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Abstract 

Computer vision serves as a foundational pillar in the domain of digital image processing, 

permeating diverse applications such as visual object detection, intelligent surveillance, 

pedestrian detection, autonomous driving, automatic picking, and industrial inspection. It 

exploits the computational capabilities of computers to automate functions that were 

traditionally conducted manually, ushering in substantial implications for conserving 

human resources. Within computer vision, visual object detection emerges as a pivotal 

element, extensively employed in numerous applications including, but not limited to, 

face recognition, gait analysis, segmentation, and pedestrian identification.  

    This thesis delves into deep learning-based visual object detection approaches, 

which are fundamentally segmented into three categories: Two-stage, one-stage, and 

transformer-based object detection methods. We have incorporated these methodologies 

to facilitate the recognition and categorization of fruits, utilizing the transformer-based 

model to attain a remarkable accuracy rate 99% in fruit classification. Furthermore, our 

model manifests the capability to execute accurate recognition within a mere 0.12 seconds. 

The insights derived from this exploration hold potential to augment the efficiency and 

applicability of computer vision in varied contexts, furthering the advancement of this 

multifaceted field. 

Keywords: Deep learning, Transformer, YOLO, Visual object detection, CenterNet, 

ConNeXt, Multilayer perceptron 
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Chapter 1 Introduction 

 

 

In this chapter, the applications of visual object detection in the 

field of fruit recognition will be expounded upon. Simultaneously, 

the motivation, background, and contribution of the experiment, 

as well as the structure of this thesis, will be introduced. The core 

content of this chapter is the elucidation of the profound 

contributions that the experiments bring to the field. The 

innovative methodologies and novel approaches employed will be 

underscored, showcasing their capacity to expand the boundaries 

of knowledge and contribute to the overarching objectives of fruit 

recognition research. 
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1.1 Background and Motivation 

Computer vision, as an artificial intelligence discipline, constitutes a critical methodology 

in modern technology. Deep learning or deep neural networks enable the categorization 

of semantic entities from visual input and yield pattern classification outputs, thereby 

demonstrating their remarkable ability to surpass the human visual system. Visual object 

detection from digital images, a fundamental facet of computer vision, has experienced 

rapid evolution due to the widespread adoption of deep learning. The primary objective 

of visual object detection is localization and classification of the objects. This technique 

can address fundamental computational vision tasks, including but not limited to traffic 

detection, text detection, gait recognition, pedestrian detection, remote sensing detection, 

and fruit detection. 

The theoretical underpinnings in the field of deep learning are continuously 

advancing, with architectural innovations experiencing exponential growth. 

Simultaneously, the domain of deep learning-based digital imaging consistently achieves 

breakthroughs and innovations. As a prominent subdivision of visual objects, object 

detection fundamentally addresses the challenges pertaining to spatial localization and 

classification. 

Thus, visual object detection has successfully tackled numerous predicaments in the 

field of computer vision, including the attainment of precise localization and 

identification of multiple targets in images. Conventional object detection methodologies 

heavily rely on sliding window algorithms. The sliding window algorithm adheres to a 

three-stage process: 1) Region selection, 2) feature extraction, and 3) execution of the 

classification task. However, conventional approaches tend to generate an excessive 

number of redundant bounding boxes, thereby burdening the computational complexity. 

This, in turn, hampers real-time detection capabilities of the model. Thereby, we shall 

expound upon our prior experiment involving apple detection utilizing the sliding 

window algorithm. 
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The primary objective of visual object detection challenge is to identify and precisely 

position objects within an image, while concurrently assigning them the most suitable 

categorical labels for precise depiction.  

In the domain of conventional agriculture, continuous field monitoring can furnish 

farmers with pivotal information, thereby ushering in a novel era of agriculture. This 

involves the automated control of weeds (Young & Pierce, 2013), the management of 

greenhouses to counteract climate fluctuations through IoT, and the monitoring of crops, 

soil, and water, among other aspects (Choudhury, Biswas, Prateek, & Chakrabarti, 2021). 

Drawing upon the principles of deep learning, computer vision is harnessed to locate 

visual objects in frame pictures and classify them accordingly. This research effort seeks 

to adopt deep learning methodologies in the agricultural domain. Our intention is to 

employ the object detection approach to automate the identification of fruits by machines. 

Fruit detection from digital images denotes the capability of our program to locate 

apples, pears, and other fruits in an image, while simultaneously differentiating their level 

of maturity. As depicted in Figure 1.1, when the entire fruit image is inputted, the model 

can autonomously determine the fruit's spatial coordinates and identify its maturity at the 

given location. The same holds true for fruit video detection, wherein the video is 

segmented into frame pictures and subsequently recognized. 

Ripe
Ripe

 

Figure 1.1: A sample of labelled apples in an image 
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The achievement of fruit detection serves as the fundamental basis for the realization 

of agricultural automation. In this study, a multitude of methodologies are employed to 

accomplish fruit object detection, followed by a comparative analysis of the most optimal 

algorithm through ablation experiments. 

1.2 Research Questions 

The primary objective of this research seeks to accurately identify and categorize fruits 

depicted in the provided images, while simultaneously identifying a model capable of 

precisely localizing fruits in said images and determining their respective ripeness 

statuses. This involves the ability to differentiate between ripe and overripe fruits. 

This thesis seeks to employ deep learning techniques in order to classify the maturity 

levels of apples. Fruit ripeness experiments are conducted utilizing digital images 

captured by mobile devices. The apples or pears depicted in these images are 

subsequently labeled as either "ripe" or "overripe." The central focus of this thesis 

revolves around the implementation of an effective classification methodology for visual 

objects. This necessitates the localization of apples or pears in digital images, the 

extraction of fruit-specific features (predicated upon the number of surface wrinkles 

exhibited by the fruit), the determination of the degree of decay, and the subsequent 

classification and labeling of the fruits based on their ripeness ("ripe apple" or "overripe 

pear"). 

There exist fruit sorting algorithms in the current literature that have demonstrated 

commendable speed and precision. However, our study places greater emphasis on the 

identification and categorization of the quality of targets. The objective of this research is 

to determine the degree of fruit maturity, specifically in the case of pears and apples, 

which are classified into three distinct groups: unripe, ripe, and overripe. Therefore, the 

research question are as follows: 

(1) “How to distinguish whether fruits are ripe in a photograph and how to detect 

them?” 
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(2) “Which method should be used to detect the fruits?” 

(3) “How to compare and choose the best method for detection?” 

This thesis was motivated by a news report that shed light on the scarcity of labor 

during the fruit harvesting season in New Zealand. Given the prevailing labor shortages, 

it becomes imperative to explore, through experimental means, effective methods for fruit 

sorting and harvesting. In this study, apples and pears were chosen as representative fruits, 

with the aim of devising a system capable of classifying fruits based on varying degrees 

of ripeness. In addition, we consider fruit quality to be a pivotal factor in the automation 

of harvesting processes. 

The primary focus of this thesis revolves around the utilization of computer vision 

techniques for fruit detection. Drawing upon the features of computer vision in object 

detection, our experiment initially undertook localization (i.e., determining the precise 

location of the apple in the image) before proceeding with classification. 

Training input 
image (using 
Transformer, 
MLP, RNN)

Predict apple degreeInput image Labelled data for 
training detector of 

objects

ripe Detect 
and 

predict

   

Figure 1.2: Apple ripeness classification 

The procedure for identifying fruit ripeness is depicted in Figure 1.2. The entirety of 

the detection process is segmented into the subsequent operations: 1) The position of the 

target is located in a two-dimensional map, subsequently enabling the prediction of the 

current fruit's maturity. 2) The identified target is surrounded by a bounding box, thereby 

facilitating target identification. 3) Finally, for fruit categorization, a deep neural network 

is employed as a classifier. 

In Figure 1.2, the dataset is the one in which bounding boxes are manually labeled, 
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followed by the annotation of maturity categories. The process of manually marking 

bounding boxes serves as a means of target localization. Annotation categories, on the 

other hand, constitute a classification process. We train the detector by using the annotated 

dataset and iteratively adjust the model parameters so as to achieve precise fruit ripeness 

classification. 

1.3 Objectives of This Thesis 

The impetus behind this project lies in the utilization of deep neural networks for fruit 

ripeness classification, employing multiple computational models for this purpose.  

This experiment capitalizes on various methodologies to accomplish fruit object 

detection, subsequently comparing the optimal algorithm through ablation experiments. 

In practical applications, apples and pears represent the fruit categories necessitating 

manual harvesting. Fruits at different stages of maturity signify the quality level of the 

fruit post-harvest. 

1.4 Contributions 

The classification of various categories of fruits and the assessment of their respective 

levels of ripeness were successfully executed in this study. The primary objective of this 

experiment revolved around the application of computer vision for object detection. The 

Transformer and YOLO models were employed and juxtaposed against the MLP 

detection model. Within the scope of this thesis, the following accomplishments were 

achieved: 

(1) The generation of alternative datasets based on the manifold attributes of the 

model, coupled with the adjustment of experimental parameters and the model 

itself in accordance with the dataset's inherent strengths and weaknesses. 

(2) Swin Transformer is employed as the base model, which is suitable for fruit 

detection. The high-accuracy Swin Transformer is combined with the YOLO 



7 
 

model for rapid fruit detection, the detection model was built by using MLP (i.e., 

Multilayer Perceptron) which deepens the ability for visual object detection that 

can achieve better accuracy and faster speed. 

(3) The implementation of diverse Transformer models for fruit detection, thereby 

extracting pivotal information. 

(4) The integration of the Transformer models and the YOLO models to 

simultaneously fulfill the accuracy and speed prerequisites for fruit detection. 

(5) The analysis of the accuracy of fruit detection. 

Through the utilization of ablation experiments, a comprehensive evaluation of each 

model's merits and demerits on the fruit dataset was conducted. Notably, our model 

exhibits exceptional proficiency in detecting diminutive objects when confronted with the 

challenge of identifying minuscule fruits. Therefore, the model holds significant potential 

for application to agricultural harvesting. 

1.5 Structure of This Thesis 

The first part of this thesis provides a succinct overview of the fundamental particulars 

pertaining to the experiment, such as background, motivation, and object. Subsequently, 

the second section expounds upon the interrelation between computer vision and object 

detection, as well as the development of object detection in the field of artificial 

intelligence. Concurrently, an introduction of diverse detection models is presented, 

accompanied by an analysis of the insights obtained from previous wo, which serve as a 

source of inspiration for our own empirical undertakings. In the subsequent segment, a 

concise account of our previous experimental findings is offered, followed by an 

assessment of the consistency with the current experiment. Subsequently, the current 

experimental model, regression function, and the model's inherent advantages are 

explicated. The following chapter, Chapter 4, is dedicated to the presentation of the results. 

Chapters 5 and 6 draw the conclusion regarding the present studies, while also proffering 
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avenues for further research. The fruit maturity classification experiment serves as a 

testament to our capacity to harness artificial intelligence for the purpose of labor 

recruitment.  

1.6 Summary of This Chapter 

This chapter thoroughly explored the manifold applications of visual object detection 

within the specialized domain of fruit recognition. By delving into this subject matter, a 

comprehensive understanding of the complex nature of this technology, as well as the 

intricate web of factors that envelop it, is achieved. The rationale behind the incorporation 

of visual object detection in fruit recognition shall be assessed. To fully grasp the 

underlying rationale, it is necessary to acknowledge the significance and potential impact 

of this research in the actual application. 

To provide a contextual framework for our study, a comprehensive evaluation of the 

background is also proffered. This evaluation offers a concise overview of the pivotal 

breakthroughs that have propelled us to the current zenith of technological advancement, 

as well as the historical evolution of fruit recognition systems. 

Finally, the organizational structure of this thesis is specially designed for reading 

conveniently, thereby being equipped with a roadmap for their intellectual journey. Each 

section and chapter shall be succinctly summarized, facilitating readers' understanding of 

the logical progression of the study and preparing them for the exhilarating voyage of 

exploration and revelation that lies ahead. 
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Chapter 2 Literature Review 

 

 

In this chapter, a range of visual object detection methods will be 

introduced concerning their role in facilitating fruit recognition 

and their connection to previous research. The primary objective is 

to illuminate a diverse array of detection techniques that form the 

foundation for advancing the field of fruit recognition. Through this 

comprehensive exploration, a profound understanding of these 

fundamental methodologies and their direct applicability will be 

explained.   
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2.1 Deep Learning & Machine Learning 

The perceptron, a pivotal machine learning model that emerged in 1958, revolutionized 

intelligent machines. Functioning as a simplistic binary classifier, the perceptron 

possesses the capability to determine whether an input data point belongs to a specific 

class. Employing a unit-step activation function, the perceptron yields an output of 1 if 

the input surpasses 0; otherwise, the output is 0.  

y =
1    If wx+b>0 

0    Otherwise
y =

x1

x2

x3

w1

w2

w3

y

x : input, y : output
w: weights, b: biases  

Figure 2.1: A perceptron 

Originally conceived as a machine rather than a model or algorithm, the perceptron 

is a fully electrical machine comprising 400 photodetectors (or photocells). The weights 

associated with these photodetectors are stored in potentiometers, while weight updates 

(occurring during the process of backpropagation), are executed by the motor implement. 

The objective of the perceptron is solely to accomplish the recognition of images, 

limited to the identification of only two categories. Subsequently, the Multilayer 

Perceptron (MLP) was introduced, showcasing its ability to construct intricate functions 

by incorporating multiple layers. In contrast to the perceptron, which functions as a 

single-layer neural network, the MLP possesses the capacity to handle more complex 

tasks by stacking additional layers. 

The Hopfield network, a recurrent neural network that combines memory systems 

and binary systems, possesses the capability to emulate human memory. Two types of 

activation functions are employed based on the specific requirements: continuous 

activation functions are utilized for optimizing calculations, while discrete activation 
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functions are employed to enhance associative memory. However, the Hopfield network 

is susceptible to the flaw of local minima. 

The BP algorithm is well-suited for the backpropagation algorithm of the multilayer 

perceptron. It expedites the process of propagating errors backwards, in contrast to the 

conventional forward propagation employed in traditional neural networks. By adjusting 

the weights and thresholds of the neurons in accordance with predetermined training 

durations, the backpropagation process effectively reduces output errors. The BP method 

flawlessly resolves nonlinear classification issues.  

The early stages of computer hardware were characterized by the limitations that 

resulted in inadequate computational power for network models. As the neural network 

delves deeper, it encounters the predicament of vanishing gradients. In neural networks, 

the quandary of gradient disappearance is also addressed through the utilization of the BP 

method. SVM and other shallow machine learning techniques exhibit commendable 

performance in classification and regression tasks. Nevertheless, shallow machine 

learning algorithms diverge from deep learning networks, thereby ushering the 

development of artificial neural networks into a renewed period of stagnation. 

By following the demonstration of the efficacy of multilayer perceptron in tackling 

image recognition challenges, the focus shifted towards the modeling of sequential data 

(e.g., text). 

Feed forward network maps 
input to output

output

Input

RNNs maintain the recurrence 
of data at each time step 

RNN
output

 

Figure 2.2: Early neural networks 
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To process sequences, recurrent neural networks were presented. Diverging from 

feedforward networks such as MLP, RNNs incorporate an internal feedback loop 

responsible for monitoring the state of information at each time step. The inception of 

RNN units occurred between 1982 and 1986. However, simple RNN units encounter 

significant obstacles when applied to lengthy sequences, as they suffer from limited 

memory capacity and unstable gradients. 

In 1998, handwritten character recognition saw the utilization of LeNet-5, which 

stands as one of the pioneering convolutional network architectures. Comprising three 

layers, LeNet-5 consists of two convolutional layers, two subsampling or pooling layers, 

and three fully connected layers. It is worth noting that the convolutional layers are with 

the activation function sigmoid.  

The inherent issue of unstable gradients renders simple RNN units inadequate for 

handling lengthy sequences. To address this concern, LSTMs, which represent a variant 

of RNNs, come into play. LSTMs can be perceived as RNN cells taken to the nth degree. 

These LSTM cells incorporate a gating mechanism that effectively governs the 

information flow across multiple time steps.  

In four ways, the utilization of gates in LSTM architectures serves to regulate the 

flow of information from the current time step to subsequent time steps. 

1) Input gates identify the input sequence. 

2) The forget gate eliminates all superfluous data from the input sequence and saves 

important data to long-term memory.  

3) Status value for LTSM cell updates. 

4) The output gate regulates the data that must be transmitted to the following time 

step. 
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ct-1
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Figure 2.3: Long short-term memory 

The design of LSTM neural networks enables the effective handling of lengthy 

sequences and diverse sequential tasks. The versatility of LSTM extends to involve a wide 

range of applications, such as sentiment analysis, audio recognition, image caption 

generation, text categorization, and machine translation. 

However, it is worth noting that LSTMs involve a significant computational burden. 

To address this concern, the Gated Recurrent Unit (GRU) presents itself as a viable 

alternative, effectively mitigating the computational overhead associated with LSTM. In 

comparison to the LSTM model, GRU exhibits a reduced parameter count while 

maintaining satisfactory performance. 

The assessment of object classification and image classification architectures on 

extensive datasets is conducted through the utilization of ImageNet. AlexNet, a prominent 

architecture, comprises five convolutional layers, succeeded by three fully connected 

layers, a softmax layer, and a max pooling layer. According to AlexNet, deep 

convolutional neural networks possess the capability to effectively address image 

recognition tasks. To enhance the computational efficiency of the model, AlexNet 

leverages the employment of GPU and the ReLU activation function, which effectively 

mitigates the issue of gradient disappearance. Remarkably, the introduction of AlexNet in 

ImageNet resulted in a successful reduction of the error rate from 26% to 15%. ConvNets 

of larger scale exhibit superior performance. VGG, consisting of 19 layers, outperforms 

ImageNet with a reduced error rate of 7.3%. The utilization of GoogleNet (Inception-v1) 
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further reduces the error rate to 6.7%. In 2015, Inception v1 was extended with ResNet 

(i.e., Deep Residual Networks), which contributed to a further reduction in the error rate 

to 3.6%. This exemplifies the potential of training network models with greater depth 

(exceeding 100 layers) through the incorporation of residual connections. Prior to the 

advent of ResNet, training such deep networks was deemed unattainable. The superior 

performance exhibited by deeper networks has spurred the development of novel 

architectures such as ResNeXt, DenseNet, Xception, Inception-ResNet, and other similar 

networks. 

Utilizing patterns discovered from previously collected training data, such as music 

and images, generative networks are employed to generate or manufacture novel data 

samples. A prominent strategy in this domain is referred to as a Generative Adversarial 

Network (GAN), which comprises two primary components: A generator responsible for 

manufacturing counterfeit samples, and a discriminator tasked with distinguishing 

genuine samples from those generated by the aforementioned generator. The 

discriminator and generator engage in a state of rivalry and undergo distinct training 

processes. With each iteration in the training process, the discriminator seeks to enhance 

its ability to identify between spurious and authentic samples, while the generator 

continually refines its aptitude for producing counterfeit samples that closely emulate 

genuine ones. 

Latent
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Generative Adversarial Network

Generator Discriminator
Is D Correct?

Latent
Space

Real
Samples
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Figure 2.4: Generative adversarial network (GAN) 
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GANs represent a category of generative models. Other prevalent types of generative 

models include AutoEncoder, Variation Autoencoder (VAE), and diffusion models. 

GANs can be leveraged to generate lifelike images, thereby facilitating the 

completion of computer vision tasks such as object recognition and segmentation. The 

Transformer neural network architecture, which is founded upon the attention mechanism, 

draws inspiration from advancements in Natural Language Processing (NLP). Devoid of 

recurrent networks or convolutions, The Transformer exemplifies a class of neural 

network techniques that rely solely on attention-based mechanisms. In order to preserve 

the sequential order of data, the Transformer incorporates pivotal components, including 

multi-head attention, residual connections, layer normalization, fully connected layers, 

and positional encoding. 

Multimodal models of vision and language include both visual and verbal 

constituents, playing a pivotal role in activities such as text-to-image generation 

(producing an image from a text description), image captioning (making text descriptions 

for images), and visual question answering (responding to inquiries about the content of 

an image). The advent of Transformer has paved the way for unified networks with 

multifarious capabilities, thereby enabling successful forays into vision and language 

domains. 

In the domain of computer vision, pre-training often involves the fine-tuning of a 

network that has been trained on a vast dataset, such as ImageNet. In natural language 

processing, it frequently necessitates the fine-tuning of a pre-trained model such as BERT. 

Prior to the emergence of convolutional neural networks and Transformers, perceptron 

held sway over the deep learning landscape. Subsequently, ConvNets have exhibited 

remarkable performance across a plethora of recognition applications, effectively 

supplanting MLPs. A notable advancement in this regard is the MLP-Mixer architecture, 

which comprises two primary MLP layers: one that independently operates on image 

blocks for channel mixing, and another that operates across blocks for spatial mixing. 

With regard to image classification, the Vision Transformer (ViT) has demonstrated 
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state-of-the-art performance, albeit encountering challenges in vision downstream tasks 

such as object detection and segmentation. Swin Transformers have emerged as a viable 

solution for implementing vision downstream tasks. Concurrently, the Transformer is also 

employed in conjunction with ResNet to accomplish visual detection tasks. 

2.1.1  Visual Object Detection in Computer Vision 

Computer vision is a portion of Artificial Intelligence (AI) that facilitates the acquisition 

of information from image data by artificial systems. This field finds extensive 

applications in signal science, neurobiology, cognitive science, and other related 

disciplines, rendering it a comprehensive subject of study. 

In the field of computer vision, machines and computers are employed in lieu of 

human eyes to identify, track, measure, and engage in various activities pertaining to 

detected objects. Subsequently, computers are utilized to further process the identified 

objects. Essentially, computer vision represents a computerized emulation of biological 

vision, wherein the aim is to replicate the visual experiences encountered in everyday life. 

The computer receives the image as perceived by the human eye and undertakes the task 

of simulating the human brain's processing of the visual scene. Finally, the computer 

generates an image that is more amenable to human observation. This entire process is 

encapsulated in computer vision technology. 

Various imaging systems convert the detected object into an image, which is 

subsequently fed into a computer model in lieu of the human sensory system. These 

networks simulate the intricate workings of the human brain in order to execute image 

processing. Concurrently, the primary objective of computer vision research is to endow 

computers with the capacity to assimilate information in a manner akin to human 

cognition, thereby enabling the model to autonomously adapt to its surroundings. Just as 

humans invest substantial time and effort in constructing a visual system, computers 

follow suit. The construction of a computer recognition model necessitates protracted 

periods of model training. 
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Notwithstanding the fact that computer vision simulates human visual processing 

methods, it cannot entirely supplant human information processing. Presently, learning-

based approaches have gained unprecedented prominence in a multitude of specialized 

computer vision applications. Computers possess pre-programmed solutions tailored to 

specific tasks. 

2.1.2 Supervised Learning & Unsupervised Learning Object 

Detection 

As we all know, unsupervised learning and supervised learning constitute two popular 

types of machine learning models. 

The representative algorithm of unsupervised learning is the clustering algorithm, 

which signifies that the unsupervised algorithm does not necessitate the acquisition of 

knowledge by the computer. The clustering algorithm constructs 𝐾𝐾  cluster groups 

containing 𝑁𝑁  objects. 𝐾𝐾  represents the input parameters and denotes the number of 

algorithmic groups. Following the determination of the initial segments, iterative 

calculations are employed to optimize the model. The clustering technique ensures that 

samples within the same class are comparable, while samples within other classes exhibit 

distinct characteristics. 

Supervised learning employs labeled datasets and leverages computational systems 

to acquire knowledge from these datasets, finally achieving the function of model 

prediction. Visual object detection typically relies on a supervised learning model. 

2.1.3 Visual Object Detection 

With the remarkable advancements in deep learning, visual object detection has also 

experienced significant progress. To date, visual object detection has successfully 

addressed the fundamental issue of accurate target localization and classification. 

Moreover, contemporary object detection models possess the capability to accomplish 

multiple objectives. 
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In Figure 2.5, the apple in the given image is surrounded by a bounding box. The 

positional data of the detected object in the image corresponds to the coordinate 

information of the four corners of said bounding box. The yellow label denoting "ripe" 

represents the annotated object class tag. The output of the object detection detector 

comprises both class labels and positional coordinates. 

The traditional methodologies employed in deep learning include the selection of 

regions of interest, manual extraction of features, and classification by a classifier. Despite 

the inclusion of multiple steps, these approaches fail to adequately address the diverse 

characteristics inherent in the learning objectives. 

Deep neural networks possess the ability to automatically extract significant features 

and possess fitting capabilities from vast quantities of data. In deep learning, visual object 

detection algorithms can be broadly categorized into three types: two-stage object 

detection, one-stage object detection, and transformer-based object detection. 

This thesis undertakes an extensive investigation of object detection algorithms and 

generates novel concepts for visual object detection based on MLP in the context of deep 

learning.  

The visual object detection pipeline is depicted in Figure 2.1. The dataset is fed into 

the model for training purposes, subsequently yielding a predicted bounding box. As 

illustrated in Figure 2.5, the YOLO model leverages the entire image as input, employing 

a CNN architecture for end-to-end design, effectively providing the position and class 

label of the bounding box at the output layer.  

Input
Output

Ripe apple

Bounding box and confidence  

Figure 2.5: The pipeline of YOLO model in visual object detection 
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2.1.4 Detection, Classification & Identification 

Visual object detection refers to the computer's ability to detect the precise location 

of targets in an image.  

Visual object classification and recognition involve in the capacity of deep learning 

models. Our model demonstrates proficiency in detecting apples and pears, while also 

detecting their respective levels of ripeness. 

Visual object identification pertains to the computer's capability to differentiate 

between different targets. For instance, our model can accurately determine whether an 

image depicts a ripe apple or an overripe pear. 

Visual object classification algorithms, in the field of machine learning, are employed 

to make predictions based on the samples in the dataset to which they pertain. In visual 

object detection, the algorithms aime at locating items in images, it is crucial to 

differentiate between object detection and object recognition. The former involves the 

ability to detect multiple objects from a single image. Numerous approaches, predicated 

upon convolutional neural networks, have been devised to facilitate the detection of 

targets through visual object detection. 

2.2 Fruit Identification 

The process of agricultural harvesting is known to be labor-intensive. Therefore, the 

impetus behind this thesis lies in the utilization of a visual object detection model to 

classify fruit.  

In the era of machine learning, the power of colors and shapes is harnessed as features 

to identify fruits from images (Zawbaa, Abbass, Hazman, and Hassenian, 2014). 

Specifically, clustering algorithms were employed for fruit detection, comprising three 

distinct stages: data preprocessing, feature extraction, and classification. The fruit's image 

pixels were limited to a mere 90, whereupon the scale-invariant feature transform (SIFT) 
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was employed to collect the color and shape features of the fruit. These shape and color 

features were subsequently employed as vectors for dataset classification, with the 

classification process itself being facilitated by the employment of K-NN and SVM 

algorithms. 

Fruit detection from digital videos involves the utilization of computer-based 

methodologies as opposed to manual operations. Fundamentally, the video is segmented 

into individual frame images, subsequently employing computer vision models to identify 

apples and pears in the dataset. However, the crux of fruit ripeness identification lies in a 

classification + positioning detection task that leverages pre-trained labels and bounding 

boxes. 

The dataset employed for the deep learning object detection quandary comprises 

ground truth data. This ground-truth data essentially consists of a bounding box + labelled 

tag. By means of the ground truth, the model extracts the visual characteristics of the fruit 

and generates predicted box + labelled tag. 

The central quandary of detection is defined as follows: 

(1) Classification problem: To which class does a given region in an image belong? 

In our experimental setup, we need to analyze whether the fruit depicted in the image is 

an apple or a pear.  

(2) Localization problem: Where does the target object appear in the image? We need 

to confirm the presence of fruits in the image and accurately identify their spatial location.  

(3) Size problem: What are the dimensions of the target objects in the image? The 

position and size of the fruit in the image are not fixed.  

(4) Shape problem: What is the precise positioning of the target object? The position 

and size of the fruit in the image are not fixed. 

Deep learning in fruit recognition employs mathematical algorithms to identify and 

categorize fruits based on input two-dimensional images. The initial concepts revolve 
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around fruit recognition predicated on pixel intensities (Jimenez, Ceres & Pons, 2018). In 

order to locate the fruits, the regions of interest is extracted by using the R-CNN model 

(Shalini et al., 2021), while segmentation provides broader selection by defining regions 

of interest in the images (Hameed, Chai, Rassau, 2022). 

