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Abstract

Given diverse and intricate nature of traffic scenes, it becomes imperative to

comprehend the scene from multiple perspectives and dimensions. In scenes that entail

hierarchical relationships and demand a comprehensive grasp of global context, the

evaluation of deep learning models hinges on the capacity to handle high-level semantic

representation and processing. The models with superior capabilities in understanding

hierarchical relationships and excelling in global and local feature extraction are widely

regarded as the ideal choices for addressing the challenges of traffic scene

understanding.

In this thesis, we undertake a comprehensive exploration of vehicle-related scene

understanding using deep learning, from multiple perspectives. Initially, we delve into

semantic segmentation and vehicle tracking from a 2D viewpoint. Subsequently, we

extend this analysis from 2D to 3D, estimate scene depth and inter-vehicle distances

from 2D images for understanding the scene from a different perspective.

To enhance scene analysis, we investigate the fusion of pose and appearance as

features. Additionally, we make efforts to improve the understanding of local and global

features within the models. This involves restructuring the models through the

incorporation of attention modules and Transformer, as well as replacing tracking

algorithms and adding distance estimation vector.

Furthermore, this thesis integrates four distinct tasks: Scene segmentation, vehicle

tracking, distance estimation, and depth estimation. These integrated approaches yield a

more sophisticated and specific scene understanding, encompass not only a horizontal

analysis from a 2D perspective but also a vertical understanding from a 3D perspective.

Keywords: Traffic scene understanding, deep learning, scene segmentation, vehicle

tracking, distance estimation, depth estimation, attention module, Transformer.
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Chapter 1 Introduction

This chapter includes discussion of the challenges and

complexities involved in scene understanding tasks, including

object tracking, semantic segmentation, depth estimation, and

distance estimation and explanation of how deep learning has

emerged as a powerful approach to tackle them. We will also

descript the original contributions the research aims to make to

the field of scene understanding using deep learning. Moreover,

we will overview the novel architectures, methods, or

approaches we plan to introduce or improve upon.
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1.1 Background and Motivation

Intelligent surveillance has been marked as a prominent area of research within the field

of artificial intelligence. As technology continues to evolve, intelligent surveillance has

become more accessible and practical, leading to its extensive adoption on roads and in

the automotive industry. By integrating various disciplines, including computer science,

engineering, computer graphics, digital image processing, computer vision, and

computational intelligence, intelligent surveillance has emerged as a crucial method for

ensuring both public and private safety and security (Yan, 2019).

In the realm of achievements, the advent of autonomous vehicles stands as a

significant manifestation of intelligent surveillance technology. The successful

operation of autonomous driving relies on various essential attributes, and among them

is semantic segmentation. This process is specifically designed to aid the “Central

Processing Unit" for vehicles in comprehending its surroundings, enabling real-time

analysis of each scene and determining the optimal course of action (Gupta et al., 2021).

Autonomous vehicles are required to undertake a diverse range of intricate semantic

tasks beyond fundamental semantic understanding. These tasks encompass discerning

the intricate relationships between objects in driving scenarios and predicting the

behavior of pedestrians, vehicles, and scenes. Autonomous vehicles are use of complex

algorithms and decision-making processes to navigate through traffic and handle

various driving scene. Environmental changes, such as road construction, detours, or

temporary obstacles, may require autonomous system reevaluate its planned route and

make real-time decisions to ensure a smooth and safe journey. Hence, a profound

comprehension of vehicle-related scene understanding becomes paramount for ensuring

the safety of autonomous vehicles, optimizing decision-making processes, and

facilitating seamless human-computer interaction (Yan, 2019).



3

A fundamental component of scene understanding for autonomous vehicles is

spatial perception. Spatial perception provides the necessary information for vehicles to

perceive its surroundings accurately, makes informed inferences about the scene, and

ensures safe and reliable autonomous driving (Guo et al., 2023). Throughout spatial

perception, from a 2D perspective, autonomous vehicles need understand the spatial

relationships between different elements in the scene; also, the ability to perceive the

spatial layout of the scene enables the vehicle to detect and recognize objects in its

vicinity. This includes identifying road boundaries, lane markings, traffic lights, and

obstacles (Perng et al., 2020; Mamun et al., 2022; Guo et al., 2022; Ci, Xu, Lin & Lu,

2022). From a 3D perspective, spatial perception assists the vehicle to estimate the

distance and proximity of visual objects in the scene. This information is crucial for safe

navigation, as it allows the vehicle to maintain a safe following distance from other

vehicles or avoid collisions with obstacles (Alfred et al., 2023; Ming et al., 2021;

Masoumian et al, 2022).

Scene understanding serves as a fundamental pillar of driverless technology, as

vehicles can only make informed control decisions when they accurately and

autonomously perceive the traffic and road scene environment. It has the ability to

provide precise representations and comprehensive understanding of scenes with

valuable knowledge of the surroundings, enabling the completion of various tasks in an

effective and secure manner (Ignatious, 2023; Liu et al., 2019).

The information contained within video scenes is intricate, diverse, and complex.

With the advent of deep learning, employing machine-based perception of scenes, there

exists substantial potential to greatly improve the efficiency of video analysis. The

recent advancements of deep learning have led to its widespread applications,

particularly in computer vision, making it a primary contributor to the prevalence of

such representations in this field (Liu, 2019).
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Moreover, deep learning offers a significant advantage in the form of transfer

learning, benefiting from publicly available datasets and pre-trained networks, which

ease the training process for various traffic scenarios. In the context of vehicle-related

scenes, deep neural networks aim to replicate high-level abstractions present in the data.

Simultaneously, these networks encode the abstractions as robust representations to

comprehend single and multiple objects, scenes in images and videos, and events in the

video (Sarker et al., 2021; Guo et al., 2021; Zhang et al., 2020; Hu et al., 2020).

Currently, deep learning enables comprehensive scene understanding and

explanation from five key dimensions. Firstly, deep neural network possesses the ability

to identify the category of each pixel within the scene. Secondly, it can recognize

specific regions within the environment, with a focus on boundary positions for

enhanced learning. Moreover, deep learning neural network is not only capable of visual

object classification but also proficient in recognizing various environmental scenarios,

such as pedestrian, streets, intersections, parking lots, highways, and more. Furthermore,

it can generate a complete description of events, encompassing left turns, right turns,

overtaking, parking, and other relevant actions based on the features present in the

image.

In contrast to typical machine learning models, deep neural networks have the

capability to acquire more comprehensive semantic information about a scene. There

are numerous deep learning-based tools to develop scene understanding from image

data. The generated description includes detailed object classes, the names of renowned

persons, and the relationships between objects within the scene. Due to its outstanding

accuracy in output and high capacity for semantic learning, deep learning approach

offers significant advantages in the field of scene interpretation.

In the context of vehicle tracking, deep neural networks exhibit greater invariance

to geometric modifications, deformations, and variations in lighting compared to
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conventional techniques. This robustness allows the deep learning approach to excel in

the task of vehicle tracking.

Furthermore, deep learning models exhibit fault-tolerance, parallel processing

capabilities, and self-learning capabilities. These advantageous traits make the model

highly proficient in handling environmental information, replication challenges, and

ambiguous inference rules. Moreover, it can effectively tackle difficulties arising from

size changes and rotational deformations of vehicles. As a result, deep learning models

are well-suited for addressing challenges related to autonomous vehicle tracking (Liu et

al., 2022).

There are two methods for estimating depth in RGB images to understand scene: (1)

Depth estimation from stereo images or videos: Current deep learning techniques can

recover depth information from two or more perspectives (Zheng et al., 2022). This

involves using two horizontally located sensors in a stereo imaging system. The images

captured simultaneously by the cameras are analysed and compared using deep learning

and pattern matching algorithms to determine the disparity and depth map. However,

stereo-matching can be challenging, especially in cases of blurred or poorly lit scenes.

(2) Depth estimation from monocular images: In this approach, depth information is

calculated accurately by using a single perspective image. Deep learning and pattern

matching algorithms are again employed to infer the depth information from a single

RGB image (Lin, Dai &Van, 2020).

Both methods play significant roles in depth estimation for RGB images, each with

its advantages and challenges. The use of deep learning and pattern matching algorithms

has enabled considerable progress in accurately estimating depth from images, though

there are still challenges in dealing with certain scenes, such as poor lighting conditions

and blurred scenes.
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Traditional visual depth estimation approaches rely heavily on multi-view scene

information to recover scene depth from a two-dimensional image through triangle

geometric correspondence (Li, Li, Zhao & Fan, 2022). The methods based on deep

learning utilize CNNs to recreate scene depths, which has been a popular topic among

academics. Traditional methods are computationally demanding and complicated.

