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I 

Accurate object detection in road scenes is one of the most essential requirements of 
autonomous vehicles. A plenty of research work has been carried out in the two-
dimensional field to support traffic surveillance, vehicle counting, and object tracking. 
However, less emphasis has been put forward on 3D object detection complications. 
Based on our findings, the existing solutions for autonomous vehicles rely on expensive 
64 beams three-dimensional LiDAR (i.e., Light Detection and Ranging) point clouds for 
positioning the objects in real-world that highly raises the cost of autonomous vehicles 
and imposes the biggest barrier to their adaption. 

Considering the limitations of existing solutions, in this thesis, we aim to give 

accurate three-dimensional object detection using sparse LiDAR point clouds in support 
with camera images. A unified detection framework is proposed for road scene perception 
including cars, pedestrians, and cyclists for optimizing the accuracy of 2D object 
detection based on the existing hardware and datasets. However, for final three-
dimensional object detection, this research work is narrowed down to vehicle detection 

only due to time and resources constraints of academic research. 

In 2D road scene perception precision, a flexible deep neural network is proposed by 
using the end-to-end detection approach named FlexiNet. The dynamic architecture of 
this network allows network scaling to obtain the best results based on the available 
resources. The proposed 3D vehicle detection algorithm exploits the two-dimensional 
bounding boxes extracted by using FlexiNet. The algorithm does not rely on dense point 
clouds, rather based on the prime fact that the three-dimensional center of a vehicle is the 
translation of its two-dimensional center in the form of world coordinates. The model 
performance is also analyzed based on 64, 32 and 16 beams density point clouds. 

Keywords: Deep neural network, 2D vehicle detection, 3D vehicle detection, 
autonomous vehicles, self-driving car, LiDAR, point clouds, fusion 
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This chapter is composed of six parts. In the first part, we 

introduce the rationale and significance of the study. The second 
part includes the motivation followed by the research background. 
In the third part, we present the research questions in follow up 
with contributions and the structure of this PhD thesis.   
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According to the World Health Organization (WHO) global status report on road safety 
2020 (WHO, 2020), road traffic crashes take the lives of nearly 1.3 million people every 
year and injure 20–50 million. most of these cases, people are driving under the influence 
of drugs, drowsiness, fatigue or distracted attention. On the other hand, with artificially 
intelligent vehicles, we expect they will always follow road rules and will never be tired 
off with proper maintenance. Moreover, it will also be of great use to the aged or 
physically challenged people in addition to saving the driver’s time. Self-driving vehicles 
will potentially improve safety, reduce pollution, and provide mobility solutions for 
otherwise underserved sectors of the population with their successful technology. 

    However, there are innumerable challenges to face for an AV, e.g., identifying road 
obstacles accurately is a complex task for the difference in lighting conditions, high 
degree occlusion, truncation of objects present in the images (Hai Wang et al. 2019, Gu 

et al., 2017). Many times, there are strong shadows of objects over others. On the shiny 
surface of vehicles or glass windows, reflections of surrounding objects also create a 
dilemma. Other major challenging conditions are extreme weather (snow, foggy, and 
heavy rainfall) and night timings. These are the practical road scene challenging 
conditions that AVs needs to deal with. A fundamental requirement to AVs technical core 

side is the ability to perceive the 3D road scene accurately in real-time. 

    With the goal of providing common terminology for automated driving, the Society 
of Automotive Engineers (SAE) classifies automotive driving, as shown in Fig. 1.1, in 
five levels based on their automation capacity and task requirements, for example, lane 
driving or closed campus driving (SAE, 2021). Briefly, we could summarize them as 
“level-0” that provides no automation, and “level-1” refers to hands-on driving where 
gears and/or pedal could be auto-controlled. “level-2” adds steering control automation 
over the previous levels; however, the driver needs to be vigilant to take over control in 
any critical circumstances. “level-3”, the driver is allowed to disorient his work. However, 



 
 

3 

 

 

the automation system of the vehicle may ask the driver to take control over exceptional 
circumstances, e.g., traffic jams, so the driver must be present at the driver seat during the 
course. “level-4”, AV allows for fully automated control but in limited areas and can pull 
over to a safe place when necessary. The “level-5” is presumably fully automated without 
any need for human intervention; hence steering wheel would not be required at all with 
complete trust of AV accuracy and robustness.  

 

Fig. 1.1: SAE international Identifies six levels of driving automation from “no 
automation” to “full automation”. 

    Multiple sensors are incorporated in the AVs to collect maximum surrounding 
information, including camera, LiDAR, radar, and supplement sensors such as GPS, 
odometry and IMU (Asvadi et al., 2018). Over the past few years, many methods have 
been proposed to tackle the problem of 2D and 3D object detection from monocular 
images, stereo cameras or LiDAR 3D point clouds. In this information plays a vital role 

for Automated Control System (ACM) in perceiving the world, understanding the actions 
of objects around and deciding the safe manoeuvre. However, another essential 
requirement of AVs is to reduce the whole perception and reaction time to a minimum to 
make a safe move or stop of the AVs in case of an emergency. 

To quote, the latest accident of Aug-2021, where Tesla Model S autopilot drove past a 
stop sign and a flashing red light before hitting a parked car (Gregory, 2021), and other 



 
 

4 

 

 

critical accidents are of July-2020 and Dec-2019 when autopilots couldn’t take the right 
decision at the right time and had led to casualties. These accidents have revealed the 
scope of improvement in the field of AV system technology to the world. On the other 
hand, the latest development in AVs is robotaxi, owned by Waymo that are “level-4” self-
driving cars and allowed to move in parts of Phoenix, Arizona, since 2020. Robotaxi can 
do safe pull over in case of emergency or ask humans to take over (Litman 2020). These 
vehicles are in an auto-learning mode, i.e., they learn new road driving possibilities based 
on the experience received during travel.  

    However, Waymo cars are equipped with multiple cameras, five LiDARs, two radars, 
and many other sensors that make their budget unapproachable for most of us. 2017, a 
Velodyne 64-beams LiDAR cost was 75,000US dollars that was cut off later by 50% in 
2018 (Aijazi et. al., 2020). However, with the advent of Solid State LiDAR (SSL), it is 
assumed that LiDAR prices will slash down with a big difference in the coming years 
with their high production. The SSL utilizes a micro-lidar array with 8-beams giving a 
static 120-degree field of view (Aijazi et. al., 2020). 

Visual perception plays an integral part in autonomous driving to estimate the positions 
of surrounding obstacles on the road. Vehicle and pedestrian detection using aerial images 
have gained tremendous attention in traffic monitoring, surveillance, and military 
applications (Mo, 2020). The aerial view of vehicles shows less or no occlusion and 
shadows as compared to the ground-based images, whereas in the case of AV, it has to 
deal with the ground-based field of view only. Thus, extensive work is needed for object 
detection with the ground-based field of view to accelerate AVs success. Considering the 
consequences of a minor error in an AV perception and reaction generated requires highly 
sophisticated and robust algorithms. However, complex algorithms generally require 
heavy computation, subsequently leading to excessive run time.  

    In driving scenarios, perception-break reaction time (PRT) is defined as the time 
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lapse between the hazard seen and the reaction applied, ranging between 0.7 to 1.5 
seconds depending on the driver’s age, visual equity, and cognitive load (Green, 2000). 
Other than PRT, the car will take a while to come to a stop depending on the current speed, 
tyers tread depth, road friction and brake efficiency. Therefore, with the objective of 
human safety and reliable transport, an AV should be capable of detecting an object 20-
60 meters beforehand with a 50-70 km/hr speed (Lantos and Márton, 2011). 

    In this research project, we aim to uplift 2D road scene perception accuracy for 
ground-based images by proposing a unified framework for detecting cars, pedestrians, 
and cyclists objects present in front of AV. Considering the fact that 2D detection is not 
sufficient for AV because that gives the resulting information in image coordinates only 
and no knowledge about the distance and shape of the objects present in front of AV. The 
3D detection of road objects is a necessary requirement to understand their absolute 
positioning. At the same time, the objective is to find a solution that is not based on point 
clouds density and can efficiently work with sparse point clouds. the present research 
journey, we have targeted at optimizing 2D road scene perception accuracy of AV based 
on available hardware and dataset; and positioning front lying vehicles in the 3D world 
accurately based on the RGB images of the camera sensor and 3D sparse point clouds. 

An AV system is composed of three major technological components. Primary - sensing 
and perception, secondary - localization and mapping, and thirdly – application for 
driving policy (De Silva, Roche, and Kondoz 2018). In this research project, we have 
considered the sensory and perception system that is responsible for understanding the 
surrounding environment. Human primarily takes use visual, auditory and cognitive 
senses to drive, whereas AV perceives the world with multiple sensors to overcome the 
shortcomings of individual ones (Mehtab et. al., 2021). A myriad of sensors can be used 
to collect surrounding information: Passive sensors, such as monocular, stereo, and 
infrared cameras; in contrast to active sensors including GPS (i.e., Global Positioning 
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System), LiDAR, IMU (Inertial Measurement Unit), radar and sonar (Kuutti et al., 2018). 
However, in recent years, most 3D object detection algorithms have preferred to use 
monocular/RGB cameras and LiDAR sensors.  

    A monocular camera outputs digital images rich in texture and reveals the shape of 
the objects in the form of pixel values, such as RGB, YUV, or other colour systems 
(Podpora, Korbaś, and Kawala-Janik, 2014). On the other hand, LiDAR detects object 
location accurately irrespective of its visibility, however in the range of certain meters 
only because of radiation limitation (Wei et al., 2018). Unlike monocular cameras, 
LiDARs cannot discriminate the objects based on texture and colour (Wei et al., 2018). 
LiDAR data has been utilized in multiple ways in AV systems, for example, front-view 
2D projected form (Z. Wang, Zhan, and Tomizuka, 2018), top-view or BEV projected 
form (Ku et al., 2018), voxel form, i.e., 3D grid cell (Zhou and Tuzel, 2018), or raw form 
only (Qi et al., 2017). Based on the facts mentioned above, it is justified to integrate the 
information from LiDAR and cameras to complement each other.  

    In recent years, many advanced DNN models have been proposed for AVs for 2D 
and 3D road objects detections. Despite considerable success in the accuracy of 2D 
detection of individual road objects, there is much scope for improvement in their parallel 
execution. On the other hand, 3D road scene object detection still has a marginal 
difference in accuracy compared to 2D detection. the case of 3D object detection, LiDAR 
has shown significant importance, whereas the fusion of camera and LiDAR sensors has 
given some reliable results (Liang et al., 2019; Ku et al., 2018). Based on our investigation, 
maximum accuracy achieved on medium complexity KITTI benchmark datasets (Geiger 
et al., 2013) for 3D detection to date is up to 87.47% (Liang et al., 2019) using densely 
fused two-stream multi-sensor; however, for road safety aspect it has a considerably less 
and demands an improvement.  

As a research discipline, we have adopted design science methodology (Peffers et al., 
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2007) that follows iterative procedure of implementation. It allows to repeatedly improve 
the network model based on the evaluation results to achieve the desired accuracy. The 
exploited research methodology is depicted in Fig. 1.2 that identifies the research 
problems based on literature reviewed, derives objectives of solutions, and proposes 
model design. Furthermore, model simulation is performed that is followed by 
quantitative evaluation. For quantitative evaluation, precision, mean average precision, 
recall, accuracy and inference time metrics are considered. Various approaches are 
adopted based on deep learning techniques to optimize the results iteratively. After 
achieving the desired results, work is published in relevant media. 

 

Fig. 1.2: Research Methodology 

    Fig. 1.3 shows the overall flow of model design. After comprehensive survey, two 
open source self-driving car datasets were selected. After performing data augmentation 
and data distribution, the research conducted 2D road scene perception using deep neural 

network (DNN) based on RGB images. However, 3D vehicle detection exploited the 
results generated through 2D detection and it was based on RGB images as well as LiDAR 
point clouds. 
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Fig 1.3: Overall flow of model design  

In 2D road scene perception, extensive work has been carried out for individual objects 
like cars, pedestrians, and cyclists detection using machine learning and DNN models; 
however, comparatively, very few efforts have been put into a unified framework of 

detection. Moreover, pertaining to humans pose variation and occlusion, detecting 
pedestrians and cyclists with high precision has remained challenging. In the case of 3D 
road scene perception, most of the recent developments have considered 64 beam dense 
LiDAR point clouds to get the world coordinates; however, that results in an overall 
unapproachable price of AV causing the biggest barrier to its adoption. For above 

mentioned reasons, the research problems can be stated as follows: 

Problem 1. How to increase the accuracy of a unified framework in 2D road scene 
perception for AVs that can efficiently deal with different road users simultaneously?    

Problem 2. What should be the architecture of DNN to obtain optimum results in 2D road 
scene perception based on the existing dataset and hardware resources? 

Problem 3. How to give an accurate yet cost-effective model for 3D object detection for 
AVs based on sparse LiDAR point clouds and camera images? 
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In the proposed research project, we have firstly emphasized on the accuracy 
improvement of 2D road scene perception exploiting the DNN potential with the input 
provided in the form of camera RGB images. In the late section, the focus is on 3D object 
detection, in this area, our research work is narrowed down to vehicle detection only 
considering the time and resources constraints of academic research. We have utilized the 
3D point clouds knowledge grasped from LiDAR with 2D detection results obtained to 
predict the vehicles 3D positions present in front of AV. 

For 2D perception, we aim to detect and classify cars, pedestrians, and cyclists in real-
time with high accuracy in complex road scenes using a unified DNN framework. The 
proposed PyTorch-based framework attains the least inference time that allows ACM to 
make manoeuvre decisions in a safe amount of time. The network architecture is inspired 

by YOLOv5 (Jocher et al., 2020), based on a single regression network for object 
classification and detection via region anchors to make object detection robust. In the 
proposed solution, we investigate a flexible neural network to generate an optimized 
DNN architecture (Mehtab and Yan, 2021). The contribution in the proposed work can be 

summarized as follows: 

•  Based on YOLO5 framework (Jocher et al., 2020), a dynamic scaling neural network 
is proposed to get the required size of DNN that achieves the best result for detection based 
on the available hardware and dataset. 

•  Based on existing optimization techniques (Ian, Yoshua, and Aaron, 2016) for DNN, 
the network is fine-tuned by using different batch sizes, loss functions, activation 
functions, optimization functions and intermediate checkpoints to achieve the desired 
accuracy. 
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•  On benchmark KITTI dataset with medium complexity, we have obtained 95.01%, 
93.32%, and 99.33% recall for vehicles, pedestrians, and cars respectively.  

The network performance is compared with the state-of-the-art 2D detection methods 
that depict the superior performance of the proposed work by yielding the lowest missing 
rate with the highest detection speed. 

Based on the literature surveyed, it was found that extensive work has been carried out 
for the car, pedestrian, and cyclist detections independently; however, comparatively, 
fewer efforts have been put collectively into their 2D object localization. The proposed 
FlexiNet model provides a unified framework for the detection of multiple classes 
together with high inference speed. Our results are analysed based on precision and recall 
metrics based on the detection dataset. The result analysis reveals that detection models 
such as Faster R-CNN (Ren et al. 2017) and EfficientDet (Tan, Pang, and Le 2020) faced 
difficulty differentiating features between cyclists and pedestrians, leading to low recall 
and precision. In contrast, FlexiNet achieved desirable performance with the lowest miss 
rate based on the KITTI dataset (Mehtab and Yan, 2021). YOLOv4 achieved comparable 
results, although it demands more computational resources as compared to the proposed 
model. 

Based on the results achieved from the 2D detection method, we have proposed 3D 
vehicle detection using camera RGB images along with LIDAR point clouds. In this piece 
of work, a cost-effective solution for 3D vehicle detection based on sparse point clouds 
in the context of AVs is proposed. A novel framework to estimate 3D bounding boxes and 
orientations of the front lying cars is proposed based on the success of 2D object detection 
using DNN (Mehtab et. al., 2021). The contribution of this work can be summarized as 
follows: 
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• The proposed solution leverages from existing MobileNetV2 (Sandler et al., 2018) architecture 
for feature extraction. The last fully connected layer of original network is replaced with three 
branches pertaining to 3D box size, orientation, and confidence score. 

•  The novel 3D vehicle detection algorithm gives regard to the fact that the 3D centre 
of a car in world coordinates is the  translation of the predicted 2D centre with the 
referenced AV field of view.  

• Relying on the factual information of LiDAR beams, car distance from AV is 
estimated using trigonometrical geometry based on predicted size, orientation, and 
estimated pose of car 3D bounding boxes. 

• A solution is proposed to mitigate the occlusion problem in real-world scenarios 
exploiting relative distancing between the front visible and occluded cars using point 
clouds information. 

• To test the network performance over sparse point clouds, KITTI 64 data of beam 
point clouds is transformed into 32 and 16 beam formats. The results depict consistent 
performance of the proposed solution with sparse point clouds along with higher detection 
speed. 

    Our experimental results unfold that images and LiDAR point clouds early fusion 
leads to poor detection of 3D box size as compared to images only (Mehtab et. al., 2021). 
Rather in the proposed solution, LiDAR point clouds are employed later in 2D detection 
windows to estimate the distances of vehicles based on their active information. 
Benchmark KITTI dataset (Geiger et al., 2013) that contains a variety of challenging 
conditions of the roads is applied to test and evaluate network performance that is further 
verified by using the Waymo dataset (Sun, Henrik, and Xerxes 2020). In this research 
project, we present a novel idea of testing network performance over different densities 
point clouds without having other LiDARs.  
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The structure of this report is described as follows: 

 In Chapter 2, an exhaustive literature review of relevant research done in the field of 
AV for road scene perception is conducted. In this section, we present our introductory 
discussion about different sensors and open datasets used in the AV research. Numerous 
2D and 3D road object detections techniques are considered and compared based on 
sensors and techniques used. In the light of the literature reviewed, critical analysis is 
made, leading to research gap findings. 

 Chapter 3 has shared some of the basics of neural networks, including Feedforward 
and Backpropagation, Gradient Descent algorithms, Convolution Neural Networks 
(CNNs), the advanced techniques to optimize neural network performance. Hereinafter, 
we have also discussed the basic principle of region proposal-based object detection and 
YOLOv3 to understand some of the concepts of the end-to-end paradigm. 

 In Chapter 4, the details of the research methodology are utilized to increase the 
accuracy of 2D road scene object detection are covered. A flexible deep neural network 
named FlexiNet is proposed to set the network’s shape to find the most promising 
structure based on the dataset and available resources. To make the network potentially 
generalizable, the auto-anchor technique generates anchor sizes using the k-means 

clustering algorithm by using IoU features based on the training dataset information. In 
the late Section, the network performance is optimized by using various neural 
networking tools. 

 In Chapter 5, the research is narrowed down to vehicle detection exclusively. 3D 
vehicle detection is accomplished based on the success of 2D detection results by using 
additional 3D world coordinates information from LiDAR point clouds.  The proposed 
solution can be summed up in two sections, where the first section predicts the size and 
orientation of 3D bounding boxes. On the other hand, the second section projects LiDAR 
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point clouds on the detected 2D bounding boxes to transform the 2D centres of the cars 
into 3D coordinates form (Mehtab et. al., 2022). 

 In Chapter 6, we have conducted result analysis and discussion based on the 
experimentation performed using both the methods proposed. In this chapter is comprised 
of three sections. In the first section discusses the results achieved in 2D road scene 
perception, the second section focuses only on 2D vehicle detection, whereas the third 
section focuses on 3D vehicle detection results with their summary (Mehtab and Yan, 
2021). 

 In Chapter 7, we have summarized the subject and methods applied in this course of 
research with their outcomes. Light is reflected on the research areas that give a new 
direction according to the result and insufficiency of the experiment, preparing for future 
work. A look at what went wrong in the initial course of research is also discussed. 
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In this chapter, we highlight the literature surveyed for developing a sound understanding 
of the state-of-the-art object detection techniques in autonomous driving. In the chapter 
covers three major sections pertaining to sensor analysis, data analysis, and research 

methods explored for the object detection used in recent years based on camera and 
LiDAR sensors. In the third section, we give the details of traditional object detection 
methods based on conventional machine learning and computer vision techniques, e.g., 
histogram of oriented gradients (HOG), support vector machine (SVM) etc., and DNN-
based 2D object detection and 3D object detection methods. Clear segregation is carried 
out among the 3D detection methods based on the type of sensors used and the approach 
exploited to fuse the information from different modalities. In the last section, we discuss 
the literature surveyed and present the gaps existing in the state-of-the-art object 
detection methods. 
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Although human primarily takes use of visual, auditory systems and cognitive senses in 
driving, AV perceives the world with the help of multiple sensors to overcome the 
shortcomings of individual ones. There are a wide range of sensors in autonomous 
vehicles: Passive sensors, such as monocular, stereo cameras and infrared cameras etc., 
and active sensors, including GPS, LiDAR, IMU, radar and sonar (Yan, 2019). However, 
most of the object detection methods have relied on cameras and LiDAR sensors in recent 
years, so it becomes necessary to discuss these sensors in detail (Mehtab et. al., 2021).  

A monocular camera provides rich textured images and reveals the shape of the objects 
in the form of pixel values in RGB, Grayscale or YUV and many other colour coding 
schemes (Podpora, Korbaś, and Kawala-Janikc, 2014). In the shape and texture 
information can be used to identify different objects, traffic signs and lane geometry 

(Zakaria et al. 2018) etc. A significant disadvantage of monocular cameras is the lack of 
depth information required for accurate object size and distance estimation (Arnold et al., 
2019).  

LiDAR is a remote sensing device used in AV for estimating the distance of the road 
objects from AV by calculating the roundtrip time of emitted laser rays. LiDAR detection 
system gives 3D world coordinates and the intensity of the reflected beam in the form of 
point clouds (Wei et al., 2018). Market dominating mechanical LiDARs come with 
varying numbers of laser beams (i.e., 8-128) with an eye-safe technology in 360-degree 
horizontal and 10 to 40-degrees vertical field of view coverage. Based on the beam density, 
The latest LiDARs can empower AVs to locate the surrounding objects in the range 
between 50-250 meters along with their speed estimation. Being an active sensor, LiDAR 
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has many benefits over the camera by collecting 3D world coordinates of objects in the 
form of point clouds. It’s immune to reflection, weather and lighting conditions. LiDAR 
can estimate velocity, orientation and the objects distance accurately in certain meters 
range. 

The primary ways for formatting the point clouds in object detection methods are listed 
as follows: 

• 2D Front-view Projected Form: In some research (Minemura et al., 2018; Zhou et 
al., 2019), the 360-degree rotating mechanical LiDAR point clouds are converted into 
cylindrical coordinates to get a front view 2D projection. If the given 3D point 
coordinate is P1(x, y, z), then its corresponding cylindrical coordinates P2 (r, c) in the 
frontal-view map can be calculated as given in Eq. (2.1) and (2.2).  

𝑐𝑐 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝑦𝑦, 𝑥𝑥)/𝛛𝛛𝜃𝜃           (2.1) 

𝑟𝑟 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝑧𝑧,�𝑥𝑥2  +  𝑦𝑦2 )/𝛛𝛛∅         (2.2) 

where 𝛛𝛛𝜃𝜃  and 𝛛𝛛∅  are the horizontal and vertical resolutions of the point clouds, 
respectively. Fig. 2.1 illustrates the front view projection of point clouds. 

 

Fig. 2.1: Front view of LiDAR point clouds, 3D points are converted into cylindrical 
coordinates to project front view on a 2D plane. 
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• Top View or Bird’s Eye View (BEV) Projected Form: The BEV view over the 
front view of point clouds is shown while generating projections (Yi et al., 2020; Ku 
et al., 2018; Chen et al. 2017). BEV represents the top view of point clouds, as the 
name implies from a bird’s field of view, thereby removing the occlusion up to a 
certain extent. a BEV projection, the whole point clouds are distributed into an N×N 
centimetres horizontal grid with multiple vertical band slices, as shown in Fig 2.2. For 
every grid cell, BEV stores multiple channels holding the maximum point height in 
every vertical index, with the final channel having the overall density of points in that 
grid. 

 

Fig. 2.2: BEV point cloud mapped in six channels based on different height levels and 
points’ density. 

• Voxel form: LiDAR point clouds are exploited in the form of 3D voxels (Yi et al., 
2020; Zhou and Tuzel, 2018) to get high-performance detection results.  

• Raw point clouds: PointNet and its variants are proposed based on raw point clouds 
that didn’t consider changing the point clouds format to make them regular such as 
voxels or image projections but respected the perturbation and corruption (Qi et al. 
2017; 2017; 2018) to give high accuracy in autonomous driving. 
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Fig. 2.3: (a) Camera View (b) LiDAR 360-degree BEV point cloud projection. (c) Early 
fusion of LiDAR and Camera Fusion 

    To deal with the individual limitations of camera and LiDAR sensors, multimodal 
fusion is employed to combine information from various sensors that lead to better 
decisions (Vielzeuf et al., 2018). In the fusion of these sensors helps in resolving the 
problem of the incompleteness of both the sensors.  

    In artificial neural networks, three approaches that were widely harnessed for 
multimodal fusion named “Early Fusion”, “Late Fusion”, and “Hybrid Fusion/multistage 
fusion” that differ in the way the information is integrated, features or decisions yielded 
from different sensors (Snoek, Worring, and Smeulders, 2005).  
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    The early fusion approach feeds unimodal” raw data or features in a unified 
representation at the initial stage of the neural network to retrieve their semantic concepts. 
In this paradigm, the different sensor information is integrated at the early stages without 
transforming; early fusion attains actual multimodal features extraction (Snoek, Worring, 
and Smeulders, 2005). Fig. 2.3 presents the projection of 3D point clouds on an image, 
where (a) presents a visual scene, (b) shows the 360-degree 3D point clouds in BEV form. 
Fig 2.3(c) displays the early stage fusion where point clouds are superimposed on the 
image, aligning their field of views as a unified input source. Colour coding of point 
clouds depicts the distance of objects from LiDAR. In this kind of model is privileged by 
single-stream network processing.  