In the fruit recognition applications, the visual object may occupy a limited portion 

of the image, or there may be instances of mutual occlusion among the detected targets. 

For instance, in the collected data, pears and apples are distinctly separated, but there may 

also exist densely clustered fruits on trees that pose challenges in differentiation. To 

address the identification of small objects, the Faster R-CNN model leverages the overlap 

between the ground truth and the anticipated bounding boxes (Behera, Rath & Sethy, 

2021). Fruit surface disease detection (Wang et al., 2020) is intrinsically linked to fruit 

ripeness detection.  

In our experiment, we also input fruit images with corresponding labels and bounding 

box information into the information of the detected target. Subsequently, we train the 

model to assess the degree of fruit maturity. 

The feature information of tomatoes and other fruits is extracted by using the 

transformer model, which is also utilized for multi-granularity feature extraction through 

the utilization of patches (Wu, Sun & Hung, 2021). Residual networks are employed to 

optimize the training parameters. In addition, Jia et al. have made improvements to 

ResNet, resulting in the development of DenseNet, which achieved an impressive 

accuracy rate of 97.31% in the identification of apples (Jia et al., 2020). 

To address the challenges associated with fruit recognition, the FDR (i.e., Fruit 

Detection and Recognition) model was introduced (Khan, & Debnath, 2019). The 

complex natural environment poses difficulties in object detection when it comes to fruit 

detection applications. In a natural orchard environment, the FDR model proves to be 

more effective in dealing with the issue of overlapping fruits on fruit trees. By enhancing 

the neural network's baseline, the FDR model mitigates the impact of background noise 

on the model. Simultaneously, the FDR model improves the capability of convolutional 
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neural networks to cope with variations related to image resolution, resulting in an 

impressive accuracy rate 97.83%. 

For the purpose of extracting feature information, the Transformer model employs 

enclosed encoding modules. To achieve fruit detection, a multilevel attention feature 

extraction module is constructed in the scope of this thesis. In contrast to the conventional 

CNN approach, the Transformer model demonstrates superior capability in extracting 

feature information from fruits and recognizing more subtle traits. 

Based on the findings of fruit detection, it can be inferred that the Transformer model 

surpasses various models in terms of accuracy. The research work conducted by Sun et 

al. (2023) focuses on the application of the Transformer model in fruit detection, aiming 

to mitigate the influence of the orchard environment. To achieve this, Sun et al. (2023) 

proposed a modified Transformer model that replaces convolutional layers with focus 

transformer blocks, which are then integrated into the original model architecture. Unlike 

the issue of overlapping in orchards, the detection process also needs to account for the 

distinction between the color of fruits and the background color of trees. Transformer 

model (Sun et al., 2023) is specifically designed to address the challenge of differentiating 

the color of green apple peel from the color of leaves. To accomplish this, the Pascal VOC 

dataset is incorporated with a window-based attention mechanism into the transformer 

blocks to extract local features of green apples. The achieved accuracy rate is reported to 

be 34.2%. 

By considering the labor-intensive nature of fruit picking and subsequent fruit quality 

classification (Xia, Nguyen, and Yan, 2022), this thesis proposes an automatic fruit 

recognition algorithm based on the YOLOv7 and ConvNext models (Tian, 2022). The 

primary objective is to develop a deep learning model capable of distinguishing between 

different fruit classes (Bazame, 2021) in the same fruit category, based on the degree of 

skin folds (Kang & Chen, 2020). The high-precision fruit (e.g., apple and pear) detection 

and recognition system, which relies on deep learning techniques (Wang & Yan, 2021), 

can be effectively utilized in everyday life or in natural environments to detect and locate 
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fruit targets (Fu, Nguyen, & Yan, 2022). By utilizing deep learning algorithms, this system 

enables the detection and recognition of fruit targets through various mediums such as 

images, videos, and cameras. In addition, it supports the visualization of results and the 

exportation of inspection results in the form of images or videos (Bhargava & Bansal, 

2021). 

Visual object detection is characterized by the identification of the location and 

classification of objects in an image (Liu, Sun, Gu, & Deng, 2022). In the context of a 

two-dimensional image, the task of target detection involves determining the precise 

position of an apple in the image and further classifying it as a "ripe apple". Firstly, the 

dataset undergoes preprocessing, followed by the utilization of a backbone network to 

extract relevant features. In this process, the ELAN attention mechanism is employed. To 

ensure the extraction of effective features for fruit recognition, the module operates on 

the associated channel of the feature map. Subsequently, the model performs feature 

fusion to obtain semantic information and accurately locate the feature map of the 

pertinent information. Finally, precise detection results are achieved through category 

classification and prediction frame regression calculations (Gokhale, Chavan, & 

Sonawane, 2023). 

2.3 Convolutional Neural Networks  

Both one-stage and two-stage object detection methods employ supervised learning. Deep 

learning-based approaches are typically utilized for visual object detection. The one-stage 

model and the two-stage model are the two primary paradigms in visual object detection. 

The one-stage object detection model includes YOLO, SSD, and various key point 

detection algorithms. On the other hand, the two-stage object detection paradigm includes 

Cascade R-CNN, Fast R-CNN, Faster R-CNN, and FPN (Feature Pyramid Networks). 

2.3.1 One-Stage Model 

The one-stage algorithm refers to the approach that requires only one round of feature 
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extraction to accomplish detection tasks. Therefore, the object detection speed of a one-

stage algorithm surpasses that of a two-stage approach. While the early YOLO model 

exhibited faster speed compared to the complex Faster R-CNN model, the YOLO model 

we employed incorporates Transformer to achieve rapid and accurate recognition. 

YOLO 

YOLO (i.e., You Only Look Once) models accept the entire image as input and directly 

regress and predict the label with a predicted bounding box at the output layer.  

SSD 

The SSD (i.e., Single Shot MultiBox Detector) method integrates target localization and 

classification into a single step, inheriting the YOLO concept of transforming detection 

into regression. Simultaneously, SSD proposes a similar prior box based on the anchor in 

Faster R-CNN. SSD incorporates the Pyramidal Feature Hierarchy detection method, 

enabling the model to anticipate the target on the feature map of distinct receptive fields. 

2.3.2 Two-Stage Model 

Early fruit detection is accomplished by extracting features from a given image, such as 

SIFT, HOG, and so on. 

The Deformable Parts Model, utilizing the sliding window approach, can also be 

employed to predict the boundary. However, these early detection models are highly time-

consuming and fail to achieve high accuracy. 

Subsequently, in comparison to the exhaustive sliding window method, the region 

proposal-based detection method exhibits a remarkable improvement in model 

performance while reducing computational overhead. Region proposal serves as a crucial 

component of the two-stage algorithm.  

The region proposal method combines the convolutional neural network (CNN) to 
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derive the R-CNN model, which is commonly referred to as the two-stage model. Figure 

2.6 illustrates a simplified two-stage detection model. Faster R-CNN, SPPNet, and other 

network models are all based on the R-CNN framework. These models demonstrate that 

region proposal achieves superior precision in visual detection. 
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Figure 2.6: A two-stage model 

Prior to the advent of the Transformer model, the superiority of the two-stage model 

in visual object detection was evident. However, the one-stage model has demonstrated 

its capability to achieve rapid real-time detection (Yao et al., 2022). 

A notable characteristic of the two-stage model lies in its utilization of region 

proposals. Selective search generates region proposals, which are subsequently subjected 

to regression and classification tasks by the model. 

To enhance the detection speed of Faster R-CNN, Wan and Goudos made 

improvements to the convolutional layer and pooling layer, resulting in an average 

accuracy 86.41% (Wan & Goudos, 2020). 

Transfer learning emerges as another method aimed at enhancing both the accuracy 

of the model and the speed of model training progress. Positioned in machine learning, 

transfer learning, supervised learning, semi-supervised learning, and ensemble learning 

are interconnected concepts. These various learning methods permeate and mutually 
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reinforce one another. Semi-supervised learning algorithms introduce the notion of 

ensemble learning, while supervised learning can leverage the transfer learning approach. 

At its essence, transfer learning entails the extraction of target features from Dataset 

A, which are subsequently employed for training purposes in Dataset B. The feature 

information gathered from Dataset A can be effectively utilized in Dataset B, effectively 

serving as sample weights. Transfer learning facilitates the construction of models with 

enhanced generalization performance. 

The notable advancements has been made to the Faster R-CNN model by 

incorporating transfer learning techniques and leveraging RGB color as visual features 

for the purpose of identifying bell peppers (Sa et al., 2016). Transfer learning primarily 

facilitates the extraction of identifiable characteristics pertaining to the target. The 

precision and recall rates for detection were reported as 0.807 and 0.838, respectively (Sa 

et al., 2016). 

In prior studies, the Faster R-CNN model was implemented with ResNet-50 during 

the training phase, yielding a detection precision value of 93% (Xiao, Nguyen & Yan, 

2021). In addition, the YOLOv3 model, utilizing DarkNet as the training module, 

achieved an impressive precision value of 99.96%. 

R-CNN 

The R-CNN model features unique characteristics, including the extraction of region 

proposals, component CNN features, and region classification. The extraction of region 

proposals involves the utilization of the selective search method as a replacement for the 

conventional sliding window selection approach, thereby contributing to expedited 

detection. By employing AlexNet as a backbone, CNN can be effectively employed as an 

image extraction mechanism. 

As an object detection methodology, CNN is associated with a relatively sluggish 

detection speed. Each image typically contains approximately 2,000 bounding boxes, 
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necessitating the application of CNN and feature extraction for each individual bounding 

box. R-CNN employs SVM as a classifier, necessitating the training of an SVM for each 

distinct class. Additionally, the R-CNN model necessitates the training of the final 

detection frame regressor. The abundance of bounding boxes results in a substantial 

computational burden and a laborious training process, ultimately impeding the detection 

speed. 

Fast R-CNN 

In contrast to R-CNN, Fast R-CNN incorporates the entire image into the CNN model to 

extract features. Followed the methods of feature extraction, the model transmits the 

region of interest, acquired through selective search, to the network for training. The 

region of interest corresponds to the region proposal in R-CNN. Therefore, Faster R-CNN 

necessitates only a single instance of feature map extraction, thereby reducing the 

computational load. 

Each region of interest involves a bounding box of varying sizes. The R-CNN model 

resizes the bounding box and subsequently extracts features. The RoI pooling layer in 

Fast R-CNN ensures that the feature maps corresponding to each bounding box possess 

identical dimensions. Concurrently, SoftMax replaces the SVM module of R-CNN and 

incorporates a regressor for training purposes. Fast R-CNN attains higher accuracy while 

reducing computational requirements. 

RoI Polling involves the mapping of a region of interest onto a feature map. The 

region of interest is divided into n×n segments (output dimension), with each segment 

undergoing max pooling operations. Finally, an n×n output matrix is derived. 

Faster R-CNN 

Faster R-CNN incorporates a Region Proposal Network (RPN) into Fast R-CNN, thereby 

extracting candidate boxes. The selective search method in Fast R-CNN is replaced by 

the RPN network for bounding box extraction, resulting in enhanced accuracy and 
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computational speed. The introduction of anchors in the RPN network in Faster R-CNN 

reduces the computational complexity. In the Faster R-CNN framework, the RPN network 

is trained separately, and the training process is complicated, rendering Faster R-CNN 

significantly faster than Fast R-CNN. However, its implementation in industrial settings 

remains challenging due to computational speed constraints. 

A novel visual object detection approach was proposed to address the fruit counting 

problem. The SSD model was employed in conjunction with MobileNet, while Faster R-

CNN with Inception v2 was utilized for multi-fruit object tracking based on Gaussian 

estimation. Vasconez et al. (2020) achieved accuracy rate 90% by using the SSD model 

and accuracy rate 93% by using Faster R-CNN. 

2.4 Object Detection Model 

2.4.1 Transformer 

The Transformer model is attributed to the attention mechanism, which was originally 

introduced to enhance sequence-to-sequence tasks. This mechanism empowers the model 

to concentrate its attention on different regions of the input data, thereby facilitating 

output generation. Essentially, it enables the network to "focus" on input components 

based on their significance. In the context of NLP tasks involving lengthy sequences, the 

attention mechanism significantly enhances performance by capturing long-range 

dependencies more effectively than RNNs. 

The Transformer architecture, which completely forgoes recurrent layers and relies 

solely on attention mechanisms, particularly the innovative variant termed "multi-head 

self-attention," represents a significant advancement in the field. This architectural choice 

enables the Transformer to achieve a high degree of parallelizability, resulting in 

enhanced training speed. Additionally, the Transformer introduces the concept of 

positional encodings, which enables the model to consider the positional information of 

words in a sequence. This capability is particularly valuable given the permutation-



29 
 

invariant nature of the architecture. Therefore, the Transformer swiftly emerged as the 

new standard in various NLP benchmarks. 

In 2018, Google unveiled the Bidirectional Encoder Representation from 

Transformers (BERT), which propelled the Transformer architecture to new heights. 

BERT revolutionized the field by employing pre-training on a vast corpus using a large-

scale Transformer model, followed by fine-tuning for specific tasks. Subsequently, 

numerous variants and models based on the Transformer architecture, e.g., GPT 

(Generative Pre-trained Transformer), RoBERTa, T5 (Text-to-Text Transfer Transformer), 

and XLNet, were proposed. These models have established new benchmarks across 

diverse NLP tasks. 

While originally designed for NLP applications, the Transformer architecture has 

been successfully adapted for use in other domains, including computer vision (e.g., 

Vision Transformer) and even protein structure prediction (e.g., DeepMind's AlphaFold). 

By considering the widespread adoption of the Transformer, the increasing focus is 

on optimizing its performance to address challenges related to computational cost, model 

size, and training efficiency. This has led to the development of techniques such as 

knowledge distillation, pruning, and quantization, which aim to create smaller 

Transformer models suitable for deployment on edge devices. 

To address the challenges posed by longer sequences and to optimize memory 

requirements, the introduction of architectural changes, such as sparse attention patterns 

and reversible layers, has been proposed. 

Despite of the established efficacy, Transformers encounter certain obstacles. Due to 

the extensive parameterization, they necessitate substantial computational resources. 

Particularly for exceedingly lengthy sequences, the quadratic complexity associated with 

self-attention in relation to sequence length can present a constraining factor. 

Transformer models have fundamentally revolutionized the landscape of deep 

learning, propelling remarkable advancements across a diverse array of applications. 
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Figure 2.7: A type of Transformer models 

The fundamental objective of agricultural automation resides in the utilization of 

computer models to govern machinery, thereby achieving automated harvesting. In 

agriculture, various tasks akin to fruit detection exist, such as the identification of rice 

diseases. A hierarchical design of the Swin Transformer (Zhang et al., 2021) has been 

proposed through utilizing a sliding window approach, which yielded a detection 

accuracy of 93.4% for rice diseases. 

In addition, Transformers can be effectively employed to facilitate the 

implementation of a grabber mechanism (Han et al., 2021). The Transformer architecture 

is harnessed to extract both visual and tactile information, leveraging predefined object 

characteristics to enable object grasping. Additionally, a comprehensive analysis is 

conducted with the comparison between the CNN+LSTM model and the Transformer 

model. 

Pertaining to visual object detection, CNN and the Transformer model possess 

distinct advantages and disadvantages (Arkin et. al., 2021). The CNN model exhibits a 

characteristic progression from local to global, whereby the convolutional layer 

progressively extracts information from local regions and subsequently integrates it to 

derive global feature representations. Conversely, the Transformer model directly 
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captures global information and employs self-attention mechanisms in each patch of the 

Transformer to facilitate information transfer. It is worth noting that the Transformer 

model lacks bionic capabilities. Under equivalent parameter settings, the Transformer 

model necessitates a sufficient number of data samples to attain identical performance to 

that of CNN. Nevertheless, the Transformer model surpasses R-CNN in its ability to 

transmit features effectively, thereby reducing computational requirements and enhancing 

model portability. 

Vision Transformer (ViT)  

Throughout the stacking of convolutional layers, the CNN model gradually synthesizes 

global information by iteratively extracting information from local regions. Conversely, 

the Transformer model incorporates dependencies and directly retrieves global 

information. 

Vision Transformer shares similarities with the CNN model, whereby an increase in 

network depth corresponds to an increased average attention span (Xiang et al., 2021). 

The absence of bionic capabilities in the Transformer model necessitates an abundance 

of training dataset to achieve optimal training results for the Vision Transformer. 

Fortunately, the Transformer model's robust scaling capabilities ensure superior feature 

propagation.  

The detection of plant disease problems can be facilitated by employing the ViT 

model in conjunction with DenseNet-169 and ResNet-50v2 architectures (Alzahrani & 

Alsaade, 2023). Notably, the enhanced ViT model exhibits an impressive accuracy of 

99.88%. In the case of multi-classification problems, the utilization of the sparse 

classification cross-entropy loss function enables the implementation of the detection task. 

Detection Transformer (DETR) 

The enhancements  have been introduced to the Detection Transformer (DETR), with a 

primary focus on enhancing object detection for large objects (Dai et al., 2021). In this 
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context, DETR is employed to perform object localization and preference determination 

while preserving the R-CNN base architecture. To facilitate multi-query localizations, this 

enhancement incorporates the features such as object query shuffle and attention masks 

(Zhang et al., 2021).  

Swin Transformer 

Swin Transformer model constructs a detection task by downsampling the image in a 

manner reminiscent of the hierarchical feature map of a convolutional neural network. 

Specifically, the Swin Transformer downsamples the feature map, typically by factors of 

4, 8, and 16, utilizing the Windows multi-head attention method. When downsampling by 

a factor of four, the Swin Transformer model divides the feature map into multiple disjoint 

sections, with each attention mechanism exclusively employed in its designated window. 

In comparison to alternative models, the Transformer model effectively reduces 

computational complexity when dealing with large feature maps. 

The local perception network of Swin Transformer is constructed by the Transformer 

module and the CNN module. The Spatial Attention Interleaved Execution Cascade 

(SAIEC) network is enhanced (Xu et al., 2021) for small object detection, resulting in a 

precision that surpasses the basic Swin Transformer model by 1.7%.  

The multi-perceptual architecture of Transformer model outperforms residual 

networks in facilitating cross-channel feature transfer for visual objects (Touvron et al., 

2022). 

In contrast to CNN or Mask R-CNN models, Transformer models do not necessitate 

global modifications (e.g., convolutional, max-pooling, or global average pooling) while 

data augmentation or distillation is readily available (Ganesh et al., 2019). 

To enhance the Swin Transformer model, one can leverage the encoder, decoder, and 

skip connection components (Abozeid et al., 2022). Additionally, visual object 

computation, stacking, and feature map upsampling using patches can be employed to 
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mitigate the adverse effects of noise in natural environments on detection (Wang et al., 

2018). 

In object detection tasks, Swin Transformer is also combined with CNN models, such 

as weighted box fusion (WBF), non-maximum weighting (NMW), and non-maximum 

suppression (NMS) (Hendria et al., 2021). 

2.4.2 Attention Mechanism 

Visual object detection, a form of image retrieval, emulates human vision. The attention 

mechanism, akin to the human visual system, identifies targets of interest in complex 

scenes. Fundamentally, it employs semantic analysis to locate the required targets. While 

the human brain adeptly processes complex high-level semantic information, computer 

models are inadequate in achieving excessively complex image retrieval.  

Currently, deep learning models predominantly rely on extracting texture, color, and 

other features of detected targets to accomplish classification. However, in comparison to 

the sophisticated and complex semantic information processed by humans, computer 

models still possess ample room for advancement. Transformer model mimics the human 

visual perception system and extracts the necessary detailed features by establishing a 

top-down attention mechanism. The attention mechanism of the Transformer combines 

local and global features, retrieves detected targets from a hierarchical perspective, and 

establishes a feature extraction strategy akin to human vision. 

2.4.3 NLP & MLP 

NLP emerges as a prominent research domain in artificial intelligence. Semantic analysis, 

text generation, chatbot construction, translation, and text-to-speech conversion all fall in 

the purview of NLP (Tang et al., 2021). Extensive datasets typically exhibit complex 

structures and detailed features. The multilayer perceptron model accomplishes the 

processing of extensive datasets through deep learning neural networks, trained on 

abstract data. Naturally, current vision tasks present abundant opportunities for 
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improvement (Ünal et al., 2020). 

The LSTM, GRU, and RNN series models are all based on complex neural networks 

and serve as prototypical NLP models. It is necessary to note that the complexity of deep 

neural networks does not inherently confer superior aptitude in identifying object features. 

However, if YOLO is combined with the LSTM model for detection tasks, a marked 

enhancement in precision results ensues. In addition, the issue of slow detection speed, 

stemming from NLP models and based on deep networks, can be ameliorated (Alkalouti 

& Masre, 2021). 

Among the earliest and most rudimentary neural networks, to address more 

complicated visual tasks, the conventional artificial neural network architecture has 

undergone a metamorphosis, transitioning from MLP to a hybrid of CNN and RNN. The 

Transformer, which capitalizes on the attention mechanism, stands as a significant 

representative of the progress and application of NLP.  

Akin to the local feature extraction function inherent in the CNN architecture, Lian 

et al. have adopted an enhanced AS-MLP model to encode global features. The AS-MLP 

model leverages the axial displacement of the feature map to construct comprehensive 

spatial features (Lian et al., 2022). 

In previous work, an enhanced Vision Transformer model (Tolstikhin et al., 2021) is 

employed that is premised on MLP architecture. The Transformer is applied to segment 

the image into multiple non-overlapping patches. Subsequently, each patch was converted 

into a mixer layer in the feature embedding model. The MLP-Mixer model effectively 

replaces the modules in the Vision Transformer model. 

2.4.4 Mask R-CNN Model Research 

Regarding object detection, instance segmentation, and key point detection, Mask R-

CNN emerges as a valuable approach for instance segmentation. Operating within a two-

stage framework, the initial stage examines the image to generate proposals, which 
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represent regions that potentially contain objects. The subsequent stage undertakes the 

categorization of these proposals while simultaneously generating bounding boxes and 

masks. Mask R-CNN represents an extension of the renowned Faster R-CNN object 

detection framework, thereby expanding its capabilities into an instance segmentation. 

Notably, Mask R-CNN exhibits a remarkable level of adaptability, enabling the 

integration of diverse branches to accommodate a wide array of tasks. 

The task of detecting objects using Mask R-CNN involves a preliminary data 

preprocessing step, followed by the input of the processed images into a pre-trained neural 

network (e.g., ResNeXt) which generates a feature map. Multiple regions of interest are 

then generated based on this feature map. The regions of interest that do not contain the 

target object are filtered out by the RPN network, which performs binary classification 

and bounding box regression operations on the remaining regions. To classify the regions 

of interest, the RoIAlign procedure correlates the input image with the pixels of the 

feature map and aligns the feature map with a fixed feature. The FCN module of region 

of interest facilitates bounding box regression and Mask generation. 

Similar to Faster R-CNN, Mask R-CNN is employed in conjunction with various 

neural networks. For instance, the Mask R-CNN model can be utilized with ResNet-50 

to extract RPN for detecting wheat diseases and generating anchor points (Kumar & 

Kukreja, 2022). The RPN produces a binary mask for each detected object. In the context 

of Mask R-CNN, RPN employs the anchor box as a reference for aligning the features of 

the region of interest (Chen, Hsieh, & Kong, 2022). During the actual detection process, 

the extraction of anchor boxes may result in losses in both bounding box and mask 

accuracy. 

To address the impact of the environment on tomato detection, the utilization of mask 

R-CNN has been employed (Wang et al., 2023). Demonstrating an impressive accuracy 

rate of 89.4%, Wang et al.'s Mask R-CNN detection model, which is founded upon the 

Swin Transformer model, exhibits the capability to identify the dimensions and 

categorization of tomatoes. 
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2.4.5 CenterNet & ConvNeXt 

The hallmark feature of CenterNet lies in its utilization of the center point for detection. 

CenterNet represents a two-dimensional image of the detected object as a singular point. 

ConvNeXt, derived from ResNet, undergoes a transformation process akin to the 

construction of the Transformer model. ConvNeXt maintains the simplicity inherent in 

CNN neural networks while adhering to the structural framework of the Swin 

Transformer model. 

The CenterNet model is commonly integrated with ResNet to accomplish visual 

detection tasks (Jaju & Chandak, 2022). The residual network possesses the 

characteristics as the number of network layers increases, the capacity of model 

generalization improves. 

ResNet is incorporated into the backbone of CenterNet, with its loss function aiding 

the model in achieving an accuracy rate 78.6% (Zhao & Yan, 2021). As the name implies, 

CenterNet focuses on feature point detection. In current two-dimensional object detection, 

CenterNet effectively employs the feature grid map of the target's center point. However, 

in the context of three-dimensional object detection, the imprecision of center point may 

result in the blurring of the target's direction and size, thereby leading to inaccurate 

detection and misinterpretation of global information. Naturally, the enhanced 3D-

CenterNet can manipulate the model parameters, estimate the position of the center point 

through the bounding box, and subsequently capture the characteristics of the detected 

target (Wang et al., 2021). 

2.4.6 YOLO Models  

The YOLO model, a one-stage deep learning regression method, is characterized by its 

omission of the region proposal process. Instead of directly estimating the coordinates of 

the bounding box, it introduces a grid and anchor offset-based approach. In contrast to 

the computationally intensive Faster R-CNN, the YOLOv3 (Kuznetsova, Maleva & 
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Soloviev, 2020) and YOLOv5 (Tsai & Tseng, 2021) models have already demonstrated 

their potential in the development of fruit picking robots. Notably, the YOLOv3 model 

exhibited omission rate 9.2% for apples in the dataset (Kousik et al., 2021), while the 

YOLOv5 model failed to detect 2.8% of the apples (Mhala, Chateau & Amara, 2019). 

The offset of the anchor point, determined by the fixed grid, represents the positional 

difference between the detected object and the anchor point. The anchor-based offset 

implies that the position of grids remains fixed, and the offset corresponds to the disparity 

between the object position and grid. YOLOv2 employs k-means clustering to identify 

anchors and predict the relative position of the grid. 

The YOLO model has been employed for the purpose of visual object detection 

through the division of cells, with the number of divisions varying. Building upon the 

foundations laid by YOLOv2, YOLOv3 introduces the DarkNet-53 classifier to enhance 

the implementation of the fundamental classification network, akin to ResNet. The 

original single-label classification has been refined and promoted to multilabel 

classification. In the YOLOv3 model, each grid unit has the capability to predict three 

boxes, with each box containing five essential parameters (𝑥𝑥,𝑦𝑦,𝑤𝑤,ℎ, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 

associated with 80 classes. Instead of utilizing 𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥, YOLOv3 employs multiple 

logistic classifiers to classify each box, thereby facilitating the attainment of multi-label 

classification and an enhanced detection accuracy. 

In order to address the class prediction aspect, a binary cross-entropy loss based on 

YOLOv3 was proposed, while scale prediction was employed to enhance the precision 

value pertaining to the detection of small objects (Redmon and Farhadi, 2018). The 

understanding of YOLOv3 was predicated based on the limitations imposed by the 

device's memory and computing power (Mao, Sun, Liu, and Jia, 2019), leading to the 

redesign of the lightweight YOLOv3 network based on Darknet-53. Pointwise group 

convolutions and separable convolutions were harnessed to reduce the parameter size of 

the network. However, it should be noted that even a minor change to the network can 

result in a decrease in precision. To facilitate more efficient parameter training, a U-
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shaped structure of a multi-scale feature network was incorporated. The size of the 

minimal network parameters amounts to only one-sixteenth of Darknet-53, thereby 

enabling faster detection times. 

The analysis of YOLOv3 was conducted in 2019 (Benjdira et al., 2019). In contrast 

to the exclusive tags utilized in previous iterations, YOLOv3 employs a multilabel 

classification approach. To determine potential objects with specific labels, logical 

classifiers such as Darknet-19 are employed. In terms of classification, the binary cross-

entropy loss function was proposed. YOLOv3 utilizes various bounding boxes to assign 

an anchor point to each ground truth object. Additionally, YOLOv3 leverages the feature 

pyramid network to make predictions across different scales. A novel CNN feature 

extractor, inspired by ResNet, is combined with the skip connection network known as 

Darknet-53. Notably, it exhibits a higher level of precision compared to ResNet-152, 

while requiring fewer floating-point operations. 

Tinier-YOLO structure based on Tiny-YOLO-V3 was proposed (Fang, Wang and 

Ren, 2017). This enables deep neural networks to reduce memory consumption on 

embedded devices. Tinier-YOLOv3 reduces the parameter size and enhances real-time 

performance and precision. By examining the number and placement of fire modules, the 

modules from SqueezeNet were incorporated to reduce the parameters and overall size of 

this model. Tinier-YOLO retains the first five convolutional layers from the original 

structure and introduces five fire-fighting modules to compress network parameters. 