Convolutional neural network can be pre-trained by using image data and its

accompanying benchmark depth data, enabling it to accomplish full-resolution

end-to-end image depth estimate during the test.

Distance estimation can be achieved through various methods, with laser detecting

and ranging being a prominent approach for obtaining distance information (Zalevsky et

al., 2021). Laser-based distance measurement has gained significant interest in the

development of Collision Warning Systems. However, LiDAR, while sophisticated, is

costly and yields limited results, making it currently suitable only for testing

automobiles.

Alternative methods for vehicle detection and distance measurement include

ultrasound, infrared, and microwave radar (Aliew, 2022; Özcan et al., 2020). However,

each of these approaches has its limitations. Ultrasound and infrared-based distance

measures have restrictions, while microwave radar is sensitive to interference, leading

to unreliable detection results. Moreover, these methods often struggle to distinguish

between different detection targets.

Hardware-based tools like radar and infrared devices present challenges in terms of

cost, integration with imaging devices, and limitations in measurement precision. As a

cost-effective solution, effective research methods have proposed by discarding

expensive distance measurement apparatus and instead inferring distance information

from 2D video footage captured during vehicle detection (Mehtab et al., 2021). This

approach offers a potential alternative to the hardware-based methods, but it also comes

with its own set of challenges and considerations.
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Deep learning-based ranging (distance estimation) holds significant potential for

various applications that can be seamlessly integrated with existing approaches to yield

superior results. By accurately calibrating the camera's internal and external parameters,

it becomes possible to determine the distance to the vehicle ahead. This information can

then be utilized to provide timely alerts about potential accidents, simulates how objects

are projected onto the image plane based on camera parameters or use the visual

projection model that based on their appearance and geometric properties to estimate the

distance of objects.

In the realm of visual data-based ranging techniques, there are two main branches:

Monocular camera-based ranging methods and binocular camera-based ranging

methods. Monocular camera ranging relies on initially identifying the target by

matching its image with known patterns or features in the scene. This initial

identification is typically performed by using visual object detection or recognition

algorithms, which can locate and classify objects of interest in the image. Once the

target object is identified, the distance estimation is based on its apparent size in the

image and the knowledge of the real-world size of the object or its category. This

method assumes that the physical size of the object is known or can be estimated from

prior knowledge.

Within monocular cameras, there are several approaches. The circumferential

ranging method utilizes a fisheye lens, which can result in more extensive lens

distortion (Bremer et al., 2023). However, using a fisheye lens can result in more

extensive lens distortion compared to traditional rectilinear lenses. Lens distortion can

affect the apparent size and shape of objects in the image, leading to inaccuracies in the

perceived dimensions of objects. This impacts the accuracy of distance estimation based

on apparent size.

Moreover, fisheye lens distortion is nonlinear and more complex than rectilinear

lens distortion. Accurately calibrating the fisheye camera to correct for distortion
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requires more sophisticated calibration methods and introduces additional

computational overhead. Another approach is related to forward-looking camera

ranging, characterized by reduced aberration in the front-view lens helps capture more

accurate and undistorted images of the scene in front of the vehicle and the camera

being mounted beneath the rearview mirror of the vehicle offers a relatively stable and

vibration-free location for the camera, which improves the quality of the captured

images (Karimanzira et al., 2021). The third approach is based on oblique cameras,

which is distinguished by its larger angle of view (Fukushima, Farzad, & Torras, 2017;

Cai et al., 2020). Each of these methods has its unique characteristics and applications

in distance estimation by using monocular cameras.

In contrast to the distance measurement method used by the forward-facing

cameras, the circumferential fisheye camera does not rely on mathematical geometry for

distance ranging. The reason is that the lens faces downward, resulting in high

aberration coefficients, making traditional geometric distance ranging prone to

significant errors. Instead, the distance ranging concept for the circumferential fisheye

camera is based on a single-strain matrix and affine transformation.

Binocular camera ranging utilizes a pair of cameras to perceive 3D structure of a

scene. This method is inspired by human vision, where our brain makes use of

information from both eyes to estimate depth and perceive the world in three

dimensions. In a binocular camera system, two cameras are positioned side by side,

mimicking the separation between human eyes. Each camera captures a slightly

different view of the scene due to their horizontal displacement. The images from the

two cameras are then employed to compute the disparity, which is the horizontal

difference between corresponding points in the left and right images.

Binocular estimation offers a number of advantages. One notable benefit is that it

doesn't require prior recognition of objects, allowing for an unlimited recognition rate.

All obstacles can be directly evaluated without the need for pre-existing knowledge.
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Moreover, binocular estimation doesn't rely on maintaining a sample database, as it

operates without the concept of a sample.

On the other hand, monocular estimation also comes with its own set of advantages.

It is a cost-effective solution, requiring less computational resources, making it more

accessible for various applications. Additionally, it is relatively simple design which

makes it easier to implement and deploy in practical scenes.

The goal of computer vision is to enable an intelligent agent to perceive and

comprehend its surroundings in a manner which is similar to humans. Instead of using

human eyes, computers control cameras to project the 3D environment onto 2D images.

Despite the loss of 3D information in this projection, the resulting images remain a

valuable source of information. The objective of visual scene understanding is to extract

this information, facilitating the creation of accurate representations of the surrounding

world. Computer vision can even utilize sensors that provide information beyond what

the human eye can perceive, such as RGB-D sensors that offer direct transmission of 3D

information.

Deep learning-based ranging holds significant potential for various applications and

can be seamlessly integrated with the existing approaches to yield superior results. By

accurately calibrating the internal and external parameters of cameras, it becomes

possible to determine the distance to the vehicle ahead. This information can then be

utilized to provide timely alerts about potential accidents, simulates how objects are

projected onto image plane based on camera parameters or the visual projection model

that based on their appearance and geometric properties to estimate the distance of

visual objects, also known as 3D vision. Both 2D vision and 3D vision are viable

sensors for scene understanding. 2D vision is particularly well-suited for object and

pixel-level detection and identification. On the other hand, 3D vision provides 2.5D

images, including depth, enabling its use for geometric tasks, in addition to semantic

ones, such as scene completion.
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The application of deep learning for autonomous vehicles faces challenges due to

variations in traffic laws and transportation infrastructure across nations, making it

difficult to fully interpret complex traffic objects and scenes. Computer vision aims to

empower intelligent systems to perceive and understand their surroundings, with

cameras serving as the eyes of computers, projecting the 3D environment onto 2D

images. Despite the loss of 3D information in this process, the extracted information

remains valuable for visual scene understanding and accurate representation of the

environment.

In addition to traditional cameras, computer vision can benefit from sensors that

provide information beyond human perception, such as RGB-D sensors that offer 2.5D

information (image+depth) or 3D vision. Both 2D vision and 3D vision are viable for

scene understanding. While 2D vision is primarily suitable for visual object and

pixel-level detection and identification, 3D vision provides 2.5D images with depth,

making it more suitable for geometric applications as well as semantic understanding.

Two key areas of focus in scene understanding are vehicle tracking and semantic

segmentation of 2D scene components. However, it's important to note that a 2D image

is merely a projection of a stereoscopic scene, capturing only planar information. To

address this limitation, depth and distance estimation techniques aim to map 2D images

to depth maps containing 3D information. Despite their same goals, few research

studies currently combine these two areas effectively. As technology continues to

advance, bridging the gap between 2D and 3D scene understanding holds significant

potential for enhancing the capabilities of autonomous vehicles and computer vision

systems.

The focus of this thesis is on using deep learning to significantly reduce human

workload in semantic segmentation, vehicle tracking, distance estimation, and depth

estimation for vehicle scene understanding. From a 2D perspective of scene
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understanding, we introduce a novel type of capsule networks that incorporate posture

and location information with matrix for semantic segmentation. This integration

enhances the ability of higher-level semantic information, setting it apart from typical

capsule networks.