    On the other hand, the late fusion relies on the power of individual modalities and 
finds the detection score based on each sensor; and fuses processed information at a 
detection stage of the network (Asvadi et al., 2018; Wang, Zhan, and Tomizuka, 2018).  

Many organizations are facilitating open autonomous driving datasets for research 

purposes. One of the most used datasets in the self-driving context is KITTI (Geiger et 
al., 2013). KITTI has primarily been used as a benchmark for performance comparison 
among models. KITTI dataset provides right and left view cameras colour images, 
LiDAR’s 360-degree point clouds and GPS coordinates, all synchronized in time. Scenes 
have been recorded from well-structured highways, complex urban areas and narrow 
countryside roads. In the dataset contains 15,000 frames: 7,500 labelled and 7,500 
unlabeled. In the calibration of different sensors and labelling information of 2D and 3D 
bounding boxes is provided for each frame, along with the orientation. 

    The KITTI benchmark dataset has been categorized based on complexity using 
“Easy”, “Medium”, and “Hard” terms based on objects’ size, occlusion, and truncation 
levels. However, the dataset has a few limitations, such as all scenes have been captured 
in the daytime and mostly on sunny days. Dataset is biased toward cars; less than 20% of 
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the dataset holds cyclist or pedestrians information (Geiger et al., 2013). Moreover, the 
dataset lacks twists and turns of roads and lanes, thereby reducing reliability in real-world 
applications.  

    Other than KITTI, the “nuScene” open dataset offered by APTIV (C, B, and H, 2019) 
and “Waymo” dataset (Sun, Henrik, and xer×es, 2020) also provide large, annotated 
information for autonomous driving cars through using multiple LiDARs and cameras 
information. As our analysis, the nuScene dataset offers a variety of road scenes; however, 
it lacks considering different weather conditions. On the other hand, Waymo facilitates 
diverse weather conditions and night-time scenes to the researchers. Another advantage 
of using Waymo is its availability at Google Colab (that makes it easy for researchers to 
take benefit of GPUs directly). Other organizations also provide dense pixel annotation 
of high-resolution RGB videos for multiple object classes. These include 
“APOLLOSCAPE” by Baidu (Wang, Peng, and Haung, 2020), “BDD100K” by Berkeley 
Deep Drive (Yu, Chen, and Wang, 2018) and “CITYSCAPES”.  

On the other hand, data from the virtual world environment may also be taken into 
consideration, such as the virtual KITTI 3D dataset (Gaidon et al., 2016). Simulators 
provide Flexibility to create an environment with different lighting, weather and traffic 
conditions. SIM4CV (Müller, Casser, and All, 2018) and CARLA (Dosovitskiy and Ros, 
2017) are open-source simulation tools for autonomous driving, allowing flexible 
environmental setup and sensor configuration. Using virtual data during training can 
enhance the performance of detection models in natural environments (Arnold et al., 
2019). 

Computer vision methods have strongly relied on handcrafted features for features 



 
 

21 

 

 

extraction and semantic understanding based on images (Mehtab and Yan, 2022). 
Regarding feature extraction, the HOG (Histogram of Oriented Gradient) descriptor has 
been applied successfully in visual object detection using conventional machine learning 
methods along with the SVM classifier (Freeman and Roth, 1994; Dalal and Triggs, 2005). 
For pedestrians detection, low-level image features have been employed exhaustively to 
produce Region of Interest (ROI) by using different algorithms (Ahmed et. al., 2019). 
These methods have exploited HOG features and other methods such as decision trees or 
Local Binary Pattern (LBP) (Wang et. al., 2009).  

    Visual features of HOG have been exploited to detect cars (Zhang et al., 2018; Hou 
et al., 2018). A variant of the hierarchical HOG symmetrical feature was applied to 
different sides of the vehicle (Zhang et al., 2018). Another modified version of HOG (Hou 
et al., 2018) was introduced to cover gradient information from different angles. A two-
step vehicle detection algorithm (Yun et al., 2019) was proposed based on combined 
results of HOG and Haar-such as features that focus the changes on intensities in the 
horizontal, vertical and diagonal directions to detect the object. Using RGB images 
(Zakaria et al., 2018), a HOG variant was proposed in combination with nonlinear SVM 
for vehicle detection. In the method was based on compass gradients to collect the features 
from multiple angles rather than horizontal and vertical restrictions. A lightweight vehicle 
detection method was experimented with using various colour schemes along with a HOG 
descriptor and SVM classifier with a sliding window over the selected ROI (Farag, 2020).  

    Object detection methods based on deformable parts models (DPM) is based on a 
sliding window approach for object detection (Felzenszwalb et al, 2010). DPM is based 
on a disjoint pipeline to draw static features of an image, and bounding box prediction 
and object classification. Based on the DPM, (Ghosh, 2017) proposed pedestrian 
detection and (Cho, Rybski, and Zhang, 2010) proposed cyclist detection. However, in 
comparison with state-of-the-art algorithms, DPM proved to be much slower due to 
excessive calculations (Redmon et al., 2016). Using ROI extraction and handcrafted 
features of monocular images, (Tian and Lauer, 2015) proposed cyclist detection. 
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    However, these methods based on specified features of conventional machine 
learning are susceptible to occlusion and other complex environmental conditions 
(Mehtab et. al., 2021). Moreover, they cannot be applied to real-time scene understanding, 
whereas current deep learning methods allow the network to produce high-level and 
complex features of objects in addition to high speed of computing (Hu et al., 2017; Shah 
and Kapdi, 2018).  

Owing to the advancement of Graphics Processing Unit (GPU), its costs have been 
reduced remarkably. On the other hand, with easy accessibility of extensive training, 
open-access datasets and advanced detection deep learning-based algorithms, Artificial 
Intelligence (AI) has significantly improved accuracy in road scene perception over 
traditional computer vision and machine learning-based methods. Object detection speed 
has also been considerably enhanced with persistently improving software tools such as 
PyTorch and TensorFlow that retrieve maximum benefits with the parallel processing 
GPU hardware.  

    Based on the literature reviewed, we have categorized DNN-based road scene 

understanding methods in two sections: 2D object detection and 3D object detection. In 
this section, we focus on the 2D detection methods proposed for autonomous driving 
based on DNN. 

    A myriad of popular 2D detection algorithms is based on the region proposal 
approach. However, Faster R-CNN (Ren et al. 2017) had a significant change in the way 
ROI should be selected over R-CNN based on existing methods, which is a state-of-the-
art algorithm for object detection. Faster R-CNN took the concept of anchor boxes to 
propose candidates regions. Faster R-CNN, a shallow CNN named Region Proposal 
Network (RPN) is proposed to replace selective search that had remained the bottleneck 
in the previous versions and attained a speed of 5 fps using GPU with remarkable 
accuracy (Ren et al. 2017). 



 
 

23 

 

 

    Another popular 2D detection approach is single-stage or end-to-end object 
detection with representative YOLO (i.e., You Look Only Once), SSD (i.e., Single Shot 
Multibox Detector), and RetinaNet algorithms (Hai Wang et al. 2019). These algorithms 
have not intermediate candidate region proposal layers and predict classification and 
bounding box detection results using a single regression network.  

    In the latest version of YOLO, the detection layer extracts feature maps from three 
different stages based on their scale. In the whole detection process is completed by using 
a single regression network that leads to speedy execution. In the YOLO series, the latest 
published work is YOLOv4, which divides the complete network into Backbone, Neck 
and Head Sections. YOLOv4 introduced bags of freebies and bags of special features to 
make different design specifications. Based on empirical testing, the backbone network 
produces the best features extraction using CSPNet (i.e., Cross-stage-partial-connections 
network) with efficient gradient propagation. In the neck section was designed using 
Feature Pyramid Network (FPN) based on upsampling operations. These different level 
features were used by the head network targeting the detection of varying size objects. 
Some working modules of YOLOv5 are discussed in (Thuan, 2021). 

    Acknowledging the limitations of the camera sensor, LiDAR and camera fusion have 
been conducted in early, late, and hybrid fashion (Caltagirone et al., 2019). Data from 
both modalities were fused and fed into an FCN network for object detection. Hybrid 
fusion achieves maximum 2D road/lane detection accuracy with around 96.06% results 
on the KITTI dataset (Caltagirone et al., 2019). Two processing branches from each 
sensor concatenate their outputs in a cross pattern after every convolution layer. Another 
multistage fusion approach (Yu et al., 2019) also achieved around 96.86% accuracy for 
2D road detection. These results depict that 2D road detection approaches have achieved 
a level of maturity even after many challenging lane conditions (Mehtab and Yan 2022). 

    The highest successful rate has been achieved for vehicle detection compared to 
pedestrian and cyclist detection in terms of road objects. Faster R-CNN was applied to 
video frames so as to get the desired accuracy (Tourani et al., 2019), though the algorithm 
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limits the computing speed of visual object detection, improving the basic structure of 
SSD (Jingwei et al., 2020) was proposed by adding inception blocks and feature fusion 
layers in the original network so as to detect distant car objects accurately. In the deep 
MANTA (Chabot et al., 2017) was designed based on the principle of RPN to find ROIs 
that were followed by two convolutional layers and fully connected layers to get 2D 
bounding boxes and key parts of vehicles. Targeted at blind-spot monitoring, a DNN 
using multiple cameras in autonomous driving (Shen and Yan, 2018) was proposed. For 
vehicle detection, MSVD_SPP (Kim et al., 2019) modified YOLOv3 (Redmon and 
Farhadi, 2018) by using five particular pyramid pooling blocks in the feature extraction 
net. YOLOv2 was modified by (Sang et al., 2018) by combining a k-means++ clustering 
algorithm to generate best-fit anchor boxes. Faster R-CNN  (Wang, Ye, and Weiwen, 
2019) was exploited by including multi-shape receptive field and anchor generating 
optimizations (Mehtab et. al., 2021).  

    Infrared cameras have performed better recognition for human detection because of 
the temperature sensing capabilities. Thermal images were employed to detect pedestrians 
and cyclists more efficiently in fewer visible conditions than RGB images. In the late 
fusion was conducted using thermal and RGB images with two parallel SSD detection 
streams (Li et al., 2018); Faster R-CNN was exploited to adaptively merge both 
modalities by a subnetwork of gated fusion (Li et al. 2019). A unified framework based 
on Fast R-CNN was employed for pedestrian and cyclist detection via multilevel feature 
fusion (Wang and Zhou, 2019).  

    Car and pedestrian detections have attracted a group of researchers (Song et al. 2018; 
Yang, Jun and Huiyun 2018). Car and pedestrian detections were conducted by using SSD 
architecture with MobileNet backbone subnet for a faster detection ratio (Yang, Jun and 
Huiyun, 2018), the visual object detection algorithms were proposed based on YOLOv2 
replacing k-means clustering algorithm of anchor generation with a priori knowledge of 
objects in the database. 

    The recently proposed network (Condat, Alexandrina, and Abdelaziz, 2020) took 
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multimodal data (RGB, Depth from Stereo, Optical Flow, LIDAR Point Cloud) into 
consideration to detect road objects successfully. On the other hand, a lightweight 
network (Liu, Cao, Lasang, 2019) was proposed to detect on-road objects using limited 
computing resources while preserving accuracy using a modular structure. A CentreNet-
based anchor-free approach (Li et al., 2020) was proffered by using Atrous Spatial 
Pyramid Pooling (ASPP) to extract features from multiple scales with low computational 
cost. 

In the following section, 3D road object detection methods are classified based on the 
modalities: Image-based 3D object detection, point cloud-based 3D object detection, and 
fusion-based 3D object detection (Mehtab et. al., 2021). 

 2.3.3.1 Image-based 3D Object Detection 

A spate of image-based approaches start from generating a 2D bounding box for 
predicting the 3D coordinates of objects using a monocular camera only (Mousavian et 
al., 2017; Chabot et al., 2017). In the 3D bounding box fits tightly within the 2D detection 
window of objects (Mousavian et al., 2017). To regress orientation loss, a novel hybrid 

discrete-continuous loss was proposed to discretize the orientation angle and divides it 
into n overlapping bins same as anchor boxes do for regressing bounding boxes in SSD 
and Faster R-CNN (Ren et al., 2017). In the proposed algorithm couldn’t estimate the 
vehicles distances from AV up to the desired accuracy. 

    Based on 2D region proposal algorithms, a 3D object proposal (3DOP) (Pham, 
Cuong, and Jae, 2017) was proposed for 3D object detection in autonomous driving. They 
primarily took advantage of stereo RGB cameras to generate disparity maps. Regarding 
3DOP generation, the slanted plane smoothing algorithm was utilized and was inspired 
by (Yamaguchi, McAllester, and Urtasun, 2014). Influenced with 3DOP (Chen et al., 
2018), Mono3D (Monocular 3D) algorithm was proposed for visual object proposal. 
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Rather than applying a sliding window to all over the image for the region proposal 
Mono3D related to hand-engineered shape features, semantics, context and location 
priors based on a monocular camera for proposal generation. Top proposals were scored 
and regressed by using the Fast R-CNN network (Girshick, 2015) to determine 
confidence scores and 3D bounding boxes. Mono3D outperforms the results of 3DOP 
despite of using monocular images only.  

    3D Voxel Pattern (3DVP) (Xiang et al., 2015) jointly encoded the key properties of 
objects in the images, including appearance, 3D shape, viewpoint, occlusion and 
truncation, to deal with challenging conditions of visibility. 3DVP, a novel approach was 
proposed to represent the 3D shape of objects as a set of voxels and occlusion masks 
through RGB colours intensities. However, a fixed set of 3DVPs extracted during training 
became the bottleneck towards its generalization for random pose possibilities.  

    The success of Faster R-CNN (Ren et al., 2017) is not limited to 2D detection but is 
used frequently in many 3D detection algorithms also. RPN has remained crucial for 
reliable object detection. SubNet (Xiang et al., 2017) was an extended model of 3DVP 
that proposed a CNN to explore the classification and detection of objects at the RPN 
level. In this network was trained for both 2D and 3D object detection using 2D images 
and 3DVPs, respectively. Through 3DVPs subcategories for pedestrian, cyclist and 
vehicle classes, the model (Xiang et al., 2015) recovered 3D shape, pose and occlusion 
patterns, but limited voxel patterns became a constraint of this model. 

    In Deep MANTA (Chabot et al., 2017), an algorithm was proposed for 3D vehicle 
detection using monocular images without voxel patterns. In the second stage, a 
refinement operation was performed based on the proposals obtained from RPN using 3D 
templates. In another detection method entitled Bounding Shape SSD (BS3D) (Gahlert et 
al., 2019), a novel framework was proposed for generating 3D bounding boxes for vehicle 
detection using 2D key points. In this model, rather than regressing the 3D coordinates of 
the bounding box, four visible 2D key points of the targeted object were regressed by 
using standard 2D detection approaches (e.g., SSD, hence named BS3D). Later, using the 



 
 

27 

 

 

camera projection matrix, 2D points were transformed into 3D bounding box coordinates.  

    A solution (Garanderie, Abarghouei and Breckon, 2018) was proposed to cover the 
blind spot in the driving scenario. In the proposed work, 360-degree round object 
detection was taken into account by using a panoramic view. However, LiDAR also 
provides a 360-degree view of the environment. Still, when LiDAR and the camera’s view 
are integrated, LiDAR point clouds are generally trimmed to align with the camera field 
of view. In the proposed method, the researchers adapt KITTI, CARLA (Dosovitskiy and 
Ros, 2017) and Mapillary datasets (Neuhold et al. 2017) using style and projection 
transformations (Atapour-Abarghouei and Breckon, 2018) (because of unavailability of a 
panoramic labelled dataset). They estimated dense depth maps of panoramic images and 
adapted standard object detection methods for the equirectangular representation, and 
provided benchmark detection results on a synthetic dataset.  

    In ROI10D (Manhardt, Kehl and Gaidon, 2019), 3D object detection was proposed 
by using monocular images using a monocular depth network. In the proposed end-to-
end paradigm-based network, 2D ROIs were lifted up based on generated depth maps. 
ROI10D performed a regression of all required components for the estimation of 3D 
boxes. However, the network remained susceptible to the distances, giving higher 
accuracy to the closed objects. 

    In M3D-RPN (Brazil and Liu, 2019), 3D detection was proposed for AV using 
DenseNet-121. A special 3D RPN architecture was proposed. In the network was 
comprised of two parallel end-to-end networks connected in the late stage to combine the 
results. By using stereo images (Li, Chen, and Shen, 2019) and stereo R-CNN, the 
network was an extension of Faster R-CNN based on proposed regions in both left and 
right images, in the stereo boxes, keypoints, dimensions, and viewing angles were 
regressed. In the extracted prior information was later combined with corresponding 
region-based photometric alignment to produce 3D bounding boxes. A solution (Wang et 
al. 2019) was proffered to overcome the depth limitations of monocular/stereo cameras. 
A spatial CNN was proposed to convert the depth maps into pseudo-LiDAR 
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representation. In this pseudo-LiDAR representation could be processed in the PointNet, 
the state-of-the-art 3D object detection algorithms in autonomous driving field lead to 
stereo-image-based approaches. Table 2.1 shows a summary of investigated Image-based 
3D object detection techniques.  

Table 2.1:  The summary of investigated image-based 3D object detection methods 

REFERENCES APPROACHES LIMITATIONS 

(Mousavian et 
al., 2017) 

Authors exploited the fact that the 
perspective projection of a 3D bounding 
box should fit tightly within its 2D 
detection window. They proposed a 
novel hybrid discrete-continuous loss 
using multi-bins for object orientation 
prediction. 

3D bounding box 
projection relies on the 
exactness of dimensions 
prediction and 
orientation accuracy of 
objects.  

(Pham, Cuong, 
and Jae, 2017) 

Proposes a 3D object proposal paradigm 
using monocular images and depth maps 
for generating class independent 
proposals. Proposals are re-ranked again 
using RGB images before passing into 
the detection network. 

Depth map calculations 
increased the complexity 
of the model, leading to 
slow inference speed.  

(Xiang et al., 
2017) 

Proposes a dictionary of 3DVP by 
collecting possible patterns of different 
classes of objects and training a 
classifier for each pattern. SubNet 
(Xiang et al. 2017) introduces a 
multistage pyramid for feeding images 

A fixed set of 3DVPs 
extracted during training 
becomes a constraint for 
generalizing arbitrary 
object poses. 
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at the feature extraction level to 
efficiently deal with mini-sized objects. 

(Garanderie, 
Abarghouei, 
and Breckon, 
2018) 

Proposes 360-degree 3D object 
detection to cover the blind spots around 
AV using a panoramic view. Due to the 
lack of labelled panoramic datasets, 
researchers adapted standard datasets 
using style and projection 
transformations. 

The proposed model 
failed when the object 
was too close to the 
camera. 

(Gahlert et al., 
2019) 

BS3D (Gahlert et al. 2019) proposes a 
novel framework for generating a 3D 
bounding box for vehicle detection 
using a set of 4 visible 2D key points. 

Can predict the 
orientation but not the 
exact direction of the 
vehicle. 

(Manhardt, 
Kehl and 
Gaidon, 2019), 

ROI10D: proposed monocular depth 
network to generate fine depth maps and 
raised the height of the proposed regions 
based on the depth map. 

The solution remained 
susceptible to distances. 

(Brazil and Liu, 
2019) 

M3D-RPN: Proposed use of CSPNET 
for feature extraction and a special 3D 
RPN based on 3×3 convolution to 
extract depth aware features using 
images. Generated 2D and 3D detection 
results. 

Regarding camera 
limitations, M3D-RPN 
couldn’t achieve 
comparable results. 
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(Li, Chen, and 
Shen, 2019) 

Stereo R-CNN: Proposed Faster R-CNN 
based CNN streams using left and right 
views and extracted keypoints and 
dimensions of objects. In the detection 
network, a 3D bounding box was 
recovered using a region-based 
photometric alignment. 

Car-keypoints specific 
techniques can be 
applied to the car only. 
Give a need for other 
detection methods of a 
different class of objects. 

(Wang et al., 
2019) 

They proposed a CNN-based model to 
combat poor image-based depth 
estimation to convert image-based depth 
maps to pseudo-LiDAR representations. 
That can give 3D world information at 
the cost of the camera.  

The proposed solution is 
not suitable in real-time 
taking 1-second 
inference time per 
image. 

 2.3.3.2 Point Clouds-Based 3D Object detection 

By considering the limitations of vision sensors, point clouds data was exploited in 
different representations; projection-based, voxel representation and raw point clouds 
representation. In the following Section, each category has been discussed in brief.  

(a) Projection-Based 3D Object Detection 

In this project, the leverage was gained from existing, proven, and standard 2D CNN 
architectures by projecting the point clouds on the ground plane (Su et al., 2015), 
cylindrical (Zhang and Xia, 2016) or on spherical surfaces (Iandola et al. 2016) to get 
different projection views from AV. Later, 3D bounding boxes got recovered with position 
and dimension regression. In the approach, a cylindrical projection of point clouds (Zhang 
and Xia, 2016) was propounded  (due to point clouds angular dispersion pattern around 
the ego vehicle) to detect road vehicles in 3D bounding box form using FCN (Shelhamer, 
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Long and Darrell, 2017). In the input image resulting from the projection has channels 
encoding the points height and horizontal distance from the LiDAR as given above in Eq. 
(2.1) and (2.2) in Section 2.1.2. 

    BEV or top-view over cylindrical and spherical view of point clouds was taken into 
account to generate 3D proposals. BEV presents a clearer view of the scene with no 
occlusion behind. BirdNet (Beltrán et al. 2018) makes use of three channels for height, 
intensity and density of point clouds to make BEV maps. In the approach (Yu et al. 2017), 
Faster R-CNN (Sun et al. 2017) was selected as a method to train the BEV maps with an 
additional refinement of 3D orientation detection in the detection phase. However, the 
model remained unsuccessful in giving good precision over high Intersection over Union 
(IoU) for refining regional proposals. In LMNet (Minemura et al., 2018), the frontal view 
of LiDAR point clouds was exploited. In the proposed network encoded point clouds data 
into five different channels: height, side, forward, range, and reflection to extract 3D 
information of objects in front of AV. In the proposed architecture was based on an end-
to-end detection approach and FCN architecture.  

    Like the YOLO architecture, Complex-YOLO (Simon et al., 2018) aimed for high 
speed per frame at execution time but 3D localization. In the point clouds are converted 
into 3 BEV channels representing RGB maps, where R, G, and B were encoded with point 
clouds height, intensity, and density. In this allows Complex-YOLO to achieve a 3D 
detection rate of 50 frames per second while the performance remained a little inferior to 
previous YOLO used in 2D detection. In another BEV point clouds based approach (Feng, 
Rosenbaum, and Dietmayer 2018), the focus is on finding the exact confidence score 
considering its importance for AVs. In the confidence score estimated in every other 
model is generally done with softmax normalization. In the softmax function works for 
the sum of probabilities to unity; it does not necessarily reflect the absolute confidence in 
the prediction.  

    On the other hand, HDNet (Yang, Liang and Urtasun, 2018) proposed a new 
approach using high definition maps. High-Definition (HD) maps contain geometric and 
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semantic information with centimetre level accuracy. Usually, these maps are assisted 
with GPS that, in general, are used for motion planning. In the proposed work, online and 
offline HD maps were exploited to incorporate geometric ground information with 
discretized point clouds. U-Net inspired the network architecture. HDNet results show 
the state-of-the-art performance; however, due to LiDAR range limitations, network 
performance degraded after the 40-meter range. In PIXOR (Yang, Luo and Urtasun, 2018), 
an unconventional pixel-wise prediction approach was proposed for exploiting the BEV 
point clouds representation. PIXOR takes into account of the fact that all objects of 
interest lie on the same ground. 

(b) Voxel-based Object Detection 

Voxel-based 3D convolutional networks gained our attention to enhance the retention of 
3D information when processing point cloud LiDAR data. In this section, we discuss the 
approaches where point clouds are represented in the form of a 3D grid of voxels. 

    VoxelNet (Zhou and Tuzel, 2017) presented a generic 3D detection framework in an 
end-to-end fashion. It learns discriminative features of point clouds voxels and 
transformed points representation of vectors into shape characterization. Special Voxel 
feature encoding (VFE) layers are employed to extract complex pointwise features. In the 
obtained features were passed into 3D convolution layers to abstract local voxel features. 
In the final RPN layer in the network produced results using volumetric information. In 
this tends to close the gap between point set feature learning and RPN for 3D detection 
tasks. Vote3Deep network (Engelcke et al., 2017) proposed a voting scheme based on 
voxel features to implement a sparse convolution matrix. It allows different sizes of the 
kernel in CNN for the classes of objects, all models were allowed to run in parallel. It was 
noted that a larger receptive field helped the model to learn significantly from the sparsity 
present in the point clouds representation.  

    3D FCN (Li, 2017) extended the previous work in 2D detection (Li, Zhang, and Xia 
2016). 3D FCN transplants the standard FCN to 3D convolution operation. Point clouds 
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data is fed into the network in 3D voxel form to predict the confidence score and shape 
of the objects directly. In the output of the segmentation network predicts the ROIs and 
bounding box coordinates. Because of the heavy computation of the 3D convolutional 
network, its average running time was 1s per frame which is not suitable for run-time 
application in autonomous driving. 

    VoxelNet was refined in SECOND (Yan, Mao and Li, 2018). In the SECOND 
architecture introduced a sparse middle feature extractor, which gradually performed 
dense operations using multiple submanifold convolutional layers. Later, featured maps 
got transformed into 2D data such as an image. Another voxel-based SARPNet (Ye et al., 
2020) was the third winner in the nuScenes 3D detection challenge of CVPR2019, 
workshop on Autonomous Driving (WAD). Like SECOND, SAPRNet generated point 
clouds voxels but overlapping with the neighbouring grids. SARPNet harnessed a fixed 
sampling scheme rather than random sampling, followed by previous algorithms (Yan, 
Mao and Li 2018; Lang et al., 2019) to optimize the results. In the proposed VFE layer in 
SAPRNet consists of only fully connected layers followed by batch normalization and 
ReLU activation to extract point-wise features.  