Additionally, Tinier-YOLO merges the pass-through layer between the feature map and 

the first detection layer, introducing dense connections to enhance feature propagation. 

The scale of the Tinier-YOLO model is approximately four times smaller than that of 

Tiny-YOLO-V3, achieving a mean average precision of 34.0% based on the COCO 

dataset and 65.7% mean average precision on PASCAL VOC. 

YOLOv4 incorporates novel enhancements building upon the foundation of 

YOLOv3. In YOLOv3, a single anchor was assigned to each ground truth. However, 

YOLOv4 introduces the utilization of multiple anchors for a single ground truth. While 
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the number of anchor boxes remains unchanged, the selection of positive samples has 

been increased, thereby mitigating the discrepancy between positive and negative 

samples. 

The applications of YOLOv4 exhibit remarkable diversity (Zhu, et al, 2020) of 

experiments employing a sound imager, utilizing sound phase as a measurement tool to 

evaluate the combination of sound wave and lightwave images. Essentially, the YOLOv4 

model was adapted to identify error indicators and assess sound source localization results. 

The combination of DenseNet and clustering algorithm offers the YOLOv4 algorithm 

with high accuracy and facilitates the extraction of image features. The refined model 

achieved a precision of 96.3% during testing. 

Drones are employed for real-time detection of bridge cracks (Yu, Shen, and Shen, 

2021), wherein focal loss is employed to optimize the loss function. The utilization of a 

multiscale dataset expands the predictable range of the enhanced model, YOLOv4-FPM, 

and strengthens its scale robustness. The mAP of YOLOv4-FPM attains 0.976, surpassing 

the original YOLOv4 model by 0.064. In addition, a pruning algorithm is employed to 

streamline the network architecture and expedite the detection speed. 

YOLOv4 offers advantages in terms of speed and accuracy, making it suitable for 

real-time detection. Hu et al. (2021) applied YOLOv4 to detect feed pellet consumption 

and water pollution in aquaculture. For fruit recognition, image collection using a mobile 

camera is influenced by environmental factors such as light and climate, which introduce 

noise. Underwater image collection poses challenges due to low image quality and the 

presence of extremely small particles. These challenges were addressed by utilizing a 

fine-grained YOLO feature map and modifying the connection mode of the feature 

pyramid network (FPN) and the path aggregation network (PANet). The remaining 

connection mode of CSPDarknets improved network performance and function reuse. 

De-redundancy operations reduced network complexity while ensuring detection 

accuracy. The experiment utilized real environment images, yielding influential results. 

The precision value achieved in the experiments was 92.61%, applicable to actual 
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aquaculture environments. 

Visual object detection was applied to medical image recognition. The utilization of 

YOLOv4 facilitated the identification of the hip joint, knee, and ankle regions in the 

entirety of the leg X-ray photograph (Tack, Preim, & Zachow, 2021). Subsequently, this 

enabled the complete alignment of the knee in the full-leg X-ray image through an 

automated process. The residual network was implemented to regress the coordinates of 

the region of interest. The detection of the hip-knee-ankle (HKA) angles served as pivotal 

landmarks. A dataset comprising of 2,943 medical images was amassed to assess the 

accuracy of the HKA angles. Through the utilization of YOLOv4 and the ResNet 

Landmark Regression Algorithm (YARLA), the automatic detection yielded an average 

discrepancy of 0.63° in the measured HKA angle, which closely approximates the 

proficiency of a human expert. This achievement provides a promising avenue for the 

automated identification of medical images. 

YOLOv5, the most recent addition to the YOLO family, is predominantly based on 

the architecture of YOLOv3. It has garnered widespread adoption across various sectors. 

The customizability of YOLOv5 is evident through its adaptability to diverse datasets. 

Computer vision finds extensive application in traffic scenes, comprising intelligent 

signal lights, traffic sign recognition, violation monitoring, vehicle classification, vehicle 

speed monitoring, vehicle counting, parking assistance, etc. Kasper-Eulaers et al. (2021) 

directed their focus towards real-time occupancy prediction of parking spaces in rest 

regions. The collection of experimental data for real-time monitoring of outdoor scenes 

is susceptible to the influence of adverse weather conditions. To address this, a dataset 

comprising of 580 images was enhanced through random application of horizontal 

mirroring, resizing (zooming and cropping), and grayscale changes. The monitoring of 

parking spaces directly employs the pre-training weights of YOLOv5, while the frame 

loss representation approach accurately detects the center and anticipates the bounding 

box coverage of the object. 

The safety helmet monitoring system was developed due to its role in protecting 
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workers (Zhou, Zhao, & Nie, 2021). The dataset used in the experiment consisted of 6045 

images, including diverse scenes featuring various types of helmets. To conduct the 

experiment, the YOLOv5 model was employed with different parameters, resulting in an 

impressive precision of 94.7%. 

Facial masks have proven to be an efficacious measure in curbing the transmission 

of COVID-19. Machine vision techniques have been harnessed to recognize whether 

individuals are wearing masks or not (Yang et al., 2020). To mitigate image noise, a 

smoothing filtering approach was employed to enhance the low-frequency components 

of the images. The image segmentation algorithm accurately identifies facial features and 

extracts the relevant regions of interest. The experiment yielded a remarkable success rate 

97.0% (Liu, Lu, Peng, & Zhang, 2020). The k-means algorithm, when combined with 

data augmentation methods, enhances the accuracy of the mask recognition model by 

identifying anchor points during training. 

Detecting small visual objects poses a significant challenge, particularly in oceanic 

environments where such objects are easily overlooked. The detection of small targets 

often leads to the loss of certain features, resulting in a high detection loss rate. To address 

this issue, improvements can be made to the YOLOv5 model to enhance the performance 

of weak classifiers in detecting small targets. Residual networks can facilitate the 

extraction of features from datasets containing small targets, thereby expediting 

convergence algorithms and optimizing deep networks (Dou & Yan, 2021). Notably, 

YOLOv5 is lighter than its predecessor, v4, and exhibits a mere 1.78% missed detection 

rate. 

A model utilizing a YOLOv4-based convolution block was proposed to incorporate 

an attention mechanism for identifying the maturity of apples based on color 

discrimination. In order to address the practical considerations of orchard settings, 

including the size of fruit trees, the influence of branches and leaves on fruit, as well as 

the actual size and color of the apples, these factors must be taken into account in the 

context of real object detection. The YOLOv4 model, as proposed by Lu et al. (2022), 
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achieved an accuracy 86.2% in fruit detection, surpassing the original YOLOv4 model by 

approximately 3%. 

To evaluate the performance of the YOLOv4 model in real-time mango detection, a 

nighttime dataset was collected with images from diverse orchards, varieties, and lighting 

conditions. The results demonstrated an F1 score of 0.968 and an average precision of 

0.983 (Koirala et al., 2019). 

The YOLOv2 model was designed for predicting the location of visual objects, with 

YOLOv3 building upon its foundation. YOLOv3 incorporates the FPN structure to 

enhance the precision of multi-scale target detection. YOLOv5, in turn, is a modification 

of the YOLOv3 structure, employing the Cross Stage Partial Networks (CSPDarknet) as 

the primary framework for extracting visual information from input images.  

Environmental factors pose practical considerations in deep net testing. The tests may 

encounter environmental noise, such as the impact of weather and lighting conditions on 

the surrounding details of the fruit, the presence of green leaves and background colors 

resembling the fruits being detected, missed detections due to overlapping fruits on trees, 

and the challenge of accurately identifying smaller fruits. To address these challenges, 

our data collection process included the inclusion of images with environmental noise, 

such as complex scenes featuring apples stacked on trees and pears arranged in a fruit 

bowl.  

Numerous methodologies exist for capturing the intrinsic information pertaining to 

fruits (Pal et al., 2021). The RetinaNet and SSD frameworks offer viable approaches for 

predicting the spatial coordinates outputted by the model (Bochkovskiy, Wang & Liao, 

2020). The detection task can be effectively implemented through the utilization of the 

Coordinate-based Anchor-Free (CBAF) technique (Tang, Zhang & Zhu, 2020). The 

algorithm governing the model's convergence speed plays a pivotal role in addressing the 

issue of vanishing or excessively minute gradients, thereby ensuring the transfer of 

features in the network and enhancing the detection results (Redmon et al., 2016). 
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YOLOv3 models were Typically employed in conjunction with neural network 

models. Liu et al. integrated DenseNet into the DarkNet model and employed the 

enhanced DarkNet53 as the backbone of YOLOv3 (Liu et al., 2022). The fusion of 

Darknet and DenseNet significantly bolstered the pineapple detection accuracy of the 

YOLOv3 model, yielding a remarkable 97.55% precision and substantially improving the 

feature maps' capacity to represent data. 

Transfer learning was employed to streamline the computational complexity of 

models. YOLOv5 model was optimized by using means of layer pruning, channel pruning, 

and adjusting the number of detected heads in the feature map (Wang et al., 2022). The 

optimized YOLOv5 model achieved a 71% reduction in volume when detecting apple 

stems, while only incurring a marginal 1.57% decrease in average precision. The 

optimized YOLOv5 model was harnessed to accurately identify apple stems, achieving 

an impressive accuracy rate of 93.89%. 

Hussain et al. (2022) introduced YOLOv7 as a novel approach for visual object 

detection. YOLOv7 NAS incorporates an iterative search mechanism that mines the 

optimal scale factor based on the resolution, width, depth, and number of feature pyramids. 

By using means of reparameterization, the gradient propagation path is effectively 

realized, enabling the reintegration of model parameters and facilitating the application 

of the head module for fruit detection.  

To shed light on the comparative merits and demerits of the R-CNN network and 

YOLOv2, the work (Zhang, Huang, Jin, and Li, 2017) and (Du, 2018) was consulted. 

While both Faster R-CNN and YOLO employ CNN as their fundamental component, 

their frameworks exhibit distinct characteristics. Faster R-CNN adheres to the 

conventional R-CNN framework and processes the entire input image, whereas YOLO 

models segment the image into grids, eschewing sliding windows and region proposals. 

Notably, YOLOv2 incorporates 5 anchor boxes, whereas Faster R-CNN utilizes 9 anchor 

boxes. YOLOv2 was specifically devised to enhance accuracy through techniques such 

as k-means clustering, which are not supported by Faster R-CNN. 
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A comparison was made between YOLOv2 Darknet-19 and VGG-16 (Chang et al., 

2019). It is observed that the speed of YOLOv2 is four times faster than that of VGG-16. 

To enhance the performance of the YOLOv2 model (Shafiee, Chywl, Li, and Wong, 2017) 

a fast real-time detection framework was proposed. The framework leverages the 

structural characteristics of deep neural networks to optimize hyperparameters using 

probabilistic genetic coding modeling strategies, thereby achieving network optimization 

through parameter reduction. The new network, compared to the original YOLOv2 

framework, reduces the parameters by a factor of 2.8 and deep inferences by achieving 

an average 38.13%. However, the detection speed is only increased by 3.3 times. 

To address the issue of unoptimized data paths and frequent off-chip accesses, an 

efficient Tera-OPS streaming hardware accelerator based on YOLOv2 was proposed 

(Nguyen, et al, 2019). This approach involves storing each network model in the on-chip 

memory to minimize off-chip access. In addition, binary weighting, low-level activation, 

and hardware-centric quantization techniques were employed to achieve the desired 

detection accuracy. 

The Tera-OPS architecture is specifically designed to introduce YOLO-LITE (Huang, 

Pedoeem, and Chen, 2018), a real-time object detection model suitable for portable 

devices lacking a graphics processing unit (GPU). The retraining and quantization of the 

network are accomplished using 1-bit weights and flexible low-level activations. The 

model achieved mAP scores 33.81% and 12.26% based on the PASCAL VOC dataset and 

COCO dataset, respectively. 

For the purpose of passion fruit detection, Ou et al. (2023) proposed an enhanced 

FSOne-YOLOv7 model. In order to detect passion fruit in challenging natural 

environments, novel backbone networks, namely slim-neck and ShuffleOne, were 

employed, along with an upgraded YOLOv7 network for the neck network. To enhance 

feature extraction and fusion capabilities, the FSOne-YOLOv7 model utilized gradient 

weighted class activation mapping. These researchers achieved an average accuracy of 

94.5% with this improved model, which demonstrates its superior ability to extract 
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features and enhance detection speed. 

Similarly, a project was explored based on the potential replacement of manual 

picking of dragon fruits with visual inspection (Zhou, Zhang, and Wang, 2023). A PSP-

Ellipse method was propounded based on YOLOv7 for classification purposes. This 

method involves segmenting the detection target and employing an ellipse fitting 

algorithm to identify the endpoints of dragon fruits in images. Subsequently, ResNet is 

utilized to carry out the classification task. In the PSP-Ellipse endpoint detection task, the 

model achieved an impressive accuracy 92% for dragon fruits. 

Previous agricultural-related detections (Wu et al., 2022) were primarily based on the 

classification of fruit color and shape. However, traditional agricultural detection methods 

are susceptible to false positives in complex natural environments, and the model lacks 

robustness. Wu et al. conducted a study on target detection in complex environments, 

utilizing the module characteristics of YOLOv7 data improvement, and developed an 

enhanced DA-YOLOv7 model. This model was employed to detect Camellia oleifera 

under various interferences, including side light, backlight, slight occlusion, and heavy 

occlusion, thereby enhancing the model's generalization capability in complicated 

scenarios. 

2.4.7 Regression Function 

In this thesis, deep learning models are employed for fruit classification. Non-Maximum 

Suppression (NMS) is a widely adopted approach in detection algorithms to eliminate 

overlapping detection frames while preserving the optimal detection results. However, 

the conventional NMS algorithm possesses certain limitations. For instance, excessively 

stringent threshold settings may lead to missed detections, whereas loose threshold values 

may result in redundant detections. To address these issues, researchers proposed the Soft-

NMS algorithm, which suppresses non-maximum values in a novel manner, thereby 

optimizing the performance of the target detection algorithm. 

Moreover, Soft-NMS takes into account the overlap between the score and the border 
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during the execution of non-maximal suppression. 

In the context of NMS, the procedure involves extracting the frame with the highest 

score and subsequently evaluating its degree of overlap with the remaining frames. Soft-

NMS, on the other hand, incorporates the Gaussian index of the obtained IOU and applies 

it as a weight to the original score. This weighted score is then reorganized, and the 

process continues iteratively. 

In the NMS algorithm, any detection frame surpassing the specified IoU threshold 

has its score directly assigned a value of 0. Conversely, soft NMS penalizes the score of 

such frames, thereby attenuating it. There are two attenuation methods. The first method 

involves utilizing the product of the IoU and score as the attenuated value. However, this 

approach may disrupt the sorting order of scores when the penalty attenuation function is 

applied to frames that marginally exceed or fall slightly below the threshold. Therefore, 

a reasonable penalty function should impose a substantial penalty for high IoU values, a 

lesser penalty for low IoU values, and exhibit a gradual transition between the two values. 

2.5 Previous Work and Our Work  

Our ongoing experiments draw inspiration from prior research. The process of visual 

object detection involves annotating the dataset, training a detector, and subsequently 

applying the pre-trained detector to predict the presence of fruit. Early sliding window 

detection models necessitate computationally intensive calculations. While the object 

detection can be achieved by using these models, real-time detection remains a crucial 

requirement for practical applications. 

The one-stage model confers significant advantages in terms of detection speed 

compared with the sophisticated two-stage detection approach. Given the expeditious 

detection capabilities inherent in YOLO models, we have adopted it as the standard one-

stage model in our experimental setup. In addition, the distinctive attention mechanism 

of the Transformer model facilitates the transfer of feature maps in the model, thereby 

leading to more precise detection results. 
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Another two-stage detection model of interest is Mask R-CNN. We have combined 

the Transformer model with the mask module from Mask R-CNN and conducted ablation 

experiments to compare the outcomes. Concurrently, we have also selected conventional 

detection models, such as CenterNet, ConvNext, and others, for experimental evaluation. 

In the context of agricultural-related object detection, including domains such as 

tomato disease detection, green apple detection, wheat disease detection, pineapple 

detection, apple stem detection, etc., we shall compare our experimental findings against 

similar agricultural detection models. 

2.6 Summary of This Chapter 

To commence the exploration, we delve into the intricacies of numerous visual object 

detection methods. These methods include a diverse array of algorithms, models, and 

strategies, each endowed with unique advantages and applications. By clarifying these 

techniques, we seek to offer a comprehensive understanding of the resources at our 

disposal and their potential effects on fruit recognition. 

Additionally, a significant correlation between the aforementioned detection methods 

and the role in fruit recognition will be established. The localization and identification of 

fruits within photographs or videos are of paramount importance in the context of fruit 

detection, as it represents a practical application of visual object detection. In order to 

facilitate automated fruit analysis and categorization, the underlying principles of these 

detection techniques will be explained, as they serve as the fundamental building blocks 

upon which precise fruit recognition systems are constructed. 

A critical evaluation of the existing work will be undertaken, alongside an exploration 

of the mechanics of visual object identification and its relevance to fruit recognition. The 

retrospective analysis of this field is essential for understanding its evolution, identifying 

emerging trends, and identifying areas of knowledge deficiency. By acknowledging the 

contributions and limitations of prior research, we are able to better appreciate the 

significance of our own research work in advancing the field of fruit detection. 
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As we progress through this chapter, we will acquire the foundational knowledge 

necessary to navigate the complex scenarios of visual object detection and its integration 

with fruit recognition. Our knowledge will serve as a robust basis for subsequent chapters, 

wherein our experimental methodologies and findings will be expounded upon in greater 

detail, ultimately enhancing our understanding of this captivating intersection between 

technology and agriculture. 
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Chapter 3 Methodology 

 

 

This chapter clarifies the methodology employed in the fruit 

detection experiments, while also delving into the specifics of 

object detection research methods grounded in deep learning. 

These include the one-stage detection, two-stage detection, and 

transformer approaches. Additionally, the regression method 

shall be expounded upon. A comprehensive exploration of the 

methodological intricacies pertaining to our fruit detection 

experiment is undertaken, with the aim of offering a 

comprehensive understanding of the methodology employed in 

our quest for precise and efficacious fruit detection. In addition, 

we introduce a multitude of deep learning-based methodologies 

for object identification, shedding light on their unique features 

and applications. 
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3.1 Fruit Object Detection Experiment Design 

Fruit detection constitutes an object detection task in computer vision. Figure 3.1 provides 

an exhaustive detail of a fruit ripeness detection model. The objective is to determine the 

presence of apples or pears in the detected image, subsequently employing pyTorch to 

define the boundaries of the fruit. Transformer, YOLO, and other models were employed 

to train the annotated images. Following the training process, the model generates a 

detector that encapsulates the weightings of detailed features pertaining to the detected 

target. This detector can be utilized to accomplish the detection task, yielding predicted 

results and facilitating model evaluation. 

The principal steps involved in fruit ripeness identification are: 

1) Data preprocessing 

Prior to object detection, the dataset necessitates preprocessing to facilitate the 

extraction of the object's feature map. In the context of fruit detection in a simulated 

environment, the consideration of extreme outdoor weather conditions necessitates 

operations such as data image enhancement, scaling, cropping, and rotation to enhance 

the model's adaptability to the scene requirements. 

In the early two-stage model, the functional modules of data augmentation and 

scaling were absent. Therefore, the methods employed for fruit classification based on 

Faster R-CNN must be augmented by incorporating zooming and rotation of the image 

data during dataset creation. Conversely, the one-stage model inherently possesses a data 

augmentation module, thereby obviating the need for additional rotated and scaled data 

samples in the dataset. 

By considering the aforementioned circumstances, the data may now be directly 

utilized for training the one-stage model, as it no longer necessitates adjustments to the 

dataset size or dimensions. However, substantial preprocessing of the data images 

remains necessitated for the Faster R-CNN model based on the two-stage approach. 
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Figure 3.1: The flowchart of fruit ripeness identification 
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Figure 3.2: An example of the object bounding box 

2) Data Labelled 

Figure 3.2 reveals that manual labeling of the dataset is indispensable for fruit object 

detection. The labeled dataset is depicted in both Figure 1.1 and Figure 3.2. We engage in 

the manual labeling of dataset features, subsequently feeding the data into the model for 

training purposes. The bounding box of the labeled dataset is represented by the box in 

Figure 1.1, while the green box in Figure 3.2 signifies the ground truth box manually 

marked by our team. 
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Figure 3.3: Anchor box in the image 
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Figure 3.4: Coordinates of anchor box 

 The coordinates of the four corners of an anchor box are (𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷). The position 

is represented by (𝑥𝑥,𝑦𝑦), while its size is shown by (𝑤𝑤,ℎ). T in eq. (3.1) stands for the 

anchor box in the model, (𝑥𝑥,𝑦𝑦,𝑤𝑤, ℎ ) is denoted as coordinates, the value is not fixed, but 

a relative value ranges. C1, C2,C3 and C4 represent the labels of three 4 classes: “ripe 

apple”, “overripe apple”, “ripe pear” and “overripe pear”, respectively. The input is the 

whole image and the output is a target label T. The target label T in the anchor box means 

a vector. 

        𝑇𝑇 = (𝑥𝑥, 𝑦𝑦,𝑤𝑤,ℎ, 𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, 𝑐𝑐4)𝑇𝑇                                 (3.1) 

3) Train Object Detection Detector 

In Figure 3.1, the focus of the experiments lies in training the detector. The utilization 

of the model is employed to execute machine learning of fruit characteristics, including 

color and the presence of skin wrinkling. Subsequently, the trained model possesses the 

capability to prognosticate the category to which an unlabeled fruit image belongs. The 

model's training process yields an anchor box, depicted as a purple box in Figure 3.2. 

4）Evaluation 
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Upon completion of the detection process, the precision value is employed to assess 

the merits and demerits of the detection model. The model is analyzed and evaluated 

through a comparative analysis utilizing a line chart. The predicted outcome, referred to 

as the predict box, is represented by a yellow box in Figure 3.2. Our methodology is 

predicated on each stage of fruit detection. 

3.2 Previous Research 

Visual object detection involves the identification of multiple objects in a singular image. 

Convolutional neural networks, alongside other network architectures, are employed in 

various manners for object detection. In previous experiments, both supervised and 

unsupervised learning methodologies were employed to accomplish fruit detection. 

Three predefined categories were created, and 1,000 samples are subsequently 

divided into these three categories. The clustering algorithm is then employed to group 

the 1000 apple pictures, ensuring that all apples belonging to the same category are 

clustered together. For instance, ripe apples are grouped in the same cluster. On the other 

hand, unsupervised learning is different form our model. Unsupervised learning does not 

necessitate manually labeling the datasets. Instead, it utilizes the widely employed 

clustering methodology, which finds application in various domains of statistical data 

analysis. Clustering, as a machine learning approach, organizes data points based on 

predetermined guidelines. By considering a set of data points, a clustering method is 

employed to assign each data point to a specific cluster. Ideally, data points in the same 

class should exhibit comparable qualities or traits, while those in different classes should 

differ significantly in these aspects.  

Supervised learning, on the other hand, is employed for pattern classification using 

manually labeled datasets. In our previous experiments, we focused solely on apple 

detection. The apples were manually labeled as "ripe apple," "overripe apple," and "unripe 

apple." Subsequently, our models were trained using the Faster R-CNN technique. 

Deep learning-based detection algorithms can be broadly categorized into two types, 
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as previously explained: one-stage detection algorithms and two-stage detection 

algorithms. In the two-stage process, training redundancy is generated through the sliding 

window method and repeated traversals of the images. The two-stage model iteratively 

calculates bounding boxes that converge to the ground truth, as depicted in eq. (3.2). 

𝑅𝑅1(𝐴𝐴1,𝐵𝐵1,𝐶𝐶1,𝐷𝐷1) → 𝑅𝑅𝑖𝑖(𝐴𝐴𝑖𝑖 ,𝐵𝐵𝑖𝑖 ,𝐶𝐶𝑖𝑖 ,𝐷𝐷𝑖𝑖) → ⋯ → 𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑔𝑔𝑔𝑔𝑡𝑡ℎ(𝐴𝐴1,𝐵𝐵1,𝐶𝐶1,𝐷𝐷1)      (3.2) 
 

Table 3.1: Results of previous work 
Method Epoch Network Precision 

of ripe 
Precision 

of overripe 
Precision 
of unripe 

Faster  
R-CNN 

30 11 layers network 37% 47% 19% 
GoogLeNet 32% 54% 21% 
ResNet-50 36% 53% 17% 

10 ResNet-50 
Transfer Learning 

66% 63% 12% 

10 11 layers network 34.33% 
ResNet-50 35.33% 
GoogLeNet 35.67% 

In Table 3.1, due to the constraints imposed by the two-stage model, a longer 

duration is required for the region of proposal to traverse an image, thereby impeding the 

model's ability to engage in further iterative training. By traversing the image, the region 

of proposal can assimilate a greater array of features, thereby enabling Faster R-CNN to 

acquire a more comprehensive understanding of the targets. Therefore, the Faster R-CNN 

model has demonstrated commendable proficiency in the classification of fruits. 

In contrast to the two-stage model, the one-stage model solely necessitates the 

submission of the entire image to the inspection model for feature extraction, obviating 

the need for region proposals. While the two-stage model must repeatedly undertake 

classification and bounding box generation, the one-stage model has already 

accomplished the detection process. In comparison to Faster R-CNN and Mask R-CNN, 

YOLO and CenterNet, as one-stage models, are better suited for real-time detection 

scenarios. 
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3.3 Evaluation Methods 

In the context of multiclass classification, each individual class can be conceptualized as 

a curve plotting the recall and precision rates. The mean average precision (mAP) is 

determined by calculating the average of the individual average precisions (AP) across 

all categories. The average precision is represented by the area beneath this curve. In order 

to assess the efficacy of the proposed model, the evaluation mAP is employed. 

The samples under study have been categorized into four distinct groups for the 

purpose of identifying fruit ripeness. This categorization is based on a comparison 

between the actual class labels and the anticipated ones. These groups are denoted as True 

Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN). 

Predicted

Positive Negative

Positive
True

Positive
(TP)

False
Positive

(FP)

Negative
False

Negative
(FN)

True
Negative

(TN)

Actual

 

Figure 3.5 Confusion matrix 

Figure 3.5 illustrates a confusion matrix comprising four cells, each of which 

encapsulates all conceivable results of prediction results in the context of a two-category 

prediction. Following the prediction of any given sample, the resultant prediction must 

necessarily belong to one of these four aforementioned categories. 

True Positive (TP) signifies that the sample is genuinely Positive and the model 

accurately predicts it as Positive. This is the point at which the prediction materializes. 

The True Negative (TN) demonstrates that the sample is genuinely Negative, and the 

model correctly predicts it as Negative as well. This is the point at which the prediction 
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materializes. The False Positive (FP) arises when a sample is genuinely negative, yet the 

model predicts it as positive. This constitutes an erroneous prediction, and it also 

represents the first type of error (Type I Error) in statistical analysis. The False Negative 

(FN) indicates that the sample is actually Positive, while the model predicts it as Negative. 

This constitutes a component of forecast error, which also represents the second category 

of error in statistical analysis (Type II Error). In eq. (3.3), precision is employed as an 

indicator to evaluate the model.  

𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                                 (3.3) 

𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝑃𝑃𝑠𝑠𝑐𝑐𝑦𝑦 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹
𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹+𝐹𝐹𝑇𝑇+𝐹𝐹𝐹𝐹

                             (3.4) 

Accuracy refers to the proportion of correctly predicted samples out of the total 

number of samples in eq. (3.4). The accuracy rate serves as a relatively straightforward 

and intuitive means to present the prediction results and assess the accuracy of the 

predicted results. However, in our experiment, we not only aim to obtain a predicted result 

but also need to evaluate the merits and drawbacks of the entire model. Therefore, 

accuracy is not considered as a criterion to evaluate the experimental results. 

In accordance with the findings depicted in Figure 3.6, a positive sample is defined 

as one wherein the Intersection over Union (IoU) between the projected bounding box 

and the actual bounding box is equal to or surpasses 0.5. While mAP analyses the 

detection performance across multiple classes, average precision (AP) evaluates the 

detection efficacy for a singular class. 

The confidence criterion for IOU of AP0.5 is established at 0.5, and solely the 

preselected bounding boxes with an IOU exceeding 0.5 are employed during the 

computation process. mAP@.5:.95 denotes the mAP calculated over various IOU 

thresholds, ranging from 0.5 to 0.95, with an incremental step value of 0.05. 