For vehicle tracking, we enhance YOLOv5 by adding attention modules and the

Transformer. Through employing the Hungarian algorithm, we improve the

performance of our proposed YOLOv5-CBAM-Transformer, extending its capabilities

from single-target tracking to multi-target tracking. While shifting to 3D vision, we are

use of the Transformer as an encoder to gain better detail on visual object for depth

estimation. Furthermore, we employ the attention mechanism and Transformer on

YOLOv7 as well as extend the prediction vector to estimate the vehicle distance. Our

proposed vehicle ranging model, YOLOv7-CBAM-Transformer, effectively improves

the model's understanding of local and global features, thereby enhancing the

performance of the original YOLO series models.

1.2 Research Questions

The segmentation of scene images, vehicle tracking, distance estimation, and depth

estimation of such traffic scenes all contribute to the understanding of scenes involving

vehicles. In consideration of this research premise, in this thesis, we primarily pose the

following research questions:

Question:

“How to achieve 3D performance with 2D images using deep learning? What deep

learning methods could be best implemented to vehicle-related scene understanding in

the way of 2D and 3D vision?”

We can detail this generalized question to:
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“In the process of understanding traffic scenes in 2D and 3D vision, how to make the

model better understand the high-level semantic information in the scene?”

and

“How to improve the accuracy of our proposed models to achieve a robust and reliable

deep learning model.”

The main focus of this thesis is on the segmentation, tracking, range, and depth

estimation of vehicle-related scenes. Consequently, it is essential to thoroughly assess

the effectiveness of the strategies employed to comprehend such scenes. By conducting

comprehensive performance comparisons of various algorithms, we aim to identify and

adopt the most suitable and effective strategy for scene understanding in vehicle-related

contexts.

1.3 Contributions

Currently, most computational approaches for semantic segmentation rely on

convolutional neural networks (CNNs) as the primary method. However, in this thesis,

we employed a capsule network architecture to realize semantic segmentation and

curated a customized Auckland traffic dataset, which we recorded and annotated by

ourselves. The capsule network possesses the capability to capture pose features and

better comprehend high-level semantic information, making it a promising choice for

improving the semantic segmentation performance in our specific dataset. By utilizing

Capsule Networks (CapsNets) with the Vector-Space (VS) routing method, our model

achieves faster convergence compared to the dynamic routing mechanism. During the

experimental phase, we observed that our model outperforms U-Net and SegNet in

terms of Intersection over Union (IoU) and segmentation results. In our own dataset,

IoU has reached an impressive 74.61%. By achieving superior IoU and segmentation

outcomes, our model demonstrates its potentiality to contribute significantly to the
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safety and efficiency of autonomous vehicles.

For vehicle tracking, we proposed a multi-target identification, tracking, and scene

understanding system that combines a regression modified SiamRPN with a modified

YOLOv5 (YOLOv5-CBAM-Transformer). Unlike the existing single target tracking

methods, our approach successfully tracks multiple targets using SiamRPN. We created

a new publicly accessible benchmark dataset from our traffic scene and achieved faster

tracking with assured performance. By incorporating Convolutional Block Attention

Module (CBAM) to YOLOv5, we enhanced the local feature extraction ability, while

the Transformer improved the global feature extraction ability. This results in accurate

localization of detection frames and detection of distant objects. The combination of the

SiamRPN model and Hungarian algorithm enables multiple object tracking.

We have also made significant advancements in enhancing the performance of

deep learning-based models from a 3D perspective. In our proposed depth estimation

model, we integrated Transformer encoder and CNN decoder as the model architecture,

leading to the improved accuracy. Notably, this is the first instance of using Swin

Transformer as encoder for depth estimation with the KITTI dataset. Through

comparisons of the advanced existing CNN model DensDepth with our proposed

Transformer-based model, we discovered that Transformer as the encoder resulted in

enhanced depth estimation performance, particularly in the objects like street lights,

road signs, and pedestrians. The Transformer compensates for the limitation of CNN,

which tends to overly focus on local features., so that comprehensive global and local

feature understanding.

Furthermore, we propose a low-cost distance estimation approach to develop more

accurate predictions from a 3D perspective for vehicle detection and ranging by using

inexpensive monocular cameras. Our distance estimation model integrates YOLOv7

with an attention module (CBAM) and Transformer as the fundamental architecture,
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leading to improved high-level semantic understanding and enhanced feature extraction

ability. This integration significantly improved object detection and ranging

performance, offering a more suitable and cost-effective solution for distance

estimation.

In summery, the primary contributions of this thesis are as follows. From 2D
perspective:

 In scene segmentation, we are use of CapsNet and VS routing algorithm to

resolve the black box nature faced by all convolutional neural networks.

Using the appearance and pose features improves the ability to understand

high-level semantics, and then realizes the optimization of segmentation

performance.

 Our contributions in vehicle tracking involve the development of two

models: YOLOv5-CBMA-Transformer and SiamRPN+Hungarian

algorithm. These models address the challenge of detailed object detection

by enhancing adaptability to object size. Additionally, the integration of

Hungarian algorithm with SiamRPN enables the tracking of multiple

targets efficiently.

From 3D perspective:

 In depth estimation, we combined Swin Transformer as encoder and CNN

as decoder for obtaining better feature extraction ability to solve the

problem of poor handling of detailed objects in depth estimation tasks.

 In distance estimation, our proposed YOLOv7-CBAM-Transformer

combined with the extended prediction vector effectively achieves accurate

ranging by improving the ability of local features and global features

extraction and the adaptability of different size vehicles, thus solving the

problem of estimation difficulties of vehicle distances without expensive
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rangefinders.

1.4 Objectives of This Thesis

This thesis encompasses scene understanding across multiple dimensions by using deep

learning methods. It implements scene segmentation, vehicle tracking, distance

estimation, and depth estimation, in both 2D and 3D perspectives.

The main goal of this thesis is to create exceptional deep neural networks with

advanced semantic understanding and excellent feature extraction capabilities. In order

to achieve this objective, the following adjustments will be made to the neural network

design: (1) Experimenting with various hyperparameters while training the model to

discover the optimal hyperparameter group. (2) Exploring the impact of different neural

networks and different module combinations on network performance. (3) Contrasting

our proposed models with existing state-of-the-art models to identify their performance.

By implementing these adjustments, we aim to build highly effective models that

excel in semantic understanding and feature extraction for various tasks within the

domain of deep learning.

1.5 The Structure of This Thesis

In Chapter 2, we will focus on the existing literature, including contemporary

approaches and models that have implemented image segmentation, vehicle tracking,

distance estimation, and depth estimation in traffic scenes. We will comprehensively

analyze and address the previous works, taking into account three key perspectives: The

neural network, its structure, and the evaluation techniques used.

In Chapter 3 of this thesis, we will present the research methods from a

mathematical theory. It will delve into the specifics of the research approach, including
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image preprocessing, dataset collection and processing, and concepts related to model

assessment techniques. We will provide a comprehensive understanding of the

methodology to conduct the study and lay the foundation for the subsequent analyses

and results.

In Chapter 4 of this thesis, we will provide details about experimental setup,

including equipment, materials, and methodology in conducting the experiments. Also,

the information on how data was collected during the experiments, including the types

of data recorded, the sensors or instruments used, and the data collection process.

Moreover, the methods to analyse the collected data and implement vehicle-related

scene understanding. The presentation of our experimental findings and outcomes

includes tables, graphs and figures that illustrate the data and support the conclusions

drawn from the analysis.

In Chapter 5, we will thoroughly provide interpretation and discussion of the

results obtained from the experiments in Chapter 4. In this chapter, we will compare the

findings to the existing literature, explain any unexpected results, and provide insights

into the implications of the results for the research.

In Chapter 6, an overview of the entire thesis will be presented, summarizing the

key findings and contributions made. Additionally, a strategy for future study in the

field will be outlined.
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Chapter 2 Literature Review

The focus of this thesis is on advancing vehicle-related scene

understanding in images, encompassing class-based

segmentation of scenes, multiple objects-based vehicle tracking,

vehicle detection and depth estimation using deep learning. To

achieve these objectives, we will discuss the strengths and

weaknesses of various approaches and provide insights into

different scenes. In this chapter, we will extensively examine and

evaluate the achievements in scene understanding over the past

several years. This examination will provide valuable insights

into the progress made in the field and pave the way for further

advancements in vehicle-related scene understanding.