In SegVoxelNet (Yi et al., 2020), a model was proposed for 3D vehicle detection 
exploiting points voxel to incorporate semantic Context information and LiDAR point 
cloud sparsity with respect to distance. A special BEV semantic mask was considered in 
the proposed work with additional depth-aware heads to learn distinctive depth-aware 
features. In the network was trained using the fully convolutional network. 

(c) Raw Point Cloud-based Object Detection 

In this section, two main architectures are detailed: PointNet (Qi et al., 2017) and 
PointNet++ ( Qi et al., 2017) that are targeted directly by using the raw point clouds so as 
not to lose any relevant information in transformation. It performs feature transformation 
and aggregation of high dimensional local features that are learned from multi-layer 
perceptron (MLP) from each point using the max-pooling layer. PointNet takes use of a 
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Special Transformation Network to make point cloud rotation invariant. Since the MLP 
only has extracted the local features of each point and ignored the connections between 
points, PointNet fails to represent the local features of neighbouring points, thus limit its 
performance in complicated scenes (Liu et al., 2019).  

    The networks treated all points in the clouds independently (without forming any 
relationship) to maintain permutation invariance; however, this property neglects the 
geometric relationship and global features among points (Wang et al., 2019). Dynamic 
Graph CNN (Wang et al., 2019) proposed a simple solution called “EdgeConv” to deal 
with this problem. Influenced by FrustumNet, 3D object detection was proposed and 
named as FVNet using 3D raw point clouds based on their front view (Zhou et al., 2019).  

    Another approach using raw point clouds was F-ConvNet (Wang and Jia, 2019) 
which divided the point clouds frustum into multiple slices based on their front ranges. In 
the slices of spatial point clouds passed through parallel PointNets to aggregate local 
point-wise features. Later, these features were normalized and transformed into 2D maps 
to feed into FCN for estimating 3D boxes and classes of objects. In the proposed 
algorithm, a variant of FCMs were employed that extracted multi-resolution frustum 
features. F-ConvNet compared the results with the state-of-the-art networks based on the 
KITTI dataset. F-ConvNet also experimented with the SUN-RGBD dataset (Song, 
Lichtenberg, and Xiao, 2015) contained RGB-D images of 10 object categories. These 
depth images were transformed into point clouds to test the F-ConvNet performance. 
However, SUN-RGBD point clouds were not segregated, such as KITTI. Fabricated Point 
Clouds density remained a constraint plus that did not consider the orientation of vehicles 
algorithm is susceptible to 180-degree rotation. 

    In PointR-CNN (Shi, Wang and Li, 2019), a completely different approach was 
followed with conventional frustum-based detectors by using raw point clouds. Firstly, 
they segmented the whole point clouds into the foreground and background parts to 
generate high-quality 3D proposals along with semantic features. Secondly, a pooling 
operation was executed based on these 3D proposals in a sub-network. For better local 
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spatial features, understanding the processed point clouds and their semantic information 
was transformed into canonical coordinates. Regarding network optimization, multiple 
bins have been adopted for 3D bounding box regression. In the proposed method claimed 
to give the state-of-the-art detection accuracy based on LiDAR sensor only. However, 
LiDAR point cloud density remained a bottleneck towards the algorithm success. 

    PillarNet is a raw point clouds-based algorithm (Lang et al., 2019), a novel encoder 
that utilizes PointNet to learn a representation of point clouds organized in vertical 
columns or pillars. While the encoded features can be employed with any standard 2D 
convolutional detection architecture that converts the whole point clouds into multiple 
pillars emphasizing the vertical density of points on the horizontal xy grid. Based on the 
preserved index values of points, the extracted feature was reverted back to height and 
width values of image coordinate converting point features in 2D pseudo image in follow 
up of convolutional layer. PillarNet also leveraged the SSD detection head at the detection 
layer following losses used in the SECOND (Yan, Mao and Li, 2018) approach. For the 
benchmark, the KITTI dataset PointPillar achieved state-of-the-art precision for car and 
cyclist detection; however, results showed some limitations for pedestrian detection. 

  

Table 2.2: Summary of Investigated Point Clouds based 3D Object Detection 
Techniques 

References Approaches Limitations 

Projection-Based Detection Methods 

(Li, Zhang, 
and Xia, 2016) 

 

Cylindrical projection of point clouds is 
fed into FCN to detect the 3D 
localization of objects. 

Poor localization 
accuracy as compared to 
state-of-the-art due to 
sparsity of point clouds. 



 
 

36 

 

 

(Beltrán et al., 
2018) 

BirdNet: Generates BEV maps based on 
height, intensity, and density of point 
clouds for feeding into CNN after 
density normalization. 

Intensity information does 
not always give intended 
information, sometimes 
misleads. 

(Simon et al., 
2018) 

Complex YOLO: Focuses on faster 
performance. BEV maps are passed into 
Special Euler-RPN to predict five 3D 
anchor boxes per grid cell; boxes are 
regressed to detect objects’ locations. 

Gives inferior accuracy 
compared with parallel 
2D detection versions. 

 

(Feng, 
Rosenbaum, 
and 
Dietmayer, 
2018) 

Special Bayesian Neural Network is 
used to predict the class and 3D 
bounding box after ROI pooling. 
Epistemic uncertainty is used to 
determine the uncertainty in the model in 
conjunction with penalizing noise. 

Require multiple forward 
passes for uncertainty 
estimation that limits real-
time performance. 

(Minemura et 
al., 2018) 

LMNet: FCN-based architecture using 
the front view of point clouds in terms of 
five different channels.  

Unsatisfactory accuracy 
of results. 

(Yang, Liang 
and Urtasun, 
2018) 

HDNet: HDmap with BEV point clouds. 
Researchers exploited U-Net to regress 
the results. 

After 40 meters of 
distances, network 
performance starts 
degrading. 

(Yang, Luo 
and Urtasun, 
2018) 

PIXOR: A novel approach based on 
pixel-wise prediction. In the input data 
was in the form of BEV point clouds 
projection. In the network was 
influenced by FCN using points 
reflectance into account. 

Projection caused the loss 
of critical information. 
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Voxel-Based Detection Methods 

(Zhou and 
Tuzel, 2017) 

VoxelNet: Feeds voxels into the VFE 
layer to generate point-wise 
concatenated features that are passed 
into RPN to predict 3D localization. 

For every class, a specific 
model has to run in 
parallel that degrades 
performance over the 3D 
convolutional network. 

(Engelcke et 
al., 2017) 

 

Vote3Deep: The network proposes a 
voting scheme based on features to 
implement a sparse convolution matrix. 
L1 regularization and Rectified Linear 
Unit (ReLU) function is used to maintain 
the sparsity of the convolutional layers. 

Fixed-size of the 
bounding box for each 
class limits precision 
detection.   

(Li, 2017) 3D FCN transplants the standard FCN to 
3D convolution operation. 

Due to 3D convolution 
operation detection speed 
slows down. 

(Yan, Mao and 
Li, 2018) 

SECOND: SECOND was proposed as a 
sparse convolution method to deal with 
slow inference speed and poor 
performance orientation estimation. 
Researchers introduced 
SmoothL1(sin( 𝛛𝛛𝜃𝜃 )) angle loss 
regression to improve the orientation 
estimation. 

The network illustrated 
lower performance for 
pedestrian and cyclist 
detection. 

(Ye et al.,  
2020) 

SARPNet: Network was influenced by 
SECOND; however, it emphasised on 
the shape of objects using 3D priors 
based on the top view and front view of 
point clouds. 

It Couldn’t achieve 
comparable pedestrian 
detection. 
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(Yi et al., 
2020) 

Segvoxelnet: Semantic context and 
depth exploration using voxel features 
for 3D Vehicle Detection from Point 
Cloud. 

It was tested over car data 
only. Shows a reasonable 
margin of accuracy. 

Raw Point Clouds Based Detection Methods 

(Qi et al., 
2017) 

 

PointNet: Works on point cloud 
segments. Uses MLP that learns local 
features from each point. Spatial 
Transformation Network is used to make 
point cloud rotation invariant. 

Generates features of 
independent points, thus 
limiting the performance 
without showing any 
relationship with the 
neighbourhood. 

(Qi et al., 
2017) 

PointNet++: Construct class pyramid 
features on the local neighbourhood of 
selected point clouds by PointNet. 

Slow due to sampling of 
the neighbourhood and 
running multiple 
PointNets parallelly. 

(Wang et al., 
2019) 

Dynamic Graph CNN: EdgeConv 
captures the local geometric structure of 
points while maintaining permutation 
invariance by updating graphs at each 
layer of CNN. 

Deals with point clouds’ 
segments only, thus 
cannot handle global 
features. 

(Wang and Jia, 
2019) 

FVNet: 2D proposals were later 
transformed into 3D frustum based on 
radial distance. In the proposal 
estimation network, final 3D regression 
took place.   

It Couldn’t compete with 
the state-of-the-art. 

(Shi, Wang and PointRCNN: A novel approach to 
segmenting point clouds into the 

Performance heavily 
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Li, 2019) foreground and background partitions. In 
the late network, 3D regression took 
place.  

relied on point density. 

(Lang et al., 
2019) 

Pointpillar: A novel approach to 
converting point clouds into point pillars 
for extracting unique features. These 
features were later transformed into a 
BEV pseudo image to leverage reliable 
CNN architecture. 

Pointpillar Performance 
degrades with an increase 
in distance.  

The summary of investigated point clouds-based detection methods is presented in Table-
2.2. 

2.3.3.3  Sensors Fusion Based Methods 

We have already discussed how sensor fusion can integrate multiple modalities in 
different ways in Section 2.1.3. In this section, we considered the recent work done in the 
autonomous driving field for 3D object detection using multimodality (Mehtab et. al., 
2021).  

    In MV3D, i.e., Multi-View 3D (Chen et al., 2017), LiDAR’s point clouds BEV and 
front view maps with RGB images are proposed as the input. In this was a network with 
three parallel CNN streams with different information, extracting multi-dimensional 

features. In the 3D region proposals were generated from multi-channel BEV maps and 
fused with features extracted from all three streams. In the late section, these integrated 
features were passed through individual ROI pooling layers to generate fixed-sized 
proposals. order to produce robust results, these proposal specific features were fused in 
object detection with a cascading order. At the final layer, visual object classification and 
bounding box regression were performed. MV3D, by considering high-resolution images 
to deal with small-sized objects, that may result in poor performance and dense beam 
LiDAR results in high cost.  
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    AVOD, i.e., Aggregate View Object Detection Network (Ku et al., 2018), was 
inspired by MV3D, and Faster R-CNN considered LiDAR point clouds and RGB camera 
images as input. As ROI pooling, AVOD preferred crop and resize operation to obtain the 
fix-sized proposals. In the filtered proposals further passed through fully connected layers 
to regress confidence score and 3D bounding boxes using “cross-entropy and smooth L1” 
losses. However, one of the constraints with AVOD was the fusion of ROI features at a 
higher level only (Liang et al., 2019), resulting in the ignorance of special relationships 
occurring at low-level features. 

    The multistage pipeline PointFusion method (Xu, Anguelov and Jain, 2018) was 
employed for the late-fusion approach. PointFusion allows images to pass through CNN 
and raw points data into PointNet. At the final fusion stage, both streams got combined 
by using spatial 3D anchors. Frustum PointNet (Qi et al., 2018) leverages the established 
2D detection networks and raw points based PointNet architecture for 3D detection. In 
this model, 2D bounding boxes were firstly obtained using a 2D detection network with 
their class. These 2D bounding boxes were projected on the 3D point clouds collecting 
all points in the extended frustum to form a frustum point cloud or frustum proposal. 

    In another approach (Du et al., 2018), a general pipeline was proposed for the 3D 
detection vehicles. An estimated 2D bounding box was projected onto the BEV point 
clouds, resulting in subsets of points. Based on three generalized 3D car models (i.e., SUV, 
SEDAN, and VAN), a generalized model-fitting algorithm was executed based on the 
subsets of points that filtered the car surface points in a subset removing all inside-outside 
points of the vehicle. These surface points were further passed through the CNN to find 
the confidence score and 3D bounding box of cars.  

    A multi-task fusion approach (Liang et al., 2018) was proposed that preferred 
projecting camera features information onto BEV image and fused both pieces of 
knowledge with the convolution layers in a 3D-based detector. In the most significant 
limitation of this approach remained the sparsity of LIDAR point clouds (Liang et al., 
2019). In the continuous convolution approach (Liang et al., Liang et al., 2019), another 



 
 

41 

 

 

end-to-end model integrating the ground estimation module was proposed by considering 
the special geometry of road objects from the ground. In this approach also performed 
convolution level fusion; however, an extra channel to support the front view of LiDAR 
was included with image features that improved multimodal fusion. In the design of 
multi-sensor architecture performed pointwise and ROI-wise feature fusion. In the special 
depth completion is proposed to gain dense point-wise feature fusion. 

    The recent work on 3D detection (Zhu et al., 2021) utilized binocular images and 
corresponding LiDAR point cloud as input. In the proposed method, input images were 
fed into the FPN with ResNet-50 backbone architecture for features extraction. On the 
other hand, PoinNet++ (Qi et al., 2017) was utilized for extracting point cloud features. 
Point-wise feature fusion was used in four sub-abstraction layers to estimate 2D and 3D 
proposals jointly. To make robust and discriminative detection results, 2D and 3D 
proposals were fused together based on ROIs. Aggregated loss of 2D and 3D detection 
were utilized to optimize the model. Table 2.3 shows the summary of investigated sensors 
fusion-based 3D object detection techniques. 

Table 2.3: The summary of investigated fusion-based 3D object detection methods 

Reference Approach  Limitation 

(Chen et al., 
2017) 

MV3D is related to a fusion of LiDAR 
BEV; front view maps with RGB images to 
detect 3D bounding boxes using the deep 
fusion approach in CNN.  

MV3D remained 
unsuccessful in detecting 
small objects and 
ambiguous in the 
direction of the object. 

(Ku et al., 
2018) 

AVOD takes use of LiDAR BEV maps with 
RGB images using the Faster R-CNN 
framework fusing data in 3D anchors based 
on RPN and the detection network. Deploy 
an extra feature pyramid network as a 
feature extractor to deal with small objects 

The proposed algorithm is 
based on Dense LiDAR 
point clouds,  thereby 
leading to cost.  
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detection problems. 

(Qi et al., 
2018) 

FrustumNet was influenced by 2D detection 
CNN results and raw point clouds based 
PointNet. Finds frustum proposals in point 
clouds based on 2D bounding box obtained 
from 2D detection. PointNet regressed these 
proposals to transform the frustum point 
clouds in rotation-invariant forms and 
finally regressed the 3D bounding box. 

FrustumNet Performance 
is limited by 2D bounding 
box detection. Does not 
consider the whole point 
cloud at the same time but 
in segments. 

 

(Du et al., 
2018) 

A generic model-fitting algorithm was 
proposed for matching with a subset of 
point clouds considering three cars 
templates. In the extracted surface points of 
the model within the subset were passed 
through CNN for predicting 3D detection. 

Model performance 
remained limited by 2D 
bounding box detection. 
Three general models 
restrict the performance 
of the network. 

(Xu, 
Anguelov 
and Jain, 
2018) 

PointFusion: Two independent streams was 
proposed based on images and point clouds 
for feature extraction. In the image and 
point cloud features were combined in the 
dense fusion network to regress the final 
results based on input 3D points. 

Results showed a margin 
of improvement in the 
detection accuracy.  

(Liang et 
al., 2018) 

A multi-task fusion approach was proposed 
that preferred projecting camera features 
onto BEV maps and fusing both modalities 
information with the convolution layers in a 
3D-based detector. 

The network was based 
on dense point clouds to 
achieve good results, 
leading to expensive 
installation costs. 

(Liang et 
al., 2019) 

The work was a refinement of the author’s 
previous work considering the ground 
distance of objects. In this network, camera 

The network was based 
on dense point clouds to 
achieve good results but 
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images were transformed into pseudo- 
LiDAR point clouds for the dense fusion of 
modalities information.  

remained a bottleneck. 

(Zhu et al., 
2021) 

Model exploited binocular images along 
with LiDAR point clouds as input sources. 
In the first stage in the model performed 
point-wise features fusion aiming to 
produce 3D proposals, and their dense 
fusion was processed in the second stage 
using camera image transformed pseudo-
LiDAR points.  

The network was based 
on dense point clouds to 
achieve good results 
resulting in a high 
hardware installation 
cost. 

    For 3D object detection, fusion detection methods lead to unimodal-based detection 
approaches; however, in recent years, few remarkable improvements have been depicted 
using LiDAR point clouds only. LiDAR and camera give complementary information 

together, thereby improving the performance. 

In this section, we highlight the noticeable gaps during the entire course of the literature 

survey. Based on the findings, we have finalized the specific areas to pay specific 
attention to and briefly introduced the solutions proposed to deal with the gaps found. 

Based on the WHO 2018 road safety report, nearly half of the casualties on the road 
pertain to vulnerable road users. Therefore, to give reliability and assurance of 
autonomous driving, it becomes essential to pay great attention to detecting and 
protecting these vulnerable road users besides vehicles, however, the literature reviewed 
doesn’t give enough proof of it. 
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    Most 2D detection work has targeted individual road objects. Consequently, multiple 
pipelines need to run in parallel for individual classes of interest, leading to increased 
operations and time complexity (Mehtab and Yan, 2022). On the other hand, the general 
outcome of reviewed unified detection networks results in poor pedestrian and cyclist 
accuracy compared to vehicle detection. An apparent reason for the legging accuracy of 
pedestrians and cyclists is the challenges attached to them, e.g., different poses, sizes and 
outfits. Discussed findings can be verified from the results achieved in Frustum ConvNet 
(Wang and Jia, 2019) and GFD-Retina (Condat, Rogozan, Bensrhair, 2020) for 2D road 
scene perception in autonomous driving. In this shows a remarkable precision in Car (≈ 
88.54 % ) Vs pedestrians and cyclists (≈ 60.43%) on the medium complexity KITTI 
dataset. That indicates a considerable margin to cover in pedestrians and cyclists detection 
accuracies.  

Another significant gap is the difference between 2D and 3D detection accuracy. Despite 
multiple road scene challenges, 2D object detection has achieved remarkable accuracy in 
autonomous driving. Average Precision (AP) achieved based on KITTI  

medium complexity dataset is more than 93.85% for 2D car localization whilst only 83.19% 
for car 3D car positioning (Zhu et al., 2020). 2D methods play a vital role in road scene 
perception, though a good estimate of objects distance and shape is mandatory in 
autonomous driving success. In the existing 2D and 3D detection gaps demand more 
research in 3D detection for autonomous driving (Mehtab and Yan, 2022). 

    By considering the latest research for 3D detection, it is proved that LiDAR is an 
inevitable sensor for reliable road scene perception. LiDAR directly connects with native 
world information that builds the base for making the next manoeuvre (Simon et al., 2019). 
However, the proposed 3D techniques generally rely on expensive 64 beam Velodyne 
LiDAR (Arnold et al., 2019). Further work is required to give robust 3D detection even 
with sparse LiDAR point clouds. Table 2.4, we present the comparisons of 2D and 3D 
object detection in autonomous driving.   
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Table 2.4: 2D vs 3D object detection for autonomous cars 

Attributes 2D Object Detection 3D Object Detection 
Po

si
tiv

es
 

• Highly accurate and efficient 
detection architectures are 
developed. Exhibits good 
results using a monocular 
camera only. 

• Makes a strong base for 
further objection detection 
research. 

• Well established 2D labelled 
dataset is available. 

 

• 3D bounding box provides objects’ 
size, shape and positioning in real-
world coordinates form.  

• The information allows better scene 
understanding to make a manoeuver 
of AV. 

• LiDAR gives 3D point clouds that 
help in estimating objects’ location. 
A stereo camera also provides depth 
estimation or may be used to 
generate pseudo-LiDAR point 
clouds. 

• With the advent of time, 
increasingly 3D labelled datasets 
have been available for research 
purposes. 

N
eg

at
iv

es
 

 

• Doesn’t give information 
about real-world coordinates of 
targeted objects, about their 
depth or occluded portion. 

• Not suitable in actual world 
driving applications. 

• Model complexity increases with 
extra dimension regression. 

• 3D object detection has not 
achieved enough precision to apply 
in the actual world of autonomous 
driving applications successfully. 
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    Another noticeable fact is, that most work done in 3D road scene perception does 
not give sufficient weightage to the specialties of LiDAR vs camera sensors and treats 
them in a similar way while performing data fusion. Additional research work is required 
by considering the limitations and strengths of individual sensors for doing multimodal 
data fusion. 

    By making a comparative analysis, the benchmark KITTI dataset was taken into 
account which is a good source of analysis considering its complexity. However, one of 
the noticeable limitations of the KITTI dataset is its weather conditions which are mostly 
sunny and daylight scenes. In the significant work has not been tested based on extreme 
weather conditions and night timings except a few (Ku et al., 2018). Further research 
work can be conducted to evaluate the effects of such conditions. To deal with this, 
simulators such as CARLA (Dosovitskiy and Ros, 2017) can also be used where scenes 
can be customized accordingly. Waymo/BDD100k datasets also claim to have included 
diverse weather conditions, which could also be considered while training and testing 
neural networks.  

To fill the above-mentioned gaps, a unified framework for the detection of cars, 
pedestrians, and cyclists is proposed for 2D road scene perception. In the proposed 
network is based on the end-to-end detection framework which provides a dynamic 
approach for changing the network shape to optimize the results based on existing 
hardware and database. In the network exploits a feature pyramid network to deal with 
multi-scale objects, CSPNet-based backbone network allows the network to learn 
complex features in the scene and gives high accuracy to pedestrians and cyclists 
detections along with cars. 

    In this thesis, we also deal with 3D object detection, however, due to academic 
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research limitations the scope is narrowed down to vehicles only. By taking the strengths 
and weaknesses of LiDAR and camera sensors into consideration, the proposed solution 
localizes the front lying vehicles in the 2D bounding boxes firstly with the help of camera 
images. Furthermore, the 3D point clouds of LiDAR are projected into 2D detection 
windows to transform the detected 2D centre of bounding into 3D world coordinates. 

 This research work has not relied on the dense LiDAR point clouds. In the proposed 
solution exploits the behavioural pattern of sparse LiDAR point clouds that always 
sweeps in the horizontal directions and the gaps among points lie in the vertical plane 
only as presented in Fig. 6.28. In the proposed solution has relied on images for estimating 
the dimensions and orientations of vehicles and for finding 3D centres it takes advantage 
of horizontal 3D point clouds stream and integrates detected 2D bounding box results 
with point clouds information (Mehtab et. al., 2021). 

 By considering the limitations of KITTI datasets, we have tested the proposed models 
performance on the Waymo dataset also that contains night and extreme weather scene 
complexities.  
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By considering the strengths and promising outcomes of DNN 
from the literature reviewed, we have dug down into the 
convolutional neural networks to design an efficient and robust 
object detection algorithm for self-driving cars. In this chapter, 

we present the knowledge of essential blocks of the DNN with 
clear pictures. Popular DNN nets like VGG, ResNet and 
DenseNet are discussed to understand the specialties and 
working principles of their frameworks. Light is drawn on the 
1×1 convolution network usage and transfer learning method 

benefits for training a CNN. In the framework of the benchmark 
DNN feature extraction and object detection model is also 
considered. In the focus of last section of this chapter especially 
is on standard object detection approaches by using DNN.  
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A DNN or ConvNet is a special class of artificial neural networks mainly applied in visual 
data analysis to make out patterns (Valueva et al., 2020). In the DNNs are simply neural 
networks that make use of convolution operation in general matrix multiplication in a few 
layers (Ian, Yoshua, and Aaron, 2016). Fig. 3.1 illustrates the layout of DNN consisting 
of an input layer, multiple hidden layers and an out layer. Hidden layers are responsible 
for extracting the input features using different convolutional, activation, pooling layers 
ad fully connected layers; in the following section, we discuss all the hidden layers in 
detail. 

 

Fig. 3.1: A DNN model comprises an input layer, multiple convolution layers followed 
by activation, pooling layers, fully connected and output layers. 

Input Layer: 

The input layer of ConvNet provides 2D images in tensor format to the neural network 
software environments. a coloured image, there exist three channels at the input layer. 

Convolutional Layer: 

As the name suggests, conventional layers perform the convolution operation on the input 
and find image features such as vertical edges, horizontal edges, tilted edges, corners, 
contours, circles, squares and other complex features using different filters. As the input 
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passes through each layer, features maps keep evolving to understand more abstract and 
complex shapes of the input provided. 

 

Fig. 3.2: The vertical edge detection applying convolution filter over the entire input 
vector 

    As shown in Fig. 3.2, the input convolves with the given filter to extract specific 
feature maps. These filter values hold learnable parameters and are tuned based on the 
loss that occurred during network training. In the convolution operation works in a sliding 

window manner over the input and shrinks the receptive field. For this reason, the very 
deep neural network could result in losing fine-grained features of the image. order to 
deal with this problem, padding zeros can be applied to the input before convolution 
operation (Dumoulin and Visin 2016), as shown in Fig 3.3.  

 

Fig. 3.3: Adding padding number before the convolution operation results in lossless 
features extraction 

    There are two options, “Valid” or “Same” for padding and no padding, respectively. 
Generally, the number of padding rows is determined by (f-1)/2, where f×f is the filter 
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size. Another parameter to be considered while making a convolution layer is stride ‘s’ 
that determines how many columns to filter will slide while conducting convolution 
operation. 

Activation Layer: 

 

Fig. 3.4: Activation functions (a) Sigmoid activation curve (b) ReLU activation curve 

However, the convolution process produces only linear outputs that are further 
manipulated by an activation function on the pixel basis to find non-linear/complex 
features of the input. If z is the input value, sigmoid function 𝜎𝜎 (𝑧𝑧) =  1/(1 + 𝑒𝑒−𝑧𝑧) that 
is generally considered analogous to brain processing produces output between 0~1 as 
depicted in Fig. 3.4(a). However, there are two major problems with the sigmoid function. 
Firstly, the sigmoid saturates the large negatives or positive output gradient to zero, 
resulting in a vanishing gradient during backpropagation. Secondly, it is not centred at 
zero which indirectly generates undesirable dynamics in gradient updates. 

