exchange rate changes. 405 

In the predictions for NZD/AUD, even though the R² value is slightly lower than that 406 
of NZD/USD, the remarkably low errors indicate the high accuracy of the TFT on this test 407 
set. 408 

Although NZD/GBP has the highest MAE among all the currency pairs at 0.0075, this 409 
does not mean that the overall performance of this model is poor. An R² value 0.9122 410 
points that the model successfully captures most of the dynamics of the pound's exchange 411 
rate changes, with a slight decrease in predictive accuracy, possibly due to the complexity 412 
of market fluctuations during specific periods. 413 

The TFT model performs reasonably well across all four test sets, especially in pre- 414 
dicting NZD/USD and NZD/AUD, showing high accuracy and reliability. Despite the 415 
drop in predictive precision for NZD/CNY and NZD/GBP, the R² values still demonstrate 416 
that the model's predictions are pretty reliable for these currency pairs. 417 

  

Figure 7. Visualisation of the experiment result on TFT. 418 

4. Analysis and Discussion 419 
To compare the performance of these three models more thoroughly—Transformer, 420 

Informer, and TFT, we summarized the evaluation results of each model for the four test 421 
sets, taking the average for each evaluation criterion. The results are presented in Table 4. 422 

Table 8. The evaluation result of each model based on the test set. 423 
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Model RMSE MAPE MAE 𝐑𝟐 

Transformer 0.0329 0.0097 0.0171 0.8922 

Informer 0.0201 0.0095 0.016 0.8893 

TFT 0.0111 0.0055 0.0043 0.9499 

In Table 4, it is evident that the Transformer model has relatively high RMSE and 424 
MAE values. Nevertheless, an R² value 0.8922 indicates a reasonable correlation between 425 
the predictions and actual values. Its explanatory power is slightly weaker compared to 426 
the other two models. As an improved version of the Transformer, the Informer has lower 427 
RMSE and MAE values, at 0.0201 and 0.016, respectively, while its MAPE is 0.0095 and R² 428 
is 0.8893. This suggests that the Informer performs better than the original Transformer, 429 
especially when dealing with time series data with high volatility. Lastly, the TFT exhibits 430 
the best performance among all the models, with an RMSE of only 0.0111, a MAPE 0.0055, 431 
an MAE 0.0043, and the highest R² value 0.9499. The TFT model integrates various meth- 432 
ods for time series forecasting, including time attention mechanisms and interpretable 433 
features, enabling it to excel across all evaluation metrics. 434 

  

Figure 8. The visualization result of the three models’ performance. 435 

These results imply that the TFT performs best in handling the currency exchange 436 
rate prediction, possibly because it was designed to capture complex patterns in time se- 437 
ries. The Informer and Transformer also perform well but cannot achieve outstanding re- 438 
sults like TFT for this specific task. The differences may derive from the special treatment 439 
of the time dimension in its model architecture and its ability to capture and integrate 440 
various factors affecting the predictive variables. 441 

Additionally, from the perspective of training time and model convergence speed, 442 
the Informer is able to reach stable and accurate predictions within a relatively few 60 443 
epochs, which might make it more efficient than the traditional Transformer and the TFT. 444 
However, by considering the performance after model training, the TFT has demonstrated 445 
the highest R² value in currency exchange rate predictions. Although the TFT might re- 446 
quire a more complex training process, its return on investment in model performance is 447 
optimal. 448 

5. Conclusions 449 
This paper aims to analyze and discuss the accuracy and performance of models 450 

through exchange rate predictions. This paper takes use of three models: Transformer and 451 
its advanced versions, Informer and TFT. We collected four exchange rate datasets, 452 
namely, NZD/USD, NZD/CNY, NZD/GBP, and NZD/AUD, and applied them to the three 453 
models for training and validation. Our experiments were conducted on the Google Colab 454 
platform, four evaluation criteria were utilized to analyze and compare the performance 455 
of the three models. 456 
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All three models achieved satisfactory prediction effects on the four datasets. How- 457 
ever, comparisons indicated that the TFT model offered the best performance in exchange 458 
rate prediction, especially regarding accuracy and capturing trends in data changes. The 459 
Informer balanced efficiency and accuracy, demonstrating excellent predictive capabili- 460 
ties in fewer epochs. This is the reason why its sparse attention mechanism, which reduces 461 
computational complexity. Among the three models, the Transformer performed the least 462 
ideally, with relatively higher RMSE and MAE values and the lowest R² value. 463 

The limitations of this paper mainly fall into three parts. Firstly, the variables selected 464 
for this project are limited, only including primary exchange rate data. However, ex- 465 
change rate trends are influenced by other complex factors, such as national policies, in- 466 
flation rates, and investor psychological expectations. Thus, the lack of comprehensive 467 
feature selection will inevitably lead to unavoidable errors in prediction. Based on this, it 468 
is possible to consider incorporating more factors that affect exchange rates in the data 469 
selection process. Secondly, due to limited time, each model's selection of parameters and 470 
functions was primarily based on relevant literature and materials, which may introduce 471 
subjectivity and randomness. Therefore, further research and experimentation are needed 472 
to select the optimal parameters. Thirdly, the experiments in this paper are all based on 473 
the Transformer model framework. It is vital to conduct experimental comparisons with 474 
other cutting-edge models to comprehensively analyze and determine the best model for 475 
predicting exchange rates. 476 

Although this paper has made great progress in exchange rate prediction, numerous 477 
shortages and issues still require further investigation. Therefore, our future research 478 
work will be conducted in the following aspects. To enhance the accuracy of our models 479 
in predicting exchange rates, it is necessary to include more economic indicators and other 480 
relevant factors influencing exchange rates in the data collection process. Hence, further 481 
research work and experimental validation are required to optimize model parameters. 482 
In addition, we plan to expand the experimental data by using currencies from other rep- 483 
resentative countries as benchmarks for exchange rate prediction. We will also explore 484 
and compare more recent models to further enhance the effectiveness and accuracy of 485 
exchange rate forecasting, thereby providing valuable reference recommendations for the 486 
financial markets. 487 
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