.
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2.1 Introduction

The comprehension of traffic scenes has emerged as a prominent research area in

computer vision and a focal point in artificial intelligence, particularly in light of the

progress made in autonomous driving (Zhu et al., 2022; Xing et al., 2022). The existing

scholarly literature delves into traffic scene understanding from diverse perspectives,

reflecting the significance and widespread interest in this subject. Despite the popularity

of these approaches, deep learning revolution has transformed the associated areas. As a

result, a multitude of computer vision challenges, such as semantic segmentation,

vehicle tracking, distance estimation, and depth estimation, are now being addressed

through the utilization of deep neural networks, with a particular emphasis on

convolutional neural networks. These advanced techniques have demonstrated

remarkable potential in effectively tackling these complex vision tasks.

In terms of accuracy and even efficiency, convolutional neural networks surpass

conventional approaches in scene understanding and other disciplines (Wang et al.,

2023). Moreover, deep neural networks such as Capsule network and Transformer in

recent years have also shown extraordinary capabilities in computer vision. Therefore,

the method of combining convolutional neural network with other neural networks to

improve the accuracy of the model has become the general trend in the field of deep

learning.

The popular approaches for visual object recognition involve utilizing candidate

areas and employing techniques like R-CNN, SPP-NET, Fast R-CNN, and Faster

R-CNN, as well as regression theory with YOLO and SSD as notable examples (Müller

& Dietmayer, 2018; Nandi et al., 2018; Park et al., 2019). To enhance the network

structure and utilize spatial and channel information in feature maps effectively, the

attention module is often incorporated into deep learning models. This integration

allows for the fusion of low-level and high-level features, resulting in more accurate
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detection capabilities.

Moreover, in recent years, Transformer architecture, based on the encoder-decoder

structure and combined with the self-attention mechanism, has shown remarkable

improvements in both accuracy and speed for various computer vision tasks (Xiao et al.,

2023). Transformer has emerged as a powerful approach for further advancing visual

object recognition capabilities.

The evolution of visual object recognition and tracking, from R-CNN to Faster

R-CNN, has traditionally relied on a two-stage training process. While this approach

improves accuracy, it slows visual object detection due to the increased factors. On the

other hand, YOLO models adopt a single-shot grid segmentation approach, where each

grid is responsible for recognizing the center, bounding box, and class label of visual

objects simultaneously. This end-to-end training significantly enhances real-time

capabilities, making YOLOv5 and YOLOv7 more efficient compared to YOLOv4,

saving over 90% of time in the YOLO series (Müller & Dietmayr, 2018; Alexey et al.,

2020).

Additionally, Transformer architecture, particularly Swin Transformer, has

demonstrated strong capabilities in visual object detection, tracking, ranging and depth

estimation in traffic scenes by improving global feature extraction ability. Swin

Transformer combines the powerful modeling ability of Transformers with important

visual signal priors, including hierarchy, locality, and translation invariance. The design

of shifted non-overlapping windows in Swin Transformer reduces computational

complexity, leading to faster speeds compared to traditional sliding windows (Liu et al.,

2021).

To further enhance target detection and tracking in traffic scene understanding,

attention mechanisms are incorporated into deep learning networks. The methods such

as Squeeze-and-Excitation (SE) enable the model to focus on essential channel
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information by learning adaptive channel weights (Hu et al., 2018). The CBAM

combines convolution and attention mechanisms from both spatial and channel

perspectives (Woo et al., 2018). Coordinate Attention (CA) considers both channel and

spatial dimensions, allowing the model to emphasize crucial channel information

through learned adaptive weights (Hou et al., 2021). These attention mechanisms

contribute to improved local feature extraction abilities, resulting in more accurate and

efficient performance of the models in traffic scenes (Peng et al., 2020).

In recent years, there has also been an abundance of scene segmentation-related

research that understand scene in 2D way. Similarly, the depth estimation for

understanding traffic scene by using 3D vision has also made several significant

advances. To far, however, little research work has integrated scene segmentation,

vehicle tracking, distance and depth assessment based on deep learning methods to

understand scenes from both 2D and 3D aspects. The primary objective of the semantic

segmentation algorithm is to build a way to comprehend the composition of a 2D

picture of a traffic scene, including prediction and object recognition for the complete

2D scene image. In addition to providing classes, semantic segmentation gives extra

information on the physical placements of those classes. Accuracy and performance in

real-time are crucial indications for traffic scene understanding. Much like semantic

segmentation, vehicle tracking is another task rooted in a 2D viewpoint. This process

involves identifying a vehicle's present position within a 2D image and forecasting its

trajectory. Through assigning distinct identifiers to each vehicle present in the image,

the objective of vehicle tracking extends to identifying suspicious vehicle actions and

monitoring possible risks (Tak et al., 2021).

In contrast, semantic segmentation and vehicle tracking do not evaluate the

relationships between objects longitudinally. This indicates that semantic segmentation

and vehicle tracking do not incorporate the front-to-back position connection of objects

in the 3D environment in its spatial information. For depth and distance estimation, the
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conversion of 2D RGB scene graphs to RBG-D images is thus seen as essential. Using

RGB pictures from one or more viewing angles, depth estimation and distance

estimation estimates the relative distance and specific distance between each pixel in an

image and the shooting source. Due to the availability of a considerable quantity of

previous knowledge, the human eye can extract a substantial amount of depth

information from the eye's image data. Then, estimate of depth must not only learn

objective depth information from two-dimensional pictures, but also extract empirical

information that is more sensitive to the camera and scene in the dataset (Zhang et al.,

2023).

In this thesis, we comprehensively explore vehicle-related scene understanding

from both 2D and 3D perspectives by implementing deep learning-based techniques for

scene segmentation, vehicle tracking, distance estimation, and depth estimation.

Compared to traditional machine learning methods, deep learning models eliminate the

need for explicit feature extraction, as it takes data directly at the input layer, enabling

the network to achieve exceptional performance. Therefore, deep learning methods

could be employed in a wider variety of fields and applications. In addition, we also

study other deep learning networks besides the most popular CNN, such as CapsNet and

Transformer. We believe it is necessary to make up for some shortcomings of CNN,

such as black box characteristics and preference for understanding local features, by

combining other networks with CNN, so as to further optimize the performance and

representation of the network.

2.2 Deep Learning

Scene understanding involves the interpretation and comprehension of the content,

arrangement, and context within an image or scene. Both traditional machine learning

and deep learning methods have been employed for tasks related to scene understanding,

but they diverge in their methodologies, capabilities, and performance.
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Regarding feature extraction, traditional machine learning necessitates significant

human involvement through feature engineering to produce outcomes. For instance, in a

complex traffic scene image aiming for tasks like object detection and classification,

contours of intricate entities like vehicles, pedestrians, and traffic signals must be

manually extracted and assigned weights (Jabri et al., 2018; Dimililer et al., 2019). In

contrast, deep learning, functioning as an end-to-end model, accomplishes feature

engineering with minimal human intervention (Ammar et al., 2021; Hassaballah et al.,

2020).

In the context of depth estimation, traditional machine learning approaches rely on

controlled lighting setups and images captured from diverse angles to compute depth

information, accounting for variations in lighting and shadows. However, due to their

dependency on features and models crafted by hand, these methods might encounter

challenges when attempting to achieve generalization across various scenes and lighting

conditions.

On the other hand, deep learning models take a different approach. They can

leverage extensive datasets containing annotated ground truth depth information to train

their networks. This enables them to enhance their accuracy even in scenes with

occlusions and adverse weather conditions. Remarkably, these models can even predict

depth from a single image, a capability that has been demonstrated in recent studies

(Ming et al., 2021; Zhao et al., 2020).

In terms of model performance, for vehicle tracking tasks, traditional machine

learning models often rely on methods such as Haar cascades, Histogram of Oriented

Gradients (HOG), or classifiers built around hand-crafted features like Support Vector

Machines (SVM) for vehicle detection. Subsequently, they employ techniques like

Kalman filters, Particle filters, and Mean Shift to estimate the vehicle's position over

time based on motion models and sensor data measurements (Kumar, 2021; Kong et al.,

2019).
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On the other hand, deep learning models in vehicle tracking leverage networks such

as Convolutional Neural Networks (CNNs) for understanding the vehicle scenes. In

stark contrast to traditional machine learning approaches, deep learning models possess

the capability to learn intricate spatial and temporal relationships. This equips them to

adeptly manage challenges like occlusions, interactions between vehicles, and complex

scenes (Li et al., 2020; Huang et al., 2020).