    These problems are resolved by using Rectified Linear Unit (ReLU) function, f(z) = 
max(0, x) that is depicted in Fig. 3.4(b). A constant gradient of ReLU results in faster 
learning; moreover, ReLU is computationally inexpensive compared with the sigmoid. 
However, in negative values of z, ReLU also produces zero gradients; this problem can 
be solved by using more advanced activation functions discussed in Section 4.2.2. 
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Pooling Layer: 

In order to reduce the computational complexity, it is required to reduce the spatial 
dimension of feature maps. That is achieved by using pooling layers after the activation 
operation (Yingge, Ali, and Lee, 2020). It is a process of sample discretization that can be 
achieved by using max pooling or average pooling, as shown in Fig. 3.5. In the pooling 
window makes the sliding window moving over the output produced by the activation 
layer with a stride value. In the resultant value of each window represents the whole; 
generally, these windows are not overlapped while sliding. 

 

Fig. 3.5: The max-pooling picks the maximum value in that window while average-
pooling finds their average 

 

Fig. 3.6: Max un-pooling operation 

    However, the advanced CNN architecture includes the un-pooling operation that 
performs the reverse pooling function (Li, Johnson, and Yeung, 2017). In the reason to 
perform un-pooling is to increase the resolution of the feature maps; however, the lost 
information cannot be retrieved. In the state-of-the-art techniques implement pooling or 
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downsampling in the initial layers, in follow up perform un-pooling or up-sampling in the 
advanced layers. Like pooling, un-pooling can also be performed in various ways; for 
instance, Fig. 3.6 shows an example of the max un-pooling method (Krizhevsky, 
Sutskever, and Hinton, 2012; Shelhamer, Long, and Darrell, 2017), which also remembers 
the indexing value of the maximum number. 

Deconvolutional Layer: 

For the same reason as upsampling, deconvolution operation is preferred, also known as 
dilation or transposed convolution, in the late layers of CNN to increase the receptive 
field of intermediate feature maps. In the resultant features are expanded and trained, 

unlike un-pooling operations (Shelhamer, Long, and Darrell, 2017). Deconvolution 
applies the same method as convolution, albeit with some extra padding inserted in the 
original feature maps, as shown in Fig. 3.7. Therefore, the size of resultant receptive field 
becomes more significant than the original. 

 

Fig. 3.7: Deconvolution operation 

Fully Connected Layer: 

In CNN, the last few layers are fully connected (FC) layers that work as original feed-
forward neural networks. Before feeding data into the FC layers, it is flattened into a 1D 
array. Every input of the FC layer holds learnable weight parameters that are added with 
bias value at the node followed by non-linear transformation through an activation 

function. In the output from every node is connected to all nodes in the next FC layer.  
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Output Layers/Loss Layers: 

The output or loss layer specifies how the training penalizes the difference between the 
ground truth and predicted values to minimize the cost/loss. Different loss functions can 
be employed depending on the task, such as the softmax function gives the probabilities 
of occurrences in the range zero to one that is interpreted as the scores of classes. 

    Mean Squared Error (MSE) estimates squared differences between predicted and 
ground-truth values as given in Eq (3.1) for regression purposes. Inbuilt library tools are 
available in PyTorch and Tensorflow libraries to perform MSE, which has been exploited 
in our 3D box prediction to train the network, w.r.t, dimensions loss as discussed in 
Section 5.3. 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1
𝑚𝑚

(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦 − 𝑦𝑦�))       (3.1) 

where m is the batch size, 𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦� are the ground truth and predicted values. 

On the other hand, Mean Absolute Error (MAE) calculates the means of the absolute 
differences between the ground truth and the predicted values as defined by Eq. (3.2). 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1
𝑚𝑚

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑦𝑦 − 𝑦𝑦�))       (3.2) 

    One of the most popular classification losses is cross-entropy which calculates the 

score of the average difference between the ground-truth and predicted probability 
distributions for predicting classes. In the score is minimized, a perfect cross-entropy 
value is zero. Python supports two different cross-entropy functions, namely, Binary 
Cross-Entropy (BCE) for binary classification loss and Categorical Cross-Entropy (CCE) 
for multi-class classification. Eq. (3.3) represents the CCE loss. 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = − 1
𝑁𝑁
∑ [𝑦𝑦𝑖𝑖(log(𝑦𝑦𝚤𝚤�) +𝑁𝑁
𝑖𝑖=1 (1 − 𝑦𝑦𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝑦𝑦𝚤𝚤�))]    (3.3) 
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where N is the number of prediction classes, the overall loss is the average loss over all 
classes. At the final stage, the class with maximum probability is finalized. 

    In the proposed solution, a variant of BCE named “BCEWithLogitsLoss” is used 
which is discussed in Section 4.2.3. We have discussed the loss functions used in our 
experiments in Section 4.2.3. Once the feedforward pass is completed, DNN starts 
training its parameters based on the loss that occurred at the output layer through 
backpropagation traversing. 

1×1 Convolution Layer: 

 

Fig. 3.8: Dimensionality reduction as a result of 1×1 convolution operation 

As we know that DNN pooling layers perform downsizing operations over feature maps, 
it is desirable to increase the number of channels with increasing network depths to learn 
complex features. As a result, with increasing depth, the computational requirement of a 
network also increases exponentially. To address this problem, 1×1 convolution layers are 
used that offer channel-wise contraction (Szegedy, Vanhoucke, and Shlens, 2014), as 
shown in Fig. 3.8. In this simple method, generally referred to as dimensionality reduction, 
performs a features pooling operation; on the other hand, the same 1×1 convolution 
operation can also be used for increasing the number of feature maps. ReLU or other 
activation functions always follow these 1×1 convolutions. Another significant aspect of 
1×1 convolution is projecting multiple feature maps to retain important information using 
an activation function. 
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This section presents the standard DNNs and the strengths of their frameworks. 

VGG (Simonyan and Zisserman, 2015) is one of the most fundamental object recognition 
models in DNN which was among the top finalist in ILSVRC-2014. 

 

Fig. 3.9: VGG model with RGB image input and 16 hidden layers consisting of 
convolution layers with ReLU activation and repeatedly followed by max-pooling layers, 
two fully connected layers at the end with a softmax output layer. 

    VGG achieved 92.70% accuracy on the ImageNet dataset with 1,000 classes, 
demonstrating the effect of increased depth in DNN on the model accuracy. VGG took 
use of fixed-size 224×224 RGB images with 3× 3 convolutional kernel size (i.e., the 
smallest possible size, which still captures left/right and up/down pixel values). VGG also 

exploits 1 × 1  convolution filters for linear transformation of the input followed by a 
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ReLU unit. VGG allowed fixed stride to preserve the resolution during convolution. VGG 
exploited three fully-connected layers at the detection stage; the first two have 4,096 
channels each, the third has 1,000 channels, 1 for each class. 

    This network is mainly employed as a feature extractor to facilitate visual object 
detection or classification using DNN (Ren et al., 2017; Zhang et al., 2018; Mousavian et 
al., 2017). Fig. 3.9 shows the VGG-16 as a variant of deep net with sixteen layers.  

Despite having given potential outcomes, DNN performance does not always lead to 
better features extraction with very deep neural networks as a result of information loss 
in convolution and pooling operations (Tan, Pang, and Le, 2020). As the size of the 
network grows, the existence of small objects or fine-grained features starts vanishings. 
ResNet (He et al. 2016) handled this problem by reformulating the sequence of the layers 
for learning residual features with reference to the layer inputs using skip connections as 
shown in Fig. 3.10.  

 

Fig. 3.10: Three residual blocks: Input features xi maps are stacked with the successive 
feature Ғ(xi) maps using element-wise addition. 

ResNet adopted residual learning to every stacked layer by using Eq. (3.4) as,   

𝑥𝑥𝑖𝑖+1 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐹𝐹(𝑥𝑥𝑖𝑖)+ 𝑥𝑥𝑖𝑖)       (3.4) 
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where the first term F(𝑥𝑥𝑖𝑖) is the weighted sum of convolutional layers to perform the non-
linear transformation in a single residual block and second term 𝑥𝑥𝑖𝑖  is the identity 
function that bypasses the transformation using a shortcut connection. Here, the ‘+’ 
operation performs element-wise addition; however, feature maps from both the streams 
need to have the same dimensionality. In residual networks, shortcut connections don’t 
introduce any extra parameters or computational complexity in the network. Based on 
empirical testing, it was found that using the residual connection; it is easier to optimize 
and achieve higher accuracy using DNNs (He et al., 2016).  

 

Fig. 3.11: Presentation of two dense blocks in DenseNet. Each layer in the block 
comprises of convolution, Batch Normalization (BN), ReLU activation functions. Output 
feature maps of every layer in the block are carried forward using shortcut connections to 
all successive layers in the local dense block. There is a transition layer between two 
dense blocks units. 

Another advancement using skip connections was DenseNet (Huang et al. 2017) which 
preferred concatenation of feature maps rather than elementwise addition to carry forward 
residual information in the advanced layers. DenseNet carried forward feature maps 
generated in the intermediate layers to all their successive layers in a dense block. Fig. 
3.11 represents the general architecture of DenseNet using two dense blocks, where each 
layer performs convolution, batch normalization and ReLU activation operation. a dense 
block, the ith layer receives the feature maps of all previous layers, x0, x1,…, xi−1, that can 
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be represented by Eq. (3.5). 

𝑥𝑥𝑖𝑖 = 𝐹𝐹(𝑥𝑥0, 𝑥𝑥1, … 𝑥𝑥𝑖𝑖−1)      (3.5) 

where (𝑥𝑥0, 𝑥𝑥1, … 𝑥𝑥𝑖𝑖−1) refers to the concatenation of the feature maps produced in layers 

0, 1, … , i−1. Thereby, at the lth layer, when a feed-forward network holds one input from 
the previous layer, a dense block holds l·(l-1)/2 inputs. However, a dense block restricts 
the exponential flow of redundant information at the last layer in the dense block by using 
the transition layer that compresses stacked feature maps using a multiple coefficient ϕ; 
(0<ϕ<1). In the most significant advantages of DenseNet are dealing with the vanishing-
gradient problem and efficient feature propagation.  

Our objective in this research projet is to train a DNN to identify objects in images. One 
of the popular solutions of this is using pre-trained models through using transfer learning 
to accelerate the performance. Instead of training a DNN from scratch for a task, the 
transfer learning takes advantage of an already-trained network on another dataset. In this 
whole process accelerates the training speed and makes the model performance robust 

even with small datasets leveraging the pre-trained model with basic features abstraction 
efficacy. Models such as VGG-16, ResNet-50 and others are proven to give good 
accuracy using the ImgeNet dataset, containing 1.2 million images with 1,000 classes. 
There are two ways that transfer learning can be applied to train a DNN on a dataset:  

(1)  Load in a pre-trained DNN model trained on a large dataset. Freeze parameters (e.g., 
weights, biases) in the lower layers of the model for these layers correspond to 1,000 
visual object classification.  

(2)  Replace the final deciding layers of the pre-trained model with custom layers to 
detect or classify with trainable parameters to model as per requirement.  

(3)  Train the detection and classifier layers on training data available for the task. It is 
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to note that number of frozen layers can also be finetuned to get the desired outcome. 

Another approach is applied by replacing and retaining detection layers and training the 
complete model from scratch. In this approach relies only on the model framework and 
finetunes the weights of network during backpropagation to generate data specific 
features from the initial stage.  

    However, a combination of the two methods is also practiced and very initial layer 
layers that hold basic features such as edges, gradients or colour blobs are left frozen, 
leaving only late layers that are more specific to the details of data features are trained. 
Transfer learning is a practice in visual perception deep learning research for its fast and 
robust performance. Deep learning frameworks like TensorFlow and PyTorch hold open 
libraries of several pre-trained models of shared network weights. 
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This chapter covers the methodology for the robustness of 2D 

road scene perception using a unified DNN. In the first section, 
the details of the proposed end-to-end detection network are 
discussed with clean diagrams of all building blocks. A flexible 
network is proposed to find the most promising results based on 
the datasets and hardware resources available. In the auto-
anchor generator gives custom anchor boxes with k-means 
clustering algorithm by using IoU features to make the network 
potentially generalisable based on the training dataset 
information. In the next section, the network performance is 
enhanced with various optimization tools, e.g., gradient descent 
optimizers, activation functions, regression loss functions, and 
early stopping. In the third section, evaluation methods for 
performance analysis of the proposed network are discussed. 
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In Chapter 3, we have uncovered many black boxes of DNN and focused on different 
approaches for visual object detection. A diversity of architectures represent that the 
blocks can be combined, the dataflow among them can be oriented in multiple 
constructive ways to design a deep learning model. In the following sections, we have 
described the proposed unified end-to-end flexible DNN and uplifted the 2D road scene 
perception performance for AV. 

 

Fig. 4.1: Baseline architecture of FlexiNet network, where CSPNet is serving as a 
fundamental building block with dynamic scaling. Note: from (Mehtab and Yan, 2022) In 
Multimedia Tools and Applications  

    To improve the 2D road scene perception, we have investigated a DNN that provides 
a high level of flexibility to optimize the performance of the detection network, named 
FlexiNet. In the proposed architecture is influenced by YOLOv5 (Jocher et al., 2020), 
designed using the end-to-end detection paradigm discussed in Section 3.4.2. As shown 
in Fig. 4.1, the network comprises two parts with a feature extraction section called 
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“Backbone subnet”, and another section called “Head subnet” dedicated to detection 
operations. However, both sections are front and end parts of the same regression stream.               

 

Fig. 4.2: CSPNet working as the building block of FlexiNet backbone network with 
dynamic scaling, Note: from (Mehtab et. al. 2021) In: ICCCV   

    The architecture and complexity of deep neural networks have shown powerful 
ability in image feature extraction (Krizhevsky, Sutskever, and Hinton, 2012; Simonyan 
and Zisserman 2015; Szegedy et al. 2015); however, it is only suitable for costly hardware 
components. Moreover, naively increasing the network depth results in overfitting and 
vanishing gradient problems (Tan, Pang, and Le, 2020; He et al., 2016). On the other hand, 
a wider network captures fine-grained features more precisely (Komodakis 2016). 
However, as shown in Fig. 6.5, our empirical results depict that going too wide also leads 
to decreased accuracy.  

    Thus, we propose a FlexiNet model that allows to dynamically define a network 
structure by using the depths and widths as attributes of the baseline architecture based 
on the available hardware resources. Although the strength of the network lies in efficient 
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feature extraction irrespective of its size, having a strong baseline network is of prime 
importance. Fig. 4.1 shows the FlexiNet baseline architecture (Mehtab and Yan 2021), 
the final size of the net is evaluated concerning the parameters depth_multiple and 
width_multiple. Eq. (4.1) represents the formation of each block in a flexible neural 
network based on the assigned multiples. 

� 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑖𝑖𝑖𝑖_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =  𝑛𝑛𝑛𝑛_𝑜𝑜𝑜𝑜_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑖𝑖𝑖𝑖_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ×  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹_𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑖𝑖𝑖𝑖_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =  𝑛𝑛𝑛𝑛_𝑜𝑜𝑜𝑜_𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑖𝑖𝑖𝑖_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ×  𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚       (4.1) 

    In Section 3.2, to avoid losing residual spatial information with very deep networks, 
ResNet models were proposed with the skip connections (He et al. 2016), PANet was 
based on adaptive feature pooling (Liu et al. 2018), whereas DenseNet (Huang et al. 2017) 
and CSPNet (Wang et al. 2020) were proposed with cross-stage hierarchy, whereas 
CSPNet was influenced by DenseNet with considerable refinements and successfully 
applied in YOLOv4 (Bochkovskiy, Wang, and Liao, 2020).  

    Influenced by the performance of YOLOv4 and SocialDeep, the proposed FlexiNet 
model exploits CSPNet as the basic features extraction block. CSPNet has comprised of 
two blocks, namely, a partial dense block and a partial transition layer, as shown in Fig. 
4.2. a partial dense block, the feature maps of the input layer are split into two parts 

through channel x0 = [x’, x”], where x” has a direct connection with the partial transition 
block, and x’ goes through partial dense block stacking compound gradient information. 
In the end, the partial transmission layer breaks the compound gradient flow and 
concatenates the first half part x” of the input with refined features of x0 to generate output 
x1. Mutually exclusive information of both the streams makes the gradients features 
strong.  

    In this way, CSPNet leverages feature reuse, however, truncating the gradient flow 
breaks the flow of excessively amount of redundant gradient information. CSPNet has 
been proven to converge faster with no extra storage cost (Huang et al., 2017; 
Bochkovskiy, Wang, and Liao, 2020). In the implementation details of a single CSPNet 
unit are discussed, with the details of every module implemented in the FlexiNet 
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architecture. 

    In the following sections, all components of FlexiNet are discussed with fine 
detailing. In addition, the auto-anchor generation method is applied to create custom 
anchor sizes based on the training dataset based on k-means clustering exploiting the IoU 
features to uplift network performance. 

Focus Module:  

 

Fig. 4.3: The focus module slices the input image into four equal parts and concatenates 
them together in a depth-wise manner. 

    This module mainly targets at accelerating the fast execution and reducing the 
operational complexity of the advanced networking layers. In the focus module, the RGB 

input image of size 3×w×h is divided into four equal parts of size 3×w/2×h/2 by using a 
slicing operation (Wang, 2018). These four parts are stacked together in the form of 
different channels with the help of a concatenation operation, as shown in Fig. 4.3. 
Subsequently, the information is passed through the ConvNet module that comprises of 
1×1 convolutional layer in Section 3.5.4 followed by batch normalization in Section 3.3.8 
and activation function (Elfwing, Uchibe, and Kenji, 2018). As a result, the focus block 
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transforms the w×h×3 input information into w/2×h/2×12 dimensions, accelerating GPU 
utilization. 

    In all successive sections, the ConvNet block has been referred to the composition 
of 2D convolutional, batch normalization, and activation layers. As discussed in appendix 
A.3.7, batch normalization stabilizes the distribution of the parameters layer by layer 
(over a mini-batch) for faster convergence and reparametrizes the underlying parameters 
imbalanced to make its gradient landscape significantly smoother (Santurkar, Tsipras, and 
Ilyas, 2018). 

CSPNet Unit Operation in Partial DenseNet: 

  

Fig. 4.4: Unit operation in CSPNet module  

CSPNet is the basic building block in the FlexiNet. Fig. 4.4 represents the single 
operational unit of the CSPNet module with the details of every operation executed. In 
this module, input information flows in two streams; the first stream directs the 
information to the ConvNet block with dimension 1×1. In the second stream passes the 
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same information through the bottleneck layer with a consecutive addition performed 
with the original input. Hereinafter, the bottleneck module performs data compression 
through dimensionality reduction in the corresponding 1×1 Conv layer. 

    In the subsequent operation, outputs from both streams are concatenated to attain 
high-level gradient information. In the number of units in a CSPNet block in the FlexiNet 
architecture is based on the depth and width multiples assigned in execution. At the final 
stage of CSP, a single convolutional block called the partial transition block performs a 
hierarchical feature fusion mechanism, as shown in Fig. 4.2. 

In each CSPNet module, the output of a k layers block is expressed as follows: 

𝑦𝑦 = 𝐹𝐹(𝑥𝑥0) ⇒  𝑥𝑥𝑘𝑘 = 𝐻𝐻𝑘𝑘( 𝑥𝑥𝑘𝑘−1,𝐻𝐻𝑘𝑘−1(𝑥𝑥𝑘𝑘−2),𝐻𝐻𝑘𝑘−3(𝑥𝑥𝑘𝑘−3). . . .𝐻𝐻1(𝑥𝑥0) 𝑥𝑥0)    (4.2) 

where F is the mapping function from input x0 to target kth layer, which is also the model 
of the entire CNN. As for Hk, it is the operation function of the kth layer of the CSPNet. 
Usually, Hk is composed of a set of convolutional layers and a non-linear activation 
function (Lin et al., 2017). 

    The architecture design of CSPNet makes the kth layer pass the gradient information 
to all k−1, k−2,..., 1 layers and uses it to update the weights, which causes repeated 
redundant learning information. order to truncate the gradient flows of H1, H2, …, Hk, we 
see intermediate ConvNet blocks among CSPNet blocks in Fig. 4.2, which work as partial 
transition blocks in the FlexiNet performing truncation of recurrent operation. That makes 
CSPNet converge faster with no extra storage costs (Wang et al., 2020; Bochkovskiy, 
Wang, and Liao, 2020). 

Spatial Pyramid Pooling (SPP) Module:  

Another important module in the backbone subnet is SPP which works against the 
constraint of fixed size image restriction in visual object detection (He et al., 2015). SPP 
was successfully adopted in many end-to-end detection architectures (Redmon, Farhadi, 
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2018). In this module, a max-pooling (refer: Section 3.1) operation using three kernel 
sizes {5×5, 9×9 and 13×13} is performed to extract the different levels of features 
abstraction as shown in Fig. 4.5. In succession, the abstracted features are arranged in a 
fixed-length representation with the increased receptive field using a concatenation 
operation. 

 

Fig. 4.5: In SPP block, three kernels are employed for pooling the same features 
received, the outputs are concatenated to produce a fixed-sized feature map. 

    This pyramid structured pooling operation of the SPP module not only improves the 
gradient flow in DNN but also transforms the varying receptive field information into a 
fixed-size format. 

In DNN, every convolutional layer result in rich and sophisticated features maps; however, 
there is a continuous reduction in the receptive field. In order to combat this problem, the 
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proposed network takes use of Feature Pyramid Network (FPN) (Lin et al., 2017) which 
was exploited in YOLOv3 and the following versions. FPN employs bottom-up and top-
down pathways to integrate features extracted from different levels in the form of a 
pyramid. 

 

Fig. 4.6: Feature Pyramid Network block illustrating lateral connections between 
bottom-up and top-down pathways 

    In FPN, the stages are defined in the feature maps hierarchy of the network for 
features retrieval. As shown in Fig. 4.6, at the initial bottom-up pathway, where feature 

map downsampling operation is performed, hierarchical features are fetched at the end of 
every defined stage. On the other hand, at the top-down pathway, feature map upsampling 
is performed to attain spatially coarser but semantically more robust features. For 
multiscale detection using FPN, a bridge is formed between bottom-up and top-down 
pathways using skip connections of same sized feature maps, as shown in Fig. 4.6. Using 

concatenation operation, obtained same sized features are integrated into three 
hierarchical levels for final multiscale detection. 

    As illustrated in Fig. 4.1, the proposed solution extracts feature maps from three 
different stages BB-s1, BB-s2, and BB-s3, in the backbone subnet (Mehtab and Yan, 
2022). These feature maps are carried forward in the head module using skip connections. 
In addition, the feature maps in the head section are dilated at three stages using 



 
 

70 

 

 

upsampling operation. With reference to the receptive field size, the feature maps from 
BB-s1, BB-s2, and BB-s3 stages are concatenated with feature maps in the head section. 
Furthermore, the detection layer predicts object bounding boxes at multiple scales by 
using anchor boxes with various sizes. Visual object detection is accomplished at three 
stages in the head Section, namely, H-s1, H-s2, and H-s3, targeting at visual objects with 
various sizes. However, multistage detection results in various outcomes of multiple 
bounding boxes of the same object. While using non-max suppression removes these 
extra boxes, we retain the ones with the highest confidence score. 

In the proposed network, the final success of the network is firmly based on the anchor 
boxes defined. However, the aspect ratio and size of visual objects vary as per their class 
and distance, respectively, as clearly visible in Fig. 4.7, the anchor size should be changed. 
However, manual finetuning of the anchor sizes applies a limitation to the algorithm’s 
success, especially when the algorithm is targeting multiclass detection. Fig. 4.8 
illustrates scatter plots drawn w.r.t the width and height of cars, pedestrians and cyclists 
present in the KITTI dataset. All visual objects have multiple aspect ratios that indicate 

the need for different anchor boxes for all classes in multiple scales. 

 

Fig. 4.7: Bounding boxes drawn around cars, pedestrians, and cyclists illustrate that 
every class holds a different aspect ratio, and their sizes vary w.r.t distances. 
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Fig. 4.8: Scatter plots drawn w.r.t widths and heights of cars, pedestrians and cyclists 
objects based on the KITTI dataset. All classes have different aspect ratios that indicate 
the need for different anchor boxes for all classes at multiple scales.  

    In order to give a high level of flexibility, an auto-anchor generating method is 
proposed that is based on k-means clustering algorithm, however, method is modified 
based on the application requirement (Mehtab et. al, 2022). In our k-means variant that is 

influenced by YOLOv2, the IoU metric is deployed in place of the Euclidian distance, 
which is biased towards small bounding boxes as compared to large ones and gives lower 
loss value for small boxes even at the significant difference in shapes as depicted in Fig. 
4.9. However, the criteria of prior selection are better for IoU scores, independent on box 
sizes.  

    The proposed algorithm firstly takes account of default Anchor_size [n, 3] for n 
classes on three scales. In the anchor_box refinement process, every ground-truth 
bounding box (GT_BB) is associated with a current anchor_size based on their IoU score 
to form clusters. Regarding the mean of box size in each cluster, anchor_sizes are 
iteratively refined. In this cluster reforming and anchor_size refinement process is 

repeated until no change is acquired in two consecutive stages. In the pseudocode for the 
auto-anchor generation algorithm is drawn in Algorithm 1. 
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Fig. 4.9: Left side represents the small ground truth box and its prior, whereas the right 
illustrates the large ground truth box and its prior. Although left boxes show a major 
difference in shapes, their difference in terms of euclidian difference is lesser compared 
to right boxes, which is unexpected in finding object similarity. Thus, we propose to 
exploit IoU to find the loss during anchor box generation. 