IoU serves as a prevalent metric for assessing the precision of recognizing associated 

objects within a given dataset. IoU provides a user-friendly metric for evaluating the 
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accuracy of output bounding boxes, which function as predicted regions. In the context 

of object detection, IoU effectively quantifies the overlap between our projected and 

actual bounding boxes by expressing the ratio of intersection to union. 

A

B

C

C represents the smallest shape of A∩B.

GIoU

 

Figure 3.6 An example of IoU 

In Figure 3.6, the region shaded in blue represents the union of the ground truth box 

and the predicted anchor box. Conversely, the region shaded in orange signifies the 

intersection of the ground truth box and the predicted anchor box. 

In practical applications, when the two boxes do not intersect and IoU value equals 

0, the model cannot reflect the distance (coincidence) between the two. Simultaneously, 

due to the loss value being 0, there is no gradient feedback, impeding the learning and 

training processes. Therefore, the accurate representation of the bounding box and 

predicted box through the IoU value becomes compromised. 

IoU adheres to several fundamental properties, namely non-negativity, identity, 

symmetry, and the triangle inequality. By comparing the ground truth box with the 

predicted box, these properties enable IoU to effectively assess the quality of object 

detection. In the context of regression tasks, the scale invariance of IoU aids the model in 

determining the proximity between the predicted box and the ground truth box. 
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For any two boxes, denoted as A and B, the first step is to identify a minimum box, 

denoted as C, that encloses both A and B. Subsequently, the ratio of the area of 𝐶𝐶 −  (𝐴𝐴 ∪

 𝐵𝐵) to the area of C is calculated. This ratio is then subtracted from the IoU values of A 

and B, thus obtaining Generalized IoU, named as GIoU. 

GIoU serves as both a metric and a loss function for bounding box regression. It 

computes the minimum circumscribed rectangle of the two boxes, thereby quantifying 

the distance between them. Therefore, the issue of zero gradient when the two targets do 

not intersect is resolved.   

If the IOU is equal to zero, it signifies the absence of any intersection between A and 

B. In this instance, as the distance between the two boxes increases, the GIOU approaches 

a value closer to -1. Conversely, when the two boxes overlap, GIOU equals 1, thereby the 

value of GIOU is (-1, 1]. 

It is important to note that GIoU still assigns significant importance to IoU. However, 

substantial errors arise in both vertical directions, making convergence a challenging task. 

When the two boxes are equidistant in the horizontal and vertical directions, the 

corresponding area is minimized, resulting in a smaller contribution to the loss. Therefore, 

this leads to a poor regression effect in both the vertical and horizontal directions. 

Various metrics, such as IoU, accuracy, recall, and precision, can be employed to 

evaluate the results of object detection. However, in order to comprehensively assess the 

model's impact on the detector, precision is chosen as the primary indicator. 

3.4 YOLO 

Figure 3.10 illustrates the division of an input image into 36 grids. The YOLO model 

detects whether the central point of each grid exhibits the characteristics of an apple, 

subsequently generating a corresponding bounding box. Figure 3.11 showcases the 

multiple anchor boxes generated when the apple features are localized in the grid. 

Regarding real-time classification with minimal prediction errors, the YOLO model 
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employs a deep neural network that takes an entire image as input. The arrangement of 

the grid is relatively sparse, in each grid, the YOLO model predicts only two bounding 

boxes. However, this approach leads to subpar detection performance for small items and 

objects that are in close proximity to one another. In addition, the pooling layer of the 

neural network results in the loss of detailed information, thereby reducing the accuracy 

and recall rate of the YOLO model when recognizing visual objects. 

Data augmentation is an integral aspect of the YOLO series models. Various methods 

are employed to enhance the data, including geometric distortion, illumination distortion, 

self-adversarial training (SAT), and image occlusion techniques such as random erasure, 

shearing, hiding and finding, grid masking, blending, etc.  
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Figure 3.7: The cross stage of DenseNet 

While selecting a detector, it is crucial to consider a backbone network that possesses 

robust image feature extraction capabilities, as the mAP evaluation index is utilized to 

attain a higher mAP value. If the structure of the backbone network is excessively large, 

it will significantly impede the detection speed. Conversely, if it is too small, the 

extraction effectiveness of target features will be compromised. In the YOLOv5 object 

detectors, the Darknet53 with CSP structure is chosen as the backbone network. The 

CSPNet, depicted in Figure 3.7, represents a cross-stage local network architecture.  

The efficient resolution of the issue pertaining to information redundancy within the 

backbone network is achieved through the incorporation of YOLOv4 and YOLOv5 into 
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the CSP structure. The CSP structure serves to optimize large-scale neural networks by 

significantly reducing the parameter count and floating-point operation (FLOPs) of the 

proposed model. Therefore, this augmentation leads to an enhancement in the inference 

speed of the final model. 

CSPNet, a derivative of DensNet, employs a technique whereby the feature map of 

the base layer is duplicated and routed through the dense block, as depicted in Figure 3.8. 

The segregation of the feature map from the base layer enhances the capacity of our 

proposed model to transmit network information, thereby mitigating the issue of gradient 

vanishing commonly associated with deep networks. 
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Figure 3.8: CSP network 

The YOLO series models consist of three primary components: the backbone, neck, 

and head. The backbone module assumes the principal responsibility of extracting 

features from the input image. Simultaneously, the neck module undertakes the task of 

performing multiscale feature fusion on the feature maps and transmitting these features 

to the prediction layer. Finally, the head module is tasked with generating the final 

regression predictions for the observed objects. 

The main function of the backbone network is to extract image features, thereby 

generating a multilayer feature map from the initial input image (i.e., the image to be 
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identified). This feature map serves as the foundation for subsequent item detection tasks. 

It is worth noting that lightweight backbone networks, such as ResNet and CSPDarknet53, 

are employed to strike a balance between memory utilization and computational 

efficiency, all while maintaining a high level of detection accuracy. 

Upon assessing the dataset sample depicted in Figure 4.1, it can be observed that the 

size and position of the fruit in different images are not fixed. To address this issue of 

varying target sizes in images, the feature pyramid method is employed for multi-target 

detection. By incorporating feature layers of different sizes into the backbone network, 

the feature pyramid technique effectively tackles the challenge posed by uneven target 

sizes. 

Among the primary building blocks of the backbone network are the Conv module, 

C3 module, and SPPF module. The Conv module, a pivotal component of convolutional 

neural networks, comprises a convolution layer, a batch normalization layer (BN layer), 

and an activation function. 

Convolutional neural networks are constructed based on the convolutional layer, 

which is responsible for capturing local spatial information from input features. The 

convolution kernels serve as the fundamental constituents of the convolution layer, with 

each convolution layer consisting of multiple convolution kernels. In a two-stage model, 

the convolution process can be likened to a sliding window technique. As the window 

traverses the feature map, convolution operations are performed on the feature values 

within the window, resulting in the generation of output features. The output size and 

receptive field are influenced by various characteristics associated with the convolution 

kernel, including stride, size, padding method, and others. Each convolution kernel 

corresponds to an output channel. Essentially, the convolutional network functions as a 

feature extractor. 

The standardization of the eigenvalue distribution in neural networks is achieved 

through the utilization of the BN layer. This layer plays a crucial role in determining the 

mean and variance of the feature values for each channel, thereby facilitating the process 
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of standardization. Additionally, the BN layer incorporates a learnable affine 

transformation (stretch and offset) operation, to restore the normalized features. Therefore, 

the output of the BN layer is obtained. 

Artificial neural networks possess the ability to capture complex interactions owing 

to the presence of activation functions, which endow them with nonlinear transformation 

capabilities. Activation functions such as ReLU, LeakyReLU, ELU, sigmoid, and others 

inherently exhibit nonlinearity. Depending on the specific requirements of different 

detection models, various activation functions may be adopted. The selection of an 

appropriate activation function can significantly impact a model's capacity to adapt to the 

data distribution within a defined range. 

During the confidence prediction process in YOLO, the network simultaneously 

predicts the width, height, and category information associated with the prediction box. 

In cases where parallel prediction occurs, the network has assumptions regarding the size 

and shape of the target. However, it remains unable to precisely determine the exact 

location of the center of the prediction box. Therefore, multiple predicted boxes may 

correspond to the same target, resulting in redundancy. To address this issue, non-

maximum suppression techniques can be employed to eliminate video frames with low 

confidence and high overlap. 

A crucial component in the framework of a convolutional neural network is the 

Spatial Pyramid Pooling (SPP) module. The output size of the conventional pooling layer 

(e.g., maximum pooling or average pooling), is inherently dependent on the input size. 

However, when implementing classification, the fully connected layer necessitates the 

specification of the fully connected input. To achieve this, the image is subjected to 

distortion through the utilization of the resize function. The SPP module, in turn, 

empowers the neural network to obtain an output of fixed dimensions at a specific layer. 

The integration of SPP into a neural network enhances its capacity to recognize 

objects, thereby playing a pivotal role in boosting the spatial and positional invariance of 

the input data. By performing pooling operations on feature maps of varying sizes, the 
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SPP module generates feature maps of diverse dimensions. This method enables the 

utilization of multiple receptive fields during image processing, thereby capturing feature 

information at various scales. Finally, the fully connected layer reduces the 

dimensionality of the feature map, resulting in a fixed-size feature vector. 

While SPP and SPPF share a common objective in terms of shape, there are subtle 

differences in their structures. The transition from SPP to SPPF leads to a reduction in the 

computational volume of the model, accompanied by an increase in calculation speed. 

The Neck module of YOLO is typically employed to combine feature maps from 

different levels, thereby generating feature maps imbued with multi-scale information. 

This integration serves to enhance the accuracy of detection. 

In Figure 3.8, the feature pyramid structure of FPN combines feature maps of varying 

levels via up and down sampling operations, thereby forming a multi-scale feature 

pyramid. The uppermost section of this multi-scale feature pyramid effectuates the fusion 

of features at various levels through upsampling and fusion with coarser-grained feature 

maps.  

Ordinarily, the Neck module in YOLO serves the purpose of combining feature maps 

from multiple levels, thereby generating multi-scale feature maps that enhance the 

accuracy of target detection. This particular functionality is executed by using the PANet 

feature fusion module in YOLOv4 and YOLOv5. 

The bottom-up pathway facilitates the movement of low-level data to the uppermost 

layers of high-level features. Therefore, smaller feature maps exhibit larger receptive 

fields as a consequence of feature fusion. In contrast to the FPN approach, PANet 

significantly reduces the number of feature maps required for feature transfer. The FPN 

algorithm may necessitate a multitude of layers to transfer underlying features to the apex 

of the feature map. By eliminating low, medium, and high-level feature maps from the 

original network, PANet accomplishes both top-down and bottom-up feature fusion, 

thereby expediting the transfer of feature information. 
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The Head module of YOLO series is dedicated to the detection of feature pyramids. 

It involves convolutional layers, pooling layers, and fully connected layers. In the case of 

the YOLOv5 model, the Head module is responsible for multi-scale object detection, 

utilizing feature maps obtained from the backbone network. This module consists of three 

primary components. In order to significantly enhance the accuracy of detection, 

YOLOv5 incorporates the Mish activation function, GIoU loss, and multi-scale training 

approaches. 
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Figure 3.9: Multiple scales applied to the Head of YOLO model 

The efficacy of the YOLO model is notable, as evidenced by the adjustment made to 

the loss function. The original loss function of YOLO, as depicted in eq. (3.5), is observed. 
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𝑔𝑔𝑜𝑜𝑖𝑖

𝐵𝐵

𝑖𝑖=0

𝑆𝑆2

𝑖𝑖=0

��𝑤𝑤𝑖𝑖 − �𝑤𝑤′𝑖𝑖�
2

+ �√ℎ𝑖𝑖 − �ℎ′𝑖𝑖�
2

+ ��𝐼𝐼𝑖𝑖𝑖𝑖

𝐵𝐵

𝑖𝑖=0

𝑆𝑆2

𝑖𝑖=0

�𝑐𝑐𝑖𝑖 − 𝑐𝑐′𝑖𝑖�
2

+ 𝜆𝜆𝑔𝑔𝑔𝑔𝑔𝑔𝑜𝑜𝑖𝑖��𝐼𝐼𝑖𝑖𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑜𝑜𝑖𝑖

𝐵𝐵

𝑖𝑖=0

𝑆𝑆2

𝑖𝑖=0

�𝑐𝑐𝑖𝑖 − 𝑐𝑐′𝑖𝑖�
2

+ �𝐼𝐼𝑖𝑖𝑖𝑖

𝑆𝑆2

𝑖𝑖=0

� �𝑝𝑝𝑖𝑖(𝑐𝑐) − 𝑝𝑝′𝑖𝑖
(𝑐𝑐)�

2

𝑐𝑐∈𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 

(3.5) 

where 𝑥𝑥,𝑦𝑦,𝑤𝑤,ℎ, 𝑐𝑐  and 𝑝𝑝  represent predicted values. 𝐼𝐼𝑖𝑖𝑖𝑖
𝑔𝑔𝑜𝑜𝑖𝑖  indicates that the object is 
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fallen into the 𝑗𝑗𝑡𝑡ℎ bounding box of grid 𝑐𝑐. YOLO model utilizes 𝜆𝜆𝑐𝑐𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 5 to correct 

coordError while calculating the loss. For IoU errors, whether the grid covers the detected 

objects has an influence on the loss. If the centre point (centroid) of an object is in the 

grid, YOLO adopts 𝜆𝜆𝑔𝑔𝑔𝑔𝑔𝑔𝑜𝑜𝑖𝑖 = 0.5 to correct iouError. 

The training input is derived from the labelled data, which is carefully selected based 

on its proximity to the output in terms of weights and deviations. The degree of similarity 

between the training input and the output is quantified. The loss function incorporates the 

variance as one of its components, while also considering the normalization of contrast 

to enhance it. Moreover, the existence of visual objects in the region is represented by 

using current position, width, and height of the image. The loss function is defined as eq. 

(3.6): 

𝐸𝐸𝐹𝐹 = 1
2
∑ ∑ (𝑠𝑠𝑘𝑘𝑔𝑔 − 𝑦𝑦𝑘𝑘𝑔𝑔)2𝐶𝐶

𝑘𝑘=1
𝐹𝐹
𝑔𝑔=1                                           (3.6) 

where t represents input label, y shows the actual output. 

3.4.1 YOLOv5 

Input
Output

Ripe apple

Bounding box and confidence  
Figure 3.10: The pipeline of YOLO model in fruit detection 

The output of the bounding box in Figures 3.3 and 3.4 is introduced. The coordinates 

of the bounding box are denoted as (𝑥𝑥,𝑦𝑦), while its size, expressed by its width and 

height, is represented as (𝑤𝑤, ℎ). 

Confidence is a crucial parameter yielded by each bounding box. The concept of 

confidence can be interpreted from two perspectives. 
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1) Whether an object has been detected in the current box. 

The probability that there is an object in the current box is 𝑃𝑃𝑔𝑔(𝑂𝑂𝑂𝑂𝑗𝑗𝑐𝑐𝑐𝑐𝑠𝑠) . When 

analyzing the object in the current box, it is unnecessary to differentiate between an apple 

and a pear. The sole requirement is to differentiate the presence of fruit in the bounding 

box. 

2) The current box has objects. 

Confidence reflects the potential disparity in value between the actual box of the 

object and the projected box. The confidence level essentially conveys the accuracy of 

the model's labeling for the object, as there is no actual ground truth box available for the 

object. 

From these two perspectives, we deduce that the confidence level is a probability 

value, constrained in the range of [0, 1.00]. The degree of confidence is indicated by the 

certainty that fruit exists in the bounding box and the certainty that the bounding box 

includes all the features of the complete object. In eq. (3.7), confidence is determined by 

multiplying the probability of an object in a bounding box by the 𝐼𝐼𝑂𝑂𝐼𝐼𝑝𝑝𝑔𝑔𝑝𝑝𝑔𝑔𝑡𝑡𝑔𝑔𝑔𝑔𝑡𝑡ℎ (the ratio of 

union to intersection between the predicted box and the ground truth box). 𝐶𝐶𝑖𝑖
𝑖𝑖 indicates 

that the 𝑗𝑗𝑡𝑡ℎ box in 𝑐𝑐 image is responsible for the currently detected target. 

𝐶𝐶𝑖𝑖
𝑖𝑖 = 𝑃𝑃𝑔𝑔(𝑂𝑂𝑂𝑂𝑗𝑗𝑐𝑐𝑐𝑐𝑠𝑠) × 𝐼𝐼𝑂𝑂𝐼𝐼𝑝𝑝𝑔𝑔𝑝𝑝𝑔𝑔𝑡𝑡𝑔𝑔𝑔𝑔𝑡𝑡ℎ                                 (3.7) 

Our development of the YOLO series models comprises a series of modifications to 

the fundamental components. YOLOv5 employs mosaic data augmentation. The images 

undergo mosaic data enhancement, wherein four images are randomly scaled, cropped, 

and arranged. Subsequently, these processed images are merged into a single image for 

training purposes. Data augmentation offers the advantage of enabling the model to 

extract a greater number of features. The mosaic data enhancement method facilitates the 

extraction of smaller clipped targets in the image for feature extraction. The detection of 

small targets can potentially result in an imbalance in the proportion of features. However, 
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random scaling aids in balancing the data and enhancing the robustness of this proposed 

model. The utilization of mosaic method for training, which stitches four images together, 

has the potential to expedite model computation. Nevertheless, the Mosaic data 

augmentation function is unsuitable for detecting small targets. A plethora of small target 

samples fails to provide sufficient features for detection, thereby swiftly diminishing the 

model's generalization capacity. 

In YOLO algorithm, the model determines the initial dimensions for anchor boxes 

tailored to diverse datasets. During the model training process, the network generates 

predicted boxes based on these initial anchor boxes. Subsequently, the model calculates 

the disparity between these predicted boxes and the actual ground truth boxes. The 

network parameters are then backpropagated to refine the predictions of our proposed 

model. YOLOv5 employs k-means clustering to dynamically generate the appropriate 

starting anchor box configuration for distinct training datasets during each training 

iteration. In this process, k-means clustering computes the distances between each 

bounding box and all cluster centers. It assigns each bounding box to its nearest cluster 

center based on category and subsequently computes the category center for the 

subsequent iteration by averaging the locations of the cluster members. 

The computation of classification loss in YOLOv5 is accomplished through the 

utilization of the cross-entropy loss function (𝐵𝐵𝐶𝐶𝐸𝐸𝑐𝑐𝐵𝐵𝑠𝑠𝐵𝐵𝑐𝑐𝑠𝑠𝑠𝑠). Additionally, the confidence 

loss is computed by using the cross-entropy loss function, specifically the BCEcls loss. 

The YOLOv5 model employs GIOU Loss to calculate the bounding box loss. As depicted 

in eq. (3.8), the comprehensive loss function of YOLOv5 is the aggregate of three 

constituent elements: Classification loss (𝑐𝑐𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝐸𝐸𝑃𝑃𝑃𝑃𝑐𝑐𝑃𝑃), localisation loss (𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐𝐸𝐸𝑃𝑃𝑃𝑃𝑐𝑐𝑃𝑃), 

and confidence loss (𝑐𝑐𝑐𝑐𝐴𝐴𝐸𝐸𝑃𝑃𝑃𝑃𝑐𝑐𝑃𝑃). 

𝐵𝐵𝑐𝑐𝑠𝑠𝑠𝑠 =  𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐𝐸𝐸𝑃𝑃𝑃𝑃𝑐𝑐𝑃𝑃 + 𝑐𝑐𝑐𝑐𝐴𝐴𝐸𝐸𝑃𝑃𝑃𝑃𝑐𝑐𝑃𝑃 + 𝑐𝑐𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝐸𝐸𝑃𝑃𝑃𝑃𝑐𝑐𝑃𝑃                    (3.8) 

During the training process, YOLOv5 substitutes 𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥  function with binary 

cross-entropy when computing the classification loss. This substitution serves to reduce 

computational complexity and enhance the capacity for calculating labels that are specific 
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to the input. 

In instances where the detected object possesses a smaller size, the model assigns a 

correspondingly smaller anchor, resulting in a reduced feature map size. Therefore, the 

downsampling rate is increased, thereby enlarging the receptive field. 

Upon examining Figures 3.3, 3.4, and Figure 3.10, it becomes apparent that the 

position of the anchor box remains fixed. However, the position of the fruit (bounding 

box) undergoes a translation relative to the anchor point position (anchor box). The 

difference between these two parallel boxes represents the offset that necessitates 

calculation. 

𝑠𝑠𝑥𝑥 = 𝐵𝐵𝑐𝑐𝑙𝑙 � 𝑜𝑜𝑜𝑜𝑔𝑔𝑥𝑥𝑥𝑥−𝑐𝑐𝑥𝑥
1−(𝑜𝑜𝑜𝑜𝑔𝑔𝑥𝑥𝑥𝑥−𝑐𝑐𝑥𝑥)�                                    (3.9) 

𝑠𝑠𝑦𝑦 = 𝐵𝐵𝑐𝑐𝑙𝑙 � 𝑜𝑜𝑜𝑜𝑔𝑔𝑥𝑥𝑦𝑦−𝑐𝑐𝑦𝑦
1−�𝑜𝑜𝑜𝑜𝑔𝑔𝑥𝑥𝑦𝑦−𝑐𝑐𝑦𝑦�

�                                    (3.10) 

𝑠𝑠w = log �gtw
pw
�                                           (3.11) 

th = log �gth
ph
�                                            (3.12) 

where (𝑥𝑥,𝑦𝑦,𝑤𝑤,ℎ)  denotes the coordinate. In eq. (3.9) - (3.12), (𝑐𝑐𝑥𝑥 , 𝑐𝑐𝑦𝑦 ) depicts the 

bounding box coordinate. (𝑠𝑠𝑥𝑥, 𝑠𝑠𝑦𝑦, 𝑠𝑠𝑤𝑤, 𝑠𝑠ℎ) represents the offset of the bounding box and 

anchor box. (𝑂𝑂𝑥𝑥, 𝑂𝑂𝑦𝑦, 𝑂𝑂𝑤𝑤, 𝑂𝑂ℎ) indicates the final results predicted by the YOLOv5 model. 

The entire process is facilitated by using a singular neural network, thereby enabling 

an end-to-end framework. Upon inputting an image into the YOLO model, it is segmented 

into a multitude of ss grids. Each of these grids is subsequently subjected to processing 

in order to yield bounding boxes and confidence scores. The bounding boxes, marked in 

blue, yellow, and red boxes shown in Figure 3.11, represent the result of this process. The 

conditional class probabilities, as predicted by each grid, are compounded with the 

confidence ratings associated with each bounding box. Subsequently, a threshold is 

established to eliminate low scores, followed by the application of non-maximum 

suppression, which finally offers the final prediction boxes.  
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Figure 3.11: The prediction of bounding boxes. 

In Figure 3.11, the array (𝑂𝑂𝑥𝑥, 𝑂𝑂𝑦𝑦, 𝑂𝑂𝑤𝑤, 𝑂𝑂ℎ) describes the predicted box, while 𝐶𝐶𝑥𝑥 and 

𝐶𝐶𝑦𝑦denote the distance from the top-left corner of the grid to the top-left corner of the 

image. 𝑃𝑃𝑤𝑤 and 𝑃𝑃ℎ represent the width and height of the anchor box, respectively, with 

σ denoting the sigmoid function. 𝑠𝑠𝑥𝑥, 𝑠𝑠𝑦𝑦, 𝑠𝑠𝑤𝑤, 𝑠𝑠ℎ,  are employed in the calculation of the 

bounding box and confidence. The center of the predicted box corresponds to the point 

situated in the yellow box, as illustrated in Figure 3.11. Subsequently, a set of equations 

is presented to facilitate the calculation process, where 𝑂𝑂𝑥𝑥,𝑂𝑂𝑦𝑦, 𝑂𝑂𝑤𝑤,𝑂𝑂ℎ represent the final 

results obtained by using the proposed model, respectively. 

𝑂𝑂𝑥𝑥 = 𝜎𝜎(𝑠𝑠𝑥𝑥) + 𝐶𝐶𝑥𝑥                                           (3.13) 

𝑂𝑂𝑦𝑦 = 𝜎𝜎�𝑠𝑠𝑦𝑦� + 𝐶𝐶𝑦𝑦                                           (3.14) 

𝑂𝑂𝑥𝑥 = 𝑃𝑃𝑤𝑤𝑐𝑐𝑡𝑡
𝑤𝑤                                               (3.15) 

𝑂𝑂𝑥𝑥 = 𝑃𝑃ℎ𝑐𝑐𝑡𝑡ℎ                                               (3.16) 

The confidence and maximum suppression are: 

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐 = 𝑃𝑃(𝑂𝑂𝑂𝑂𝑗𝑗𝑐𝑐𝑐𝑐𝑠𝑠) × 𝐼𝐼𝑐𝑐𝐼𝐼𝑡𝑡𝑔𝑔𝑔𝑔𝑡𝑡ℎ_𝑝𝑝𝑔𝑔𝑝𝑝𝑔𝑔                (3.17) 

and 

𝐶𝐶𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑠𝑠𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐𝑠𝑠 = 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑃𝑃(𝐶𝐶𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠|𝑂𝑂𝑂𝑂𝑗𝑗𝑐𝑐𝑐𝑐𝑠𝑠) (3.18) 
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3.4.2 YOLOv7 

In the YOLOv7 model, a decoupled architecture was proposed for training a multi-branch 

model, enabling its conversion into a single-channel model for deployment. This 

approach allows for the utilization of the high performance offered by the multi-branch 

architecture while also benefiting from the fast inference capabilities of the single-branch 

model. 

Figure 3.12 illustrates the merging of all Conv and BN layers in YOLOv7. The fused 

Conv layer is then transformed into a 3×3 Conv layer. Similarly, a 1×1 Conv layer is 

converted into a 3×3 Conv layer by employing the center weight, which is equivalent to 

the 1×1 Conv layer that merges with the branch's 3×3 Conv layer. Therefore, the weights 

and bias of the convolution kernels from all branches are combined to create a new 3×3 

Conv layer. The YOLOv7 model finally incorporates an identity mapping branch, referred 

to as a RepVGG block. The mapping network of YOLOv7 resembles the residual network 

of ResNet, wherein a branch is added at a specific layer. 
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Figure 3.12: Reparameterization process of RepVGG 
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The parameter fusion process is: 

𝑊𝑊𝑖𝑖
′ =  𝛾𝛾𝑖𝑖

𝜎𝜎𝑖𝑖
𝑊𝑊𝑖𝑖                                        (3.19) 

and 

𝑂𝑂𝑖𝑖
′ = −𝜇𝜇𝑖𝑖𝛾𝛾𝑖𝑖

𝜎𝜎𝑖𝑖
+ 𝛽𝛽𝑖𝑖                                          (3.20) 

where 𝜇𝜇𝑖𝑖, 𝜎𝜎𝑖𝑖, 𝛾𝛾𝑖𝑖, and 𝛽𝛽𝑖𝑖are the mean, variance, scale factor and offset factor of BN, 

respectively, 𝑊𝑊𝑖𝑖  is the original convolution weight. Equation for each calculation in 

Conv is, 

𝐶𝐶𝑐𝑐𝑐𝑐𝐶𝐶(𝑥𝑥) = 𝑊𝑊 × 𝑋𝑋                                      (3.21) 

𝐵𝐵𝑁𝑁(𝑥𝑥) = 𝛾𝛾𝑖𝑖(
𝑥𝑥−𝜇𝜇𝑖𝑖

�𝜎𝜎𝑖𝑖
2+𝜀𝜀

)                                   (3.22) 

where 𝜀𝜀 is equal to the minimum. The fused Conv and BN is, 

�𝑊𝑊×𝑥𝑥−𝜇𝜇𝑖𝑖

�𝜎𝜎𝑖𝑖
2+𝜀𝜀

� + 𝛽𝛽𝑖𝑖 = 𝛾𝛾𝑖𝑖

�𝜎𝜎𝑖𝑖
2+𝜀𝜀

𝑊𝑊𝑖𝑖𝑋𝑋 −
𝜇𝜇𝑖𝑖𝛾𝛾𝑖𝑖

�𝜎𝜎𝑖𝑖
2+𝜀𝜀

+ 𝛽𝛽𝑖𝑖                     (3.23) 

Ignoring the minimum value 𝜀𝜀, the new convolution is,  

𝐶𝐶𝑐𝑐𝑐𝑐𝐶𝐶(𝑥𝑥) =  𝑊𝑊′𝑥𝑥 + 𝛽𝛽′                              (3.24) 

In comparison to the calculations performed after fusion, the process essentially 

involves a linear convolution operation. 