Furthermore, recurrent neural networks (RNNs) and long short-term memory

(LSTM) networks of deep learning play a pivotal role in capturing the temporal

dependencies of vehicle motion. This makes them especially well-suited for tasks with

real-time requirements, including vehicle tracking (Abdallah, Han, & Kim, 2022; Jeong,

Kim & Yi, 2020).

In tasks like semantic segmentation and depth estimation, which demand abundant

pixel-level training data and entail substantial time and hardware expenses during

training, deep learning presents an advantageous solution. By leveraging a limited set of

annotated data and the knowledge acquired from different tasks via transfer learning,

deep learning can skillfully fine-tune pre-trained models (Alhashim et al., 2018;

Swaraja et al., 2021). This strategy leads to the development of high-performance

models without necessitating the complete retraining process.

Supervised learning is widely employed for training deep learning networks.

Supervised learning involves adjusting the model's parameters to achieve the desired

performance by utilizing a collection of samples from a known class. This method infers

a function based on labelled training data, which includes input objects paired with

desired output values. The supervised learning method analyzes this training data to

generate an inference, enabling the model to map new instances. The ultimate goal is to

have the model accurately predict the correct labels for unknown cases, thereby

achieving the desired performance (Sarker, 2021).
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Essentially, supervised learning in deep learning is an effort to learn a mapping

relationship from � to � given a collection of training samples (��, ��), such that given

an �, the output � is as near as possible to the real �, even if � is not present in the

training samples. The loss function is used to estimate the difference between the output

y and the real value �, hence guiding the optimisation. Empirical and structural risk are

included in the model's structural risk, with the loss function playing a significant role in

the empirical risk function (Song et al., 2018):

�� = ������
�

1
� �=1

� �(��, � ��; � + ��(�))� (2.1)

where the mean function is empirical risk, �(��, � ��; � ) is loss function, ��(�) is

structural risk, the �(�) measures the complexity of the model.

The �1,�2, and BerHu loss functions are frequent regression problem loss functions.

The mean absolute error minimizes the sum (S) of the absolute differences between the

goal value �� and the predicted value y� :

� = �=1
� �� − ��� (2.2)

�2 also known as the mean square error

� = �=1
� (�� − ��)2� (2.3)

Compared the robustness and stability of the two loss functions, �1 is

comparatively robust, however �2 is more stable. Because �1 is more resilient than

�2, it has several uses. �1 is robust because it can withstand data outliers. This may be

beneficial for research in which outliers may be disregarded safely and efficiently. If

some or all outliers should always be evaluated, �1 is the superior option.

Since �2 squares the error, it follows that if the error is greater than 1.0, the

mistake is greatly magnified. The model's error will be greater than the �1 norm.

Consequently, the model will be more sensitive to this sample, necessitating
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adjustments to reduce the error. If this sample is an outlier, the model must be modified

to accommodate it, at the price of many other normal samples with less error than the

outlier.

As a result of instability, a slight horizontal variation in the data set may cause the

regression line to leap significantly. On certain data configurations, the approach has a

large number of continuous answers; nevertheless, a little shift in the data set misses a

large number of continuous solutions inside a particular section of a data structure. After

excluding answers in this area, the slope of the �1 line may be larger than the slope of

the preceding line. In contrast, the solution of �2 is stable due to the fact that for each

tiny change in a data point, the regression line will always shift minimally; that is, the

regression parameters are continuous functions of the data set.

�2 differs significantly from the human visual system (HVS). HVS is very

sensitive to changes in local information, light, and colour, and the human-made

camera's photosensitivity is based on HVS (Parraga et al., 2002).

Similar to HVS, the structural similarity index (SSIM) may be generated and is

sensitive to local structural changes. Even with white noise, contrast enhancement, and

mean-shifted image processing, SSIM does not vary much. Since SSIM takes into

consideration brightness, contrast, and structural indications, its findings will be more

precise than those of �1 and �2 in general.

���� ��, �� =
(2������+�1)(2�����+�2)

(���
2 +���

2+�1)(���
2 +���

2+�2)
(2.4)

where the ��� is the average of ��, ��� is the average of �� , the ���
2 is the variance of

�� , ���2 is the variance of �� , ����� is the covariance of �i and �� . �1 = (�1�)2 , �2 =

(�2�)2 are the two variables to stabilize the division with weak denominator; L is the

dynamic range of the values, �1=0.01 and �2=0.03 by default (Peng et al., 2020).

Backpropagation neural network is one of the common models used in supervised
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learning. Backpropagation Neuron Networks discover parameters by reducing the loss

function's value. Deep learning models commonly utilize Stochastic Gradient Descent

(SGD) and backpropagation to efficiently optimizes the model's parameters to minimize

the loss function and computes the gradients that guide the parameter updates during

training, allowing the network to learn and make accurate predictions on new data

(Newton, Pasupathy & Yousefian, 2018). For classification tasks, Cross Entropy Loss is

the most frequently used loss function. In binary classifications, the model is required to

predict between just two possibilities in the conclusion. Our expected probabilities for

each category are p and 1-p. This phrase means:

� = 1
� �− �� ∙ ��� �� + (1 − ��) ∙ ��� (1 − ��)� (2.5)

where �� represents the label of sample i, where the positive class is denoted as 1.0,

and the negative class is denoted as 0. �� represents the probability that the sample i is

predicted to belong to the positive class (Murphy, 2012). The multi-class case is an

extension to the binary classification:

� = 1
� ���� =− 1

� � �=1
� ��� ��� (���)�� (2.6)

where M is the number of categories; If the true class of sample i is equal to c, ���

takes 1.0, otherwise takes 0. ��� is predicted probability that the observed sample i

belongs to class c.

During the forward pass of backpropagation, the input data is fed through the neural

network, and predictions are made. The predicted outputs are then compared to the

actual targets using the loss function to calculate the error. The backpropagation

algorithm then starts at the output layer and works backward through the network to

calculate the gradients of the loss function with respect to each parameter in the model.

These gradients represent the sensitivity of the loss function to changes in the model's

parameters.
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Once the gradients are computed, SGD (or another optimization algorithm) uses

them to update the parameters in the direction that reduces the loss, as described earlier.

This process is repeated for multiple iterations (epochs) until the model's performance

converges to an acceptable level.

In summary, Stochastic Gradient Descent (SGD) and backpropagation are integral

components of training neural networks. SGD efficiently optimizes the model's

parameters to minimize the loss function, while backpropagation computes the gradients

that guide the parameter updates during training, allowing the network to learn and

make accurate predictions on new data.

Because of the remarkable capabilities demonstrated by Convolutional Neural

Networks (CNNs), they have become a focal point in numerous studies targeting

vehicle-related scene comprehension. However, an issue arises when the network's

depth becomes excessive. Modifying parameters through backpropagation in such deep

layers can result in slow parameter adjustments closer to the input layer. Additionally,

the application of gradient descent algorithms can lead to the training outcomes

converging towards local minima instead of the global minimum. Furthermore, pooling

and transformation layers might inadvertently cause the loss of valuable information,

neglecting the interconnectedness between parts and the entirety of an image. The most

important, given that CNNs operate within a high-dimensional realm, comprehending

and visualizing how input data evolves through different layers becomes challenging for

humans. Moreover, CNNs arrive at decisions by amalgamating features learned from

data, yet these decisions might lack a clear, transparent connection to particular input

features or attributes. From the perspective of feature understanding, CNNs acquire

layered depictions of features, typically commencing with basic attributes like edges

and advancing to more advanced traits. The amalgamation of these attributes across

multiple tiers can be intricate and pose challenges in interpretation.

In order to make up for the shortcomings of CNN, many current research attempts
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to achieve scene understanding through the combination of Capsule Network (CapsNet)

or CapsNet and CNN (Chen et al., 2020; Liu et al., 2020; Liu et al., 2021).

To begin with, CapsNets tackle the issue of vanishing gradients, common in deep

networks, by employing routing-by-agreement mechanisms. These mechanisms

leverage the consensus between lower-level and higher-level capsules to effectively

guide gradients during training.

Under challenging conditions such as extreme weather and intricate traffic

scenarios, CapsNets exhibit potential in efficiently managing occlusions. This ability

stems from their consideration of object part presence and orientation, making them

potentially more resilient in crowded scenes.

Furthermore, Capsule Networks prioritize minimizing the usage of max pooling

layers—a common feature of CNNs. This strategic approach aids in the preservation of

spatial information, mitigating the loss of spatial relationships.