Algorithm 4.1: Auto-anchor generation algorithm 

input: data GT_BBs,n 

initialize Anchor_Size[n×3] with base_values 

no_change = False 

repeat 

  # Refine n×3 clusters 

  for i in n: 

   for j in Gt_BBs[i]: 

     associate Gt_BB[i,j] with an in AnchorSize[i] based on min(IoU) 

  # Claculate mean_AnchorSize[3×k] of new clusters formed 

  for i in range(n): 

    for j in range (3): 

      find mean_AnchorSize[i,j] based on GT_BBs in cluster[i,j] 
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    if Anchor_size[i] == mean_AnchorSize[i]:  

        no_change = True 

    else: 

        Anchor_size[i] = mean_AnchorSize[i]   

until no_change== True: 

Output: Anchor_Size[n×3] 

The FlexiNet is perfectly aligned to innovation needs, and pipeline – optimizer function, 
activation function, and loss function selections are considered a significant part of the 
methodology for efficient neural network building. In this section, we will discuss 

different methods investigated to improve the performance of FlexiNet. 

 

Fig. 4.10: Asymmetric gradient plot depicting wide flat surfaces and multiple local 
minimas encountered during the neural network optimization process 

Optimization algorithms are responsible for changing the network parameters to reduce 
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the resultant losses and make network convergence fast. Based on the strategy defined in 
the optimization algorithm, weights, biases or other parameters are tweaked in the neural 
network. An optimization algorithm should be smart enough to deal with the asymmetric 
gradient curve, as shown in Fig 4.10, which may consist of multiple local minimas and 
some saddle points where the gradient is almost zero. Fast training optimizer sometimes 
results in poor generalization than a wide-flat minimizer; on the other hand, a saddle point 
may also confuse the wide flat minimizer. 

    It is thus of prime importance while designing a deep neural network to select the 
optimization algorithm that gives the optimal solution by escaping local minimas and the 
saddle points. However, the performance of the optimizer also gets influenced by the 
model to be trained on. So, empirical testing is required before fixing the final optimizer 
for the network. In the choice of optimizer selection becomes critically important to 
extract the high performance of the network. In the proposed FlexiNet architecture, we 
have emphasised on the investigation of the most popular Stochastic Gradient Descent 
(SGD) with momentum and Adam optimizers for achieving the desirable accuracy 
(Mehtab and Yan, 2022). 

    There has been a long debate on SGD vs Adam for the generalized output 
performance. Appendix A.3.3, despite the simplicity and effectiveness of SGD, it takes 
use of a single learning rate for all gradient coordinates and could suffer from 
unsatisfactory convergence results and stay on the saddle region, sometimes referred to 
as a wide flat optimizer. However, the additional momentum term gives flexibility in the 
algorithm to make the convergence stabilized and at the same time allows it to start with 
a high learning rate. Another contributing factor in the performance of the SGD algorithm 
is the mini-batch size; results obtained by (Ohzeki et al. 2018) claim that a smaller batch 
size helps in dealing with the saddle points as well as local minima problems effectively 
(Mehtab and Yan, 2022). Eq. (4.3) represents the SGD with momentum ‘∝’ using a batch 
size m. 
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𝚫𝚫ω𝑛𝑛𝑛𝑛𝑛𝑛_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ = − η ∙ 1
𝑚𝑚
∑ 𝛛𝛛cost

𝛛𝛛𝛚𝛚𝒐𝒐𝒐𝒐𝒐𝒐_𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃

𝑚𝑚
𝑖𝑖=1   + ∝∙ 𝚫𝚫ω𝑜𝑜𝑜𝑜𝑜𝑜_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ    (4.3) 

Given optimization algorithm tweaks the network parameters 𝚫𝚫ω based on the average 
gradient descent in the last batch, including the momentum term ∝∙ 𝚫𝚫ω𝑜𝑜𝑜𝑜𝑜𝑜_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ   to 

make stable convergence. 

    On the other hand, adaptive gradient learning algorithms are becoming much more 
popular for training deep neural networks due to the fast convergence in the initial epochs. 
Algorithms such as AdaGuard and Adam adjust the learning rate based on the 
exponentially decaying average of past gradients. Adam in Appendix A.3.6, adjusts the 
momentum and variance of the gradient so as to adapt to local changes in the gradient 
geometry. If 𝑚𝑚𝑡𝑡 and 𝑣𝑣𝑡𝑡are the mean and variance at point t, final updated weights can 
be presented as given in Eq. (4.4). 

𝚫𝚫ω𝐭𝐭+𝟏𝟏 = − η
�𝑣𝑣𝑡𝑡� +∈

.𝑚𝑚𝑡𝑡�        (4.4) 

where ∈ is the summation coefficient to avoid division by zero condition. In the details 
of 𝑚𝑚𝑡𝑡, 𝑣𝑣𝑡𝑡 terms are presented in Appendix A.3.6. 

    In the investigation of the best performing optimizer, we would be testing our 
proposed DNN on the discussed SGD with momentum and Adam optimization 

algorithms. We will test the results based on different sized FlexiNet architecture, with 
datasets of varying levels of complexity. 

In DNN architecture, convolutional layers are followed by activation layers. In the 
activation function triggers a neuron based on the threshold value. In the main role of the 
activation layer is to convert the linear output value of a neuron into a nonlinear value 
that enables the neural network to extract complex/nonlinear input features of images that 
finally leads to successful object classification, object recognition and object 
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segmentation results. Therefore, the selection of activation function plays a key role in 
the training dynamics and network performance. Based on the literature surveyed, we 
found novel activation functions that claim promising and consistent performance. In the 
network optimization phase, we empirically evaluate the most promising activation 
functions to raise the accuracy of the FlexiNet results. 

    In Section 3.1, sigmoid 𝜎𝜎(𝑥𝑥)  =  1/(1 + 𝑒𝑒−𝑥𝑥)  was the introductory activation 
function used in the neural network architecture; however, it results in saturations at large 
positive and negative neuron values, giving almost zero gradient value. Appendix A.2.3, 
in the backpropagation process of network training, the gradient is employed for 
parameter optimization; however, if the gradient is too small, it leads to a vanishing 
gradient problem. 

    Rectified Linear Unit (ReLU) (Nair and Hinton, 2010) has been a classic choice for 
effectively dealing with the vanishing gradient problem that also offers low computational 
cost. ReLU transforms the linear function by using the function max(0, x) as shown in 
Fig. 3.4 (b), which primarily results in better convergence and faster speed as compared 
to pre-existing function because of its computational simplicity. However, ReLU suffers 
from gradient information loss by collapsing the negative inputs to zero. A ReLU neuron 
comes in a dead state forever if it never reaches the negative region; it is also impossible 
for the neuron to recover back. Leaky ReLU (Maas, Hannun and Ng, 2013) is considered 
a variant of ReLU, allows a slight positive gradient “ax” if the unit is not active, as shown 
in Fig. 4.11(b). In spite of overcoming ReLU limitation, Leaky ReLU is not considered a 
preferred choice as it demands one more parameter, “a”, to tune.  

    Recently, many advanced activation functions have been proposed based on 
learnable parameters that overcome the dying condition of ReLU and provide defense 
against vanishing gradient problem and heavy computational requirements. These 
activation functions have been investigated individually for the final activation selection 
in FlexiNet architecture to improve the performance of deep neural networks. 
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Fig. 4.11: Plot of popular activation functions such as ReLU, Leaky ReLU, Flexible 
ReLU, Swish, Mish and Hardswish. All monotonic functions are represented in the first 
row, whereas the second row illustrates the latest trend of non-monotonic activation 
functions. 

• Flexible ReLU (FReLU) (Qiu and Cai, 2018) aims to overcome that dying state of 
ReLU with additional flexibility on horizontal and vertical axes, as shown in Fig. 
4.11(c). FReLU is expressed in Eq. (4.5), where bl is the layer-wise learnable 
parameter. 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥) = � 𝑥𝑥 + 𝑏𝑏𝑙𝑙        𝑖𝑖𝑖𝑖𝑖𝑖 > 0
 𝑏𝑏𝑙𝑙                𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 0                       (4.5) 

Although the x parameter has a hidden variable a by effective (x+a) weight, where a can 
be trained together with the bias of the preceding convolutional/linear layers.  

• Swish (Ramachandran, Zoph, and Le, 2017), as shown in Fig. 4.11(d), is a smooth 
continuous activation function, unlike previously discussed piecewise linear 
activation functions. In the region of the negative weight, Swish allows a slight 

gradient to flow without sticking the network. In the non-monotonic and smooth 
transition property of swish makes it increasingly important in deep neural networks. 



 
 

78 

 

 

Swish does not incorporate any input variable and allows the trainable parameter to 
be better tuned by activation function to maximize information propagation, making 
smoother gradients. It is unbounded at ceiling and bounded at floor such as ReLU, 
whereas smooth, non-monotonic and continuously differentiable. Swish (x∙ 𝜎𝜎(𝛽𝛽𝛽𝛽)) is 
represented by Eq. (4.6) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝑥𝑥) = 𝑥𝑥
1+𝑒𝑒−β𝑥𝑥

                         (4.6) 

where β is a learnable parameter or a constant, in the PyTorch implementation, β is 
considered as 1.0. 

• Mish activation function (Misra, 2019) was inspired by the self-gating property of 
swish; however, it depicts an increased gradient for the same weights compared to 
swish as shown in Fig. 4.11(e). Mish generates an unbounded gradient at the positive 
side which is a desirable property to avoid vanishing gradient or network saturation 
problems. Although, it is bounded below that also plays a crucial role in regularisation 
effects and reduces overfitting. Mish is represented by Eq. (4.7), 

𝑚𝑚𝑚𝑚𝑚𝑚ℎ(𝑥𝑥) = 𝑥𝑥 ∙ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑙𝑙𝑙𝑙(1 + 𝑒𝑒𝑥𝑥))        (4.7)                   

• Hardswish is a piece-wise linear analog activation function (Avenash and Viswanath, 
2019) which is specially designed for quantization networks. Hardswish activation 

function performs 2𝑥𝑥.𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝛽𝛽𝑥𝑥) , represented in PyTorch in a more 
simplified form by using Eq. (4.8). 

ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ(𝑥𝑥) = �
0                    𝑖𝑖𝑖𝑖 𝑥𝑥 ≤ −3,
𝑥𝑥                    𝑖𝑖𝑖𝑖 𝑥𝑥 ≤  +3,
𝑥𝑥⸳ 𝑥𝑥+3

6
        𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

          (4.8) 

    The activation curve of Hardswish is shown in 4.11(f). In the non-monotonic bump 
in the negative region is the significant difference between Hardswish and other non-
monotonic functions when x is less than 0. In the negative region of the bump (-2.5 ≤ x ≤ 
0), a high percentage of weights and biases falls, which leads to better convergence and 
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improved accuracy. 

Classification and bounding box regression are two main pillars in visual object detection 
field. Object localization relies on a bounding box regression principle to position the 
objects using rectangular bounding boxes. It aims to refine the location of a predicted 
bounding box. Our model takes use of various loss functions for class probability and 
bounding box regression, respectively. In the final loss of each iteration is the sum of both 
constituent losses that eventually tend to maximize the accuracy. 

Class Loss Function: 

Advanced Binary Cross-Entropy with Logits Loss (BCEL) is directly supported by 
PyTorch, which is utilized in the proposed architecture for classification and objectness 
score. BCEL combines binary cross-entropy and sigmoid function in a single class and is 
thus much more stable numerically. By integrating two functionalities together, BCEL 
takes advantage of the log-sum-exp trick for numerical stability and computes batch-wise 
loss that can be defined by using Eq.4.9 for a complete epoch:  

Loss = {l1, … , 𝑙𝑙𝑙𝑙}⊤, 𝑙𝑙𝑙𝑙 = −𝑤𝑤𝑤𝑤[𝑦𝑦𝑦𝑦 ⋅ log𝜎𝜎(𝑥𝑥𝑥𝑥) + (1 − 𝑦𝑦𝑦𝑦) ⋅ log(1 − 𝜎𝜎(𝑥𝑥𝑥𝑥))],  (4.9) 

where N is the batch size. 

Bounding Box Regression Loss: 

To improve the results, bounding box regression exploits the overlapping area between 
the predicted and the ground truth bounding boxes, referred to as Intersection over Union 
(IoU). IoU plays a prime role in the final non-maximum suppression (NMS) of bounding 
boxes, which seems the most promising metric for box regression. However, IoU cannot 
give any gradient for nonoverlapping boxes as represented in Fig. 4.12, no measure to 
reduce the loss. An ideal optimization algorithm tends to reduce distances between the 
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predicted and overlapping boxes. 

 

Fig. 4.12: (Left) Representation of IoU metric that only considers the overlapping region 
of boxes, as illustrated, (Right) For non-overlapping boxes, IoU results in zero output 
irrespective of the different distances between the boxes. 

In recent years, IoU variants have been proposed regarding bounding box regression, 
namely Generalized-IoU (GIoU) (Rezatofighi et al., 2019), Distance-IoU (DIoU), and 
Complete-IoU (CIoU) (Zheng et al., 2020). In the proposed method, we would investigate 
these IoU losses for improving road scene perception accuracy. Unlike the basic IoU, the 
focus of these loss functions is not only on overlapping regions but also on other non-
coincident regions, which better reflect the gradient between the predicted and ground 
truth bounding boxes. These loss functions are as follows: A and B represent ground truth 
and the predicted bounding boxes in the following explanations, respectively. 

   Generalized Intersection over Union (GIoU) (Rezatofighi et al., 2019) is the first IoU 
based bounding box regression algorithm that considers non-coincidental regions 
|𝐶𝐶\(𝐴𝐴∪𝐵𝐵)|

|𝐶𝐶|
 𝑜𝑜𝑜𝑜 |𝐶𝐶−𝐴𝐴∪𝐵𝐵|

|𝐶𝐶|
  as shown in Fig. 4.13. In evaluating the loss, GIoU not only 

maximizes the IoU ratio between the overlapping regions, but also penalizes the loss that 
occurred due to the non-overlapping region. Thus, GIoU has a gradient in all possible 
overlapping and non-overlapping cases and makes it suitable to use as an objective 
function for measuring the loss in object detection. GIoU loss can be formulated as given 
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in Eq. (4.10). 

        ℒ𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺   = 1 −  |𝐴𝐴∩𝐵𝐵|
|𝐴𝐴∪𝐵𝐵|

+ |𝐶𝐶∖(𝐴𝐴∪𝐵𝐵)|
|𝐶𝐶|

          (4.10) 

where C is the minimal closer area of bounding boxes A and B, |𝐶𝐶∖(𝐴𝐴∪𝐵𝐵)|
|𝐶𝐶|

  is the non-

coincidental region of A and B in the coverage of C. 

 

Fig. 4.13: Representation of non-coincidental region using |𝐶𝐶\(𝐴𝐴∪𝐵𝐵)|
|𝐶𝐶|

, where C is the 

area of the smallest enclosing box covering the two bounding boxes A and B. 

Distance Intersection over Union (DIoU): 

(Zheng et al., 2020) is another bounding box regression loss function considered in this 
research project.  

 

Fig 4.14: Left: All three states show the same GIoU value based on the ground truth box 
A and predicted box B despite the significant differences in the predicted box positions 
w.r.t the centres. Right: A and B boxes placed at a euclidian distance 𝜌𝜌(𝑎𝑎, 𝑏𝑏) of their 
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centres, c is the diagonal length of the smallest enclosing box covering the two bounding 
boxes. DIoU penalizes the IoU by adding a score of 𝜌𝜌2(𝑎𝑎, 𝑏𝑏)/c2. 

    As shown in Fig. 4.14, all three states of ground truth and predicted bounding boxes 
give the exact value of GIoU; however, that is not desirable to achieve optimum accuracy. 
Due to heavily relying on the coincidental regions, GIoU primary target is to bring the 
boxes closer and make them overlap, as shown in Fig. 4.14, but it doesn’t find any 

difference between concentric and non-concentric boxes. However, it is required to bring 
their centres closer to improve the accuracy of position estimation. In order to fix this 
issue, DIoU loss simply adds a penalty term on IoU loss by adding the euclidian distance 
term to minimize the distance between the centres of two boxes. In the DIoU regression 
loss function is defined as Eq. (4.11), 

ℒ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 1 − |𝐴𝐴∩𝐵𝐵|
|𝐴𝐴∪𝐵𝐵|

+  𝜌𝜌
2(𝑎𝑎,𝑏𝑏)
𝑐𝑐2

        (4.11) 

where a and b are central points of ground truth and predicted boxes as shown in       
Fig. 4.14 (right), ρ(·) is Euclidean distance between a and b; the term c defines the 
diagonal length of the smallest enclosing box covering the two bounding boxes. 

    Complete Intersection over Union (CIoU) (Zheng et al., 2020) was considered a 
refinement over DIoU and has also been investigated in the proposed methodology. It 
considers aspect ratios of the ground truth and predicted bounding boxes as important 
geometric factors other than IoU and central points. CIoU loss is defined by using Eq. 
(4.12). 

ℒ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 1 − |𝐴𝐴∩𝐵𝐵|
|𝐴𝐴∪𝐵𝐵|

+  𝜌𝜌
2(𝑎𝑎,𝑏𝑏)
𝑐𝑐2

+  𝛼𝛼𝛼𝛼      (4.12) 

where 𝜐𝜐 measures the consistency of the aspect ratio which is defined by Eq. (4.13). 

𝜐𝜐 =  4
𝜋𝜋2

(arctan𝑤𝑤𝐴𝐴

ℎ𝐴𝐴
−  arctan𝑤𝑤𝐵𝐵

ℎ𝐵𝐵
)2      (4.13) 
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where α is a trade-off parameter that can be presented by Eq. (4.14): 

𝛼𝛼 =  𝜐𝜐
(1+𝐼𝐼𝐼𝐼𝐼𝐼)+𝝏𝝏𝜐𝜐

         (4.14) 

where 𝝏𝝏𝜐𝜐 is the first derivative of 𝜐𝜐 w.r.t w and h. CIoU loss as represented in Eq. 4.15, 
all the three terms are invariant of scale and normalized in the range 0 ~ 1. 

In the experiments, the test results encapsulate precision, recall, mAP to demonstrate the 
capacity of the proposed model. These functions are summarized by using Eq. (4.15), Eq. 
(4.16) and Eq. (4.17). 

precision =  true_positive (true_positive + false_positive)⁄   (4.15) 

recall =  true_positive (true_positive + false_negative)⁄   (4.16) 

mAP = 1
n
∗ ∑ precisionin

i=1          (4.17) 

where precision, recall rates and mAP are calculated based on true_positive, 
false_positive, and false_negative, respectively. Parameters under consideration are 
defined as follows, which are decided based on the IoU of the predicted bounding boxes 

with respect to the ground truth: 

 True-positives: Network identified positives which are also similarly identified 
positives by a human.  

 False-positives: Network identified positives that have been identified as negatives 
by humans.  

 False-negatives: Network identified negatives that have been identified as positives 
by a human.  

 True-negatives: Network identified negatives that have been identified as negatives 
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by a human.  

The detection outcomes are finally arranged in the form of a confusion matrix, as shown 
in Fig. 4.15. 

 

Fig 4.15: Confusion matrix of predicted results, w.r.t ground truth values representing 
true-positive, false-positive, false-negative and true-negative results 

The algorithm describes the procedure applied for evaluating the performance of the 
FlexiNet with different metrics. As shown in Figure 4.12 (left), A is the ground truth 
bounding box (GT_Box) whilst B is the predicted bounding box (Pred_Box). In the IoU 

value, i.e., |𝐴𝐴∩𝐵𝐵|
|𝐴𝐴∪𝐵𝐵|

 gives a measure of the overlapping area ratio of the predicted bounding 

box over the ground truth bounding box. In the terms clearly notify the relevance in the 
algorithm. Different IoU values are taken into account to generate the results. In the given 
algorithm finds the recall and precision for a single class of objects. However, for 
multiclass detection, a few of changes are made in false-positive variables based on 
different classes of interests. At the same time, in the calculation of performance metrics, 
only the false positives belonging to different classes are considered as the general 
standard. In the given algorithm, the IoU is set to 0.50, though we have also tested 
network performance over 0.20 and 0.70 IoU during the result analysis. 
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Algorithm 4.2: Metrics Evaluation based on the ground Truth and Predicted results 

 input: GT_Boxes, Pred_Boxes 

Initialize true_positive, false_ negative, false_ positive = 0,0,0 

repeat for each Gt_Boxes: 

   if GT_Box.class_id in (classes_defined): 

      best_box_iou = 0 

      box_id = 0 

      #Compare each GT_Box with all Pred_Boxes 

      repeat for each pred_Boxes with index i: 

 #IoU calculation 

          IoU = (Pred_box ∩ Gt_Box)/(Pred_box ∪ Gt_Box) 

          #Threshold check 

          if IoU > 0.5:    

      #Check for better prediction box 

              if IoU > best_box_iou: 

                  best_box_iou = IoU 

                  box_id = i 

      #Delete the selected bounding box from pred_boxes list 

      if best_box_iou <> 0:    

          delete Pred_boxes[box_id] 

          true_ positive += 1       #Pred_box match with GT_Box 

      else: 

          false_negative += 1   #No prediction match with GT_Box 
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 # Now remaining items in pred_boxes are false_postive 

false_ positive = len(Pred_boxes) #Extra boxes found in Pred_Boxes 

   #Calculate final metrices  

   precision = true_positive /(true_ positive + false_ positive) 

   recall = true_ positive /(true_ positive+false_negative) 

output: precision, recall  

 

The benchmark KITTI dataset gives three different complexity levels for visual object 
detection, performance of the proposed network is compared with the state-of-the-art 
detection models based on these conditions. 

 Easy: Min. bounding box height: 40 pixels; Max. occlusion level: Fully visible; Max. 
truncation: 15 % 

 Moderate: Min. bounding box height: 25 pixels; Max. occlusion level: Partly 
occluded; Max. truncation: 30 % 

 Hard: Min. bounding box height: 25 pixels; Max. occlusion level: Difficult to see; 
Max. truncation: 50 % 

In this chapter, a flexible deep neural network based on the YOLO framework is proposed 
that can be tested with various sizes to test the network efficiency based on depth-multiple 
and width-multiple coefficients. CSPNet has played a major role in providing fine and 
complex features to the multiscale detection network. We have taken leverage of different 
optimization, activation and loss functions to increase the accuracy of 2D road scene 
perception. Finally, multiple approaches for evaluating the network performance are 
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discussed, that would be exploited while comparing the network performance with state-
of-the-art networks in the results analysis section in Chapter 6. Nevertheless, the unified 
architecture may perform the detection of multiple road objects in a single stream without 
causing additional time and computational complexity to the existing resources. 

 In the proposed research, the results achieved from 2D road scene perception have 
been further utilized for 3D object detection with the aim of getting the exact positioning 
of objects in the 3D world with additional point clouds information from LiDAR. 
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The content of this chapter is to answer the research question of 
reducing the cost of 3D detection while maintaining accuracy in 

autonomous driving. However, in this phase, considering the 
academic research limitations, the scope is narrowed down to 
vehicle detection exclusively. In the proposed model is based on 
the fact that the 2D center estimation of an object is nothing but 
the projection of a real-world 3D center on an image. We propose 
a simple yet effective approach that is based on the success of 2D 
vehicle detection to estimate the 3D positions of cars in front of 
an AV. A lightweight MobileNetV2-based DNN architecture is 
leveraged to predict 3D box size and orientation of cars. 3D point 
clouds are projected on 2D bounding boxes to map 2D car centres 
to 3D world coordinates using basic trigonometry. In the 
proposed solution exploits top-mounted LiDAR point clouds to 
combat occlusion conditions. In the model fulfils the proposed 
objective to give a cost-effective solution for 3D vehicle detection 
using sparse point clouds and RGB images from digital cameras.  
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In autonomous driving, it is essential to know the exact distance and 3D shape of front 
lying vehicles to avoid accidents and make a successful manoeuvre of AVs. As the 
literature survey, LiDAR in combination with camera sensors has been a dominant choice 
of researchers in 3D vehicle detection in the autonomous driving field for the 
complementary nature. While the camera efficiently gives us the rich textured and strong 
visual perception of the world in the form of image coordinates, it is susceptible to 
lighting conditions. In contrast, LiDAR provides us active information about visual 
objects surroundings AV without getting influenced by night or sun shining; however, its 
rays become sparse over long distances and cannot be relied on entirely. Following the 
same trend to achieve the best possible outcome, we have also relied on the camera and 
LiDAR in combination, so as to achieve optimum accuracy cost-effectively and promote 
the AVs acceptance in the market. 

 

Fig. 5.1: 3D point cloud generating bird eye view (BEV) from LiDAR point clouds 
installed at the top of an autonomous vehicle 

    We are much familiar with the RGB camera and its data representation in pixel 
format. Let us review the working principle of LiDAR briefly before starting the 
discussion of 3D vehicle detection. LiDAR, i.e., Light Detection and Ranging device, is 
essentially a distance measuring equipment that detects the distance of the surrounding 
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objects by using round trip time of emitted laser beams. When this process is repeated 
multiple times per second, it creates a precise, real-time 3D point clouds map of the 
environment, as shown in Fig. 5.1.  

    An onboard software application can utilize a point clouds map for safe navigation. 
In the density of LiDAR point clouds depends on the number of rays in the beam emitted, 
which could be 8,16,32,64, or 128 laser rays together. In the cost of LiDAR varies 
immensely depending on the number of rays the beam consists of. LiDAR is use of low-
intensity laser pulses that are safe for the human eyes, which allow LiDAR to know the 
distance to an object to within a few centimetres, up to 250 meters using the latest LiDAR 
technology. That’s the reason why it has been the favourite choice in the field of AV. In 
the strength of LiDAR is measured in terms of beam density and its range; however, the 
relative cost of LiDAR in AVs remains a bottleneck towards its successful usage. 