Figure 3.13 highlights the significance of scale in the YOLO model. The YOLOv7 

model employs a composite scaling method, which involves modifying the depth factor 

and determining the corresponding change in the transfer layer. By scaling the model and 

adjusting the width in accordance with the depth scaling factor, the optimal state of the 

model can be maintained. 
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Figure 3.13: Stitch-based model scaling 

The YOLOv7-X model employs a compound scaling method to adjust the depth and 

width of the stack in the Neck module. The YOLOv7-E6 weights are subjected to E-

ELAN. The activation function used in YOLOv7, YOLOv7-X, and YOLOv7-E6 is SiLu,  

𝑆𝑆𝑐𝑐𝐿𝐿𝐴𝐴(𝑥𝑥) = 𝑥𝑥 × 𝑠𝑠𝑐𝑐𝑙𝑙𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥)                         (3.25) 

The SiLU function, an abbreviation for sigmoid weighted linear unit, serves as the 

activation function. In contrast to other activation functions (e.g., tanh and sigmoid), 

SiLU is not a monotonically increasing function. It possesses self-stabilizing properties 

and acts as an implicit regulariser on the weights. The YOLOv7-tiny weight architecture 

is designed for edge GPUs. Leaky addresses the zero-gradient problem for negative 

values by introducing a small linear component to the negative input x. 

In Figure 3.14, the YOLOv7 model segregates the auxiliary and dominant heads, 

assigning labels based on the respective predictions and ground truths. Deep supervision 

information is incorporated to provide additional guidance to the model, thereby 

enhancing its performance. The leading head corresponds to the feature map responsible 

for the final output, while the auxiliary head represents an additional training branch 

introduced for auxiliary training.  
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Figure 3.14: Auxiliary head and leading head perform label assignment process using 
prediction results and ground-truth values 

ELAN, an efficient long-range attention network, employs convolutions to extract 

local structure information from complex images. It utilizes a grouped multi-scale self-

attention (GMSA) module to compute on non-overlapping feature sets at various window 

sizes, thereby accelerating the operation of this module through a shared attention 

mechanism.  

The E-ELAN module of YOLOv7 adopts a feature aggregation and feature transfer 

process akin to ELAN. E-ELAN employs a group convolution similar to ShuffleNet, an 

expansion module, and a shuffling module in the calculation module. Finally, it fuses 

features through the aggregation module. The E-ELAN module enables the acquisition of 

more diverse features while enhancing parameter calculation and utilization efficiency. 

3.4.3 YOLOv8 

YOLOv8 represents a significant advancement over its predecessor, delivering a faster, 

more accurate, and user-friendly model. Building upon the foundation of YOLOv5, 

YOLOv8 retains the CSP module, as illustrated in Figure 3.15, and introduces the C2f 

module for visual feature extraction. Notably, in YOLOv8, the CBS 1×1 convolution 

structure in the PAN-FPN up-sampling stage from YOLOv5 has been eliminated, and the 

C3 module has been replaced with the C2f module. Another noteworthy improvement in 

YOLOv8 is the introduction of a decoupled head, which employs two separate 

convolutional layers for classification and regression tasks, harnessing the concept of 
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DFL to enhance performance. 
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Figure 3.15 C2f block of YOLOv8 model 

The most remarkable enhancement in the YOLOv8 model is the implementation of 

an anchor-free method, coupled with task alignment learning, to synchronize the 

classification (𝑐𝑐𝐵𝐵𝑠𝑠 ) and regression (𝑃𝑃𝑐𝑐𝑙𝑙 ) tasks. This alignment ensures the accurate 

positioning of aligned anchors. YOLOv8 introduces a novel anchor alignment metric by 

multiplying the 𝑐𝑐𝐵𝐵𝑠𝑠 score with the IoU between the predicted anchor box and the ground 

truth box.  

The integration of this alignment metric into the sample allocation and loss function 

enables dynamic optimization of each anchor's prediction. YOLOv8 employs the VFL 

loss for classification and a combination of the VFL loss, DFL loss, and CIoU loss for 

regression. 

VFL(p,q)= �
-q(q log (p)+(1-q) log (1-p)) , q>0

-αpγ log (1-p)  , q=0                 (3.26) 

While FL (Focal Loss) and QFL (Quality Focal Loss) exhibit symmetrical properties, 

VFL (Volumetric Focal Loss) incorporates an asymmetric weighting process. To address 

the imbalance between positive and negative samples, VFL is utilized. In eq. (3.26), 𝑝𝑝 

represents the label, 𝑞𝑞  is calculated using the 𝑐𝑐𝑐𝑐𝑃𝑃𝑠𝑠_𝑠𝑠𝐵𝐵𝑐𝑐𝑙𝑙𝑐𝑐_𝑠𝑠𝑐𝑐𝑠𝑠𝑃𝑃𝑐𝑐𝑐𝑐  when a positive 

sample is selected, and 𝑝𝑝  is set to 0 when a negative sample is chosen. The 

𝑐𝑐𝑐𝑐𝑃𝑃𝑠𝑠_𝑠𝑠𝐵𝐵𝑐𝑐𝑙𝑙𝑐𝑐_𝑠𝑠𝑐𝑐𝑠𝑠𝑃𝑃𝑐𝑐𝑐𝑐  weighting scheme serves to accentuate the significance of the 

samples. 
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DFL (Distribution Focal Loss) is a technique that transforms the single value of 

coordinate regression into 𝑐𝑐 +  1 output values, wherein each value represents the 

probability distribution for the respective regression distance. The integration of these 

probabilities yields the final regression distance. By employing DFL, the network is able 

to prioritize and concentrate on labeled target 𝑦𝑦 values that are in close proximity to the 

desired outcome, thereby enhancing the probability of accurate predictions. 

DFL(Si,Si+1)=-((yi+1-y) log (Si)+(y-yi) log (Si+1) )          (3.27) 

The essence of DFL lies in its objective to optimize the probabilities of the two 

positions nearest to the label y (one to the left and one to the right) through the utilization 

of a cross-entropy formulation. This optimization approach facilitates the network in 

efficiently directing its attention towards the distribution of the neighboring region 

surrounding the target position. 

3.5 Transformer  

In contrast to RPN employed in the earlier Faster R-CNN model, the Transformer model 

exclusively relies on self-attention mechanisms. The inherent intricacy of the Transformer 

model contributes to its superior accuracy when compared to the R-CNN neural network. 

The attention mechanism emulates human cognitive processes, enhancing efficiency 

and accuracy by selectively focusing on and processing pertinent information during 

perception, cognition, and behavioral decision-making. 

The attention mechanism shares similarities with CNN in various aspects. It performs 

computations at each location, combining the information from that location with 

information from other locations, while disregarding a majority of the surrounding 

irrelevant information. 

In contrast to CNN, the attention mechanism in this study is not confined to a "local" 

scope. The current position of the attention mechanism is not predetermined or fixed. The 

attention mechanism does not adhere to fixed "windows" akin to those employed in CNN, 
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where the window size is specified as 3×3. Instead, the attention mechanism is 

dynamically computed based on the entirety of the input. The Transformer model, which 

serves as the architectural framework with attention as its core functional unit, allows for 

the stacking of attention layers in a manner similar to the stacking of layers in a CNN or 

RNN. As depicted in Figure 3.16, the individual "blocks" or "layers" of the Transformer 

model execute the proposed operations. 
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Figure 3.16 Transformer model encoder and decoder block 

3.5.1 Swin Transformer 

The Transformer model heavily relies on the attention mechanism. By constructing a 

mask through a series of procedures, as illustrated in Figure 3.17, this model evaluates 

the relevant characteristics of the fruits that necessitate identification. The first step in the 

procedure involves embedding the input data, which subsequently serves as the input for 

the encoder layer. The self-attention layer processes the data before transmitting it to the 

feedforward neural network. The computation of the feedforward neural network can be 

parallelized to generate the output, which then becomes the input for the subsequent 

encoder. 
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Figure 3.17 The structure of Transformer model 

Natural language processing constitutes a mathematical model for vector processing. 

Voice, images, text, and other forms of information are transformed into sequences of 

vectors for computational purposes. Therefore, our dataset represents vectorized 

information resulting from data processing. The self-attention module operates on the 

entire sequence and employs three matrices of 𝑄𝑄 (query), 𝐾𝐾 (key) and 𝑉𝑉 (value) to 

process the dataset. 

𝐐𝐐 = 𝐗𝐗 ×  𝐖𝐖𝐪𝐪                                                     (3.28) 

𝐊𝐊 = 𝐗𝐗 × 𝐖𝐖𝐤𝐤                                                     (3.29) 

𝐕𝐕 = 𝐗𝐗 × 𝐖𝐖𝐯𝐯                                                     (3.30) 

where 𝑄𝑄 represents a query vector in eq. (3.28). 𝐾𝐾 denotes a vector that encapsulates 

the correlation between query information and other information in eq. (3.29), V indicates 

a vector of queried information in eq. (3.30). 
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The attention weight assigned to the information 𝑋𝑋 is directly proportional to that of 

𝑄𝑄  and 𝐾𝐾 , and it corresponds to 𝑉𝑉 . Considering that 𝑋𝑋  itself determines the attention 

weight, this connection essentially embodies a self-attention mechanism. 

Correspondingly, Wq, Wk, and Wv matrices undergo updates and adjustments in 

accordance with specific job objectives, thereby ensuring the adaptability and efficacy of 

the self-attention mechanism. The inner product of vectors includes 𝑄𝑄, 𝐾𝐾, and 𝑉𝑉, which 

represent the angle formed by two vectors and the projection of one vector onto the other. 

A greater projection value indicates a higher correlation between the two vectors. 

𝐴𝐴𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐(𝐐𝐐,𝐊𝐊,𝐕𝐕) = 𝑆𝑆𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 �𝐐𝐐𝐊𝐊
𝑇𝑇

√𝑔𝑔
+ 𝐁𝐁�𝐕𝐕                 (3.31) 

The objective of 𝑆𝑆𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥  function is to normalize these values. eq. (3.31) is 

employed to demonstrate the outcome of the inner product operation between each vector 

and itself, as well as other vectors. This equation performs the inner product operation 

with the row vector K𝑇𝑇 , the vector itself, and two additional row vectors. Where 𝐵𝐵 

denotes a bounding box location, and 𝑇𝑇  signifies matrix transpose. In the Swin 

Transformer model, both 𝑄𝑄 and 𝐾𝐾 incorporate relative position coding. 

Layer1
Layer1+1

MSA W-MSA
 

Figure 3.18 MSA and W-MSA 

The input image is subjected to a convolutional layer in the Swin Transformer model, 

wherein each small block is transformed into a pixel to enhance the channel 

dimensionality. The feature map generated is received by the two transformer layers in 

the stage. Amidst these steps, a pooling procedure is employed to reduce the data quantity, 
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as the emphasis transitions from initially extracting local information to subsequently 

extracting global information. 
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Figure 3.19 The blocks of Swin Transformer 

In Figure 3.19, the red boxes indicate a window wherein self-attention is practiced, 

while the black boxes represent patches. Window attention is utilized to segment the 

image into different windows based on a desired size. The attention mechanism of the 

Transformer solely computes interactions occurring inside the window. Both the Swin 

Transformer and ResNet exhibit a hierarchical structure, with specific emphasis placed 

on various tiers of data processing. The lower layers of the network concentrate on 

increasingly localized data, whereas the higher layers handle a reduced dataset, 

prioritizing semantic information. Notably, the Swin Transformer primarily relies on the 

Transformers module for information extraction, whereas ResNet employs convolutional 

kernels for this purpose. 
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The Swin Transformer architecture comprises four stages, each characterized by a 

similar structure. In Figure 3.19, the windows where self-attention is applied are denoted 

by red boxes, while the individual patches are represented by black boxes. The 

dimensions of the input images in the Swin Transformer are denoted as 𝑊𝑊 × 𝐻𝐻 × 𝐶𝐶 . 

Subsequently, these images are organized into a collection of patches at 𝐻𝐻
4

× 𝑊𝑊
4

, with each 

patch measuring 4 × 4. 

The initial stage of the Swin model involves linear embedding, which converts the 

features of the input patches into a vector of dimension 𝐶𝐶 . Subsequently, these 

embeddings undergo processing through a Swin Transformer block. This pattern persists 

through stages 2 to 4, wherein neighboring patches are merged before being fed into the 

subsequent Swin Transformer block. The merging of patches facilitates feature down-

sampling. 

The original feature size of the Swin Transformer is denoted as [𝐻𝐻1,𝑊𝑊1,𝐶𝐶1]. The 

process of window partitioning is determined by reshaping the features based on their 

original size, resulting in a new size: 

𝑅𝑅𝑐𝑐𝑠𝑠ℎ𝑠𝑠𝑝𝑝𝑐𝑐 𝑆𝑆𝑐𝑐𝑆𝑆𝑐𝑐 = [ 𝐻𝐻1×𝑊𝑊1
𝑤𝑤𝑖𝑖𝑔𝑔𝑔𝑔𝑔𝑔𝑤𝑤𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠×𝑤𝑤𝑖𝑖𝑔𝑔𝑔𝑔𝑔𝑔𝑤𝑤𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠

,𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑤𝑤𝑐𝑐𝑖𝑖𝑠𝑠𝑝𝑝,𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑤𝑤𝑐𝑐𝑖𝑖𝑠𝑠𝑝𝑝,𝐶𝐶1]  (3.32) 

In Figure 3.20, the distinctive characteristic of the Swin Transformer block lies in its 

utilization of a shift window, which serves as a substitute for the conventional Multi-head 

Self-Attention (MSA) module.  
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Figure 3.20 The shift window dependent on MSA in Swin Transformer 

Mask R-CNN represents a two-stage detection model. Akin to Faster R-CNN, Mask 

R-CNN generates region proposals. Subsequently, the Mask R-CNN model performs 
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classification, produces bounding boxes, and generates masks for the proposals. To 

mitigate the degradation of the training process, Mask R-CNN incorporates FPN. 

The FPN architecture, characterized by a top-down structure and lateral connections, 

serves to facilitate the fusion of feature maps across different levels, ranging from the 

lowest to the highest. This design choice effectively enables rapid connectivity and the 

extraction of information across various scales. The process of feature extraction takes 

place in the backbone network, with the resulting feature map subsequently being 

inputted into RPN for the purpose of selecting sub-networks. Functioning akin to a sliding 

window with a fixed size, FPN operates in this manner. 

To enhance the transfer of features, the Swin Transformer incorporates a 3 × 3 shift 

window in addition to the pre-existing 2 × 2  window, thereby allowing for the 

intersection of upper window partitions in each block. Considering the differing sizes of 

these shift windows, a shift operation is employed. As depicted in Figure 3.19, cyclic 

shifting is utilized to modify the window size from  3 × 3 to 2 × 2 during the initial 

stage. Subsequently, a reverse cyclic shift is applied based on the attention model, 

resulting in the generation of the shift window attention. This process involves shifting 

the 3 × 3  window feature map to align with a 2 × 2  window, while the actual 

computations continue to be performed in the context of 3 × 3 windows. Therefore, the 

results of 9 attentions are computed with the assistance of masks. 

The self-attention mechanism of the Transformer model is equipped with a dedicated 

mask, which restricts the computation to the relevant portion in a given window, while 

masking out the remaining areas. The original approach to attention calculation can be 

customized according to specific requirements. As depicted in Figure 3.20, the shaded 

region B represents the portion that necessitates masking. 

The Window-based local self-attention (W-MSA) partitions the input image into 

distinct non-overlapping windows and performs separate self-attention computations in 

each window. If an image consists of ℎ × 𝑤𝑤  patches, with each window containing 

𝑀𝑀 × 𝑀𝑀 regions, then the computational complexities for both the MSA and W-MSA can 
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be expressed as follows: 

𝛺𝛺(𝑀𝑀𝑆𝑆𝐴𝐴) = 4𝑤𝑤ℎ𝐶𝐶2 + 2(ℎ𝑤𝑤)2𝐶𝐶                                   (3.33) 

and 

𝛺𝛺(𝑊𝑊 −𝑀𝑀𝑆𝑆𝐴𝐴) = 4𝑤𝑤ℎ𝐶𝐶2 + 2𝑀𝑀2ℎ𝑤𝑤𝐶𝐶                            (3.34) 

3.5.2 Detection Transformer (DETR) 

The Detection Transformer (DETR) has been employed for tasks such as visual object 

detection and panoramic segmentation. It distinguishes itself as a pioneering object 

detection framework that seamlessly integrates the Transformer as the core component of 

the detection model. In contrast to previous detection approaches, DETR effectively 

eliminates the need for manually crafted elements such as non-maximum suppression 

algorithms and anchor point generation.  
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Figure 3.21 The structure of Detection Transformer 

The Detection Transformer model accepts a 3-channel RGB image as input, with a 

CNN backbone responsible for extracting features. To obtain the detection results, these 

features are combined with positional data and fed into the encoder and decoder 

components of the Transformer model. Each output is displayed as a bounding box, with 

each box being a tuple that comprises the class of the fruits and the coordinates specifying 

the placement of the bounding box. 



84 
 

3.5.3 Vision Transformer (ViT) 

The utilization of attention mechanism is pervasive across various domains, including 

attention modules such as the Se module and CBAM module, which have demonstrated 

their efficacy in enhancing network performance. Transfer learning proves to be fitting 

for the ViT model, as it showcases the potential to achieve commendable image 

classification results without resorting to conventional CNNs. In the ViT model, the 

original image is segmented into blocks and subsequently fed into the encoder of the 

conventional Transformer model. Finally, image classification is executed through the 

utilization of a fully connected layer. 

Figure 3.22 illustrates the fundamental constituents of the ViT model, which 

primarily comprise three components: 1) Linear projection (the embedding layer for 

patches and their positional information); 2) Transformer encoder (responsible for 

processing the patches); 3) MLP head (the classification layer). 

In the ViT framework, each individual image block is treated as a token, akin to words 

in NLP. The model computes correlations between these tokens to facilitate the execution 

of detection tasks. 

Transformer’s multi-head self-attention.
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Figure 3.22 Vision Transformer flowchart 
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Figure 3.23 Self-attention of regions 

The purpose of relative encoding in the Swin Transformer, as illustrated in Figure 

3.23, is to tackle the challenge of self-attention organization invariance. The encoding 

module ensures that input tokens (irrespective of their order), yield consistent results. 

Merely segmenting the image into patches, as done in the ViT model, proves to be 

inadequate. In the encoder module, the dimensions of the vector are 

 [𝑐𝑐𝐴𝐴𝑠𝑠𝑡𝑡𝑔𝑔𝑘𝑘𝑝𝑝𝑔𝑔, 𝑠𝑠𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑔𝑔𝑖𝑖𝑑𝑑] . However, the initial shape of the image data, denoted as 

[𝐻𝐻,𝑊𝑊,𝐶𝐶], fails to conform to the input requirements. Therefore, the encoder assumes a 

crucial role in transforming the image into tokens through the process of embedding.  

Similar to the Swin Transformer, the Vision Transformer also generates 𝑄𝑄,𝐾𝐾 𝑠𝑠𝑐𝑐𝑐𝑐 𝑉𝑉. 

𝑄𝑄,𝐾𝐾 𝑠𝑠𝑐𝑐𝑐𝑐 𝑉𝑉 are actually patches obtained by embedding the context or image using the 

model. 𝑊𝑊𝑞𝑞, 𝑊𝑊𝑘𝑘 and 𝑊𝑊𝑣𝑣 are obtained by multiplying and mapping the three matrices 

that need to be learned. The entire Attention process can be divided into four steps: 

1) The patches obtained from embedded operation are subjected to matrix 

multiplication with learnable matrices 𝑊𝑊𝑞𝑞 , 𝑊𝑊𝑘𝑘  and 𝑊𝑊𝑣𝑣  to generate 𝑄𝑄,
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𝐾𝐾 𝑠𝑠𝑐𝑐𝑐𝑐 𝑉𝑉. 

2) 𝑄𝑄 and 𝐾𝐾 are used to compute similarity scores S. 

3) 𝑆𝑆 is processed through a softmax function to calculate probabilities representing 

candidate words 𝑃𝑃. In the Scaled Dot-Product Attention variant, 𝑆𝑆 is divided by 

a scaling factor before applying softmax function. 

4) The attention is derived by performing a weighted sum of 𝑃𝑃. 

The Transformer encoder module comprises multiple stacked encoder blocks and is 

primarily composed of the following components: 

1) Layer normalization 

    The Transformer encoder module consists of multiple stacked encoder blocks and 

primarily comprises the following components: 

1) Begin by defining the input encoding matrix. 

2) Apply layer normalization to this matrix to obtain a normalized version. 

3) Utilize this matrix to execute a linear transformation, resulting in another 

transformed matrix. 

2) Multi-head attention 

  𝑀𝑀𝐴𝐴𝐵𝐵𝑠𝑠𝑐𝑐𝐻𝐻𝑐𝑐𝑠𝑠𝑐𝑐(𝑄𝑄,𝐾𝐾,𝑉𝑉) = 𝐴𝐴𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐(𝑄𝑄𝑊𝑊𝑖𝑖
𝑄𝑄, 𝐾𝐾𝑊𝑊𝑖𝑖

𝐾𝐾, 𝑉𝑉𝑊𝑊𝑖𝑖
𝑉𝑉)      (3.35) 

In Figure 3.23, the Vision Transformer employs self-attention to illustrate the 

connections between individual patches and other patches.  
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Figure 3.24 Transformer and MLP blocks 

The ViT generates query, key, and value vectors into multiple heads (𝑐𝑐𝐴𝐴𝑠𝑠_ℎ𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠) 

and subsequently performs separate self-attention operations on each head. The results 

from all heads are then merged together. The utilization of multi-head self-attention helps 

isolate parameters and enables more effective focus on related features during training. 

3) MLP block 

    Calculating the cross-attention value between the encoder and decoder block is 

unnecessary in the ViT since there is no decoder module. The shape of the output and 

input remains unchanged after passing through the Transformer Encoder. Before the MLP 

Head, ViT first extracts 𝑐𝑐𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠  for classification from the feature sequences 

(𝑠𝑠𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠). Then, the MLP Head outputs the final prediction result. 

While both the ViT and MLP models apply the MLP block in Figure 3.24, the 

processes of the two models differ. 



88 
 

3.6 MLP 

Patch 
partition

Linear 
embedding

Axial shift 
MLP block

Stage 1

Patch 
merging

Axial shift 
MLP block

Stage 2

Patch 
merging

Axial shift 
MLP block

Stage 4

Patch 
merging

Axial shift 
MLP block

Stage 3

Input image

 

Figure 3.25 MLP Horizontal displacement 

    From Figures 3.20, 3.22, and 3.25, we can observe the similarities between the MLP 

model and the Transformer series models. Both models segment the detected images into 

patches for training. 

MLP is a neural network that employs multilayer perceptron for the purpose of 

feature segmentation and transmission. Comprising an input layer, multiple hidden layers, 

and an output layer, the MLP neural network combines multilayer perceptron. Each 

neuron in the MLP is interconnected with the input and output layers, thereby exhibiting 

similarity among the neurons. Additionally, each neuron transmits the same features to 

multiple connected output neurons. 

MLP networks possess a minimal inductive bias, rendering them effective in tasks 

such as visual object detection. The structural diagram depicted in Figure 3.26 illustrates 

the process of axial displacement for MLP-based object detection. 

In Figure 3.26, the MLP divides the image into patches, facilitating the extraction of 

local information by the model. 
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Figure 3.26 MLP Horizontal shift process 

3.7 CenterNet 

Input (Labelled Data for 
training detector of objects)

Output (Predicted Results)Training CenterNet Model
 

Figure 3.27 The flowchart of CenterNet detection 

As the name suggests, the CenterNet model returns the characteristics of the detected 

target based on its center point. In Figure 3.27, the bounding box with the apple as the 

center point is detected. The CenterNet model does not require the extraction of RoI, but 

rather directly feeds images into the model for training. It exemplifies a typical end-to-

end model.  
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Figure 3.28 CenterNet model 

CenterNet detects the target as a point, utilizing the center point of the target box to 
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represent the object. It predicts the offset, width, and height of the target's center point to 

obtain the actual object box. The heatmap, on the other hand, represents classification 

information, with each class having its own heatmap. If a center point of an object exists 

at the coordinates of a particular point on the heatmap, a key point (represented by a 

Gaussian circle) is generated at that coordinate. 

 

A(x,y) B

CD w

h

 
Figure 3.29 CenterNet bounding box 

 

Figure 3.30 Heatmap of the ground truth box 

In Figure 3.29, when the network predicts the central point of the heatmap, it does 

not simply assign a value of 1 to that point and 0 to the other points. Instead, it employs 

a Gaussian distribution, resembling the shape of a mountain peak. As long as the predicted 

central point is within the area defined by this Gaussian distribution, it is considered a 

valid prediction. The blue points in the figure represent the heatmap of a ground truth box, 

while the orange points can also surround the apple. Moving to Figure 3.30, if the 
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predicted corners area with radius r of the top-left or bottom-right point (orange point), 

the output label of the orange point is not 0, indicating the presence of a detected target. 

CenterNet utilizes a Gaussian scattering kernel to exclude orange center points with lower 

probability and retain the blue center points. 

The prediction module of CenterNet consists of the prediction of the center point 

heatmap, offset prediction, and object size prediction. 𝐿𝐿𝑔𝑔𝑐𝑐𝑡𝑡 indicates the loss function of 

CenterNet. 𝐿𝐿𝑘𝑘 displays the centre point of the heatmap. 𝐿𝐿𝑔𝑔𝑜𝑜𝑜𝑜 expresses offset of the 

loss of centre point. 𝐿𝐿𝑐𝑐𝑖𝑖𝑠𝑠𝑝𝑝  represents the loss of width and hight. Yxyc   serves as the 

ground truth input. The prediction loss function is defined in eq. (3.36). 

Ldat=Lk+λsizeLsize+λoffLoff (λsize=0.1, λoff=1)           (3.36) 

LK=
-1

N
∑ �

(1-Y�xyc)
α

log (Y�xyc) , if Yxyc=1 

(1-Yxyc)β log (1-Y�xyc), otherwisexyc              (3.37) 

The enhancement of the heatmap loss function, as depicted in eq. (3.37), has been 

achieved through the incorporation of elements derived from the focal loss. I In this 

context, 𝛼𝛼  and 𝛽𝛽  serve to strike a balance between the treatment of arduous and 

straightforward samples. Additionally, the variable 𝑁𝑁 signifies the count of key points, 

thereby signifying its significance. 

It is worth noting that the output of the feature map possesses a resolution that is one-

fourth the size of the input image, thereby potentially introducing a substantial margin of 

error. Therefore, the offset center point loss function, as expounded in eq. (3.38), employs 

the L1 loss function to effectively compute the offset loss for positive sample blocks. In 

this equation, 𝑂𝑂�𝑝𝑝�  represents the network's predicted offset value, 𝑝𝑝  denotes the 

coordinates of the image centre point, 𝑅𝑅 signifies the scaling factor of the heatmap, and 

𝑝𝑝� indicates the approximate integer coordinates of the centre point after scaling. It is 

crucial to acknowledge that each pixel on the output feature map corresponds to a 4 × 4 

region of the original image. 

Loff=
1

N
∑ �O�p�-(

p

R
-p�)�p                                                (3.38) 
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Lsize=
1

N
∑ �S�pk-sk�N

k=1                                                 (3.39) 

The loss functions pertaining to width and height are presented in eq. (3.39). where 

𝑁𝑁  denotes the number of key points, 𝑠𝑠𝑘𝑘  represents the actual size of the target, �̂�𝑆𝑝𝑝𝑘𝑘 

indicates the predicted size. The entire computation is performed using the 𝐿𝐿1  loss 

function. 

To enhance the precision of the model and decrease detection speed, non-maximum 

suppression is omitted by CenterNet. CenterNet employs ResNet as its underlying 

architecture. The residual network possesses the advantage of variable convolution 

kernels, which augment the overall scale and effectively diminish the number of channels 

and computational workload. 

3.8 CornerNet 

CornerNet is also a model predicated on key point detection. CornerNet utilizes two 

symmetrical points, situated in the upper left and lower right corners, as key points. 

Subsequently, corner pooling is employed as a pooling layer to process the identified 

targets. 