In comparison to CNNs, which often demand substantial training data, CapsNets

display a tendency to require fewer labeled examples. This characteristic, coupled with

their potential to learn generalizations across diverse object poses and variations, can

lead to better generalization on unseen data (Hao, 2020).

Moreover, Capsule Networks introduce a hierarchical architecture tailored to

capturing spatial relationships among object parts. This hierarchical representation

proves advantageous in comprehending intricate patterns and rotations more effectively

than CNNs (Qu & Shao, 2020).

Lastly, CapsNets leverage dynamic routing mechanisms to facilitate communication

between lower-level capsules and their higher-level counterparts that exhibit congruence

in orientation. This dynamic routing mechanism bolsters their capacity to manage

spatial hierarchies adeptly (Liu, Yan & Kasabov, 2020).
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Beyond Capsule Networks, Transformers have emerged as an additional approach

to compensate for the limited semantic comprehension. The integration of positional

embeddings furnishes spatial information to the model. These embeddings play a

pivotal role in facilitating the model's comprehension of the relative positions among

distinct tokens. This understanding is imperative for the model to effectively capture

spatial relationships and high-level semantics (Zhang et al., 2022). Concurrently, the

self-attention mechanism intrinsic to Transformers empowers them to encapsulate

global context and extended relationships. This capacity to assimilate information from

distant regions of the image augments the model's aptitude for apprehending high-level

semantics (Lu et al., 2023). In the case of the Swin Transformer, a shifted window

mechanism is employed. This mechanism involves displacing local windows in

consecutive stages, creating an offset between them. This strategic displacement

facilitates the capturing of increased spatial context and the establishment of

relationships among neighboring local windows. As a result, the model's grasp of

high-level semantics is further enriched (Lu, Zhao, Xu & Zhang, 2023).

To conclude, while CNNs outperform traditional machine learning methods, they

still face limitations in comprehending high-level semantics within intricate traffic

scenarios. Hence, there is a promising avenue to enhance CNNs' semantic

understanding prowess through models like CapsNet and Transformer. Embracing

CapsNet and Transformer holds great potential for refining network performance in the

context of understanding complex traffic scenes.

2.3 Typical Deep Learning Model

2.3.1 Capsule Network

The introduction of CapsNet in deep learning accelerates the development of computer

vision. CapsNet observes the scene and represents objects as possibility vectors,



30

capturing various aspects such as posture (i.e., location, dimension, orientation),

deformation, velocity, and more. This allows models to incorporate the relative

relationships between objects in the scene. The convolutional neural network mainly

focuses on the basic element representation inside the object, and it is unable to consider

the high-level semantic association between basic elements and complex objects like

CapsNet. CapsNet activates several characteristics of the same class of objects using

capsules containing numerous neurones (Shi, et al., 2022). An increase in the number of

capsules with constant output leads to a rise in the segmentation accuracy. CapsNets are

able to recognise objects based on their postures rather than the objects themselves since

they have also acquired the object's spatial connections. In several instances, compare to

CNN, the output of CapsNet seems to be more relevant (Patrick, 2022).

The architecture of CapsNet is shown in Figure 2.1. The CapsNet starts with an

input layer that receives the raw data, such as an image. The first layer of the CapsNet is

a traditional convolutional layer that applies filters to the input to extract low-level

features. Next, the output of the convolutional layer is transformed into primary

capsules. Each primary capsule group represents a set of detected features in the input

image. The primary capsules are then fed into a capsule layer, which consists of

capsules (vectors of neurons). Each capsule in this layer represents a higher-level entity

or part of an object. The key innovation of CapsNet is dynamic routing. Capsules in the

lower layer communicate with capsules in the higher layer through dynamic routing

algorithms. Dynamic routing allows capsules to vote on the presence and properties of

higher-level entities, creating more robust and interpretable representations. Capsules

not only detect the presence of features but also estimate their pose, such as the position,

orientation, and size of the entity they represent.

This pose estimation enables CapsNet to be more robust to spatial transformations

and view variations. For tasks like image reconstruction, a decoder network can be

added to the CapsNet architecture. The decoder network takes the output of the capsules
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and reconstructs the original input, providing a reconstruction loss that helps the

network learn better representations.

Figure 2.2 illustrates the operational process of CapsNet. It delineates the steps as

follows: firstly, computing a matrix multiplication of the input vectors; secondly, adding

scalar weights to the input vectors to obtain weighted input vectors; and finally,

executing a vector-to-vector nonlinear transformation. The input vector of the capsules

is obtained from the output of three low-level capsules. The probability of a related

object is estimated using these lower layer capsules. The vector represents the internal

states of the object being estimated. These vectors are multiplied by their corresponding

weight matrix, which encode the spatial relationships between high-semantic objects

and their basic constituent elements. The resulting multiplication yields the anticipated

position information of the object. Through dynamic routing, capsules in one layer send

"votes" to capsules in the next layer based on their agreement about the presence of

certain features, in contrast to the backpropagation algorithms used by convolutional

neural networks (Steuer et al., 2021; Liu et al, 2020).

Figure 2.1 The architecture of Capsule network
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Figure 2.2 The operational process of CapsNet

When comparing the linear weighted summation of fully connected neural

networks to the weighted summation of CapsNet Sj, the latter introduces a coupling

coefficient cijwhich is expressed as (Ghafari, et al., 2021)，

��� = ������� ( ��) =
��� (���)

� ��� ( ���)�
. (2.7)

Meanwhile,

��� = ��� + µ��|� ⋅ �� (2.8)

where the coupling coefficient cij represents the strength of coupling between capsules,

while bij denotes the logarithmic prior probabilities of capsules i and j being coupled.

Another notable advancement in CapsNet is its utilization of a nonlinear activation

function that generates a vector and normalizes the input vector to unit length (Jia &

Huang, 2020).

�� =
ǁ��ǁ2

1+ǁ��ǁ2
��
ǁ��ǁ

(2.9)
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where vj is the vector output of capsule j and sj is its total input.

2.3.2 Loss Function

In CapsNet, the probability of a pattern is characterized by the length of the capsule

vector. Furthermore, a margin loss function is employed for each capsule to represent

the characteristics of the object class.

�� = ��max 0,�+ − ǁ��ǁ
2
+ � 1 − �� max 0, ǁ��ǁ − �− 2

(2.10)

The loss of class c, denoted as Lc, is determined based on whether there are objects

belonging to class c in the images, where Tc = 1 indicates the presence of such objects.

To mitigate the loss when certain object classes are absent and prevent excessive

compression of the activation vector modulus of all object capsules during the initial

learning stage, m+ is typically set to 0.9, m- to 0.1, and λ to 0.5. The total loss is then

obtained by summing up the individual losses of each digital capsule.

2.3.3 Comparison of CNNs and CapsNet

CNNs usually require a raft of data sets for training, CapsNet can generalize using much

less training data. CapsNet still needs to solve the defects about the background image

notwithstanding, in general, CapsNet can better deal with ambiguity than CNNs, it also

performs well in very crowded scenes.

The most important thing is that CNN loses a lot of information in the pooling layer,

which reduces the spatial resolution, and leads to almost unchanged output for inputs

with small adjustments. This has a serious impact on semantic segmentation. In

semantic segmentation, it is essential to preserve detailed information within the

network. CNN currently solves this conundrum by constructing an intricate architecture

to reclaim this lost information. CapsNet stores a sequence of pose information

encompassing the precise object location, orientation, dimensions, tilt, and size, instead
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of discarding it and later attempting to recover it. In other words, a minor variation in

the input of CapsNet will bring in a small modification in the output. This enables

CapsNet to ultilize a simple and unified architecture to deal with different visual tasks.

Finally, CNN needs additional components to automatically identify the attribution of

each small part, and CapsNet can build a hierarchical structure of these parts (Liu et al.,

2021).

2.4 SiamRPN

The area of tracking is currently separated into two major branches: correlation

filter-based tracking algorithms and Siamese network-based tracking algorithms (Wu et

al., 2023). Due to the difficulty of extracting and updating depth data in real time, the

online fine-tuned network-based depth target tracking approach makes the tracker much

less effective. SiamFC provides an offline end-to-end trained full convolutional

pleiomorphic network based tracking approach, which has a quicker tracking speed

while keeping a high tracking accuracy, as a solution to this challenge. SiamRPN

utilises the RPN structure of target detection to make the tracking frame more precise

and to reduce the time-consuming multi-scale testing, hence attracting significant

interest.