Pertaining to implementing the 3D vehicle detection proposal, we have again preferred 
the public KITTI dataset because it provides accurate 3D ground truth information with 

Velodyne 64 beam LiDAR as well as the images from left and right cameras (Geiger et 
al., 2013). If a LiDAR is mounted at the top of a car, it is able to capture more surrounding 
information that is occluded from the front view. Fig. 5.2 shows an example of camera 
view and LiDAR for the same scene with the labelling information. 

    Regarding 3D vehicle detection research, the KITTI dataset has been employed as 
the benchmark based on the investigation. However, a thorough understanding of 
calibration files is mandatory to use 3D point clouds and camera coordinates together. We 
aim at camera and LiDAR fusion in this method; as a result, LiDAR coordinates to camera 
coordinates and camera coordinates to LiDAR coordinate conversion are required at 
many stages. Fig. 5.3 represents the different coordinates systems in the dataset.  
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Fig. 5.2: (a) A KITTI dataset sample image shows 3D and 2D labelling of vehicle 
objects with a specially selected red solid point. (b) LiDAR point clouds for the exact 
figure with red solid point spotting same camera coordinate on LiDAR coordinates. 

 

Fig 5.3 : (a) Camera coordinates system (b) LiDAR coordinates system (c) Object 
coordinates system that depicts real-world rotation at different axes. 

We have utilized four different types of files for any single frame from the KITTI 3D 
Objection Detection dataset as follows: 

• camera_2 image (.png), 
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• camera_2 label (.txt), 

• calibration (.txt), 

• velodyne point cloud (.bin). 

The image files are .png files that can be displayed. In the label files contain the bounding 
box for objects in 2D and 3D in text form, as listed in Table 4.1. For 3D bounding boxes, 
height, width, and length of each object are provided with 3D centre coordinates. In the 
size (height, weight, and length) is in the world coordinate, and the centre on the bounding 
box is in the image coordinate. LiDAR point clouds give x, y, and z coordinates 
information in the form of a 3D array. 

    The calibration file contains six projection matrices for different sensors used— P0, 
P1, P2, R0_rect, Tr_velo_to_cam, and Tr_imu_to_velo. There are left, right, and reference 
cameras along with a Velodyne LiDAR, all sensors are synchronized with the reference 
camera. KITTI considers Camera_0 as a reference for the other right and left cameras 
(named as Camera_1, Camera_2) and LiDAR. While working with multiple sensors, a 
rectification process is required to integrate information with different modalities. 
Hereinafter, every Px matrices give mapping coefficients for projecting a point to 
camera_x image coordinate from rectified camera coordinate. R0_rect is the rectifying 
rotation matrix to map a point from world coordinate to reference coordinate and 
Tr_velo_to_cam matrix maps a point in point cloud coordinate to reference coordinate; 
an inverse operation works for mapping camera to Velodyne. Tr_velo_to_cam  matrix is 
the composition of rotation and translation matrices from the Velodyne to the reference 
camera coordinate.  

It is the simple discoveries that make the most significant differences. In this part of the 
project, the focus is made on the inherent key component between 2D and 3D vehicle 
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detection to minimize the gap between the two in the field of autonomous driving (Mehtab 
et. al., 2021). In the prime fact is to acknowledge that the 2D centres of the predicted 
vehicles are the projection of their 3D centres on an image. In the proposed 3D detection 
work takes leverage of well developed 2D detection for improving 3D detection accuracy. 
By considering the visibility limitation of cameras, the solution doesn’t support camera-
based 3D detection, moreover encourages to use LiDAR-based active world information 
that is not susceptible to lighting conditions. However, the most recent research in 3D 
vehicle detection is based on dense 64 beams of LiDAR point clouds to show their 
performances. As a result, the cost of LiDAR remains a bottleneck in the practical 
acceptance of AVs. In the proposed model aims to give consistent performance over 
sparse point clouds, a low-cost solution for the 3D vehicle detection in AVs. 

    The model extracts 3D world coordinates of cars in 2D detection windows of image 
planes using LiDAR point clouds. Tensorflow-based platform is exploited for designing 
the proposed neural network. In the model first regresses the size and orientations of 3D 
bounding boxes of cars using MobileNetV2-based DNN with a transformation in the 
detection extremities. For better accuracy, the network is trained from scratch based on 
the custom dataset. Secondly, LiDAR point clouds are employed to extract 3D centre 
coordinates of vehicles based on their 2D centres in image coordinates. 

    Although the KITTI dataset is exploited based on the availability and benchmarking 
criteria, existing point clouds are transformed into three different formats of 64, 32 and 
16 beam density for performance analysis with point clouds sparsity. In the results are 
further verified by using a Waymo dataset to show the model behaviour with extreme 
weather scenes. In the ranging is the biggest hurdle while working with LiDAR; therefore, 
the results are analysed, w.r.t distances to get a better understanding of the results. 
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Our aim in 3D object detection of cars is not only to solve the problem of correctly 

predicting the 3D coordinates of bounding boxes but also to give a real-time performance. 
MobileNetV2 (Sandler et al., 2018) is 11.7 times smaller in size than VGG16 net with 
comparable performance, which makes it worth using in mobile devices with low 
computational cost and high speed for image features extraction purposes (Sandler et al. 
2018).  

 

Fig.5.5: The proposed network architecture to predict the size, orientation, and 
confidence of the 3D bounding box based MobileNetV2 as a features extractor. Note: 
from (Mehtab et. al., 2021) In: ICVNZ   
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In MobileNetV2, the regular convolutional operation is replaced with depthwise 
separable convolutions to make the architecture low dimensional. In the basic idea is to 
use  

a factorized version of a convolutional layer that divides the convolutional layer into two 
separate layers. In the first layer that performs depth-wise separable convolution does 
lightweight filtering by applying a single convolutional filter per input channel. a standard 
convolutional layer, where, to transform hi×wi×di channels into hi×wi×dj with k×k kernel, 
it costs hi·wi·di·k·k·di·dj operations, MobileNetV2 performs the same in much reduced 
hi·wi·di· (k·k + dj) operations. In the follow-up, the second layer is a 1×1 convolution, 
which takes the responsibility of extracting features by performing a linear combination 
of all input channels. At the same time, 1×1 convolution performs a bottleneck function 
to reduce the number of channels. MobileNetV2 performs the same function as the 
convolutional layer, however splitting into two lightweight layers with reduced 
dimensionality. 

    Based on the analysis of the empirical results (Sandler et al., 2018), it was found that 
using linear layers is crucial in CNN performance as nonlinearity produced by the 
activation function destroys the high dimensional information. By considering this insight, 
MobileNet inserts a linear convolution layer bottleneck block, as shown in Fig 5.5. In the 
bottleneck blocks in MobileNet appear the same as in the residual nets, where an 
intermediate 1×1 convolution layer reduces the dimensionality which is followed by an 
expansion. MobilNetV2 applied shortcuts between the bottlenecks to improve the 
gradient features and carries forward residual information of gradient in the successive 
layers. However, the bottleneck block performs an inverted residual operation that is 
considerably more memory efficient as well as showed better results in the empirical 
testing. 

    One interesting property of the architecture is its design, input and output passes 
through repetitive bottleneck blocks and a linear convolution layer that plays a vital role 
in the bottleneck block. These features influenced us to study the MobilNetV2. Moreover, 
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the depthwise separable convolution makes an interestingly important network to 
research and evaluate its capacity.   

    Fig. 5.5 shows the proposed DNN architecture consisting of 17 bottleneck modules 
followed by a global average pooling layer (Mehtab et. al., 2021). It is to note that the 
number of input and output channels in every bottleneck module are fixed as per the 
MobileNetV2 convention. However, the last layers of MobileNet are replaced with three 
detection branches of specific functions based on fully connected layers.  

    The first branch is responsible for the estimation of 3D bounding box size using 
mean squared error. In the second branch conducts orientation prediction using L2 loss, 
as discussed in Section-3.4, it plays a crucial role in final vehicle position detection. In 
the third branch regresses the confidence of car orientations using the softmax function.              
In the literature reviewed, it is found that the orientation information of cars is lost in 
general (Ku et al., 2018). Our architecture remedies this problem by considering two 
proposals in the intervals of (0, -179-degree) and (1, 180-degree) to predict the car 
orientation and confidence score; the one with the highest confidence score is selected 
(Mehtab et. al., 2021). In the net loss of the network is calculated using the weighted sum 

of all branches as given in Eq. (5.1), where 𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽  are multiple coefficients of 
orientation and confidence loss, respectively. 

                  Lnet =  Lsize +  𝛼𝛼 · Lorient + 𝛽𝛽 · Lconf.      (5.1) 

We estimate the positions of cars in the 3D world by using LiDAR point clouds in the 2D 
box windows. By considering the LiDAR height from the ground, firstly, we removed the 
ground points from the point clouds. Point clouds were projected onto the camera 
coordinate by using the calibration parameters while preserving the depth information in 
the form of added channel. 

    To convert 3D point X = (x, y, z)T into corresponding camera coordinate Y = (p, q, 
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r)T, the operations such as translation, rotation and projection are summarized as Affine 
transformation (Weisstein, 2004) in Eq.(5.2). 

𝑌𝑌 = 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  ·  𝑅𝑅𝑅𝑅 ·  𝑋𝑋,                           (5.2) 

Where, 

       𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  �
  𝑓𝑓𝑢𝑢    
0  
0  

0
𝑓𝑓𝑣𝑣
0

    𝑐𝑐𝑢𝑢
    𝑐𝑐𝑣𝑣
   1

   −𝑓𝑓𝑢𝑢𝑏𝑏𝑥𝑥
 0
 0

� , 𝑅𝑅𝑅𝑅 = �
   𝑟𝑟11    

 𝑟𝑟21
  𝑟𝑟31 

0

  𝑟𝑟12    
 𝑟𝑟22

  𝑟𝑟32
0

  𝑟𝑟13    
  𝑟𝑟23 
  𝑟𝑟33 

0

  𝑡𝑡𝑥𝑥    
  𝑡𝑡𝑦𝑦
  𝑡𝑡𝑧𝑧
1
� . 

where ( 𝑓𝑓𝑢𝑢,  𝑓𝑓𝑣𝑣) and ( 𝑐𝑐𝑢𝑢,  𝑐𝑐𝑣𝑣) denote focal length and optical parameters of the camera 

across the x-y axes, respectively, 𝑏𝑏𝑥𝑥 stands for the baseline, w.r.t the reference camera 
(Geiger et al., 2013). 𝐼𝐼𝐼𝐼 𝑅𝑅𝑅𝑅 ,  𝑟𝑟𝑖𝑖𝑖𝑖  represent rotation parameters and ( 𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦, 𝑡𝑡𝑧𝑧)  is 

translation across the x, y and z axes. Furthermore, Y is converted to 2D image coordinate 

(𝑢𝑢, 𝑣𝑣) as presented in Eq. (5.3), 

�𝑢𝑢 = 𝑝𝑝/𝑟𝑟
𝑣𝑣 = 𝑞𝑞/𝑟𝑟                           (5.3) 

 

Fig. 5.6: The pose estimation of the size and orientation of 3D bounding box of cars, car 
pose of longitudinal or front/back sides depends on its orientation and size as displayed. 
Note: from (Mehtab et. al., 2021) In: ICVNZ   

    As shown in Fig. 5.6, we detect the poses of cars by using the predicted size and 
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orientation of 3D bounding boxes. In the case of the central car shown, if x1>(x1+x2)/2, 
then the car pose is a longitudinal side, or else it poses from the frontal side, the same 
principle is applied to all directions. Fig. 5.6, the cars heading in different, forward 
directions are illustrated. In the blue dots represent the predicted 2D centre (tx, ty) of the 
cars, whereas the yellow dots stand for the outermost 3D point (lx, ly, lz) across the 2D 
centre vertical axis. Finally, (tx, ty, lz) is considered the projected centre point on the 3D 
bounding box surface; however, in order to get the exact depth estimation, we need to go 
further. 

 

Fig. 5.7: The blue dots represent 2D centres of predicted 2D bounding boxes whilst the 
yellow dots refer to the 3D outermost point on the central vertical axis on the car’s surface. 
In the right arrow shows the reference direction. Note: from (Mehtab et. al., 2021) In: 
ICVNZ 

    Fig. 5.8 shows the estimation of 3D car centres through 2D bounding box centres. 
In the depth value of the 3D centre from the surface point is based on estimated pose, 
orientation, and size of 3D boxes. In the figure illustrates the 2D centres (blue circle with 
yellow border line) projection on 3D centre (red circle) of cars for different poses by using 
the predicted size of the 3D bounding box and orientation, w.r.t the reference direction. In 
the trigonometric geometry for calculating car centre depth is given in Table 5.1, the final 
distance estimation of the car from AV is deduced by using Eq. (5.4). 

𝑡𝑡𝑧𝑧 =  𝑙𝑙𝑧𝑧 +  𝑎𝑎𝑎𝑎𝑎𝑎(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ)               (5.4) 
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Fig. 5.8: The top view of cars oriented in different directions with the 3D centres 
represented in red circles. Note: from (Mehtab et. al., 2021) In: ICVNZ 

 

Table 5.1:  The calculation of depth estimation of 3D car centres based on the 
orientation, size and pose of 3D bounding boxes predicted.  
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Pose Depth calculations 

Longitudinal Side   cos(𝜃𝜃) =        
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ/2
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ

      ⇒       depth =   width/2cos(𝜃𝜃) 

Front/Back cos(90 − 𝜃𝜃) =
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ/2
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ

 ⇒     depth =   length/2 sin(θ) 
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Front/Back  cos(𝜃𝜃 − 90) =
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ/2
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ

  ⇒     depth = − length/2 sin(θ)  

Longitudinal Side cos(180 − 𝜃𝜃) =
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ/2
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ

 ⇒    depth = −width/2 cos(θ) 
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In a great deal of road scenarios, there exists a high degree of occlusion among cars that 
are tackled upon an extension using LiDAR point clouds if the LiDAR is mounted at the 
top of AV. Fig. 5.9 (a), we see the detailed information of point clouds retrieved; it shows 
the occluded cars more clearly than the camera view. By considering the fact, in the 
proposed algorithm, we firstly identify point clusters in each 2D detection window based 
on depth difference among points after removing outliers. We find the closest point of 
each cluster from AV. Furthermore, we arrange all cars’ indexing in ascending order of 
closest points and identify the immediate front cars for all the occluded ones.  

 
(a) 

 

(b) 

Fig. 5.9: A sample frame from the KITTI dataset. (a) BEV point clouds after ground 
points removal. (b) Image of the same frame. Occluded cars that cannot be seen in images 
are detectable in point clouds. 

    Hereinafter, we have considered the occluded cars only to the ones whose centres 
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are hidden behind others as we cannot obtain the direct laser distance of their centre points 
on the surface of the cars. In order to calculate the 3D centre of occluded cars, the gap of 
the closest points between the immediate front car and the car under consideration is 
utilized to calculate relative distancing. Fig. 5.10 shows the complete flowchart of the 
proposed algorithm for finding the 3D box information of fully visible as well as occluded 
cars in road scene perception. To give a precise idea about the working of the algorithm, 
the pseudocode is presented. 
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Fig. 5.10: The flowchart of the proposed algorithm for finding the 3D Box information 
of visible or partly visible cars based on camera RGB images and LiDAR point clouds 

Algorithm: 3D Vehicle detection exploiting 2D detection results with LiDAR point clouds 

1. Input: 2D bounding boxes of predicted vehicles based on FlexiNet. 
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2. Predict 3D box sizes and orientations of all predicted cars using   

proposed DNN and estimate their poses. 

3. Based on LiDAR height from the ground, remove the ground points 

from the point clouds 

4. Project extracted point clouds onto predicted 2D boxes preserving 

z-depth as a third channel. 

#for each 2D detection window 

5. for i = 1 to n, repeat:  

6.    Find outermost point (lXi,lyi,lzi) of across 2D centre(tXi,tyi) 

of cari on y-axis. 

7.    set temp_cp_3Dbox_surface[i] = (tXi,tyi,lzi) 

8.    Find the points cluster around (tXi,tyi,lzi) based on their z-

gap-threshold 

9.    Find the closest[i] point from LiDAR in the cluster 

10. arrange all closest[i] points in increasing order of distance 

from AV 

#Mark the visibility of the car w.r.tits front front car 

11. for i = 1 to n, repeat:   

12.   for j =1 to n-1, repeat: 

13.     if car[i] is hidden behind car[j]: 

14.  visibility[i] =j 

15.     else:    #if the car is visible 

16.       visibility[i]=-1           

#Estimate distance 3D centre of cars  
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17. for i = 1 to n, repeat:   

18.   if visibility[i]==-1: 

19.     if pose == Longitunal_side: 

20.       c_depth[i] = lzi + abs(width[i]/2cos(orientation[i]))              

21.     else: 

22.       c_depth[i] = lzi + abs(length[i]/2sin(orientation[i])) 

23.     endif: 

24.   else:     #for occluded cars 

25.     front = visibility[i] 

25.     c_depth[i] = c_depth[front]+(closest[front]-closest[i]) 

26.   endif: 

27.   tzi= c_depth[i] 

28.   3Dbox_centrei = (tXi,tyi,tzi) 

29. endfor: 

30. Output: 3D_box_size, orientation, 3Dbox_centre 

For the evaluation of the proposed network, the performance of the proposed method was 
tested over KITTI as well as on the Waymo dataset. As the essential requirement of the 
network, firstly, 2D vehicle detection was performed using FlexiNet. 2D vehicle detection, 
all optimization steps were tested to get the best possible results in Section 4.3. In the 
second phase, based on 2D detection boxes, the size and orientations of 3D bounding 
boxes were predicted by using the proposed MobileNetV2-based DNN. In the network 
was finetuned using multiple learning rates and momentum values. Early stopping was 
preferred to avoid overfitting the network and stopped training if the results could not 
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come up with any improvement over the last ten epochs. In the performance analysis of 
the proposed neural network is evaluated in the range of distances.  

    The centres of 3D bounding boxes are detected using the proposed algorithm. As 
mentioned before, we have emphasised on giving a cost-effective solution for 3D vehicle 
detection, test the network based on sparse point clouds. In order to experiment with 
sparse point clouds, KITTI points are made sparse by removing the number of points in 
the 360-degree rotation of a single beam (Mehtab et. al., 2021). With different point 
clouds densities, 3D centre point estimation is evaluated, w.r.t distance ranges as well. In 
the last section, the overall inference speed of 3D vehicle detection is evaluated based on 
the sparsity of point clouds. 

In this chapter, we have discussed the methodology to get the exact positioning of vehicles 
in the 3D world with the aim to give a cost-effective solution. In the workflow passes 
through four major steps, starting from the detection of 2D box windows using FlexiNet, 
we have estimated the size and orientation of 3D bounding boxes of vehicles based on 

RGB images of the scene using MobileNetV2. After the 3D centres of the vehicles were 
determined based on the predicted 2D centres and 3D point clouds information, in the 
final step, the performance of neural network was analysed at various distances using the 
sparsity of point clouds. 
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This chapter demonstrates the experimental setup, data 
preparation and analysis of results obtained based on the 
proposed methods in previous sections. In the main highlights of 
this chapter are experiments for 2D road scene perception, 2D 

vehicle detection, and 3D vehicle detection. In the 2D detection 
and classification results of the proposed unified FlexiNet 
framework are presented for cars, pedestrians, and cyclists 
(Mehtab and Yan, 2022). In the proposed network has attained 
high accuracy with 95.86% recall@0.5IoU on medium 

complexity KITTI dataset with a 10ms inference speed. In the 
scope is narrowed down for 3D object detection using cars and 
vans only. All experiments in this section are primarily run on the 
benchmark KITTI dataset and further tested on the Waymo 
dataset. In the performance of deep learning models is measured 
by using standard metrics of object detection. 3D vehicle 
detection, the effectiveness of deep learning models is presented 
using 16, 32 and 64 beams density point clouds for testing its 
capacity on low-cost hardware as well. In the proposed solution 
obtained 83.54% and 77.39% average accuracies for the size and 

orientation of 3D bounding boxes, respectively, with an 
approximate .2 second time between 20-50 meters of range based 
on the KITTI dataset.  
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    In this thesis, we primarily target at improving 2D road scene perception accuracy 
for AV based on a unified DNN framework that can provide optimum performance by 
exploiting available resources. Secondly, the thesis fills the accuracy gap between 2D and 
3D vehicle detection using sparse LiDAR point clouds and camera images. 

    The first section in this chapter covers the experimental setup and data preparation, 
followed by the results obtained using a unified detection model named FlexiNet for 2D 
road scene perception to localize cars, pedestrians and cyclists. However, in the second 
section, FlexiNet only targets at vehicles detection to support the final target of 3D vehicle 
detection research.  

Table 6.1: Dependencies installed for the experimental setup 

Python Tools Version 

Python ≥ 3.7 

Torch ≥3.2.2 

Torchvision ≥0.7.0 

TensorBoard ≥2.2 

Tqdm ≥4.41.0 

PyYAML ≥5.3 

Numpy - 

Cython - 

Matplotlib ≥3.2.2 

Pillow - 

Scipy 1.4.1 

OpenCV 4.1.2 

    The proposed DNNs are trained on Google Colab GPU machines with a batch size 
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of 16 images, the allocated GPU is mentioned in the corresponding sections. 
Dependencies for experimental setup are mentioned in the following Table 6.1. In the 
experiments, the results are compared based on precision, recall, mAP, and loss metrics 
to measure the performance of the model. In the details of these metrics are depicted in 
Section 4.3. 

Fig. 6.1 illustrates the workflow of 2D road scene perception execution using the 
proposed flexible neural network. Different finetuning strategies are followed to improve 
the network performance based on the normalization, network scaling, gradient descent 
optimizer, loss functions, and checkpoint selection.  

 

Fig. 6.1: The workflow of the proposed 2D road-scene perception experiments. Note: 
from (Mehtab and Yan, 2022) In Multimedia Tools and Applications 

With the variety of data the neural network is trained, the better it is expected to perform 
on the test data (Gupta, 2018). In the road scene perception, the dataset quality refers to 
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the scaling of road users in the view, variation in environment and luminous conditions 
(Henrik, and Xerxes, 2020). As discussed in the literature survey, we have explored 
multiple public datasets such as KITTI, Waymo, and nuScene other than simulation 
datasets. However, among AV system researchers, the KITTI dataset has been the 
predominant choice, mostly the results are compared based on specific complexity criteria 
set by the KITTI. However, many datasets were created as well for training and testing 
purposes. Based on the evaluation, self-created datasets lack road scene complexity and 
other required challenges. Despite leading to high accuracy in results, the datasets would 
not be suitable in many practical implementations.  

    By considering the popularity and challenges of the KITTI dataset, we have 
primarily focused on the KITTI dataset in our experiments and the Waymo dataset for 
results verification on the night and rainy scenes. Among different camera images, we 
have selected the left camera images dataset (12GB) that are captured at 10Hz speed. 
There are 7,481 labelled images in the KITTI dataset and 7,500 unlabeled images of 
trajectories with 1350×350 average image resolution. In the selected dataset, we have 
considered four classes of interest: Car, van, pedestrian, and cyclist. In the car and van 
objects are put into the same category and assigned the same class, “Car”, as the 
difference would not significantly contribute to AV research; in fact, it would create 
ambiguity. 

    Fig. 6.2(a) shows the data distribution of different instances in the KITTI complete 
training dataset. Out of 7,481 images, only 2,486 images have pedestrians and cyclists 
instances with object count proportions of 18:3:1 for cars, pedestrians, and cyclists. As 
we know that data distribution plays a key role in the classification algorithm, we have 
conducted the filtering while finalizing images based on the different instances present. 
We have chosen 4,000 images covered all pedestrians and cyclists available in the dataset 
and additional images to include enough cars (Mehtab and Yan, 2022). Fig. 6.2(b) shows 
the finalized selection of images taken into consideration for our experiments. In the 
dataset is split into 8:2:2 ratio for training, testing, and validation in road scene detection 
experiments. 
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Fig. 6.2: The sample distribution (a) The labelled KITTI dataset with the ratio of instances 
distribution (b) The sorted KITTI dataset in the experiments includes all images 
containing pedestrians or cyclists with additional images. Note: from (Mehtab and Yan, 
2022) In Multimedia Tools and Applications 

    Fig. 6.3 shows the image samples taken from the KITTI finalized dataset. Here, we 

see a high degree of occlusion and truncation among objects and different scaling and 
lighting conditions. KITTI labelling format is given in Table 6.2. In the labelled 
information, the truncation complexity of objects is defined by 0,1 and 2 levels, while the 
occlusion is determined by using 0,1,2, and 3 levels. Alpha is the angle of observation of 
an object from AV. In the 2D bounding box is defined by using the left top and right 
bottom (x, y) coordinates object in the image plane, whereas for 3D bounding boxes, 
object dimensions: Height, width, and length in meters and their centres (x, y, z) in camera 
coordinates. Rotation angles of 3D boxes on X and Y planes are also provided. 
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Table 6.2: KITTI dataset formatting and calibration information 

Seq# Data Types Descriptions 

1 Object Type 
“Car”, ”Van”, ”Pedestrian”, ”Cyclist”, ”Tram”, 

Person_sitting”, “Misc” or “DontCare” 

2   Truncated Integer (0,1,2) indicating the level of truncation. 

3   Occluded Integer (0,1,2,3) indicating occlusion state. 

4 Alpha Observation angle of the object, ranging [-Pi; Pi] 

5-8 Bbox 2D 
(0-based) the bounding box of the object: Left, top, right, 

bottom of image coordinates 

9-11 Dimensions 3D object dimensions: Height, width, length. 

12-14 Location 3D object location x,y,z in camera coordinates system. 