CornerNet leverages the Hourglass network as its foundational structure, in 

conjunction with two prediction models to forecast the upper-left and lower-right corners 

of bounding boxes individually. In CornerNet, each heatmap channel essentially functions 

as a binary mask, responsible for predicting the precise location of key point pairs 

associated with objects. In addition, each corner point generates a distance prediction 

relative to other corner points, thereby forming an embeddings vector. Similar 

embeddings indicate a closer proximity between the corresponding corners. In instances 

where a box is relatively diminutive, an anchor box is generated, leading to the final 

predicted outcome. 
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3.9 ConvNeXt & ResNet 

All ConvNeXt models are pre-existing structures and methodologies, with a 

transformation process akin to that of constructing Transformers. The starting point of 

ConvNeXt stems from ResNet, which employs refined training methodologies to enhance 

the performance of the ResNet-50 model. The ConvNeXt network architecture reduces 

several components, including macro design, ResNeXt, inverted bottleneck, large kernel 

size, and various micro designs, with layers serving as the fundamental building blocks. 

The ConvNeXt network exhibits the capability to modify the stacking times of each 

stage of ResNet, transitioning from the original configuration of (3, 4, 6, 3) to (3, 3, 9, 3). 

This adjustment, while enhancing accuracy, necessitates an increase in computational 

scales. In Swin Transformer net, the stem layer is comprised of a convolutional layer with 

a convolution kernel size of 4 and a stride of 4. Conversely, the stem layer of ResNet50 

includes a convolutional layer with a kernel size of 7 and a stride of 2, accompanied by a 

maximum pooling layer with a kernel size of 3 and a stride of 2. ConvNeXt, as a 

combination of Transformer networks and ResNet models, replaces the stem layer with 

the identical convolution layer found in the Swin Transformer network, featuring a 

convolution kernel size of 4 and a stride of 4. This substitution yields a marginal 

improvement in accuracy. 

In contrast to the conventional ResNet architecture, the ResNeXt network has 

achieved a harmonious equilibrium between computational operations (FLOPs) and 

accuracy.  

ResNeXt employs group-wise convolution within the convolution blocks, thereby 

establishing a parallel structure within the block. As the ResNet network expands in size, 

the block widens at both ends while narrowing in the middle.  

Figure 3.31 illustrates the utilization of depth-wise convolution in the ConvNeXt 

network's construction of its convolution block. Depth-wise convolution effectively 

reduces the number of parameters, albeit at the expense of a fraction of accuracy. 
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Figure 3.31 ResNet and ResNeXt blocks 

In Figure 3.31, the stem layer of Swin Transformer network exhibits an output feature 

channel count of 96, whereas the ResNet network's stem layer output is limited to a mere 

64 dimensions. To ensure conformity with the Swin Transformer, the ConvNeXt network 

augments the output dimensions to align with those of the Swin-T network. This 

augmentation significantly enhances the network's accuracy, albeit at the expense of an 

inevitable escalation in model parameter scale. 

The ConvNeXt network designs a similar inverted bottleneck structure, which serves 

to partially diminish the model's parameter size while concurrently bolstering its overall 

performance, albeit with a slight improvement in accuracy. 

In the ConvNeXt network, the size of convolution kernel is modified from 3×3 to 

7×7, mirroring the Swin Transformer's approach, thereby optimizing accuracy. Presently, 

the prevailing convolutional neural networks predominantly employ a 3×3 window size. 

However, such a window size yields a smaller receptive field. By utilizing a larger 

convolution kernel, ConvNeXt effectively expands the receptive field, thereby enabling 

the acquisition of a greater extent of information to a certain degree. 

ConvNeXt replaces the conventional activation function ReLu with GELU and 

employs a reduced number of activation functions. An activation function or fully 
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connected layer is typically appended to a convolutional neural network following each 

convolutional layer. However, ConvNeXt does not consistently incorporate an activation 

function subsequent to a module. Simultaneously, ConvNeXt utilizes a reduced amount 

of Normalization. The normalization layer in the ConvNeXt block solely retains the 

normalization layer subsequent to the depthwise convolution. Batch Normalization (BN) 

expedites network convergence and mitigates overfitting in the convolutional neural 

network. The downsampling operation of ResNet is executed at the onset of each stage 

through a 3×3 convolution with a stride of 2 and a 1×1 convolution with a direct stride of 

2. Conversely, ConvNext performs independent downsampling between distinct stages, 

employing a 2×2 convolution with a stride of 2 for spatial downsampling. This 

modification engenders unstable training; hence, a layer-based normalization is appended 

prior to the downsampling operation, subsequent to the Stem operation, and the global 

pooling layer to stabilize the training process. 

3.10 Data Augmentation 

Data augmentation is a conventional method employed to artificially expand datasets by 

generating novel data images from existing data. Its primary objective is to enlarge the 

training dataset, enhance its diversity, and improve the generalization capability of the 

trained model. Notably, existing models such as Transformer and YOLO already possess 

their own data augmentation techniques, which can be readily invoked through 

corresponding interface functions. These techniques involve perturbing the data in 

various directions or utilizing deep learning methods to generate new data images in the 

latent space of the original data, thereby artificially augmenting the dataset. 

It is important to differentiate augmented data from synthetic data. Synthetic data 

refers to artificially generated data that does not rely on real-world images. GAN or 

Diffusion Model can be employed to generate synthetic data. On the other hand, 

augmented data is derived from the original images and undergoes minor geometric 

transformations (e.g., flipping, translating, rotating, or adding noise) or color 

transformations (e.g., adjusting brightness, contrast, saturation, or shuffling channels). 
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These transformations serve to increase the diversity of the training set. In practical 

applications, datasets may suffer from data loss and image blurring (due to environmental 

conditions and other factors) during the collection, cleaning, and labeling processes. By 

leveraging data augmentation techniques, the issue of the model's inability to learn 

features from abnormal scenes in the data is addressed, thereby enhancing the model's 

performance. 

CNN exhibits invariance to size, translation, lighting, and viewpoint, rendering them 

capable of accurately classifying objects across various orientations. In deep learning, 

CNN excels human vision by conducting convolution operations on input images to 

acquire diverse features embedded within. In light of the introduction of ViT, a series of 

models have gained widespread adoption. Nonetheless, the efficacy of both CNNs and 

Transformers hinges upon the availability of data. Particularly, when confronted with 

limited data, CNN is susceptible to overfitting, while Transformers struggle to acquire 

optimal representations. 

Vision Transformers have emerged as the dominant approach across natural language 

processing (NLP) tasks. ViTs have demonstrated remarkable advantages in computer 

vision tasks, particularly in image classification. This methodology combines local 

feature extraction with global representation, wherein the ViT model establishes a 

network architecture comprising a branch dedicated to convolutional neural networks, a 

visual converter branch, and a startup module. This dual-network structure effectively 

preserves and enhances both local features and global representation in a targeted manner. 

For the dataset pertaining to visual object detection, when the sample size becomes 

excessively large, the training of the model becomes redundant, thereby consuming a 

substantial amount of time and resources. However, in the general scenario or when 

confronted with an insufficient number of samples, the detection process is susceptible to 

overfitting due to the inadequacy of training data. The influence of background images 

on feature extraction is often overlooked during the collection of datasets, resulting in the 

attainment of excessively large parameters for training purposes. Data augmentation 
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serves as a potential solution to address the extent to which the pixels in the background 

of an image impact the label space. 

To mitigate the issue of overfitting during the training of deep networks, the mixup 

data augmentation module is introduced to enhance the learning ability of the proposed 

model. Mixup represents a successful technique for image blending, wherein an 

augmented image is obtained through the pixel-weighted combination of two global 

images. The subsequent variants of Mixup can be categorized as follows: 

1) Global image mixing, such as: ManifoldMixup and Un-Mix. 

2) Regional image mixing, such as: CutMix, Puzzle-Mix, Attentive-CutMix and 

Saliency-Mix. 

The utilization of the mixup data augmentation method facilitates the redistribution 

of ground truth labels in images, thereby enabling the attainment of more precise 

classification labels through the guidance of attention. Mixup constitutes an algorithm 

employed in computer vision to blend and enhance images. By blending distinct images, 

mixup effectively expands the training dataset. 

𝑥𝑥� = 𝜆𝜆𝑥𝑥𝑖𝑖 + (1 − 𝜆𝜆)𝑥𝑥𝑖𝑖                                        (3.40) 

𝑦𝑦� = 𝜆𝜆𝑦𝑦𝑖𝑖 + (1 − 𝜆𝜆)𝑦𝑦𝑖𝑖                                       (3.41) 

𝜆𝜆 = 𝐵𝐵𝑐𝑐𝑠𝑠𝑠𝑠(𝛼𝛼,𝛽𝛽)                                           (3.42) 

𝑐𝑐𝑠𝑠𝑙𝑙𝑑𝑑𝑖𝑖𝑥𝑥 = 𝑐𝑐𝑠𝑠𝑙𝑙1 × 𝜆𝜆 + 𝑐𝑐𝑠𝑠𝑙𝑙2 × (1 − 𝜆𝜆)                        (3.43) 

where (xᵢ, yᵢ), (xⱼ, yⱼ) represent two randomly selected samples and their corresponding 

labels. Among them are image xᵢ (labelled yᵢ) and image xⱼ (labelled yⱼ), while λ denotes a 

number randomly sampled from the beta distribution. 

Among them, λ represents the mixing coefficient calculated by the beta distribution 

whose parameters are α and β. The img1 and img2 denote Mixup data augmentation 

samples. Irrespective of the chosen values for α and β, it is expected that 𝛼𝛼
𝛼𝛼+𝛽𝛽

  value 

constantly approximates to 0.5. 
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Mixup data augmentation is predicated on the random numbers sampled from the 

beta distribution, which are then utilized to blend the images in accordance with the ratio 

of the random numbers. Simultaneously, the labels are also mixed in proportion to their 

corresponding ratios. This process yields the mixed new images and labels.  

3.11 Activation Function 

Vanishing and explosion are classical challenges that cause learning instability in deep 

learning models. As the neural network grows deeper, the stability of the model tends to 

deteriorate. 

The bias parameter is not taken into consideration, and the activation functions of all 

hidden layers are set to be identity maps. 

(𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑦𝑦 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑙𝑙)𝜑𝜑(𝑥𝑥) = 𝑥𝑥                          (3.44) 

Given an input X, the output of layer l of a multilayer perceptron. 

𝐻𝐻(𝐼𝐼) = 𝑋𝑋𝑊𝑊(1)𝑊𝑊(2) …𝑊𝑊(𝐼𝐼)                            (3.45) 

At this time, if the number of layers, denoted as l, is substantial, the computation of 

H(I) may experience attenuation or explosion. Similarly, when the number of layers is 

large, the calculation of gradients is more susceptible to attenuation or explosion. 

The multiplicative effects arising from excessively deep network layers during 

gradient backpropagation are the root causes of gradient explosion and gradient 

disappearance, which are fundamentally synonymous phenomena. 

The weights of the hidden layer adjacent to the input layer exhibit a sluggish or static 

update pattern due to the absence of the gradient, thereby resulting in a training process 

that can only be likened to the learning capabilities of the subsequent few layers of the 

shallow network. 

The occurrence of gradient explosion is a frequent phenomenon when the deep 
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network and weight initialization parameters are excessively high. This explosion of 

gradients leads to network instability, rendering it incapable of updating weight values 

and thus impeding the acquisition of knowledge from the training data. 

In deep learning networks, owing to the large number of network layers and the 

considerable discrepancy in the speed of learning across these layers, the network is able 

to acquire a greater number of features in proximity to the output layer, while the learning 

process near the input layer proceeds at a markedly slower pace. As the network grows 

deeper, prolonged training leads to weight values that closely resemble their initialization 

counterparts. The input information undergoes layer-by-layer processing through 

backpropagation, finally reaching the output layer. This sequential transmission of 

information culminates in the gradient of the objective function with respect to the weight 

vector, thereby giving rise to the phenomenon of gradient disappearance and explosion. 

Upon training the model, a chain of models is derived. The length of this chain 

increases as one approaches the input layer, resulting in a greater computational burden 

and, therefore, a slower processing time. Simultaneously, the derivative problem 

associated with the nonlinear function Sigmoid is prone to inducing gradient 

disappearance.  

Taken the simplest network structure depicted in Figure 3.32 as an illustration, three 

hidden layers are added, the number of neurons in each layer is 1. Among them, C is the 

loss function; the input of each layer is z, and the output is a, where 𝑆𝑆 =  𝑤𝑤 × 𝑠𝑠 +  𝑂𝑂 (w 

can also be compared). 

b1 b2 b3 b4 C
w2 w3w2 w4

 

Figure 3.32 An example of artificial neural networks 

Suppose the objective is to update the parameter b1; in such a case, it is necessary to 

identify the derivative of the loss function with respect to b1. By virtue of the chain rule, 
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the corresponding formula is presented in eq. (42). 

𝑆𝑆𝑐𝑐𝑙𝑙𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥) = 1
1+𝑝𝑝−𝑥𝑥

= 𝑝𝑝𝑥𝑥

𝑝𝑝𝑥𝑥+1
                                     (3.46) 

𝑆𝑆𝑐𝑐𝑙𝑙𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐′(𝑥𝑥) = 𝑆𝑆𝑐𝑐𝑙𝑙𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥)(1 − 𝑆𝑆𝑐𝑐𝑙𝑙𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥))                      (3.47) 

Upon deriving the Sigmoid function, as indicated in eq. (43), it is observed that the 

sigmoid derivative attains a maximum value of 0.25 at 0. As the number of network layers 

deepens, the resultant product experiences an exponential decay, thereby leading to 

gradient dispersion. 

Both gradient disappearance and gradient explosion are observed in the presence of 

ReLU. As the number of network layers increases, the activations tend to gravitate 

towards larger and smaller values. During the gradient calculation process, each layer of 

backpropagation necessitates multiplication by the activations pertaining to that specific 

layer. Therefore, the deep gradient of the network layer undergoes an explosive growth, 

while the shallow gradient of the network layer reduces. The impacts of these two issues 

are most pronounced in the form of the arduous convergence of deep networks. 

The utilization of the unsupervised layer-by-layer training method entails the 

utilization of the output derived from the hidden node of the preceding layer as input 

during the training process. This input is then employed as the input for the hidden node 

of the subsequent layer, thereby facilitating a layer-by-layer “pre-training” procedure. 

Following the completion of the pre-training phase, the entire network undergoes a 

process of “fine-tuning” to address the gradient predicament that arises due to the 

network's depth. Additionally, the issue of exploding gradients can be mitigated through 

the implementation of gradient clipping. By establishing a threshold for gradient clipping, 

the gradient is constrained in a predetermined range during the model training process. In 

addition, weight regularization is employed through the utilization of L1 and L2 

regularization functions. When the network invokes the layer, the regularization loss is 

directly computed, thereby mitigating the problem of overfitting caused by gradient 

explosion. 
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The activation function, which operates on the neurons in a neural network, assumes 

the responsibility of mapping the input of a neuron to its corresponding output. The ReLU 

activation function, characterized by a derivative of 1.0, effectively eliminates the issue 

of gradient disappearance explosion, ensuring that each layer of the network undergoes 

updates at a consistent pace. Therefore, the ReLU function resolves the problems 

associated with gradient disappearance and explosion, expediting the network's training 

process and facilitating more efficient network computations. However, due to the 

derivative being 1, the negative portion of the function is consistently evaluated as 0, 

thereby impeding the transmission of certain neuron features. 

ELUs, or exponential linear units, are activation functions that aim to expedite the 

learning process by reducing the mean value of the activation function towards zero. 

Moreover, by identifying positive values, ELUs can effectively mitigate the issue of 

gradient fading. Empirical studies have demonstrated that ELUs exhibit superior 

classification accuracy compared to ReLUs. However, it is worth noting that ELUs 

require more computational time for evaluation when compared to Leaky ReLUs. 

The Leaky ReLU function serves as a viable solution to the limitations of the ReLU 

function interval, while including all the advantages associated with ReLUs. The ReLU 

function sets all negative values to zero, whereas the Leaky ReLU assigns a non-zero 

gradient or slope to all negative values in eq. (3.48). 

𝑦𝑦𝑖𝑖 = �
𝑥𝑥𝑖𝑖 , 𝑐𝑐𝑐𝑐 𝑥𝑥𝑖𝑖 ≥ 0
𝑥𝑥𝑖𝑖
𝑐𝑐𝑖𝑖

, 𝑐𝑐𝑐𝑐 𝑥𝑥𝑖𝑖 < 0                                            (3.48) 

In the Leaky ReLU function, the parameter 𝑠𝑠𝑖𝑖 remains fixed in the interval (1, +∞). 

A variant of Leaky ReLU, known as RReLU, introduces a randomization element to 

the slope of negative values during the training process. 

During training, the value of 𝑠𝑠𝑖𝑖𝑖𝑖 is randomly drawn from a uniform distribution U. 

𝑦𝑦𝑖𝑖𝑖𝑖 = �
𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑐𝑐𝑐𝑐 𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 0
𝑠𝑠𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖, 𝑐𝑐𝑐𝑐 𝑥𝑥𝑖𝑖𝑖𝑖 < 0                                          (3.49) 
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where 𝑠𝑠𝑖𝑖𝑖𝑖~𝐼𝐼(𝐵𝐵,𝐴𝐴), 𝐵𝐵 < 𝐴𝐴 𝑠𝑠𝑐𝑐𝑐𝑐 𝐵𝐵,𝐴𝐴 ∈ [0,1). 

The difference between ReLu and Sigmoid: 

(1) The sigmoid function yields values in the range of [0,1], while the ReLU function 

yields values in the range of [0,+∞]. 

(2) The gradient of the sigmoid function increases or decreases and eventually 

vanishes as x increases, whereas the ReLU function does not exhibit this behavior. 

The residual network depicted in Figure 3.33 incorporates the input into a specific 

layer, ensuring that during the derivation process, a value of 1 is consistently present to 

prevent the vanishing gradient problem. 

Weight Layer
1*1, 64

Weight Layer
3*3, 64

Weigh Layer
1*1, 64

+

relu

relu

relu

f(x) 

f(x) + x 

Identity block

x

 

Figure 3.33 Residual network structure 

3.12 Summary of This Chapter 

A pseudocode is employed to concisely outline the iterative procedure of the YOLO 

comprehensive model. The complete fruit image is fed into the model to extract feature 
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maps, followed by regression to predict the fruit category. 

The pseudocode for fruit detection in digital images essentially includes a loop-based 

process of detection. Irrespective of any changes made to the model, fruit detection 

necessitates a sequence of operations, involving dataset processing, detector training, 

predicted box generation, and model evaluation. 

Based on our analysis of the preceding model, it is necessary to ensure swift detection 

when applying the object detection model to fruit detection. Both the YOLO series and 

the Transformer model employ a series of modules to enhance the capacity to transfer 

detailed features and reduce computational requirements. The fifth chapter of this thesis 

can provide a more intuitive analysis of how the model operates in the context of fruit 

detection. 

 
Figure 3.34 Pseudocode of the algorithm for fruit detection 

To commence, a comprehensive explanation of each constituent of the process is 

provided prior to delving into the crux of the fruit identification experiment. The 

technique employed for data collection, the methodologies employed for annotation, and 
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the selection of pertinent characteristics for fruit detection are all expounded upon in 

detail in this tutorial. We go above and beyond in our efforts to offer a clear and complete 

understanding of the experimental procedure. 

In addition, an exploration into the functionality of transformers for object detection 

in the era of transformer-based architectures is undertaken. These models harbor the 

potential to enhance fruit detection, as they have evinced remarkable capability across a 

multitude of computer vision tasks. The mechanics of transformer-based item 

identification techniques are described, and a discussion ensues regarding their potential 

to enhance the precision and efficacy of fruit recognition systems. 

Finally, an analysis of regression methodologies in the context of object detection is 

undertaken. These methodologies are indispensable for refining the localization of 

identified items and ensuring that the bounding boxes fully encapsulate the instances of 

fruit. The intricacies of regression approaches are illuminated, underscoring their 

paramount importance in attaining highly accurate fruit detection results. 

In conclusion, a comprehensive understanding of the fruit identification experiment, 

the underlying object detection paradigms, and the pivotal role of regression approaches 

is provided in this chapter. This knowledge forms the bedrock upon which subsequent 

chapters are constructed, facilitating an exploration of the experimental findings and 

broader ramifications of our work in the field of fruit recognition. 
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Chapter 4 Experiment Settings 

 

 

This chapter delves into our experiments comprehensively and 

their corresponding evaluation methodologies. A thorough 

investigation of data collection and experimentation is presented, 

accompanied by the introduction of more efficacious model 

evaluation techniques. Our work, including not only a description 

of the experimental content but also the presentation of enhanced 

model evaluation procedures that enhance the accuracy and 

comprehensiveness of our study. 
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4.1 Data Collection and Experimental Environment 

4.1.1 Data Description and Preprocessing 

In our experiments, a dataset was captured. Our 4,000 images are divided into four 

datasets, classified in accordance with the experimental requisites. Figure 4.1 showcases 

a total of 20,000 labels for the 4,000 images, revealing a relatively uniform distribution 

of labels. 

In Section 3.2 of this thesis, a previous two-stage model was introduced for object 

detection. The dataset, denoted as Dataset I, II, and III, underwent augmentation 

techniques such as rotation and Gaussian blur. During the training process, it was 

discovered that a substantial number of datasets did not contribute to the model's ability 

to learn detection features effectively. Instead, these additional datasets introduced 

redundancy, resulting in model overload. Simultaneously, considering the characteristics 

of the data augmentation module in the one-stage model; finally, the study selected a 

dataset, denoted as Dataset IV, consisting of 2000 samples. Notably, the models such as 

YOLO and Transformer possess the capability to accept arbitrary data inputs, 

automatically resizing the image dimensions to 640×640. 

Table 4.1: Dataset description 
Datasets Category Number of 

apple 
images 

Number 
of apple 
labels 

Number 
of pear 
images 

Number of 
pear labels 

Image Size 

Ⅰ Ripe 144 552 ---- ---- 224×224 
Overripe 111 452 ---- ---- 
Unripe 92 409 ---- ---- 

Ⅱ Ripe 1,325 5,416 ---- ---- 
Overripe 1,083 4,475 ---- ---- 
Unripe 1,040 3,976 ---- ---- 

Ⅲ Ripe 4,149 12,564 ---- ---- 
Overripe 3,713 10,812 ---- ---- 

Ⅳ Ripe 200 200 200 99 Random 
resize to 
640×640 

Overripe 200 200 200 101 
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Figure 4.1: Dataset label distribution 

Figure 4.1 presents a pie chart illustrating the distribution of the dataset. It is observed 

that the label classification in the dataset is well-balanced, ensuring that the model can 

effectively learn the fruit features across all categories. 

4.1.2 Original Data & Labelled Data 

The ripeness of a fruit is determined by the smoothness of its skin, while various fruits 

are classified into different classes. The term “Ripe” denotes a fruit with a smooth peel, 

whereas the term “Overripe” refers to a fruit with a crumpled or decaying surface.  

In order to evaluate the learned parameters, we utilized our phone cameras to acquire 

datasets of apples and pears. Subsequently, a comparative analysis was conducted 

between the learned parameters and those of authentic models. Figure 4.2 showcases an 

input image from our acquired dataset. 
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Figure 4.2: Samples of image data in our dataset. 

(x,y)

 

a) A sample of input images. 

 

(b) A sample of MLP methods output images. 

Figure 4.3:Image samples of our dataset 

The dataset that was labeled is depicted in the image presented on the left-hand side 
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of Figure 4.3. The location and class of apples were manually designated by means of a 

red bounding box. To create the training dataset for fruit classification, the ground truth 

and the coordinates for the placements of the bounding boxes were manually annotated 

onto a collection of photographs. 

4.2 Experimental Design 

In this project, PyTorch and MATLAB were employed as the experimental platforms. The 

fruit datasets were labeled using the Labelimg tools. 

Table 4.2: Training parameters 

Parameter Value 

𝑐𝑐𝑝𝑝𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑆𝑆𝑐𝑐𝑃𝑃 SGD 

𝑂𝑂𝑠𝑠𝑠𝑠𝑐𝑐ℎ 2 

𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡_𝑃𝑃𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐 4 

𝑂𝑂𝑐𝑐𝑥𝑥 7.5 

𝑐𝑐𝐵𝐵𝑠𝑠 0.5 

𝑤𝑤𝑐𝑐𝑐𝑐𝑙𝑙ℎ𝑠𝑠_𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑦𝑦 0.0005 

To ensure the utmost quality of our experimental data, explicit images of apples and 

pears were captured in a well-illuminated environment, as exemplified in the input image. 

Fruits were categorized based on the characteristics of their skins, which served as an 

indicator of their maturity. A smooth surface of the fruit was regarded as a sign of maturity, 

while any apples exhibiting signs of decay were deemed overripe. 

The primary objective of our experimentation is to assess various models for fruit 

detection and identify the most effective one. The number of epochs serves as a critical 

experimental parameter that is employed for this purpose. Merely running the neural 

network once with the complete dataset is insufficient. The entire dataset must be 

traversed multiple times. By varying the epoch value, we ascertain the number of model 

iterations, thereby enabling us to evaluate the merits and drawbacks of each model. In 

addition, we set the 𝑤𝑤𝑐𝑐𝑐𝑐𝑙𝑙ℎ𝑠𝑠_𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑦𝑦 to 5.00 × 10−2 and adjust the betas in the range of 
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(0.90, 0.99). 

With respect to supervised learning, the study first employed a higher learning rate, 

which was subsequently reduced in a gradual manner as the number of iterations 

increased, eventually settling on 0.01. Throughout the training process, the entirety of the 

data was fed into the neural network, and the gradients were computed. However, due to 

the significant difference in gradient values, the application of a global learning rate posed 

a formidable challenge. Therefore, the batch value was set to 2 in order to minimize the 

potential for a catastrophic increase in RAM usage. 

4.3 Summary of This Chapter  

A comprehensive explanation is provided regarding the modifications made to the 

variables, the sources of data utilized, and the specific methodologies employed in our 

research. 

Elaborate details are provided regarding certain aspects of the data set division, 

including the platforms and software employed in the studies, as well as the 

methodologies employed to collect the data sets. In Chapter 3 of the thesis, we also 

expound upon how the Faster R-CNN experiment served as a source of inspiration for 

our current studies, particularly in terms of how data sets influence experiments and 

models. 

The intricacies of data acquisition are navigated, with a comprehensive elucidation 

of the sources, sampling techniques, and data preprocessing steps that form the foundation 

of the research being undertaken. 
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Chapter 5 Result Analysis and Discussions 

 

 

In this chapter, a thorough analysis of all experimental 

results is conducted, accompanied by a comparative 

analysis. The advantages and disadvantages of various 

methods are assessed through ablation experiments. This 

chapter comprises the entirety of the compiled experiments 

and their corresponding outcomes, representing the 

collective research. To present the findings of the scientific 

investigation, a combination of graphs and informative 

tables is employed. 
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5.1 Results & Analysis 

Two distinct variations of ViT model were utilized: Base and Large. While 

𝐶𝐶𝑐𝑐𝑠𝑠_𝐵𝐵𝑠𝑠𝑃𝑃𝑙𝑙𝑐𝑐_𝑝𝑝𝑠𝑠𝑠𝑠𝑐𝑐ℎ_32 signifies the utilization of the ViT large model with a patch size of 

32 × 32, while 𝐶𝐶𝑐𝑐𝑠𝑠_𝑂𝑂𝑠𝑠𝑠𝑠𝑐𝑐_𝑝𝑝𝑠𝑠𝑠𝑠𝑐𝑐ℎ_16 refers to the ViT base model with a patch size of 

16 × 16. The performance of ViT model is unsatisfactory, as evidenced by the results 

presented in Table 5.1. It appears that the ViT model encounters challenges when 

confronted with the trade-off between small and large datasets. Increased iterations do 

not yield improved outcomes. ViT models are typically employed as pretrained models. 

In scenarios involving limited datasets, CNNs frequently outperform ViT models. 