The Siamese-RPN permits offline end-to-end training using extensive image

datasets. The Siamese subnetwork for feature extraction employs AlexNet and consists

of five layers of convolution. Two network branches, the template frame and the

detection frame, share CNN parameters. Two branches of the RPN network classify the

foreground background and conduct proposal regression, respectively (Xiao et al.,

2023).

Most tracking algorithms see tracking as a localisation issue, but SiamRPN differs

in that the localisation of the target is just as crucial as the regression prediction of the
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target's bounding box. For this reason, SiamRPN encapsulates the tracking issue into a

single-sample detection problem, i.e. a local detector must be setup with information

from the first frame. SiamRPN combines consequently the Siamese network for

tracking with area recommendation networks for detection: Siamese network facilitates

adaptation to the tracked target, letting the algorithm to utilise information about the

tracked target to initialise the detector; area recommendation networks enable the

system to generate more accurate predictions about the location of the target (Huang et

al., 2022). SiamRPN may be taught end-to-end using the combination of these two.

Moreover, earlier filtering-based techniques are incapable of enhancing tracking

performance in a data-driven manner. SiamRPN is capable of end-to-end training,

which allows for leveraging larger datasets to enhance its performance in a data-driven

manner.

By using Siam-FC as a benchmark, SiamRPN achieves not only an increase in

accuracy, but also a quicker tracking speed and a more optimal balance between

accuracy and speed (Yang et al., 2020).

2.5 Transformer

Compared with RNNs, Transformers are able to model long-term dependencies between

elements of input sequences and support parallel processing of sequences. The

straightforward design of Transformers allows multiple modalities to be handled using

similar processing blocks. Some works try to transfer Transformer to the computer

vision field to process image data. However, there are a series of challenges in applying

Transformer to the image field. First of all, images are extremely sparse data sets with

high resolution and many pixels. The usage of global self-attention in Transformer leads

to a substantial computational burden on the model. This feature promotes the wide

application of CNN with sliding window design on image data. Secondly, the images
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are not naturally represented as a sequence of data, which presents a challenge in

converting the image into a suitable sequence and feeding it as input to the Transformer.

In addition, the scale of image data varies greatly, and it is often not effective to directly

process it as a sequence (Shi et al., 2023).

The introduction of Swin-Transformer has addressed the aforementioned challenges

to a considerable extent, leading to remarkable achievements in various computer vision

tasks, including image classification, object detection, and semantic segmentation. At

present, some work has explored the application of Transformers in image tasks, such as

ViT, which divides the image into image blocks and inputs them into Transformer as a

sequence, and uses Position Eemdedding to preserve the relative positional relationship

(Dosovitskiy et al., 2020; Parvaiz et al., 2023).

The groundbreaking contribution lies in its direct utilization of a Transformer

architecture for image classification by applying it to non-overlapping medium-sized

image patches. When contrasted with convolutional networks, this approach attains a

remarkable equilibrium between speed and accuracy in image classification.

Nonetheless, ViT demands a substantial number of images to effectively train the

network, whereas DeiT enhances the training strategy to reduce the required image

dataset size (Shi et al., 2023). Although ViT improves image classification, it is not

suitable for high-resolution images because its complexity is quadratic in image size.

When employing the ViT model directly with upsampling or deconvolution algorithms

in dense vision tasks like vehicle detection and scene segmentation, the outcomes are

relatively unsatisfactory. The Swin Transformer, on the other hand, refines the ViT

architecture, leading to significant improvements in the image classification task.

Empirically, the Swin-Transformer architecture achieves the most favorable

speed-accuracy trade-off among these image classification methods (Liu, et al., 2021).

Nevertheless, this research emphasizes overall performance, not limited to classification

alone. Consequently, the Swin Transformer demonstrates outstanding capabilities in
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various tasks, including target detection and segmentation, resulting in excellent

performance. By carefully balancing model performance and speed, the Swin

Transformer sets a new state-of-the-art (SOTA) benchmark in COCO target detection

and ADE20K semantic segmentation.

CNN is an inductive bias formed based on the assumption that adjacent pixels have

greater similarity. Locality is its typical feature, while Transformer performs global

interaction on features. Therefore, the way of feature learning and the content of feature

encoding are quite different. CNN is good at fully retaining local information in the

process of processing features, while Transformer focuses more on understanding global

information. The fusion of Transformer and CNN proves to be an effective approach for

enhancing the model's feature extraction capabilities. To enable a more comprehensive

understanding of image content, researchers have explored integrating Transformer and

CNN through structural fusion, feature fusion, and mechanism fusion. These methods

aim to leverage the strengths of both architectures, leading to improved performance

and better comprehension of visual information.

Guo et al. (2022) formed a new network structure by effectively combining

multiple modules by means of structural fusion. CMT extracts the local features of the

image through deep convolution. Building upon this foundation, the attention module

captures global dependencies among the features while incorporating residual links in

various parts of the model to preserve local features and achieve a fusion of both local

and global characteristics. MobileViT regards Transformer as a module and integrates it

into the convolutional neural network to make the model both local and global (Mehta

& Mohammad, 2021). MPViT uses multi-channel parallel Encoder and convolution to

realize the sharing of global features and local features, achieving SOTA performance

(Lee et al, 2022).

The feature fusion starts from the feature level, and generally adopts a parallel

branch structure to fuse the features extracted by CNN and Transformer to enhance the
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feature expression ability. The Conformer model proposed by Peng et al. (2021) designs

parallel CNN and Transformer branches, and uses a bridge module to achieve feature

fusion. Conformer uses Conformer as a Backbone, and the mAP on COCO reaches

44.9%. The Mobile-Former proposed by Chen et al. (2022) also uses parallel branching

and bridging modules, which design a feature bridging method based on a lightweight

cross-attention mechanism, making the fusion of features more effective. MobileFormer

has a faster inference speed when processing high-resolution images, but when the input

resolution drops, the inference speed is surpassed by MobileNetV3. This is because the

code implementation of the bridge module is not efficient, and the calculation of the

module does not change with the resolution.

Structure fusion and feature fusion realize the combination of Transformer and

CNN in a serial or parallel manner. However, the attention mechanism and convolution

are still two different parts, and the correlation between them is not fully utilized. The

mechanism fusion reasonably integrates attention and convolution by digging deep into

the inner connection between the two. ACmix deeply analyzes the similarity between

self-attention and convolution feature extraction mechanisms, and realizes the

mechanism fusion of self-attention and convolution by sharing feature mapping

parameters. ACmix is both local and global, achieving 51.1% mAP on COCO when

transferred to the object detection task (Pan et al., 2022).

2.6 Scene Understanding

The comprehension of traffic scenes has emerged as a pivotal research area in computer

vision and a prominent focus in artificial intelligence, primarily driven by advancements

in autonomous driving technologies.

A scene comprises a wide array of visual elements within a specific environment.

the emergence of scene-based feature representation as a more efficient approach for

interpreting visual scenes is rooted in its ability to capture context, semantic
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relationships, and hierarchical information. By considering the entirety of a scene,

algorithms can achieve a deeper and more robust understanding, aligning with the

complexities of real-world scenes and improving performance across various computer

vision tasks (Xie et al., 2020).

Classification of scenes is the process of detecting and learning semantic labels in

photographs and situations. In general, the approaches include scene classification with

local semantics, scene classification with intermediate semantics, and scene

classification with a semantic subject model (Prykhodchenko et al., 2022; Wang, Peng

& De Baets, 2021). Nevertheless, scene classification still exhibits a limited level of

comprehension within the model, possibly due to the classification task's challenge in

establishing relationships between objects across different classes.

Scene retrieval is a comprehensive understanding of the scenes that have been

saved and retrieved from a database. In addition to the modules that exist in scene

understanding, there is a separate module for similarity matching in scene retrieval (Li,

Zhou & Shen, 2020).

In contrast, object detection must not only acquire class labels and learn

characteristics, but also determine the object's orientation and location in the scene. First,

characteristics that may describe the object are retrieved and combined with a specified

classifier to achieve categorisation.

While object detection and identification can help outline the boundaries of entities,

true recognition of each object at the pixel level and defining its precise boundary

requires human comprehension of the situations. Simple detection and identification do

not always assess the scene's relative posture information. Therefore, excellent

segmentation significantly aids autonomous cars in perceiving the driving environment.

Semantic segmentation is formulated as a classification issue for pixels with semantic

labels. At the pixel level, the model leverages a set of object classes to label all image
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pixels (Bucher et al., 2021).