15 Rotation_y Rotation around Y-axis in-camera coords. [-Pi; Pi] 

Calibration Information 𝑃𝑃2 = �

𝑟𝑟11 𝑟𝑟12 𝑟𝑟13 𝑡𝑡1
𝑟𝑟21 𝑟𝑟22 𝑟𝑟23 𝑡𝑡2
𝑟𝑟31 𝑟𝑟32 𝑟𝑟33 𝑡𝑡3
0 0 0 1

� 

Camera Planes     x = right, y = down, z = forward 

Velodyne Planes x = forward, y = left, z = up 

World planes x = right, z = forward, y = down 
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Fig. 6.3: The samples from the KITTI dataset  
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    In the proposed 2D object detection network named FlexiNet, standard YOLO 
format is employed for object labelling, where each object defined as [class_id, centre_x, 
centre_y, width, height] in the label file. Hereinafter, every object is identified with 
class_id, the remaining four parameters notify the bounding box location and dimension 
in the form of x and y coordinates. All parameters are normalized in the range [0, 1] by 
performing a simple division operation based on the size of images along the x-y axes. 
We again notify that we have considered only cars, vans, pedestrians, and cyclists among 
all classes. 

Data Augmentation  

Influenced by YOLOv5 and YOLOv4, FlexiNet performs CutMix (Yun and Corp, 2019) 
and Mosaic data augmentations on the training dataset to get exposed to a wider range of 
semantic variation (Bochkovskiy, Wang, and Liao, 2020).  

 

(a)                       (b)                    (c) 

Fig. 6.4: Data augmentation in the proposed network, (a) Mosaic data augmentation 
where four images are merged into one frame, (b) Cutmix augmentation, where a part of 
the image is cut for regularization, (c) Final image produced with the combination of 
Mosaic and cutmix augmentation. 

    Multiple images are combined in the mosaic data augmentation as shown in Fig. 
6.4(a), enhancing the detection outside their normal context, whereas cutmix 
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augmentation replaces one patch of the image with some blank information to avoid 
overfitting the model as shown in Fig. 6.4(b). Fig. 6.4(c), the combination of mosaic and 
CutMix data augmentation is illustrated. FlexiNet, we have resized all images to 640×640 
resolution to achieve optimum accuracy with available hardware resources 

    The dataset particularly aims to push forward the development of computer vision 
and robotic algorithms for autonomous vehicles. In the KITTI dataset, there are 7,481 
labelled images with an average resolution of 1350x350. Basic classes of interests are 
taken into consideration, including car, van, pedestrian, and cyclist. In the number of 
instances of car objects in KITTI are much higher than pedestrians and cyclists. Taken a 
balance between the class instances into account, 4,000 images were adopted, including 
all pedestrians and cyclists images for training, validation, and test with a proportion of 
8:2:2. All images were scaled to 640×640 resolution, labels are normalized. Motivated by 
the latest progress YOLOv4 and YOLOv5, we have exploited CutMix and the image 
mosaic method as the augmentation based on the training dataset with a wider range of 
semantic variations. 

Firstly, we have identified the optimized network to achieve the best mAP@0.5IoU based 
on the existing hardware. Fig. 6.5 (a), (b), and (c) show Floating Point Operations 
(FLOPs), involved network parameters and final mAP@0.5IoU results respectively for 
sets of width and depth multiples based on FlexiNet baseline architecture. Interestingly, 
there is a considerable difference in FLOPs and network parameters as the network goes 
deeper and wider; however, the trends are not the same with precisions achieved. These 
statistics indicate that overparameterization leads to overfitting, the models become too 
complex to be generalized. It is to note that GPU assigned by the Colab for these 2D road 
scene perception is Tesla P100-PCIE with 16 GB memory. 

mailto:mAP@0.5IoU
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(a)                        (b)                       (c) 

Fig. 6.5. Network scaling results. (a) FLOPs executed at different sized networks (b) 
Parameter stored at different sized networks (c) mAP@0.5IoU obtained at different sized 
networks (GPU memory- 16GB). Note: from (Mehtab and Yan, 2022) In Multimedia 
Tools and Applications 

    As shown in Fig. 6.5(c), increasing the width of the network renders a significant 
improvement in the precision initially; however, it eventually results in sinking the 
performance. On the other hand, going deeper into the network improves the results at 
first, whereas later comes to saturation carrying excessive computational and storage 
overhead (Mehtab and Yan, 2022). 

 

Fig. 6.6: FlexiNet performance on various batch sizes based on Adam Optimizer with 
finalized network size. Note: from (Mehtab and Yan, 2022) In Multimedia Tools and 
Applications 

    For the given dataset, FlexiNet attained 87.8%mAP@0.5IoU with the 
width_multiple 0.50 and depth_multiple 0.33, exploiting the minimum hardware with 

mailto:87.8%25mAP@0.5IoU
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Adam optimizer (Kingma, Diederik, and Jimmy 2015) by using the GIoU bounding box 
regression loss function (Zheng et al., 2020). In the investigation of batch size, we have 
tested the network performance on various batch sizes; however, FlexiNet gave the best 
results on 16 batch sizes, as shown in Fig. 6.6. 

   

(a)                  (b)               (c) 

Fig. 6.7. Training and validation results based on Adam and SGD optimizer functions. (a) 
mAP@0.5IoU curves obtained based on training dataset (b) obtained recall values based 
on the training dataset and (c) objectness loss curves based on the validation dataset. Note: 
from (Mehtab and Yan, 2022) In Multimedia Tools and Applications 

    In Appendix A.3, optimization algorithms make changes in the network parameters 

based on the gradient descent during backpropagation. However, the changes are 
considered after processing a number of images based on the batch size. In the prime 
consideration is to choose a batch size that is neither too small to make the output noisy 
nor too large to make the convergence slow. We have shown the results of three outcomes 
4, 16, and 32 batches tested. Fig. 6.6 illustrates that batch 16 is performing the best on the 
proposed network in all three metrics considered, i.e., mAP, recall and validation loss. 
addition, the performance was further tested based on 64 and 128 batches, though initial 
results showed a lower performance as compared to 16 and 32 batches. 

    Optimizer selection plays a vital role in the performance of deep learning pipeline. 
In order to improve the accuracy of the results, we have investigated the effect of the SGD 

optimizer with respect to Adam on our final network with hyperparameters set based on 
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empirical testing (learning rate 0.01, momentum 0.94 and weight_decay 0.05×10-1). Fig. 
6.7 depicts the results of the SGD with momentum vs Adam optimizer, illustrating the 
lead of SGD over Adam by achieving 92.70% mAP and 87.4% recall based on the given 
training dataset. However, Adam started a fast convergence in the initial training phase 
but couldn’t lead to the desired outcome eventually (Mehtab and Yan, 2022). These results 
further validate the work of (Choi et al. 2019; Wilson et al. 2017), adaptive methods are 
prone to getting influenced by spurious features that limit the neural networks finding 
out-of-sample generalization. However, it is also claimed that with a manually selected 
learning rate, SGD is guaranteed to converge to a local minimum, but the convergence 
remains slow; however, it overweights the remaining optimizer in overall performance if 
the momentum term is also included with SGD (Wilson et al., 2017).  

 

(a)                   (b)                 (c) 

Fig. 6.8. Training and validation results based on GIoU, DIoU and CIoU loss functions. 
(a) mAP@0.5IoU curves based on the training dataset (b) the loss curves of the bounding 
box, and (c) the loss curves based on the validation dataset. Note: from (Mehtab and Yan, 
2022) In Multimedia Tools and Applications 

    In Section 4.2.3, IoU loss has institutive significance in the bounding box regression. 
In this is the final metric for non-max suppression in finalizing detection boxes. Based on 
their relevance, three different IoU loss functions are investigated; GIoU (Rezatofighi et 
al., 2019), DIoU and CIoU (Zheng et al., 2020). 

mailto:mAP@0.5IoU
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    Fig. 6.8 shows the results obtained by using different IoU loss functions. GIoU was 
the first major introduced IoU-based loss algorithm. It is the most popular one that focuses 
on the overlapping region of ground truth and predicts bounding boxes, and considers 
their non-incidental areas. Although it is much clear from the three figures that DIoU and 
CIoU losses converge faster compared to the GIoU loss function, thereby give better 
accuracy. In the DIoU and CIoU produced 1~2% better results because of the special 
cases if the predicted box directly fits inside the ground truth box completely; however, a 
size difference exists between them (Mehtab and Yan, 2022). 

  

 

(a)                         (b) 

Fig. 6.9. FlexiNet results based on the detection dataset (a) Obtained precision and recall 
values at 0.5IoU threshold at different intermediate checkpoints (b) Precision and recall 
results over the cars, pedestrians and cyclists objects by exploiting the best checkpoint. 
Note: from (Mehtab and Yan, 2022) In Multimedia Tools and Applications 

    In Fig. 6.9, the FlexiNet results obtained based on the detection dataset are depicted 
at different epochs taking three IoU thresholds into consideration regarding individual 
classes,  
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Fig. 6.10: Confusion matrix of the models taken into consideration for result evaluation 
based on the detection dataset for multiple classes, i.e., car, pedestrian, and cyclist. All 
results are evaluated on the same platform with 0.50 IoU threshold. 

taking DIoU loss, and SGD optimizer with momentum into account. order to check the 
overfitting of the model, the model performance is tested at the intermediate checkpoints 
(Mehtab and Yan, 2022). Fig. 6.9(a) indicates that at 120 epoch, the model achieves the 
best performance with 86.39% average precision and 93.86% recall with 0.50 IoU; 
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however, its trend towards overfitting the model needs further training. Fig. 6.9(b) reveals 
the results of cars, pedestrians, and cyclists classes with respect to 0.70, 0.50 and 0.20 
IoU thresholds (Mehtab and Yan, 2022). Section 4.6, the precision and recall values are 
directly proportional to true-positive; whereas precision is inversely proportional to false-
positive rates and recall to false-negative ratio.  

    The proposed network proves to be efficient in achieving high recall, whereas slight 
low precision indicates the existence of false-positives, i.e., false detection of non-
existing objects in the results. Fig. 6.9(b) shows that over cyclist class, the model has 
attained the poorest precision though with the best recall; on the other hand, car objects 
attained 87.22% precision and 95.29% recall at 0.70 IoU. Although the precision results 
give a margin of improvement in the proposed solution, the results obtained with 0.2IoU 
thresholds are promising compared to 0.50 IoU and 0.70 IoU as expected for obvious 
reasons; however, the cyclist class achieves 99.3% recall in all consideration of IoU. 

In this section, the results are compared with the state-of-the-art object detection models. 
All models are executed on the same platform by using the same datasets. In the 

benchmark KITTI dataset gives three complexity criteria, named “Easy”, “Medium”, and 
“Hard”, for visual object detection based on the size, occlusion level, and truncation score 
in Section 4.3. 

    Confusion matrices of detection results obtained are presented in Fig. 6.10, depicting 
total true-positive, false-positive, and false-negative number. EfficientDet has shown the 
poorest performance by attaining the highest false-negative number in all instances and 
worst for cyclists. Given insight into it, we found that EfficientDet and Faster R-CNN 
couldn’t generate enough discrepancy between cyclists and pedestrians and also got 
confused with parked cycles as cyclists and thereby led to poor results. 

    Based on the different IoU thresholds, we evaluated the true-positive, false-positive 
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and false-negative numbers based on the prediction results and ground-truth values. That 
was employed to find final precision and recall values as per equations given in Section 
4.3. Confusion matrices of detection results obtained are presented in Fig. 6.10, depicting 
overall true-positive, false-positive, and false-negative number obtained by using various 
models. EfficientDet has shown the poorest performance by retrieving the highest false-
negative in all occurrences and worst for cyclists objects. Given the insights, we found 
that EfficientDet and Faster R-CNN couldn’t make the decision between cyclists and 
pedestrians very clearly and got confused with parked cycles, also considering them as 
cyclists and thereby leading to poor results. evaluating the precision and recall calculation, 
false-positive numbers are considered only to the ones notified in different classes as per 
general standard (Mehtab and Yan, 2022). 

 

(a)                          (b) 

Fig. 6.11: The comparison of FlexiNet model with the state-of-the-art object detectors 
based on test dataset (a) Average precision results at different IoU thresholds (b) Recall 
results at different IoU thresholds. Note: from (Mehtab and Yan, 2022) In Multimedia 
Tools and Applications 

    Fig. 6.11 shows the two-dimensional comparison of the detection models in terms 
of precision and recall at the different IoU threshold values based on the test dataset. 
Results depict that FlexiNet and YOLOv4 (Wang et al. 2020) outperform Faster R-CNN 
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(Ren et al. 2017) and EfficientDet-B1 (Tan, Ruoming and Quoc 2020) at both the metrics. 
Fig. 6.11(b) indicates that FlexiNet achieved the best recall rate over other models. 
Although, YOLOv4 proves better in terms of precision that reveals lower false-positive 
numbers for prediction. In the results also show the trend of decline in the models 
performance with an increasing IoU threshold in general; however, FlexiNet and 
YOLOv4 produced consistent output altogether. 

    Table 6.3 shows the FlexiNet comparison with the state-of-the-art detection models 
using recall, size and fps as attributes. In the KITTI criteria of easy, medium and hard 
challenges as discussed in Section 4.3 is considered. All results are based on 0.5 IOU 
threshold value. Table 6.3 shows the decrease in accuracy with increased challenges over 
all the detectors. From the results, we see that FlexiNet shows a better recall rate than 
other detectors for all three challenging conditions over the classes of cars, pedestrians, 
and cyclists in general.  

    A clear view of the models performance is seen in Fig. 6.12 considering two 
detection images based on each model. Fig. 6.12, the results are arranged in a row-wise 
manner in the sequence of ground-truth, EfficientDet, Faster R-CNN, YOLOv4 and 
FlexiNet, respectively. It was found that in the case of car objects, Faster R-CNN (Ren et 
al., 2017) and EfficientDet-B1 (Tan, Ruoming and Quoc, 2020) achieved reasonable 
accuracies; on the other hand, the same models depicted weak performances in identifying 
pedestrians, cyclists. Especially for the cyclists objects, Faster R-CNN and EfficientDet 
showed difficulty differentiating cyclists from stand-alone cycles or pedestrians. 
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Table 6.3: The comparisons of the FlexiNet model with other popular detectors based on the KITTI dataset with Easy, Medium, and Hard levels of 
complexities at 0.5 IoU threshold, recall is considered the prime metric to be considering the importance miss ratio in autonomous driving scenarios; 

however average precision, model size and inference speed are also taken into consideration. Note: from (Mehtab and Yan, 2022) In Multimedia Tools 
and Applications 

Model Cars 

(recall%) 

Pedestrians 

(recall%) 

Cyclists 

(recall%) 

Average 

Precision 

(%) 

Model 

size    

(MB) 

fps  

Easy Medium Hard Easy Medium Hard Easy Medium Hard 

Faster R-CNN 96.12 76.33 68.68 80.59 66.72 43.58 12.43 9.13 6.76 46.33 7 5 

EfficientDet-B1 96.42 72.62 68.80 80.01 77.23 46.18 17.53 16.32 5.92 53.09 27 15 

YOLOv4 99.42 93.81 90.28 96.38 71.41 74.19 99.99 98.57 83.89 91.78 244 25 

FlexiNet (Our) 99.68 95.01 91.18 98.28 93.32 83.22 99.33 99.32 99.33 83.18 54 100 
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Fig. 6.12: Detection results of four models with three classes, i.e., “Car”, “Pedestrian”, 
and “Cyclist” are depicted..  



 
 

125 

 

 

 

Fig. 6.13: The detection results of car, pedestrian, and cyclist instances by using the 
proposed FlexiNet architecture based on the KITTI dataset, from (Mehtab and Yan, 2021) 
In Multimedia Tools and Applications 

Based on the results of 2D road scene perception, it is justified that network size plays a 
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crucial role in the neural network-based visual object detection method. In the flexible 

architecture of the network is a promising approach to find the optimum sized network. 

In the results show that SGD with momentum performs much better than Adam optimizer 

based on the dataset considered despite much popularity of Adam. Among IoU-based 

bounding box losses, DIoU escalates the network performance by 1~2% precision as 

compared to GIoU. Model capturing is performed at various intermediate checkpoints to 

investigate the overfitting curve, the most promising performance of the model at epoch 

120 was finally employed for detection purposes.  

    The proposed model is compared with the state-of-the-art object detection models. 

Albeit FlexiNet remained unsuccessful in achieving the best precision compared to 

YOLOv4 that can be seen in Table 6.3 and Fig. 6.12. However, it gives the lowest false-

negative number, which is the most accountable factor in autonomous driving. In addition 

to that, FlexiNet gave four times faster speed (i.e., 100fps) compared to YOLOv4. 

Another considerable fact is that training of the YOLOv4 model requires five times more 

memory (around 250MB) as compared to FlexiNet (approximately 50MB) that is a 

considerable measure while executing the model on edge devices with limited resources. 

A few detection results captured by FlexiNet are depicted in Fig. 6.13, where the bounding 

boxes of three classes of interests are shown in various colours with the confidence scores 

(Mehtab and Yan, 2022). 

After successful 2D road scene perception, we narrowed down our research for vehicle 

detection in autonomous driving with the aim of finally dive into 3D vehicle detection. In 

the focus of this section is on finetuning the results of the proposed FlexiNet for 2D 

vehicle detection only. Regarding experimental evaluations of 2D vehicle detection, we 

have followed the same approach of 2D road scene perception in Section 6.2 by using the 

KITTI dataset while considering “Car” and “Van” objects alike for practical reasons. 
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During experiments, 2,400 random images were employed for training and validation 

with a proportion of 8:2:2, respectively (Mehtab et. al., 2021). In the GPU allocated for 

these experiments was Tesla X GPU with 15GB memory. 

 

Fig. 6.14: Image samples of downloaded Waymo segments, the dataset shows varying 
weather and daytime conditions that make it suitable for DNN training in autonomous 
driving. 

    In vehicle detection, the second dataset is the Waymo dataset. In the details of this 

KITTI dataset are already discussed in Section 6.2.1. However, the Waymo dataset is 

briefly introduced in this section. As shown in Fig. 6.14, Waymo contains a variety of 

scene images to train the DNN for all weather and lighting conditions. All images in the 

Waymo dataset have resolution 1980×1280. Unlike KITTI, the Waymo dataset is 
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published in the form of tfrecords files, with continuous track labelled frames. Waymo 

has provided an enormous amount of data in the form of 900 segments, with each segment 

of around 1GB size. We downloaded 35 segments and converted them into KITTI labels 

to be compatible with the existing processing standards of our experiments. It was found 

to contain the night, rainy as well as foggy scenes with mostly car objects in the 

downloaded data segments. Random frames were picked from these collections to make 

our dataset general. Amid the training process, variations in functions such as activation, 

optimization, and loss functions are employed to observe the network performance.  

 

Fig. 6.15: The performance of the proposed scaling network for a set of widths and depths 
based on FlexiNet architecture. Note: from (Mehtab et. al., 2021) In ICCCV 

For the sake of different sets of data and GPU in 2D vehicle detection experiments, the 

structure balancing of FlexiNet was required to get the best performance based on 

available resources. With dynamic neural network scaling, a continuous increase in the 

performance was observed with the width expansion based on the training dataset. 

However, as the depth of the network grew, initially, the performance improved at a fast 

pace, but after going further deep, the performance started degrading and eventually led 

to the abortion of the experiment because of the high GPU storage requirement. It is to 
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be noticed that network scaling requirement varies with the dataset selection. Fig. 6.15, 

FlexiNet attained the best performance at 0.55 depth-multiple and 0.55 width-multiple 

with the assigned training dataset, all experiments ahead were run on this network 

configuration (Mehtab et. al. 2021). 

Table 6.4: The influence of various activation functions on mAP of 2D vehicle 
detection 

Activation Function mAP@0.5IoU(%) Recall(%) 

FReLU 93.38 96.39 

Swish 92.22 91.67 

Mish 92.91 92.23 

Hardswish 94.52 96.38 

  Note: from (Mehtab et. al., 2021) In ICCCV 

    With regard to the activation function fitness in the optimized FlexiNet architecture 

(Mehtab et. al., 2021), FReLU (Qiu and Cai, 2018) and Hardswish (Avenash and 

Viswanath, 2019) outperformed other functions in Table 6.4. Based on the literature 

surveyed, it was found that ReLU-based activation functions give inconsistent results 

(Ramachandran, Zoph and Le, 2017). However, regarding the dataset considered and the 

proposed network, the FReLU activation function has shown promising performance. On 

the other hand, Hardswish, which is a piece-wise linear analog and non-monotonic 

activation function, provides a bump in the negative gradient regions that makes it 

different from swish and mish activations. Based on empirical results (Avenash and 

Viswanath, 2019), it was found that a high percentage of pre-activation weights and biases 

falls in the negative region of bump (-2.50 ≤ x ≤ 0) leading to better convergence in the 

case of Hardswish. Our results validate the previous findings by giving a similar 

performance. 

    In the selection of bounding box regression loss, the performance of DIoU, CIoU 

and GIoU (Zheng et al., 2020) losses were examined, with results shown in Fig. 6.16 (a). 

Fig. 6.16 (b) shows the corresponding mAP curves; DIoU gave 1% better mAP based on 
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the validation dataset over GIoU loss functions. Pertaining to vehicle detection, 1% 

growth in precision is a noteworthy achievement for avoiding road accidents. Although 

CIoU gave a comparable performance to DIoU, it causes extra computation with no 

accuracy improvement based on the results achieved (Mehtab et. al., 2021). 

 
(a)                   (b)             (c) 

Fig. 6.16: 2D vehicle detection training results based on FlexiNet (a) Validation loss 
curves with GIoU, CIoU, and DIoU functions, (b) Network mAP with respect to different 
IoU losses, (c) Network mAP with respect to SGD and Adam optimizers. Note: from 
(Mehtab et. al., 2021) In ICCCV 

    Pertaining to further performance enhancement, the selection of gradient descent 

optimizer for the existing dataset was considered. Fig. 6.17 (c), the results illustrate that 

Adam optimizer (Kingma, Diederik, and Jimmy, 2015) has demonstrated faster 

convergence at the initial stages; however, SGD with momentum proves to be a better 

choice for giving the maximum accuracy whilst keeping a slow learning rate as shown in 

Fig. 6.17(c). In the best results are obtained at a learning rate of 0.01, with the momentum 

of 0.94 using the SGD optimizer. These findings align with the results obtained in Section 

6.1.1. 

Optimized FlexiNet results are compared with the state-of-the-art detection networks on 

the same platform for solely 2D vehicle detection. Table 6.5, it is clear that SSD (Wang 

et al., 2019), YOLOv3 (Redmon, Farhadi 2018), and EfficientDet-B2 (Tan, Ruoming and 

Quoc, 2020) were relatively unsuccessful in providing promising results in the vehicle 



 
 

131 

 

 

detection dataset due to its high occlusion, truncation, scaling and lighting conditions 

present in the KITTI dataset. Although Faster R-CNN achieves 82.9% mAP@0.5IoU 

based on the same platform, its speed is much slower than YOLOv4 and FlexiNet, which 

is not suitable for real-time vehicles detection. 

 

Table 6.5: Comparisons of the proposed FlexiNet with the state-of-the-art detection 
methods for 2D vehicle detection, Note: from (Mehtab et. al., 2021) In ICCCV 

Model mAP@0.5IoU (%) Recall (%) fps 

EfficientDet-B2 31.89 32.12 8 

Faster R-CNN 82.92 56.33 7 

SSD 22.23 12.71 40 

YOLOv3 70.28 22.93 35 

YOLOv4 92.51 - 25 

FlexiNet (our) 94.52 96.41 72 

 
(a)                  (b)                 (c) 

Fig. 6.17: FlexiNet validation loss analysis with multiple networks, (a) FlexiNet 
converges to 1.8% loss at 600 epochs; (b) YOLOv4 converges to 1.8% loss at 2600 epochs; 
(c) Faster R-CNN converges to 12% loss at 3000 epochs. Note: from (Mehtab et. al., 2021) 
In ICCCV 

mailto:mAP@0.5
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    The respective loss curves of FlexiNet, YOLOv4, and Faster R-CNN are shown in 

Fig. 6.17.  

 

Fig. 6.18: Vehicle detection results based on test images of the KITTI dataset by using 
FlexiNet 
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    FlexiNet converges to 1.8% loss in 600 epochs, YOLOv4 achieved a comparable 

loss in 2,600 epochs, and Faster R-CNN shows continuous improvements in the loss but 

could not go beyond 12%. Between YOLOv4 and FlexiNet, there is not much variance in 

the final precision; however, it was observed that FlexiNet generated 94.5% mAP and 

96.4% recall after 4,50 epochs, whereas YOLOv4 gives comparable accuracy after 1,300 

epochs. While testing YOLOv4 model, the batch size could not be increased by more than 

16 with image resolution 640 x 640 based on our 15GB GPU. On the other hand, FlexiNet 

could run efficiently with batch size 64 (Mehtab et. al., 2021). 

    To further test the performance, FlexiNet training and detection on the Waymo 

dataset (Sun, Henrik, and Xerxes, 2020) were conducted. However, despite night and 

rainy images in the Waymo dataset, FlexiNet resulted in 97.25% mAP, 84.92% recall, and 

2.84% object loss, as shown in Fig. 6.19, which is better than the KITTI dataset-based 

performance. One of the reasons for this increased performance is the higher occlusion 

and truncation scenes presence in KITTI over the Waymo dataset. 

 

(a)                   (b)               (c) 

Fig. 6.19: FlexiNet results based on Waymo dataset using DIoU loss, Hardswish 
activation and SGD optimizer functions for 2D vehicle detection in autonomous driving 
(a) mAP curve (b) Recall curve (c) Object loss curve, Note: from (Mehtab et. al., 2021) 
In ICCCV 

    Fig. 6.18 shows the detection results of FlexiNet on test images based on the KITTI 
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dataset. Fig. 6.20 shows FlexiNet detection results based on the Waymo test dataset. 

Hence, we see that the network gives consistent performance in extreme weather and 

night time conditions also (Mehtab et. al., 2021). 