 
Table 5.1: ViT results 

Model Epoch Weights AP@0.5:0.95 
Vision  

Transformer 
10 𝐶𝐶𝑐𝑐𝑠𝑠_𝑂𝑂𝑠𝑠𝑠𝑠𝑐𝑐_𝑝𝑝𝑠𝑠𝑠𝑠𝑐𝑐ℎ_16 0.4560 

𝐶𝐶𝑐𝑐𝑠𝑠_𝑂𝑂𝑠𝑠𝑠𝑠𝑐𝑐_𝑝𝑝𝑠𝑠𝑠𝑠𝑐𝑐ℎ_32 0.4060 
𝐶𝐶𝑐𝑐𝑠𝑠_𝐵𝐵𝑠𝑠𝑃𝑃𝑙𝑙𝑐𝑐_𝑝𝑝𝑠𝑠𝑠𝑠𝑐𝑐ℎ_16 0.4560 
𝐶𝐶𝑐𝑐𝑠𝑠_𝐵𝐵𝑠𝑠𝑃𝑃𝑙𝑙𝑐𝑐_𝑝𝑝𝑠𝑠𝑠𝑠𝑐𝑐ℎ_32 0.4120 

20 𝐶𝐶𝑐𝑐𝑠𝑠_𝑂𝑂𝑠𝑠𝑠𝑠𝑐𝑐_𝑝𝑝𝑠𝑠𝑠𝑠𝑐𝑐ℎ_16 0.4310 
𝐶𝐶𝑐𝑐𝑠𝑠_𝑂𝑂𝑠𝑠𝑠𝑠𝑐𝑐_𝑝𝑝𝑠𝑠𝑠𝑠𝑐𝑐ℎ_32 0.4310 
𝐶𝐶𝑐𝑐𝑠𝑠_𝐵𝐵𝑠𝑠𝑃𝑃𝑙𝑙𝑐𝑐_𝑝𝑝𝑠𝑠𝑠𝑠𝑐𝑐ℎ_16 0.3560 
𝐶𝐶𝑐𝑐𝑠𝑠_𝐵𝐵𝑠𝑠𝑃𝑃𝑙𝑙𝑐𝑐_𝑝𝑝𝑠𝑠𝑠𝑠𝑐𝑐ℎ_32 0.4250 

30 𝐶𝐶𝑐𝑐𝑠𝑠_𝑂𝑂𝑠𝑠𝑠𝑠𝑐𝑐_𝑝𝑝𝑠𝑠𝑠𝑠𝑐𝑐ℎ_16 0.4000 
𝐶𝐶𝑐𝑐𝑠𝑠_𝑂𝑂𝑠𝑠𝑠𝑠𝑐𝑐_𝑝𝑝𝑠𝑠𝑠𝑠𝑐𝑐ℎ_32 0.4190 
𝐶𝐶𝑐𝑐𝑠𝑠_𝐵𝐵𝑠𝑠𝑃𝑃𝑙𝑙𝑐𝑐_𝑝𝑝𝑠𝑠𝑠𝑠𝑐𝑐ℎ_16 0.3880 
𝐶𝐶𝑐𝑐𝑠𝑠_𝐵𝐵𝑠𝑠𝑃𝑃𝑙𝑙𝑐𝑐_𝑝𝑝𝑠𝑠𝑠𝑠𝑐𝑐ℎ_32 0.3880 

50 𝐶𝐶𝑐𝑐𝑠𝑠_𝑂𝑂𝑠𝑠𝑠𝑠𝑐𝑐_𝑝𝑝𝑠𝑠𝑠𝑠𝑐𝑐ℎ_16 0.3810 
𝐶𝐶𝑐𝑐𝑠𝑠_𝑂𝑂𝑠𝑠𝑠𝑠𝑐𝑐_𝑝𝑝𝑠𝑠𝑠𝑠𝑐𝑐ℎ_32 0.3940 
𝐶𝐶𝑐𝑐𝑠𝑠_𝐵𝐵𝑠𝑠𝑃𝑃𝑙𝑙𝑐𝑐_𝑝𝑝𝑠𝑠𝑠𝑠𝑐𝑐ℎ_16 0.4060 
𝐶𝐶𝑐𝑐𝑠𝑠_𝐵𝐵𝑠𝑠𝑃𝑃𝑙𝑙𝑐𝑐_𝑝𝑝𝑠𝑠𝑠𝑠𝑐𝑐ℎ_32 0.4000 

Despite of the relatively modest precision observed in Table 5.1, the ViT model offers 

notable advantages in terms of efficient resource utilization during the training process. 

Prior to the final optimization, the ViT model implements structural pruning on the 

Transformer model, followed by quantization. It is worth noting that the pruning 

procedure of the ViT model necessitates additional training, thereby imposing certain 

limitations on its applicability. While ViT model pruning leads to reduced execution time 
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and memory consumption, it does come at the cost of model fidelity. 

    

Figure 5.1: The result of ViT transformer 

The ViT model progressively acquires both local and global features from its shallow 

layers. While the fruit detection model did not yield a substantial amount of informative 

data, the stability of the line chart depicted in Figure 5.1 suggests that ViT's self-attention 

mechanism effectively facilitates the transfer of learned features. 

In Table 5.2, the MLP object detection model demonstrates commendable 

performance, particularly in the case of smaller models. The MLP model places 

significant emphasis on local feature extraction. However, as the generalization capacity 

of this model is significantly augmented, the emergence of overfitting issues becomes 

apparent. These overfitting issues can impede the extraction of features by the MLP model. 

The ViT self-attention mechanism incorporates an MLP block, which operates on 

sequences, ensuring that each position in the sequence shares the same set of MLP 

parameters. Subsequently, a weighted averaging operation is performed in a novel space. 
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The MLP model is regarded as a nonlinear mapping. Tables 5.1 and 5.2 unveil the 

exceptional ability of the MLP model to capture the inherent characteristics. 

Table 5.2: MLP with Mask R-CNN (small) results 
Model Epoch Weights AP50 AP@0.5:0.95 Average inference 

time (seconds) 
MLP 
using 

Axial shift 
MLP 
block 

10 mask_rcnn
_small_pa
tch4_1x 

0.9450 0.8310 0.5850 
30 0.9560 0.8430 0.5370 
50 0.9600 0.8470 0.5400 
10 mask_rcnn

_tiny_patc
h4_1x 

0.9330 0.8270 0.3820 
30 0.9550 0.8440 0.3850 
50 0.9580 0.8440 0.3760 

It is evident from Table 5.2 that, in terms of detection, the MLP structure exhibits a 

reduced inductive bias, enabling it to achieve, and in some cases surpass, the performance 

of CNN (as demonstrated in the results of Faster R-CNN in Table 3.1) and Vision 

Transformer. 

The characteristics of long-term dependence of MLP filter and weight the feature 

vector of deep network, highlight the key information, and mitigates information loss 

attributable to the pooling layer. 

The axial displacement strategy of MLP architecture facilitates spatial shifting of 

features in both horizontal and vertical directions. This strategy aligns features from 

different spatial locations to the same position, thereby enabling a straightforward and 

effective combination of these features using an MLP. Therefore, the model acquires more 

localized dependencies, leading to enhanced performance. Additionally, the axial 

displacement strategy aids in determining the kernel size and expansion rate of the MLP, 

akin to a convolution kernel. 

The network model under consideration is characterized by an MLP block, which, in 

the context of the axial displacement strategy, has assimilated a more extensive repertoire 

of features pertaining to fruits. The MLP block, operated in accordance with the axial 

shift paradigm, is primarily concerned with the extraction of local features, thereby 

striving to minimize the inference time associated with the model. 
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Diverging from the ViT and MLP architectures, the Swin Transformer exhibits a 

unique self-attention calculation mechanism predicated on a mobile window. This 

particular approach ensures that the model is capable of capturing a broader spectrum of 

visual object attributes. 

In order to train the Swin Transformer model, we employed three distinct weight 

configurations. It is worth emphasizing, as outlined in both Table 5.3 and Table 5.4, that 

a single patch has the capacity to cover four windows following the process of 

displacement. However, it is not practically feasible for a patch to independently traverse 

each window. To circumvent this limitation, a mask is employed to establish connections 

and facilitate attention computation within each window. Therefore, the Swin 

Transformer model operates as a hierarchical representation, thereby enabling it to 

effectively perform intricate linear calculations. 

Table 5.3: Swin Transformer with Mask R-CNN (small) results 
Model Epoch Weights AP50 AP@0.5:0.95 
Swin 

Transformer 
10 mask_rcnn_smal

l_patch4_1x 
0.9390 0.8210 

20 0.9400 0.8230 
30 0.9480 0.8300 
50 0.9510 0.8390 
10 mask_rcnn_smal

l_patch4_3x 
0.8340 0.6810 

50 0.9460 0.8350 
 

Table 5.4: Swin Transformer with Mask R-CNN (tiny) results 
Model Epoch Weights AP50 AP@0.5:0.95 
Swin 

Transformer 
10 mask_rcnn_tiny

_patch4_1x 
0.9360 0.8090 

20 0.9380 0.8230 
30 0.9450 0.8220 
50 0.9450 0.8230 

Through the shifted windows from the Swin Transformer, self-attention calculations 

are confined to non-overlapping windows, while cross-window connections are leveraged 

to enhance computational efficiency. As illustrated in column chart 5.2, the performance 

of the Swin Transformer model exhibits remarkable stability. 

The original image is divided into smaller patches by ViT in order to ensure that the 
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sequence length falls within the acceptable range for the Transformer. In the case of larger 

targets, ViT can adjust the sequence length by modifying the patch size, thereby enabling 

the Transformer to handle larger images. Therefore, the Vision Transformer may not be 

optimal for detecting small objects such as fruit. This observation is evident from the 

analysis presented in Fig. 5.1 and Fig. 5.2, where it is demonstrated that Swin Transform 

yields superior results for small target detection. 

 

Figure 5.2: Results of Swin Transformer 
Table 5.5: Swin Transformer + YOLO with Mask R-CNN 

Model Weights Epoch Class mAP Average inference 

time (seconds) 

YOLOX + 
Swin 

Transformer  

mask_rcnn_
small_patch

4_3x 

10 Ripe apple 0.0000 0.1217 
Over apple 0.2200 
Ripe pear 0.0200 

Overripe pear 0.4600 
20 Ripe apple 0.0000 0.1210 

Over apple 0.0060 
Ripe pear 0.0860 

Overripe pear 0.4340 
30 Ripe apple 0.7867 0.1205 

Over apple 0.4687 
Ripe pear 0.8404 

Overripe pear 0.8416 
50 Ripe apple 0.8889 0.1212 

Over apple 0.6695 
Ripe pear 0.8856 

Overripe pear 0.9127 
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Figure 5.3: The results of YOLOX + Swin Transformer using Mask R-CNN small patch 

As an object detection algorithm operating in a single stage, the YOLO model 

exhibits remarkable flexibility, efficiency, and generalization capabilities. YOLOX 

introduces several novel techniques, including anchor-free, decoupled, head, mosaic data 

enhancement, and SimOTA sample matching methods, which are built upon the 

foundation of YOLOv3. The anchor-free method liberates YOLO from its dependence on 

anchors and establishes a novel end-to-end framework. 

Similar to YOLO, YOLOX is structured into three components: Backbone, Neck, 

and Head. In YOLOX, the CSODarknet from the YOLO series is employed as the 

backbone extraction network consisting of Focus, CBS, CSP1, and SPP. The Neck 

component adopts a combined architecture that incorporates FPN and Pyramids Attention 

Network (PAN). FPN facilitates the fusion of high-level and low-level information 

through upsampling, enabling the transfer of features from top to bottom. PAN, on the 

other hand, facilitates the transfer of information from lower layers to higher layers, 

thereby achieving integration and transmitting positional information from the bottom to 

the top. 

Table 5.5, Table 5.6, and Table 5.11 are compared in order to assess the performance 
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of different models. Specifically, the utilization of YOLOX in conjunction with the Swin 

Transformer yields superior detection results compared to the Swin Transformer 

employing the conventional YOLO module. The incorporation of the FPN+PAN network 

structure facilitates the improved transmission of object characteristics in the model. 

Figure 5.3 provides a visual representation of the YOLOX and Swin Transformer's ability 

to capture detailed features subsequent to training. 

Simultaneously, YOLOX replaces the original Head of YOLO with a decoupling 

head, thereby achieving expedited model convergence. In the context of end-to-end tasks, 

the YOLO+Swin Transformer architecture proves more conducive to the integration of 

downstream tasks. 

Table 5.6: Swin Transformer with Mask R-CNN (tiny) 
Model Weights Epoch Class mAP Average 

inference time 

(seconds) 

YOLOX + 
Swin 

Transformer  

mask_rc
nn_tiny_
patch4_3

x 

10 Ripe apple 0.1978 0.1288 
Over apple 0.0100 
Ripe pear 0.0000 

Overripe pear 0.0061 
20 Ripe apple 0.4142 0.1300 

Over apple 0.1392 
Ripe pear 0.1833 

Overripe pear 0.6463 
30 Ripe apple 0.8702 0.1320 

Over apple 0.8270 
Ripe pear 0.8322 

Overripe pear 0.8426 
50 Ripe apple 0.8791 0.1334 

Over apple 0.8292 

Ripe pear 0.8909 

Overripe pear 0.8981 
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Figure 5.4: The results of YOLOX + Swin Transformer using Mask R-CNN tiny patch 

Tables 5.5 and Table 5.6 show that the enhanced YOLOX combined with the Swin 

Transformer model utilizes the Swin Transformer as a replacement for the backbone 

(CSPDarknet) in YOLOX. This substitution reduces the activation function and 

normalization layer of the Neck and Head components in YOLOX, thereby enhancing 

feature extraction capabilities and optimizing the network structure. Experimental results 

substantiate that the improved YOLOX+Swin Transformer model simultaneously attains 

the speed advantage of the YOLO model and the accuracy of the Swin Transformer model. 

The shifted window segmentation in the Swin Transformer results in an increased 

number of windows, thus increasing the computational demands associated with fitting 

smaller windows into larger ones. Conversely, the shifted window approach achieves 

identical calculation results while preserving the same number of windows as window 

attention through the utilization of a well-designed mask. Figure 5.4 demonstrates that 

the Swin Transformer achieves superior training results by employing this strategy. 

Notably, higher weight values and an increased number of training iterations contribute 

to enhanced model performance. 

MLP places great emphasis on the concept of feature transfer. In order to establish 
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local dependencies, the MLP model places the spatial positions in the same location using 

axial displacement. The performance of the model can be considered comparable to that 

of the Transformer model.  

The computational requirements for MSA and W-MSA can be understood through 

eq. (3.33) and (3.34) respectively. The complexities of W-MSA and MSA are linked to 

(ℎ×𝑤𝑤)2  and (ℎ×𝑤𝑤)2 , respectively. Consequently, the computational demands for W-

MSA remain relatively modest. 

The advantage of W-MSA becomes increasingly apparent when confronted with 

large original images. Resultantly, it is observed in Table 5.2, Table 5.5, and Table 5.6 that 

experiments utilizing the Swin Transformer module can yield expedited processing 

speeds. 

Various frameworks were employed to implement the Swin Transformer, as 

elaborated in Table 5.5 and Table 5.6. The training results for classification exhibit 

improvement and enhanced stability as the number of iterations increases. In traditional 

Transformers, pre-normalization is employed at the inception of each residual branch. 

This technique normalizes the input size without imposing constraints on the output. Pre-

normalization involves the accumulation of output activation values from each residual 

branch into the main branch, resulting in an amplification of the magnitude of the main 

branch as the depth increases. 

On the contrary, the Swin Transformer employs a residual-post-normalization 

method. This method involves relocating the normalization layer from the beginning to 

the end of each residual branch. This adjustment guarantees that the output of each 

residual branch undergoes normalization prior to its reintegration into the primary branch. 

Consequently, as the network's depth increases, the accumulation of magnitude in the 

primary branch is alleviated. 

Ranging from tiny to large, four distinct YOLOv5 weight configurations were 

utilized. The evaluation of this model at each epoch during the training process was 
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conducted using the validation dataset, including the computation of both loss and 

precision. Therefore, the progress could be monitored throughout its training. 

Subsequently, the test dataset was employed to assess the model's overall precision after 

its development and training. 

Upon testing the YOLOv5 model, it was observed that larger weight files resulted in 

lengthier training periods, despite the identical number of epochs. YOLOv5 customizes 

the depths and widths of specific sub-modules in accordance with the 𝑐𝑐𝑐𝑐𝑝𝑝𝑠𝑠ℎ_𝑠𝑠𝐴𝐴𝐵𝐵𝑠𝑠𝑐𝑐𝑝𝑝𝐵𝐵𝑐𝑐 

and 𝑤𝑤𝑐𝑐𝑐𝑐𝑠𝑠ℎ_𝑠𝑠𝐴𝐴𝐵𝐵𝑠𝑠𝑐𝑐𝑝𝑝𝐵𝐵𝑐𝑐 parameters provided from the YAML file. The YOLOv5 weight 

files maintain a consistent overall architecture across different sizes, namely 

𝑠𝑠,𝑠𝑠, 𝐵𝐵,𝑠𝑠𝑐𝑐𝑐𝑐 𝑥𝑥. These variables ensure that the YOLOv5 variations are downsampled by a 

factor of 32 and contain three prediction feature layers. 

The issue of data redundancy was addressed in the conducted experiments. The 

choice was made to train the model with the minimum number of epochs, as presented in 

Tables 5.7 to 5.10. Insufficient training using fruit image features was observed when the 

number of model iterations was too low, impeding the successful propagation of feature 

maps through the deep neural network. Conversely, it was discovered that balancing the 

number of iterations resulted in an enhanced model performance. 

Table 5.7: YOLOv5x results 
Model Epoch Classes AP50 AP@0.5:0.95 

YOLOv5x 

30 

Ripe apple 0.9995 0.9640 
Overripe apple 0.9995 0.9230 

Ripe pear 0.9995 0.9390 
Overripe pear 0.9995 0.9320 

50 

Ripe apple 0.9995 0.9760 
Overripe apple 0.9996 0.9180 

Ripe pear 0.9995 0.9750 
Overripe pear 0.9995 0.9770 
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Figure 5.5: The results of YOLOv5x model 
 

Table 5.8:YOLOv5l results 
Model Epoch Classes AP50 AP@0.5:0.95 

YOLOv5l 

30 

Ripe apple 0.9995 0.9550 
Overripe apple 0.9995 0.9580 

Ripe pear 0.9995 0.9370 
Overripe pear 0.9995 0.9320 

50 

Ripe apple 0.9994 0.9850 
Overripe apple 0.9996 0.9340 

Ripe pear 0.9994 0.9820 
Overripe pear 0.9994 0.9790 

 

 
Figure 5.6: The results of YOLOv5l model 
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Table 5.9: YOLOv5m results 
Model Epoch Classes AP50 AP@0.5:0.95 

YOLOv5m 

30 

Ripe apple 0.9991 0.9540 
Overripe apple 0.9995 0.9260 

Ripe pear 0.9995 0.9020 
Overripe pear 0.9995 0.8980 

50 

Ripe apple 0.9996 0.9370 
Overripe apple 0.9995 0.8960 

Ripe pear 0.9995 0.9440 
Overripe pear 0.9996 0.8620 

 

    
Figure 5.7: The results of YOLOv5m model 

 
Table 5.10: YOLOv5s results 

Model Epoch Classes AP50 AP@0.5:0.95 

YOLOv5s 

30 

Ripe apple 0.9994 0.8390 
Overripe apple 0.9995 0.9390 

Ripe pear 0.9995 0.8970 
Overripe pear 0.9995 0.8970 

50 

Ripe apple 0.9994 0.9060 
Overripe apple 0.9995 0.8800 

Ripe pear 0.9995 0.9230 
Overripe pear 0.9995 0.9220 
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Figure 5.8: The results of YOLOv5s model 

 

From Fig. 5.5 to Fig. 5.8, the tables exhibit the commendable performance of the 

YOLOv5 model. Notably, the performance of the YOLOv5x model was significantly 

improved owing to substantial weight and parameter adjustments. In the three-class 

classification task, Faster R-CNN was tested, revealing improved results for one class 

while relatively poorer outcomes for the other two classes. The discrepancy in 

categorization results can be attributed to the distribution of data within the training set. 

The complexity of the deep neural network escalates with an increase in the number 

of training epochs. The diversity of the image dataset may influence the number of epochs 

required for training. Therefore, it is necessary to continually modify the number of 

epochs based on the specific characteristics of the fruit that the model aims to identify. 

Table 5.11: YOLO using Swin Transformer results 
Model Epoch AP50 AP@0.5:0.95 

Swin + YOLO 

10 0.1980 0.6360 
20 0.2050 0.5400 
30 0.5150 0.9950 
50 0.1850 0.5200 
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Figure 5.9: The results of YOLO + Swin Transformer model 

The mean average precision rates exhibit a gradual decline as the weights are 

systematically reduced, with one class displaying a slightly inferior rate compared to the 

others. We have extended the sample size of the dataset and refined the weights during 

the training process to minimize the cost function and address the challenges encountered 

in their studies. In addition, they have explored the adaptation of YOLOv5 parameters 

through the utilization of weight decay techniques.  

Figure 5.9 shows the utilization of a more potent deep neural network for further 

exploration, taking into account both the dataset at hand and the results of the conducted 

tests. To achieve a more streamlined model while maintaining the same level of accuracy 

in future efforts, we intend to enhance the architecture of the YOLO models and eliminate 

redundant parameters. 

However, in Table 5.11, the pairing of YOLO model with Swin Transformer model 

failed to yield satisfactory results. This hybrid model retains the advantageous 

characteristic of faster training exhibited by YOLO models. Nevertheless, the 

introduction of the Transformer decoder for direct prediction of target object bounding 

boxes has led to prolonged convergence periods and subpar tracking performance. 

 

 



126 
 

Table 5.12: DETR with ResNet-50 results 
Model Epoch Classes AP@0.5:0.95 Average 

inference time 
(seconds) 

DETR + 
ResNet-50 

10 

Ripe apple 0.7268 0.002 
Overripe apple 0.7374 

Ripe pear 0.7958 
Overripe pear 0.7714 

20 

Ripe apple 0.6819 0.004 
Overripe apple 0.7327 

Ripe pear 0.9663 
Overripe pear 0.7046 

30 

Ripe apple 0.7953 0.004 
Overripe apple 0.7959 

Ripe pear 0.6832 
Overripe pear 0.8560 

50 

Ripe apple 0.7296 0.002 
Overripe apple 0.7764 

Ripe pear 0.7427 
Overripe pear 0.7450 

 

    
Figure 5.10: The results of Detection transformer using ResNet50 

The results of the detection transformer studies are presented in Table 5.12. However, 

the DETR model did perform deficiently in the field of fruit ripeness detection tasks. We 

infer that this deficiency can affect the diminutive size of the fruit items. Therefore, 

complex network optimizations such as the incorporation of FPN or BiFPN components 

are deemed unnecessary. 
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From Figure 5.10, it is evident that the information pertaining to each fruit category 

is captured in a balanced manner by the detection transformer model. 

The limitations of the detection transformer become apparent during the testing phase, 

where it encounters difficulties in accurately positioning objects. Nevertheless, DETR 

compensates for the shortcomings commonly observed in anchor-free algorithms. DETR 

proves to be particularly advantageous in scenarios involving overlapping objects. The 

detection transformer model excels in the domain of large object detection. 

Table 5.13: Swin Transformer + Mask R-CNN results 
Model Epoch AP50 AP@0.5:0.95 Average inference 

time (seconds) 

Swin + Mask R-
CNN 

10 0.9360 0.8220 0.042 
20 0.9360 0.8360 0.048 
30 0.9580 0.9580 0.042 
50 0.9670 0.9670 0.044 

 

 

Figure 5.11: The results of Swin Transformer model 

In contrast to Table 5.11, Table 5.13 combines the Swin Transformer and Mask R-

CNN to yield a sequence-to-sequence model feature. This integration enhances the 

generalization ability of this model to seamlessly incorporate multimodal inputs, thereby 

providing greater flexibility in constructing network structures. Notably, as depicted in 

Figure 5.11, the model exhibits improved performance as the number of iterations 

increases. 
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Table 5.14: CornerNet results 
Model Epoch AP@0.5:0.95 Average inference 

time (seconds) 
 

CornerNet+ 
Hourglass 

10 0.718 0.60 
20 0.245 0.58 
50 0.789 0.56 

 

 
Figure 5.12: The of results of CornerNet model 

If the accuracy rate is similar, the CornerNet, with its identical anchor-free approach 

and backbone, necessitates a longer average inference time, as illustrated in Table 5.12 

and Table 5.14. This indicates that CornerNet falls short in achieving rapid detection 

speeds in practical applications. In addition, the detection results of CornerNet are inferior 

to those of other models, as evident from the comparison between Figure 5.11 and Figure 

5.12. In contrast, both the Swin Transformer and DETR demonstrate faster detection 

speeds, as shown in Tables 5.12 and 5.13. Additionally, while maintaining a similar level 

of computational speed, the Swin Transformer outperforms DETR in terms of 

performance. 

The accuracy of fruit detection was significantly enhanced by the incorporation of a 

bag-of-freebies in the YOLOv7 model. The utilization of the scaling method in the 

YOLOv7 model effectively mitigated the loss of visual information. By employing 

adaptive image scaling, the model was able to deepen its understanding of visual features 

while ensuring consistency in overall image transformation, thereby effectively 
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leveraging the information from the receptive field. The substitution of the reparametrized 

module and the allocation of dynamic label assignments facilitated the computation of 

prediction results and ground truth values, thereby endowing the dominant leader with 

robust learning capabilities throughout the optimization process.  

(a)   (b) 

Figure 5.13: (a) and (b) are the images including fruits and the predicted boxes 
 

Table 5.15: YOLOv7 results 
Model Weights Epoch Class 

Synchronous  
AP@.5 AP@.5:.95 

YOLOv7  yolov7 10 Ripe apple 0.468 0.427 
Overripe apple 0.885 0.764 

Ripe pear 0.169 0.115 
Overripe pear 0.209 0.151 

20 Ripe apple 0.427 0.419 
Overripe apple 0.995 0.932 

Ripe pear 0.673 0.622 
Overripe pear 0.967 0.944 

30 Ripe apple 0.993 0.974 
Overripe apple 0.996 0.948 

Ripe pear 0.542 0.534 
Overripe pear 0.995 0.932 

50 Ripe apple 0.996 0.992 
Over apple 0.996 0.979 
Ripe pear 0.996 0.981 

Overripe pear 0.996 0.991 
100 Ripe apple 0.996 0.992 

Overripe apple 0.996 0.988 
Ripe pear 0.996 0.995 

Overripe pear 0.996 0.990 

mailto:AP@0.5
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Figure 5.14: The results of YOLOv7 model 
 

 
Table 5.16: YOLOv7-tiny results 

Model Weights Epoch Class AP@.5 AP@.5:.95 
YOLOv7  yolov7-

tiny 
10 Ripe apple 0.660 0.259 

Overripe apple 0.144 0.041 
Ripe pear 0.075 0.031 

Overripe pear 0.056 0.018 
20 Ripe apple 0.470 0.336 

Overripe apple 0.730 0.526 
Ripe pear 0.859 0.697 

Overripe pear 0.165 0.113 
30 Ripe apple 0.665 0.608 

Overripe apple 0.651 0.593 
Ripe pear 0.778 0.691 

Overripe pear 0.492 0.370 
50 Ripe apple 0.995 0.935 

Overripe apple 0.995 0.905 
Ripe pear 0.995 0.898 

Overripe pear 0.880 0.757 
100 Ripe apple 0.995 0.958 

Overripe apple 0.995 0.963 
Ripe pear 0.995 0.930 

Overripe pear 0.995 0.953 

mailto:AP@0.5
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Figure 5.15: The results of YOLOv7-tiny model 
 

 
Table 5.17: YOLOv7-X results 

Model Weights Epoch Class AP@.5 AP@.5:.95 
YOLOv7 yolov7-X 10 Ripe apple 0.439 0.393 

Overripe apple 0.843 0.718 
Ripe pear 0.344 0.224 

Overripe pear 0.436 0.396 
20 Ripe apple 0.918 0.906 

Overripe apple 0.996 0.949 
Ripe pear 0.390 0.352 

Overripe pear 0.517 0.470 
30 Ripe apple 0.996 0.978 

Overripe apple 0.996 0.960 
Ripe pear 0.996 0.919 

Overripe pear 0.996 0.959 
50 Ripe apple 0.996 0.991 

Overripe apple 0.997 0.983 
Ripe pear 0.996 0.994 

Overripe pear 0.996 0.989 
100 Ripe apple 0.996 0.992 

Overripe apple 0.996 0.989 
Ripe pear 0.996 0.996 

Overripe pear 0.996 0.993 
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Figure 5.16: The results of YOLOv7-X model 

For our experimental analysis, we selected four weight variants of YOLOv7 model, 

namely, YOLOv7, YOLOv7-X, YOLOv7-E6, and YOLOv7-tiny. We loaded the 

pretrained weights and compared the backbone network, including the pretrained weights, 

to determine the extent of layer similarity.  