 

 

Fig. 6.20: Vehicle detection results based on test images of Waymo dataset by using 
FlexiNet 
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Pertaining to 2D vehicle detection, FlexiNet is trained based on KITTI and Waymo 

datasets. Our experiments showed that network scaling resulted in the best performance 

of the proposed network at 0.55 width and 0.55 depth multiples based on the baseline 

framework. In the network achieved the best performance with SGD optimizer using 

Hardswish activation function with DIoU bounding box regression functions. FlexiNet 

showed outstanding results compared to Faster R-CNN, EfficientDet, SSD and YOLOv3 

by a remarkable gap (Mehtab et. al., 2021). Although YOLOv4 gave comparable 

precision with real-time inference speed, considering the training time and computing 

complexity of YOLOv4, it is justified to say FlexiNet is the best possible solution for 2D 

vehicle detection based on the dataset used. In the results obtained in 2D vehicle detection 

would be further utilized for 3D detection with additional LiDAR point clouds 

information in Section 6.4. 

In this section, we focus on the results obtained using the proposed 3D vehicle detection 

method in Chapter 5. Hereinafter, we would analyse the results based on 3D box size 

(dimensions) and orientation accuracy achieved by using the proposed DNN and the 

efficiency of the 3D centre extraction method based on the sparsity of LiDAR 3D point 

clouds. 

    For training and testing of the 3D vehicle detection model, we have utilized the 

benchmark KITTI dataset (Geiger et al., 2013) and Waymo datasets (Sun, Henrik, and 

Xerxes, 2020), already discussed in Section 6.2 and Section 6.3. For each dataset, 2,400 

images were taken into account for the experiments that were split into the ratio of 8:2:2 

for training, validation, and testing purposes (Mehtab et. al., 2021). In the proposed 

method is based on existing 2D vehicle detection results that have been predicted using 

FlexiNet in Section 6.2. 
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    In the first part of the experiment, 3D box sizes and orientations of vehicles were 

estimated by using the proposed DNN (Mehtab et. al. 2021). As discussed in Section 4.3, 

MobileNetV2 has been exploited as a features extractor with the replacement of the fully 

connected layers for our specific requirement. 2D object detection results were cropped 

into the 224×224 windows so as to train the proposed DNN. 

    After predicted the 3D box size and orientation of cars, the centre detection was 

targeted. By projecting LiDAR point clouds on the 2D detection windows of car objects, 

the 2D centres were transformed into 3D using trigonometrical geometry, taking the size 

and orientation into account, as discussed in Section 5.4, the results obtained by using 

each module are presented and analysed.  

Learning rate is the most important hyperparameter to be considered during neural 

network training. Learning rate makes the change in the network weights based on the 

loss occurred as given in Eq. (3.7). However, learning rate selection is a crucial factor. A 

too-large learning rate can skip the global minima; on the other hand, a too-small learning 

rate may get the network stuck in local minima, given a false impression of global minima. 

Also, a small learning rate causes an increase in the training time enormously. Therefore, 

empirical testing is performed to find the most suitable learning rate, which resulted in 

0.001 with the SGD optimizer (Mehtab et. al., 2021). 

    Another term that plays a vital role in network optimization is for skipping the local 

minima and making convergence fast is “momentum”. Momentum in combination with 

the learning rate makes the convergence smooth and increases the accuracy. a neural 

network, momentum tracks the exponentially weighted average of previous gradients and 

stabilizes the convergence as discussed in Appendix-A. Ideally, the momentum lies in the 

range [0, 1]. our experiments, the momentum value is considered 0.9, prioritising the 

latest gradient. Analogously, the momentum can be considered as a marble rolling down 

the hill towards its valley. Although marble may fall into a small dip at the intermediate 
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stage, due to its momentum successfully jumps out; however in the case of global minima, 

it loses sufficient kinetic energy and falls back into the valley. 

 6.4.1.1 Result analysis based on the KITTI dataset 

For predicting the 3D box sizes and orientations of cars, we tested the proposed DNN 

on image datasets as well as early fused datasets (point clouds projection on image). 

 
(a)                   (b)                 (c) 

Fig. 6.21: KITTI Dataset single frame (a) LiDAR point cloud (b) Image of the same 
scene (c) Early fusion of point clouds and image by projecting point clouds onto the 

image. Note: from (Mehtab et. al., 2021) In ICVNZ 

 
  (a)                    (b) 

Fig. 6.22: The comparison of validation loss results of the proposed DNN for early fused 
vs image only input data formats based on KITTI datasets (a) accuracy achieved for 
predicted 3D bounding boxes size (b) accuracy achieved for vehicle orientation prediction. 
Note: from (Mehtab et. al., 2021) In ICVNZ 
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    Fig. 6.21(a) shows an example of LiDAR BEV point clouds of the KITTI dataset. 

Fig. 6.21(b) displays the RGB image of the same frame. On the other hand, Fig. 6.21(c) 

depicts early-stage fusion (Mitchell, 2007) of image and point clouds. Our experimental 

results based on the KITTI validation dataset are shown in Fig. 6.22; it was found that the 

images only are better for features extraction without extra computational cost, as in the 

case of early fusion dataset (Mehtab et. al., 2021).  

    Fig. 6.23 represents the detection results of the proposed DNN with respect to 

distances from AV. Based on the experiments, the network performance is most promising 

in the 20~50 meters range using camera images. In the proposed network gives 83.54% 

average accuracy of 3D box size and 77.39% average accuracy over orientation. our 

experiments, the loss function coefficients 𝛼𝛼 and 𝛽𝛽 were set to 6.0 and 3.0 respectively 

based on empirical test results. Although the results showed a marginal gap of accuracy 

for closed range vehicles in the range of 0~10 meters, the reason lies in the complexity of 

the dataset, where there is a high degree of truncation and occasion in appearances that 

caused some degradation of results. 

 
(a)                          (b) 

Fig. 6.23: The detection results of the proposed DNN over distance range based on the 
KITTI test dataset, (a) 3D box size prediction accuracy w.r.t range (b) orientation 
prediction accuracy w.r.t range. Note: from (Mehtab et. al., 2021) In ICVNZ 
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 6.4.1.2 Result analysis based on the Waymo dataset 

For further verification, we checked the network performance on the Waymo dataset (Sun, 

Henrik, and Xerxes, 2020) by taking into account the night and rainy scenes. Fig. 6.24 

shows the validation results obtained through different extremities of the network based 

on the Waymo dataset. Compared to the KITTI dataset, using the Waymo dataset, the 

proposed network achieved better results, 99.5% accuracy in terms of orientation, as 

shown in Fig. 6.24(a). However, the prediction loss of the size of 3D bounding box 

converged at 15%, as shown in Fig. 6.24(b). 

 

    (a)                         (b) 

Fig. 6.24: The validation loss results of the proposed DNN based on Waymo datasets (a) 
3D box size prediction accuracy w.r.t epochs (b) orientation prediction accuracy w.r.t 
epochs. Note: from (Mehtab et. al., 2021) In ICVNZ 

Fig. 6.25 illustrates the results of intermediate steps of the proposed algorithm. Fig. 6.25(a) 

shows that 2D bounding boxes were obtained with their confidence scores by using our 

previous 2D vehicle detection based on FlexiNet. Each proposal was fed into the proposed 

DNN net to yield the size and orientation of 3D bounding boxes around car objects. Fig. 

6.25(b) displays the projected point clouds on the image (Mehtab et. al., 2021). During 
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projection, only the point clouds within the 2D detection windows were considered, 

trimming the ground points based on the LiDAR vertical distance from the ground. In the 

remaining point clouds gave a clear view of the car objects with their depth values as an 

added information channel. Points colours in the cloud notify the distancing from AV. Fig. 

6.25(c) shows the 2D centre of detected cars by using small circles (i.e., p1) with the depth 

values estimated by using projected point clouds, whereas the outermost 3D points based 

on the car surface using 2D central vertical-axis are represented with big circles (i.e., p2). 

Integration of p1 and p2 gives 3D car centres projection on the 3D bounding box surface. 

 

Fig. 6.25: (a) The example of predicted 2D bounding boxes based on the KITTI dataset 
(b) The projected LiDAR point clouds onto 2D detection windows of image after ground 
points removal (c) The small dots show the centres of 2D bounding boxes whilst the big 
dots depict the maximum bulged out 3D surface points across y-axis of the 2D centres (d) 
Based on estimated 3D centres, sizes, orientations and poses of 3D bounding boxes of 
cars. Note: from (Mehtab et. al., 2021) In ICVNZ 

    These centre projections were further extended inside the car to estimate the inner 

3D centre distance by exploiting the orientation and dimensions predicted information 

along with the cars pose. Furthermore, these 3D centre points were converted back into 

world coordinates by using inverse projection and inverse rotation-translation matrices. 

In the finally positioned 3D bounding boxes of cars are presented in Fig. 6.25(d).  
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Fig. 6.26: The test results of 3D car detection based on the KITTI dataset by using the 
proposed model 
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Fig. 6.27: The test results of 3D car detection based on the Waymo dataset by using the 
proposed model 
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Fig. 6.26 depicts sample 3D vehicle detection results with the proposed algorithm based 

on the KITTI test dataset, including extreme weather and lighting conditions, Fig. 6.27 

illustrates 3D vehicle detection results based on the Waymo test dataset. In the object 

detection results show that even in extreme weather conditions, the network shows good 

3D detection results (Mehtab et. al., 2021).  

Pertaining to the proposed solution on spars point clouds, we have converted the KITTI 

point clouds into 32 and 16 beams keeping one set in the original 64 beams format as 

shown in Fig. 6.28. On the left side of the figure, raw point clouds with different densities 

are depicted, whereas the right side presents the projection of the point clouds on the area 

under consideration in the images. 

    A noticeable factor in these images is the pattern of sparse point clouds that give 

continuous information on the horizontal axis and misses information on the vertical 

plane. Taken advantage of this fact, the proposed solution relied only on the closest points 

from AV in the cars clusters and the outermost points on the cars surface closed to the 2D 

central vertical line to get their 3D central distances. In the reason for seeking a point on 

the vertical axis is to extract the outermost point on the 3D box surface. 

The comparison of accuracies achieved over distances with different point clouds 

densities, i.e., 16, 32 and 64 are shown in Fig. 6.29. In the experimental outcomes show 

that sparse point clouds also give a remarkable performance with the proposed solution 

up to 40 meters range. On the other hand, Table 6.6 represents the overall inference time 

for positioning vehicles in 3D space. Presented results depicts that inference speed is 

inversely proportional to the point clouds density for involved in less computation than 

denser point clouds. 
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Fig. 6.28: Two sample frames of KITTI point clouds presented into 64 beams, 32 beams 
and 16 beams density LiDARs form for model testing. Left images are the raw point 
clouds in BEV presentation, and the right images are projected point clouds onto image 
coordinates in 2D detection windows with ground points removed. Note: from (Mehtab 
et. al., 2021) In ICVNZ 
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Fig. 6.29: The evaluations of the proposed model performance by using 64, 32 and 16 
beam density point clouds over distances based on the KITTI dataset,  Note: from 
(Mehtab et. al., 2021) In ICVNZ 

Table 6.6: Analysis of inference speed of the proposed model with 64, 32, and 16 
beams point clouds based on the KITTI dataset. 

Beam Density Inference Time (seconds) 

64 .224 

32 .212 

16 .206 

Note: from (Mehtab et. al., 2021) In ICVNZ 

In this section, we summarize the 3D vehicle detection results of the proposed 

MobileNetV2-based DNN by using camera RGB images and LiDAR point clouds based 

on 2D detection results. In the proposed algorithm has exploited camera images to predict 

the 3D box size and orientation of cars in 2D detection windows and LiDAR point clouds 

to estimate their central distances from AV in real-world coordinates. In the most 
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promising aspect of this solution is that the algorithm does not heavily rely on the density 

of point clouds but leverages the continuous horizontal streams of LiDAR emission that 

are always present with sparse point clouds (Mehtab et. al., 2021). 

    Although the algorithm doesn’t provide the best accuracy, it offers a cost-effective 

solution over the existing methods that rely on costly LiDARs to achieve high 

performance. Fig. 6.30 depicts the reliability of the network results up to 40 meters range, 

although results fell drastically after 50 meters distances with Velodyne LiDAR. With the 

latest Velodyne and Luminar latest solid-state LiDAR that provides sparse point clouds 

but up to 250 meters range accuracy with 120 degrees horizontal and 30 degrees vertical 

field of view (Aijazi et. al., 2020). Using these new solid-state LiDAR, results are 

expected to show high improvements over range constraint with the proposed algorithm. 

Two or more LiDAR can be assembled in the system to make the solution robust. 

 

 

  



 
 

147 

 

 

In this chapter, we have summarized the subject and methods in 

this course of research with the outcomes. In the light is shed on 

the research areas that give a new direction according to the 

results achieved and the insufficiency of the experiment, 

preparing for future work. 
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AVs have relied on multiple sensors, conventional machine learning, computer vision 

methods, advanced deep learning-based algorithms, and powerful GPUs to improve the 

autonomous driving experience. Although multi-perceptron neural networks have been 

known for a long time, the parallel processing power of GPUs has supported the parallel 

execution of the neural networking, thereby making the solutions practically acceptable 

in real-time scenarios. GPU works with thousands of cores designed to handle multiple 

tasks simultaneously. 

    On the other hand, recent libraries of neural networks keep image-based inputs, 

outputs, and intermediate parameters information in the form of multidimensional tensors. 

In the software architecture of these libraries takes advantage of GPU parallelism to make 

execution faster and allow implementation in real-time scenarios. In the most significant 

development in the field of computer vision based on neural network practices is CNN. 

CNN is a class of deep learning models for processing data that has grid patterns, such as 

images, that iteratively learns spatial features with the help of progressive abstraction at 

every layer by using kernel patterns. In the proposed solutions, PyTorch and Tensorflow 

based CNN libraries are employed, which are low-level APIs that perfectly fit with the 

python platform. In the following sections, the conclusions are drawn based on the results 

achieved by using proposed 2D and 3D detection methods. 

In 2D road scene perception, we explored the power of flexible neural networks based on 

CNN (Mehtab et. al., 2021). In the proposed architecture provides a unified framework 

for the detection of car, pedestrian and cyclist objects. In the network model has been 

coded on PyTorch-based framework, which is a high-performance library with 

optimization support for scientific computing operations using Python tools (Chollet, 

2017). In the architecture is designed by using a baseline CNN model that can be finalized 

in size based on the depth_multiple and width_multiple attributes. In the main idea behind 
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the proposed solution is to allow flexibility in model selection and investigate the results 

based on the different number of layers and channels in the CNN. In the proposed 

architecture is designed using CSPNet as the building block in the network, which has 

been successfully exploited in YOLO latest versions. In the CSPNet not only carries 

forward the spatial gradient information using skip connections but also controls the 

enormous amount of parameters based on the partial transition blocks.  

    Influenced by YOLO, FlexiNet architecture is comprised of backbone and head 

modules. At the features extraction level, three-stage extraction is drawn to retrieve 

features from different levels of abstraction of convolution layers. In the head part of the 

network is based on a feature pyramid network to detect multiscale objects at multiple 

levels of features. In the detection layer works for the promising objects using different 

sized anchor boxes. An auto-anchor generation method is exploited in the proposed 

algorithm based on k-means clustering to generalise the network for different datasets. 

Multilevel detection resulted in multiple detections for the same object that was finally 

removed by using a non-max suppression algorithm that keeps the ones with high object 

scores. 

    Result evaluation is conducted in comparison with the state-of-the-art detectors such 

as YOLOv4, EffiecientDet-B2, and Faster R-CNN. FlexiNet is leading other models in 

terms of recall, inference rate, and storage size with the scaling factors of width at 0.50 

and depth at 0.33 as shown in Fig. 6.5, exploiting the minimum hardware with batch-size 

16, SGD with momentum optimizer and DIoU loss function, based on Tesla P100-PCIE-

GPU with 16 GB memory. However, YOLOv4 has shown the highest precision pertaining 

to fewer false positives, however, for an AV prediction, an extra non-existing object is 

less hazardous than non-predicting an existing one at all. In the proposed model 

outweighs other algorithms by achieving an average recall of 95.86% based on the 

detection dataset as presented in Table 6.3, where other algorithms faced differentiating 

pedestrians and cyclists, FlexiNet has attained good accuracy and real-time performance. 
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In 2D vehicle detection, road scene perception problem is narrowed down to vehicles 

only with the aim of further using these results in 3D vehicle detection. 2D vehicle 

detection, the baseline architecture of FlexiNet was investigated with the dataset-based 

on vehicle objects and hardware available (Mehtab and Yan, 2022). In the architecture 

was investigated at different widths and depths to achieve optimized results. In the scaling 

results showed that increasing the width and depth to a great extent naively is not always 

the best solution to achieve the optimum accuracy and leads to high computational 

complexity with an extra storage cost. Based on the TESLA X GPU with total_memory 

approximating 15GB, fixing a batch size of 16, the network showed the best outcomes at 

0.55 depth_multiple and 0.55 width_multiple as shown in Fig. 6.15. In the network was 

further finetuned by using different optimizations.  

    The results showed superior performance in comparison to the state-of-the-art visual 

object detection algorithms with SGD optimizer, Hardswish activation and DIoU 

bounding box regression loss. We have attained 94.5% mAP based on the KITTI dataset 

while 97.5% on the Waymo dataset using 0.50 IoU threshold values as shown in Section 

6.3.1. With FlexiNet converging to 1.8% loss in 600 epochs, YOLOv4 achieved a 

comparable loss in 2,600 epochs, Faster R-CNN shows continuous improvements in the 

loss but could not go beyond 12.0% as shown in Section 6.3.2. There was not much 

variance between YOLOv4 and FlexiNet in the final precision; however, there was a rich 

assortment of computational difficulties while executing YOLOv4. 

The proposed 3D vehicle detection is a simple yet effective method for predicting 3D 

bounding boxes of cars and vans based on the information received from front view of 

RGB images and top-mounted LiDAR 3D point clouds (Mehtab et. al., 2021). In the 
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proposed solution utilizes the basic fact that the 3D centre of a car is the translation of the 

2D centre in the world coordinates and takes advantage of well-developed 2D vehicle 

detection. In the proposed work is a two-step solution that firstly regresses the size of 3D 

bounding box and the orientation of vehicles by using a MobileNetV2-based DNN. 

Subsequently, the 3D centres are estimated by using LiDAR point clouds. Basic 

trigonometric geometry is applied to exploit car predicted pose, size and orientation of 

3D bounding box to make a distance estimation using 3D point clouds. In the algorithm 

takes advantage of horizontal streams of sparse point clouds and finds the closest points 

and centre points in world coordinates form for each car in the AV field of view. In order 

to tackle the occlusion problem, a relative distancing between occluded and front cars is 

exploited based on the available closest points. 

    For result analysis, KITTI point clouds were transformed into three density patterns 

of 64, 32, and 16 beams point clouds as shown in Section 6.4.3. In the performance was 

further tested by using the Waymo dataset that contains extreme weather and challenging 

night scenes. Based on the experiments, we found that the performance is most promising 

in the 20~50 meters range using camera images, achieved 85.7% accuracy of size and 

79.7% accuracy of orientation of 3D bounding boxes based on the KITTI dataset as shown 

in Fig. 6.23. On the other hand, the network obtained even better results on the Waymo 

dataset, namely, 99.50% accuracy in terms of orientation and 84.90% accuracy for box 

size prediction as shown in Fig. 6.24. In this work contributes most in the direction of 

achieving a low-cost solution for 3D vehicle prediction in autonomous driving using 

sparse LiDAR and camera sensors. 

Based on the results achieved, the scope of further improvement was noticed in the 

proposed methods that can be focused on in future for increasing the accuracy of detection 

ahead. In the following sections, the areas are recommended aiming at the research 
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directions for progressing in the given field of research. 

Based on the results achieved by using FlexiNet architecture, we have successfully 

attained desired recall over different classes, i.e., car, pedestrian, and cyclist. However, 

the models detect false-positive numbers that are misleading and demand refinement in 

the existing network. In future, we will work on improving precision in the proposed 

network. At present, the backbone network is carrying forward with unnecessary 

information that would have been better dropped off. We can have changes in the feature 

extraction network with additional pooling or kernel-size/stride change in the 

convolutional layers. Investigation can also be performed with the shortcut connections 

in the FPN at the detection level. 

Although LiDAR gives accurate distance estimation, its performance diminishes as the 

objects stand farther from it. In the proposed 3D detection results have shown high 

accuracy in the range of 40 meters; however, mathematical perspective transformation 

can take over as an alternative measure for long-distance objects where laser rays become 

sparse and not strong enough to estimate object distance directly. Perspective 

transformation is a simple and intuitive approach based on the relative distancing and size 

of visual objects. In order to use the perspective transformation, we need to have prior 

information on the accurate distance of objects in a similar pose and in a closed range of 

AV where laser rays are capable of generating accurate results. To make it simple, the 

pose standards can be determined in advance to estimate the distance of long-range 

objects.  

In the currently proposed methods, 3D detection is restrained to vehicles only, excluding 

pedestrians, cyclists and scooterists. In future work, we would include these vulnerable 
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road users also in 3D road scene perception. In the present proposal, a MobileNetV2-

based feature extractor was deployed for estimating size and orientation of 3D bounding 

box. However, with the CSPNet-based backbone network, we would expect to retrieve 

more delicate features, thereby improve the robustness of 3D bounding box sizes. addition, 

the proposed solution would effectively comply with promising solid-state LiDAR, which 

claims to give accurate results within 120 meters of range with spars point clouds at a 

reasonable cost (Aijazi et. al., 2020). In the experiment could be performed using these 

low-cost LiDARs and synchronized RGB images to verify the findings. 

Extensive research work can be completed for merging 2D and 3D vehicle detection 

architecture to exploit the same features of images for both purposes. As we know that 

CSPNet has proved itself in retrieving high level and fine-grained features of images, 

networks integration would benefit the results in either way. In addition, networks 

integration will accelerate 3D vehicle detection speed immensely. PyTorch-based 

framework would provide much flexibility for network designing and optimization.  

The proposed research work would not only improve the accuracy of results but also 

accelerate its detection speed and resources usability. We look forward to much improved 

results by using the latest solid-state LiDARs to validate the efficiency of the proposed 

method. 

In the whole course of the study, multiple approaches were tested for attaining good 

detection results; however, they would have been dropped off for not fulfilling 

expectations. 

 We conducted an investigation of the YUV colour coding scheme over RGB. It 

encodes a colour image taking human perception into account (Podpora et al., 2014). 
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Human eyes have minor sensitivity to colours, while the accuracy of the brightness or 

luminance information has a substantial impact on the image recognition,  Where Y 

stands for the luminance component, U and V are the chrominance (colour) component. 

In the YUV colour scheme, U and V signals are significantly compressed than Y 

luminance. YUV can be more illumination independent, which means that the shadows 

and illuminations changes don’t affect it much. In order to work with YUV, we firstly 

converted RGB images provided by KITTI into YUV using Python tools before feeding 

them into the network for any processing. However, the proposed DNN results did not 

show up any major benefits at the expense of an additional computation cost, so the idea 

was dropped. 

 Spatiotemporal images have been employed in human action recognition and data 

mining tasks successfully in many applications. We also worked on the investigation of 

spatiotemporal images for the fact that foreground objects would have strong spatial 

changes as compared to background objects, which could result in the better training of 

the neural network in the detection of foreground objects. However, our experimental 

results didn’t present any additional benefits for object detection based on the KITTI 

dataset; in fact, that resulted in excessive computational and storage costs. One of the 

reasons for this outcome might be large-time laps between consecutive frames present in 

the KITTI dataset. 

 2D road scene perception was investigated by using front-view projection images of 

LIDAR point clouds; however, the results led to decay in precision compared to camera 

RGB images. Experiments were also performed to test the early fusion performance based 

on our network; LiDAR point clouds were projected on image coordinates using affine 

transformation and passed into the proposed DNN; however, this also showed downside 

performance with computational overheads. 

 Influenced by the high reflectance of cars surfaces, the intensity values of LiDAR 

point clouds were also considered for vehicle detection; however, the results were not 
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very promising and suggested the presence of cars in mat colours as well and thereby 

misleading to the detection. 

In terms of the novelty of this thesis, we found that a fixed DNN size does not tend to 

achieve the best results on any hardware and dataset, however a fine tuning of net size 

based on available resources is a promising approach to extract optimized results. In the 

proposed FlexiNet detection architecture that is based on the CSPNet backbone structure, 

has shown exclusive results on car, pedestrian, and cyclist road scene objects in a single 

stream, where the state-of-the-art networks faced difficulty in distinguishing pedestrians 

and cyclists, FlexiNet has shown promising results that are seen in Section 6.2.3. 

    In this thesis, we present a simple and effective solution to move from 2D to 3D 

vehicle detection. It primarily acknowledges the fact that a 2D centre of a vehicle is the 

projection of 3D world coordinates on an image. If we have 2D centres of vehicles on an 

image then through reverse calculation, we can retrieve 3D centre coordinates also. In the 

proposed solution, firstly, we predicted the 2D centres of vehicles by using FlexiNet and 

in the late section, available LiDAR point clouds were projected on the 2D detection 

windows to map their 3D centres. To move from vehicle surface to inner 3D centres, 

trigonometric geometry concepts has been exploited based on the predicted dimensions, 

orientations and pose of vehicles using images as presented in Table 5.1. 

    Based on the literature reviewed, the existing 3D vehicle detection methods have 

relied on expensive 64 beam dense LiDAR point clouds. On the other hand, the proposed 

solution looks for the optimum solution using sparse point clouds and minds the pattern 

of LiDAR point clouds that always sweeps in the horizontal direction as shown in Fig. 

6.28. In sparse LiDAR point clouds, we see the gap in the vertical plane, however, the 

horizontal points are always continuous. In the proposed solution can successfully 

retrieve 3D centres of vehicles up to 40 meters in range by using sparse point clouds as 
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shown in Section 6.4.3. 

    Reviewed literature depicts that most 3D object detection has been tested on the 

benchmark KITTI dataset, despite having a high level of complexity KITTI dataset lacks 

night and rainy scenes and for practical reasons, it is necessary to train and test AV 

detection applications for such scenarios. In this thesis, another open dataset namely 

Waymo is taken into account which possesses many nights and foggy scenes in addition 

to the variety of environments and promotes the researchers for training the network with 

different environments. 
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