Table 5.15, Table 5.16, and Table 5.17 demonstrate that YOLOv7 outperforms other 

variants in terms of fruit positioning. In Figure 5.13, panel (a) illustrates that although the 

model may not accurately determine the fruit category, it excels in precisely localizing 

the fruit. Once the model has acquired sufficient knowledge of features, Figure 5.13 (b) 

showcases the detection results achieved by the model. 

In Table 5.18, it was observed that the E-ELAN module, when equipped with YOLO-

E6 weights, facilitates the efficient convergence of the deep network by regulating the 

shortest and longest gradient paths in the same number of iterations. The YOLO-tiny 

weight employs the utilization of the LeakyReLU function to address the issue of 

parameter stagnation following the acceptance of outlier range inputs by the neural 

network. During the backpropagation process, a substantial gradient is generated due to 

the continuous multiplication of derivatives, thereby impeding parameter updates. This 

phenomenon gives rise to the vanishing gradient problem. By assigning negative values 

to inputs below 0 in the LeakyReLU function, a small gradient is introduced, effectively 

circumventing the issue of aliasing in the gradient direction. As depicted in Table 5.19, 

with an increasing number of epochs, the number of iterations for weight updating rises, 
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resulting in the transition of the curve from an initial state of poor fitting to an optimal 

state of fitting.  

Table 5.18: YOLOv7-E6 results 
Model Weights Epoch Class AP@.5 AP@.5:.95 

YOLOv7 yolov7-
E6 

10 Ripe apple 0.334 0.277 
Over apple 0.437 0.358 
Ripe pear 0.156 0.088 

Overripe pear 0.714 0.538 
20 Ripe apple 0.377 0.342 

Over apple 0.365 0.319 
Ripe pear 0.234 0.204 

Overripe pear 0.589 0.511 
30 Ripe apple 0.993 0.897 

Over apple 0.995 0.921 
Ripe pear 0.227 0.209 

Overripe pear 0.995 0.971 
50 Ripe apple 0.994 0.988 

Over apple 0.996 0.969 
Ripe pear 0.995 0.930 

Overripe pear 0.995 0.923 
100 Ripe apple 0.995 0.991 

Over apple 0.996 0.986 
Ripe pear 0.995 0.995 
Over pear 0.995 0.992 

  

Figure 5.17: The results of YOLOv7-E6 model 
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Table 5.19: Mean average precisions of YOLOv7e (mAP) 

Model Weights Epoch AP@.5 AP@.5:.95 Average 
inference time 
(millisecond) 

YOLOv7 YOLOv7 10 0.433 0.364 6 
20 0.766 0.730 6 
30 0.882 0.847 6 
50 0.996 0.986 6 
100 0.996 0.991 6 

YOLOv7-
tiny 

10 0.234 0.087 8 
20 0.556 0.418 8 
30 0.644 0.565 7 
50 0.966 0.874 7 
100 0.995 0.951 6 

YOLOv7-X 10 0.515 0.433 9 
20 0.705 0.669 9 
30 0.996 0.954 9 
50 0.996 0.989 9 
100 0.996 0.993 10 

YOLOv7-
E6 

10 0.410 0.315 13 
20 0.391 0.344 13 
30 0.803 0.749 13 
50 0.995 0.952 13 
100 0.995 0.991 12 

 
 

Table 5.20: ConvNeXt results 
Model Weights Epoch AP@.5 AP@.5:.9

5 
Average inference 
time (millisecond) 

 
ConvNeXt ConvNext 

+ 
Mask R-

CNN 

10 0.848 0.719 5 
20 0.948 0.678 13 
30 0.926 0.669 37 
50 0.844 0.617 58 

ConvNext 
+ 

Mask R-
CNN 

Transfer 
Learning 

10 0.500 0.701 14 
20 0.487 0.695 4 
30 0.483 0.694 5 
50 0.483 0.695 5 
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Figure 5.18: The results of ConvNeXt + Mask R-CNN model 
 

 
Figure 5.19: The results of CovNeXt + Mask R-CNN transfer learning 

As a traditional CNN model, ConvNeXt exhibits superior training results. Under 

identical training parameters, the transfer learning model does not confer significant 

advantages. However, as illustrated in Figure 5.18 and Figure 5.19, transfer learning 

offers time-saving benefits when certain pre-training parameters are frozen. The 

ConvNeXt model fails to fully capture fruit features. In Table 5.19 and Table 5.20, the 

ConvNeXt transfer learning model demonstrates a marginal advantage in terms of 

detection speed. Nevertheless, in regard to accuracy, the YOLO model remains superior. 

The CenterNet model and the YOLOv8 model are both fundamentally anchor-free in 

nature. The CenterNet model employs ResNet-50 as its backbone, while the YOLOv8 

model utilizes three distinct weight configurations, namely YOLO8n, YOLOv8m, and 

YOLOv8x, which vary in size from small to large. 
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Table 5.21: CenterNet results 
Model Weight

s 
Freeze 
Epoch 

Epoch AP0.5 AP@0.5:0
.95 

Average inference 
time (millisecond) 

CenterNet Center
Net 

_ResNe
t-50 

20 30 0.138 0.122 10 
30 50 0.138 0.125 10 
50 100 0.135 0.126 10 
100 200 0.913 0.854 10 
200 300 0.933 0.889 10 
300 400 0.960 0.909 10 
400 500 0.928 0.881 10 

 

 

Figure 5.20: The results of CenterNet model 

During the inference process, CenterNet suppresses the eight positions surrounding 

the key point of the local maximum value and selects the top k bounding boxes as the 

output. Simultaneously, it incorporates an output threshold for control. The prediction 

mechanism of CenterNet, which is centered around the key point, distinguishes it from 

anchor-based models. In contrast, anchor-based detection models exhibit a dense 

distribution of center points. Therefore, as depicted in Figure 5.20, the CenterNet model 

necessitates a certain number of iterations to fully grasp the underlying features. 
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(a) 30 epochs Loss map. 

 

(b) 400 epochs Loss map. 

Figure 5.21: Loss maps 

Throughout the model training phase, our samples were categorized into two groups: 

Training and validation, maintaining a ratio 9:1. The loss value of the training model is 

subsequently divided into the overall loss for the training set and the validation loss for 

the test set. A decline in both the training and validation losses, as illustrated in Figure 

5.21 (b), signifies successful training and the proximity of this model to its optimal state. 

Conversely, if both the training and validation losses remain stagnant, as depicted in 

Figure 5.21 (a), it indicates potential bottlenecks in the learning process, erroneous 
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training parameter selections, and subpar model performance. The feature extraction 

network remains unaltered, and the backbone remains frozen during the CenterNet 

training procedure. Consequently, extending the training period can help circumvent the 

identification of local optimal solutions. 

The anchor-free structure (AFS) of the YOLOv8 model integrates dynamic task 

alignment learning and a combination of distribution focal loss (DFL) and CIoU loss for 

the regression branch, thereby fostering a high consistency between the classification and 

regression tasks. By concerning data enhancement during the training phase, the 

deactivation of mosaic enhancement in the final 10 epochs enhances stability in model 

convergence. As presented in Table 5.22, an enhancement in the number of training 

epochs from 50 to 100 results in a more comprehensive model training. Finally, YOLOv8 

attains a state of lightweight and efficient detection capabilities. 

Table 5.22: YOLOv8 results 
Model Weights Epoch mAP0.5 mAP@0.5:0

.95 
Average inference 
time (millisecond) 

YOLOv8 YOLOv8n 10 0.995 0.793 2.8 
20 0.994 0.958 3.4 
30 0.995 0.982 3.1 
50 0.995 0.990 3.6 
100 0.995 0.993 2.9 

YOLOv8
m 

10 0.982 0.831 6.6 
20 0.995 0.956 6.6 
30 0.995 0.985 6.7 
50 0.995 0.991 6.6 
100 0.995 0.993 6.6 
200 0.995 0.994 6.5 

YOLOv8x 10 0.947 0.815 16.7 
20 0.995 0.962 17.3 
30 0.995 0.986 16.9 
50 0.995 0.992 17.2 
100 0.995 0.993 17.2 
200 0.995 0.993 17.3 
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Figure 5.22: The results of YOLOv8 model 
 

 

(a) YOLOv8n 30 epochs Loss map. 
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(b) YOLOv8n 200 epochs Loss map. 

Figure 5.23: YOLOv8n loss map 
 

Table 5.23: YOLOv8n results 
Model Weights Epoch Class AP0.5 AP@0.5:0.9

5 
 YOLOv8 YOLOv8n 10 Ripe apple 0.994 0.800 

Overripe apple 0.995 0.864 
Ripe pear 0.985 0.808 

Overripe pear 0.848 0.679 
20 Ripe apple 0.994 0.973 

Overripe apple 0.995 0.942 
Ripe pear 0.995 0.972 

Overripe pear 0.992 0.944 
30 Ripe apple 0.995 0.981 

Overripe apple 0.995 0.973 
Ripe pear 0995 0.993 

Overripe pear 0.995 0.981 
50 Ripe apple 0.994 0.990 

Overripe apple 0.995 0.984 

Ripe pear 0.995 0.995 

Overripe pear 0.995 0.991 

100 Ripe apple 0.995 0.991 

Overripe apple 0.995 0.990 
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Ripe pear 0.995 0.995 

Overripe pear 0.995 0.994 
 

    
Figure 5.24: The results of YOLOv8n model 

The utilization of larger pre-training weights leads to lengthier average inference 

times, as evidenced by the data presented in Table 5.22. The employment of weight 

magnification leads to an increase in the average processing times for each image, albeit 

without any improvement in average precision, as indicated in Table 5.23, Table 5.24, and 

Table 5.25. In fact, the adoption of weight amplification can potentially result in 

overfitting during the training process, thereby squandering valuable resources. 

Throughout the training procedure, a reduced learning rate was employed to facilitate the 

model's ability to effectively converge upon the optimal point. However, it is necessary 

to note that an excessive number of iterations can still pose challenges in terms of training 

efficacy for the model. 
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Table 5.24: YOLOv8m results 
Model Weights Epoch Class AP0.5 AP@0.5:0.95 

 
YOLOv8 

YOLOv8m 10 Ripe apple 0.990 0.841 
Overripe 

apple 
0.995 0.880 

Ripe pear 0.995 0.852 
Overripe 

pear 
0.949 0.753 

20 Ripe apple 0.995 0.961 
Overripe 

apple 
0.995 0.937 

Ripe pear 0.995 0.982 
Overripe 

pear 
0.995 0.945 

30 Ripe apple 0.995 0.948 
Overripe 

apple 
0.995 0.975 

Ripe pear 0.995 0.992 
Overripe 

pear 
0.995 0.988 

50 Ripe apple 0.995 0.992 
Overripe 

apple 
0.995 0.984 

Ripe pear 0.995 0.995 
Overripe 

pear 
0.995 0.992 

100 Ripe apple 0.994 0.992 
Overripe 

apple 
0.995 0.992 

Ripe pear 0.995 0.994 
Overripe 

pear 
0.995 0.994 

200 Ripe apple 0.995 0.993 
Overripe 

apple 
0.995 0.992 

Ripe pear 0.995 0.995 
Overripe 

pear 
0.995 0.995 
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Figure 5.25: The results of YOLOv8m model 

 
Table 5.25: YOLOv8x results 

Model Weights Epoch Class AP0.5 AP@0.5:0.95 
YOLOv8 YOLOv8x 10 Ripe apple 0.995 0.840 

Overripe apple 0.995 0.852 
Ripe pear 0.990 0.865 

Overripe pear 0.808 0.703 
20 Ripe apple 0.995 0.978 

Overripe apple 0.995 0.943 
Ripe pear 0.995 0.963 

Overripe pear 0.995 0.965 
30 Ripe apple 0.994 0.989 

Overripe apple 0.995 0.978 
Ripe pear 0.995 0.990 

Overripe pear 0.995 0.989 
50 Ripe apple 0.994 0.991 

Overripe apple 0.995 0.987 
Ripe pear 0.995 0.995 

Overripe pear 0.995 0.994 
100 Ripe apple 0.995 0.993 

Overripe apple 0.995 0.991 
Ripe pear 0.995 0.994 

Overripe pear 0.995 0.993 
200 Ripe apple 0.995 0.993 

Overripe apple 0.995 0.990 
Ripe pear 0.995 0.995 

Overripe pear 0.995 0.994 
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Figure 5.26: The results of YOLOv8x model 
 

Table 5.26: Comparison results 
Model Weights Epoch AP0.5 AP@0.5:0.95 Average inference 

time (millisecond) 
CenterNet centernet 

_ResNet-
50 

100 0.135 0.136 10 
200 0.913 0.854 10 

YOLOv8 YOLOv8n 100 0.995 0.993 2.9 
YOLOv8

m 
200 0.995 0.994 6.5 

YOLOv8x 200 0.995 0.993 17.3 
 

 
Figure 5.27: Comparison of YOLOv8 model 
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Ablation experiments were conducted in Table 5.26 to assess the training outcomes 

of both the YOLOv8 and the CenterNet model. The anchor-free models, YOLOv8 and 

CenterNet, exhibit commendable performance in fruit ripeness detection. While 

CenterNet effectively accomplishes transfer learning by freezing the backbone during 

training, it does not significantly surpass the YOLOv8 model in terms of training 

precision. Moreover, CenterNet necessitates more time for inference during a two 

hundred iteration training session compared to YOLOv8m. Despite the resource 

conservation during training offered by the CenterNet model and the reduction in overall 

weight facilitated by using C2f module, the lightweight YOLOv8n model can complete 

detection with swifter response times in just 100 iterations, assuming constant training 

parameters. It is critical to note that CenterNet encounters difficulties in accurately 

extracting fruit features beyond 100 iterations. 

5.2 Discussions 

The precision was achieved by using the green apple detection method (Sun et al. 2023) 

amounted to 34.2%. Employing the transformer model, Wang et al. (2023) successfully 

discriminated between various sizes and varieties of tomatoes, yielding an astonishing 

precision rate of 89.4%. Alzahrani and Alsaade (2023) utilized DenseNet-169 to attain an 

exceptional precision score of 99.88% in the identification of fruit lesions. In a separate 

investigation (Kim et al., 2023), the detection of small objects from UAV photos was 

explored, revealing that the YOLOv8 model exhibited a data processing rate of 45.7 

Frames per Second (FPS) in the P2 layer, despite the presence of environmental noise.  

   Our fruit detection experiment adheres to the methodology employed in previous 

studies, employing a relatively minimal number of parameters. By maintaining a 

precision level of 99.3%, our YOLOv8 model is able to achieve a detection speed as low 

as 2.9 milliseconds, resulting in significant time savings in real-world applications. Our 

analysis demonstrates that the Swin Transformer model achieved an average precision of 

87.43%. Within a mere 0.13 seconds, our algorithm swiftly and accurately identifies 

apples or pears in input photos, subsequently classifying them as either “Ripe” or 
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“Overripe”. 

The inadequacy of the experiment in relation to previous studies necessitates a more 

thorough consideration of the influence of environmental noise on the dataset collection 

process, specifically pertaining to the diverse fruit environments. To accurately simulate 

the growth conditions experienced by the fruits during the harvesting process, it is 

necessary to consider modifying a wider range of pixel types in the dataset. 

In our trials on fruit ripeness classification, the Swin Transformer model has 

exhibited its advantageous qualities and precision in handling minute targets and limited 

datasets. The practical implementation of fruit classification based on ripeness has been 

successfully executed, thereby enabling the utilization of this model in real-world 

scenarios such as automated agricultural harvesting and warehouse management. 

Empirical evidence has revealed the inadequacy of the Vision Transformer in terms 

of CNN response. The CNN solely permits the calculation of correlations between 

adjacent pixels, rendering spatial information irrelevant due to the inherent limitations of 

sliding window convolution, which prevents the simultaneous estimation of non-local 

pixels. Conversely, the Swin Transformer facilitates the provision of hierarchical feature 

representation, thereby enabling successful feature extraction through the utilization of 

self-attention windows. 

Our comparative analysis of the ConvNeXt and YOLOv7 architectures, which 

exemplify the CNN and YOLO frameworks respectively, has showcased remarkable 

performance in the domain of fruit detection. The ConvNeXt model builds upon the 

residual structure of ResNet, thereby significantly enhancing detection speed. By 

considering the primary objective of our research, which revolves around the realization 

of automated fruit harvesting, we conclude that the lightweight YOLOv7 model presents 

a more favorable equilibrium between detection accuracy and computational efficiency. 

From a precision standpoint, it is observed that the YOLO series models exhibit 

superior performance. The YOLOv8 model demonstrates the ability to accomplish 
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recognition tasks within a mere 2.9 seconds. 

In the field of target detection, YOLOv5 and YOLOv7 represent two deep learning 

models. Their primary distinction lies in their network architecture and performance 

characteristics. YOLOv5, a lightweight target detection model, employs an FPN-based 

backbone network structure and an anchor-free detection methodology, thereby reducing 

both model computation and parameter count. Therefore, YOLOv5 has made significant 

strides in terms of speed and accuracy, thereby achieving enhanced performance. On the 

other hand, YOLOv7 represents a novel target detection model. In comparison to 

YOLOv5, it adopts a deeper network structure and introduces novel technical 

mechanisms, such as the Bottleneck Attention Module (BAM), which further enhances 

accuracy. Additionally, YOLOv7 incorporates supplementary structures, including the 

Spatial Pyramid Pooling (SPP) module and the Spatial Attention Module (SAM) module, 

thereby endowing the model with increased potency. 

It is evident that the detection speed of YOLOv7 is marginally slower than that of 

YOLOv8, yet both models are capable of achieving real-time detection. However, in 

contrast to YOLOv5, YOLOv7 does not exhibit a significant improvement in detection 

accuracy.  

While considering the YOLOv5, YOLOv7, and YOLOv8 models, it is apparent that 

the accuracy and recall do not increase with the deepening of the model. The presence of 

numerous redundant parameters in the model leads to a decline in various performance 

indicators. Therefore, for a small dataset, opting for a model with a reduced parameter 

count not only enhances accuracy and reduces training time but also confers a notable 

advantage in terms of prediction speed. 

While comparing various models, it is evident that YOLOv8 exhibits a certain degree 

of improvement in terms of accuracy compared to YOLOv5 and YOLOv7, albeit the gap 

is not substantial. 

The YOLOv8 model, renowned for its exceptional scalability, represents a state-of-
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the-art approach. This framework has been designed to accommodate all preceding 

iterations of YOLO, thereby facilitating transitions between different versions. In addition 

to its scalability, YOLOv8 includes a plethora of enhancements that enhance its 

adaptability for object identification and image segmentation applications. Notable 

advancements of the YOLOv8 model include a unique backbone network, an anchor-free 

network detecting head, and an upgraded loss function capability. 

In terms of visual object detection speed, the Detection Transformer (DETR) model 

reigns supreme. However, it is important to note that the precision of the DETR model 

does not match that of the Swin Transformer. The Transformer architecture effectively 

transforms RNN into a superposition of multiple self-attention structures, thereby 

parallelizing the correlation between any element in the sequence and all other elements. 

This efficient extraction of contextual correlations is further complemented by 

introducing a multi-head attention mechanism, which enables feature extraction from 

multiple perspectives. Moreover, the utilization of position coding facilitates the 

depiction of sequence information before and after, effectively replacing the sequential 

calculation process of the RNN. 

The advantage of the Transformer model over CNN lies in its ability to handle long-

range dependencies. By employing the self-attention mechanism, the Transformer model 

establishes connections between the first and last words in a sentence, enabling the 

capture of global relationships. Therefore, the Vision Transformer can effectively utilize 

the attention mechanism to extract global features from images, surpassing the mere 

capture of dependencies between adjacent elements. 

In contrast to CNN, which relies on the receptive field to calculate the correlation 

between each pixel of the feature map and all other pixels, DETR achieves this through 

the Transformer architecture. Notably, the Transformer model exhibits a broader receptive 

range than CNN, resulting in superior performance on the test set. In the Encoder stage 

of DETR, the characteristics of the input are encoded, while the Decoder stage converts 

100 queries into 100 targets. Typically, 100 queries suffice, as few images contain more 
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than 100 targets (unless when addressing highly complex tasks). In contrast, CNN-based 

methods require the prediction of tens of thousands of anchors, incurring substantial 

computational costs. The reduction in computational burden afforded by the Transformer 

model enables efficient object detection. 

DETR's approach bears resemblance to Mask R-CNN, as it predicts the segmentation 

of the instance's corresponding bounding box based on the provided box prediction. To 

achieve this, DETR upsamples the attention map output by the mask head and 

incorporates it into specific branches of the backbone, effectively emulating the 

functionality of an FPN. Subsequently, a bitwise argmax operation is performed on the 

mask maps associated with all boxes to obtain the final segmentation map. Notably, the 

detection results obtained by Transformer-based models surpass those achieved by Mask 

RCNN in terms of accuracy and performance. 

In the object recognition tasks of computer vision, an image typically undergoes a 

series of convolution operations, subsequently yielding a feature vector that encapsulates 

the comprehensive characteristics through the utilization of Global Average Pooling 

(GAP). This resultant feature vector is then fed into the classification layer for the purpose 

of classification. Conversely, in the field of NLP, tasks often employ a Class Token, 

referred to as CLS in the aforementioned context. A vector representing the class token, 

along with another vector representing the distillation token, are inputted into the Encoder 

of the Transformer to process the sequence of image patches.  

During the training phase, a supervised loss is employed for the output of the class 

token, while a distillation loss is employed for the output of the distillation token. Finally, 

image recognition is performed by taking the mean value of the output from the class 

token and the output from the distillation token. The Transformer architecture necessitates 

a sequence (Sequence) input signal, whereas our image is a two-dimensional input signal. 

Therefore, we segment the image into blocks and subsequently apply the Flatten 

operation. However, this intuitive approach fails to perfectly model images due to the 

absence of internal information pertaining to each patch in ViT. Hence, ViT is unsuitable 
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for detecting smaller objects. 

The axial displacement strategy of MLP spatially shifts features in both horizontal 

and vertical directions, thereby arranging features from distinct spatial positions into the 

same position. Subsequently, the MLP is employed to combine these features. The axial 

displacement strategy of the MLP enables the model to acquire more localized 

dependencies, thereby facilitating rapid and accurate identification. 

In terms of results and speed, the YOLOX decoupled head, which replaces the YOLO 

head, not only enhances the rate of convergence but also exhibits superior performance. 

By incorporating the Swin Transformer module, YOLOX+Swin Transformer 

outperforms alternative models in terms of both detection speed and accuracy. 

5.3 Summary of This Chapter 

Within the scope of this key chapter, a comprehensive analysis of all experimental 

findings is presented. To accomplish this objective, ablation experiments were conducted, 

enabling a meticulous dissection of the merits and demerits associated with various 

research methods. 
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Chapter 6 Conclusion and Future Work 

 

 

In this chapter, an exhaustive synthesis of all research 

methodologies and experimental data is provided. Future 

research directions are visioned based on the empirical 

results. A clear and well-organized explanation of the 

numerous techniques and strategies employed in our 

research is proffered. This chapter comprises minute details 

pertaining to our data collection methodologies, 

experimental designs, and the analytical instruments 

employed to derive valuable insights. 
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6.1 Conclusion 

Our findings substantiate that the combination of YOLOX with the Swin Transformer 

model yields superior detection results. YOLOX incorporates CSPNet, SiLU activation 

function, and PANet, which are based on YOLOv3 and YOLOv5. In comparison to the 

conventional YOLO model, YOLOX maintains a certain model size while achieving 

higher detection accuracy. 

Compared to the earlier iterations of YOLO, the decoupling head in YOLOX exhibits 

notable differences. Specifically, a 1×1 convolution layer is employed in the decoupling 

head of YOLOX to modify the channel count prior to the integration of two parallel 

branches. Each branch consists of two convolution layers, with one branch dedicated to 

classification tasks and the other branch including regression tasks, which also 

incorporates a branch for determining the degree of overlap. 

The architecture of the Focus network is also designed to optimize the extraction of 

YOLOX features. By assigning values to alternate pixels in an image, the Focus network 

generates four distinct feature layers. Subsequently, these four separate feature layers are 

stacked, thereby merging the width and height data into the channel data and multiplying 

the input channel by four. 

Additionally, YOLOX Neck component employs a bottom-up feature pyramid to 

combine two parameters across different detection levels. 

Functioning as a hierarchical network structure, the Swin Transformer effectively 

enhances computational speed through the utilization of shifted windows. 

The layered architecture of the Swin Transformer affords modeling flexibility at 

various scales, thereby ensuring that the model can accomplish the classification task to 

its fullest potential. 

The YOLOX+Swin Transformer model combines the characteristics of both models 

to enhance the accuracy of classification. Moreover, the network structure of these models 
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guarantees the efficient and rapid transmission of characteristic details pertaining to fruits 

in the model. 

The ConvNeXt network maintains the general framework and design principles of 

its predecessor, with the incorporation of advanced Transformer network concepts and 

specific modifications to the traditional ResNet-50 network. The objective of ConvNeXt 

is to combine the strengths of both networks and enhance the performance of CNNs by 

integrating recent Transformer network concepts and technology into the existing CNN 

network modules. 

ConvNeXt employs a more radical approach by utilizing depth-wise convolution to 

generate a convolution block, as opposed to the bottleneck structure employed by ResNet. 

This results in a significant reduction in the network's parameter count, albeit at the cost 

of some accuracy. It is evident that ConvNeXt may not be the optimal choice for 

precision-oriented fruit detection tasks. 

Both CornerNet and CenterNet establish the spatial relationship between key points 

and the detected targets. CornerNet establishes the positional relationship between the 

corner point and the target. On the other hand, CenterNet establishes the positional 

relationship between the center point and the target. 

CornerNet adopts the hourglass network as the backbone feature extraction network. 

This hourglass network is typically employed in pose estimation tasks and comprises a 

combination of downsampling and upsampling operations in an hourglass-shaped 

architecture. However, when the CornerNet heatmap is downsampled to its original 1/n 

size and subsequently upsampled, it leads to a loss of accuracy. Therefore, the positional 

accuracy of small object frames is significantly compromised, resulting in unsatisfactory 

detection results for CornerNet. 

CenterNet suppresses the eight positions surrounding the key point of the local 

maximum value during its processing, and selects the top k bounding boxes as the output. 

The prediction of CenterNet, which is based on the center point, results in less dense 
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bounding boxes compared to anchor-based detection models. When fruits are being 

detected, it becomes susceptible to generating significant losses in center point offset. 

The MLP model, which operates in both horizontal and vertical directions, can 

arrange features at various spatial locations in the same position. This characteristic 

enhances the model's local dependency, thereby improving its performance. The MLP 

classifier exhibits a commendable recognition rate and faster classification speed. 

However, its training process is not as swift as that of SVM classification, particularly 

when dealing with extensive training sets. If there is a high requirement for classification 

efficiency, the MLP method serves as an excellent choice. 

The Vision Transformer utilizes a standard Transformer Encoder to carry out 

detection tasks. By pre-training on substantial amounts of data and transferring the 

knowledge to multiple small and medium-sized image recognition benchmarks, the 

Vision Transformer achieves superior results while demanding fewer training resources. 

Nevertheless, the fruit detection dataset only represents a small sample of the model and 

fails to meet the requirements of ViT and MLP for comprehensive model datasets. 

6.2 Future Work 

For our initial experiments, a selection of images depicting apples on a tree with green 

leaves was chosen. However, the presence of occlusion in the data adversely affects the 

model's ability to extract fruit features. Therefore, a group of images with low pixel counts 

and excessive occlusion were deliberately excluded during the one-stage fruit detection 

process. 

Nevertheless, by considering the practical application of fruit detection in agriculture, 

it is crucial to account for environmental noise. The impact of weather conditions on 

identification is substantial. Considering the potential influence of hurricanes, heavy rains, 

and other weather phenomena on the fruit images captured by cameras, expanding our 

dataset remains necessary. 
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The impact of fruit stacking on the detection of unpicked fruit trees (specifically 

apples and pears) must be considered. In the context of agricultural applications, it is 

necessary to consider the detection of apple stems. The detection of apple stems, being a 

relatively small target, presents inherent difficulties. In addition, the stacking of apple 

stems in an orchard setting introduces additional challenges that need to be addressed in 

future experiments. 

6.3 Summary of This Chapter 

In our experiments, we successfully accomplish the detection of agricultural targets from 

digital images, specifically fruits. By leveraging the Transformer and YOLO models, we 

are able to combine the strengths and fundamental principles of the one-stage model, 

thereby achieving rapid and real-time detection. This breakthrough lays the groundwork 

for the automation of agricultural harvesting processes. 
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