In contrast to indoor and static scene understanding, comprehending vehicle-related

traffic scenes presents greater challenges due to the interference of additional factors on

prediction accuracy. Firstly, real traffic scenes are exceptionally complex, containing

numerous objects and pervasive occlusion issues. Furthermore, in dynamic

environments with vehicle-related scenes, the same objects often appear from multiple

angles, making it challenging for CNNs to learn various views from limited input data.

Additionally, outdoor weather conditions further diminish the discriminating accuracy

of objects under varying illumination situations.

Therefore, various research have been conducted to resolve the aforementioned

challenges. Object occlusion in the scene is remedied by a detection technique

comprised of individual components. This method divides the human body into

numerous sections for object identification, integrates the data, and then reassembles the

components (Yan et al, 2015). However, this strategy significantly exhausts training

time.

By employing tracking techniques, T-CNN enhances the performance of video

target recognition, aiming to overcome comprehension challenges related to moving

objects in traffic scenarios. This approach depends on a multitude of algorithms for

video target tracking; as a consequence, the process is more complex and real-time

performance is limited. In addition, there is no direct use of video information, such as

fuzzy and motion information, to address comparable issues in a video. Despite these

constraints, STMM makes use of the video's motion information to comprehend the

traffic scenario. It is a two-way cyclic convolutional network, thus the module may

utilise motion information between a few consecutive frames or learn movement and

visual information about the object over an extended period of time (Zheng et al., 2022).

In addition, a brain-like spiking neural network (SNN), NeuCube, is also considered to

be one of the outstanding models capable of accurately identifying fast-moving objects.
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NeuCube is organised in three dimensions, representing the organisation of primary

visual cortex. Kasabov et al. (2018) capture spike column data from a dynamic visual

sensor (DVS), which mimics the human retina's functionality by generating spike

column data based on object motion through address event output. Subsequently, the

spike sequences undergo convolution and are introduced into the NeuCube system.

During the initial phase of deep unsupervised learning, the system acquires the

spatio-temporal patterns of the data by leveraging plasticity that is sensitive to spike

timing. Following this, in the second stage, supervised learning is employed to train the

network for the classification task. Convolutional algorithms and network mapping are

employed to emulate the functionality of retinal ganglion cells and the retinal

organization of the visual cortex (Kasabov, 2019).

Efforts have also been made to address the processing demands posed by the online

learning scenario through fine-tuning the impulse neural network. A novel eSNN model

incorporates a range of innovative components designed for efficient handling of online

learning applications, including constraints on neuron repository sizes and the

implementation of sliding windows. The model that was developed exhibits the ability

to classify the input after a single training sample presentation, eliminating the

requirement to present the entire training set beforehand. Through the integration of the

proposed eSNN approach with a drift detector, a dependable drift object learning model

was effectively created (Lobo et al., 2018). Nonetheless, for the short-term forecasting

models, their performance gradually diminishes as the forecasting horizon increases. To

overcome this limitation, Ibai et al. (2018) propose a long-term estimation scheme that

incorporates automatic mode discovery and couples it with an online change detection

and adaptation mechanism. This enables similarity-based clustering of daily traffic

volume data to generate long-term forecasts and monitor them in real-time, allowing

adjustments in case of mismatches or surprises. The framework employs the evolving

architecture of impulsive neural networks (eSNN) to achieve adaptation without the
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need for retraining the model, enabling the entire system to operate autonomously in an

online fashion (Laña, 2019).

2.7 Semantic Segmentation

In this section, our focus will be on the structural characteristics of fundamental

segmentation models.

Previous research has indicated that image segmentation near the border between

two objects is much less accurate compared to areas away from the boundary. Existing

top-performing systems rely on pixel-level labeling, which incurs high costs and

demands substantial labor. To address this issue, one approach involves employing

precise contour detection to achieve more accurate segmentation results at the object's

boundary. The primary objective is to classify area proposals using object detection

techniques and then further refine these proposals using saliency detection methods

(Yao & Wang, 2023). Although this model has undergone extensive improvements to

increase accuracy, there is room for further enhancement.

D-RefineNet is another depth-assisted model that integrates a depth-assisted loss

function from RefineNet. This function leverages depth information to capture sharp

changes at the object's boundary, constraining edge segmentation and thereby enhancing

its effectiveness. Notably, the proposed network can predict object classes using RGB

images alone, with depth photos solely utilized for loss functions, avoiding any increase

in model size (Chang, Guo & Ji, 2018).

Many object suggesting algorithms encounter challenges such as occlusions, shape

changes, and lack of class information. General techniques using bottom-up regional

grouping or segmentation attempt to address these issues. They measure similarity to

determine if two neighboring regions should be combined, employing an inference

procedure to aggregate regions into super regions for generating object proposals.
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However, such solutions often require manual adjustments or configurations, limiting

performance in complex scenarios.

To address this, a recurrent neural network (RNN) is employed to learn a

segmentation proposal through a hierarchical strategy for area grouping. The learning

process involves cross-region and similarity-based measures during the bottom-up

region merging. Additionally, for enhancing cross-region similiarity and object

prediction, a structural loss function is introduced to account for candidate mixture by

evaluating the similarity and objectivity of neighboring areas (Pinheiro, Collobert, &

Dollár, 2015).

Due to uncontrollable variables like weather and lighting conditions, images

can suffer from blurriness or obstructions, leading to challenges in accurately detecting

objects. While deep visual models excel at segmenting traffic scenes, they struggle with

changes between source and target datasets brought about by varying weather and

lighting. To tackle this issue and create features that remain consistent across different

scenarios, an unsupervised domain adaptation model is introduced (Saffari & Khodayar,

2023). This innovative approach involves capturing sparse representations of source

traffic scenes using spectral low-rank dictionary learning. Additionally, a generative

adversarial framework is utilized to grasp the distribution of sparse features from the

source. Simultaneously, alignment of source and target scene representations is achieved

through a sparse domain-invariant feature extractor, which is honed through a min-max

optimization process. To validate its effectiveness, the proposed model is pitted against

cutting-edge methodologies and is proven superior through experiments conducted on a

real-world dataset.

While the aforementioned models demonstrate commendable performance, they

still encounter challenges such as instances of false positives and missed detections.

Present convolutional neural network CNN architectures emphasize inter-layer
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information flow while disregarding the significance of spatial information within

individual layers. In response to these issues, An innovative solution is proposed known

as the Attention-Based Spatial Segmentation Network (ABSSNet) (Li, Zhao & Wang,

2021). This novel approach comprises two key components: an encoder featuring

convolutional attention modules and a multitask decoder leveraging Spatial CNN. The

encoder is constructed upon a dilated ResNet backbone, where convolutional attention

modules are seamlessly integrated into Res-Blocks, thereby bolstering spatial

localization comprehension. The decoder, employing SCNN, effectively translates

encoder features into segmentation outcomes, with multiple distinct decoders dedicated

to lane line and road detection. By synergizing attention mechanisms with SCNN, our

network achieves heightened spatial information perception and subsequently elevates

the precision of detection tasks.

Nonetheless, during the convolution and pooling process, CNN tends to lose image

details, resulting in a shrinkage of the feature map's size, making it challenging to

precisely identify the object's contour and accurately segment pixels corresponding to it.

Hence, objects cannot be precisely segmented. Currently, many studies deal with this

problem by transfer learning. In transfer learning, Fine-tuning is able to adapt a

pre-trained model to a specific target task, while split-task enables the model to address

multiple tasks simultaneously using the same base model. By leveraging transfer

learning and carefully designing your new task-specific layers, the knowledge learned

from the source dataset can be efficiently utilize and achieve good performance on

semantic segmentation (Donahue et al., 2020).

2.8 Depth Estimation

In recent years, numerous studies have focused on depth estimation using deep learning

in both indoor and outdoor scenes (Li et al., 2021; Ji et al., 2021; Zhou, Wang & Yang,

2020). Depth estimation can be approached through two distinct methods: binocular
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depth estimation and monocular depth estimation. Binocular depth estimation leverages

the disparity present in two images taken from slightly different perspectives to achieve

precise depth estimation (Poggi et al., 2021; Zheng et al., 2022). This approach provides

heightened accuracy and dependable depth perception when compared to monocular

techniques. Moreover, binocular systems exhibit greater resilience to challenges such as

alterations in lighting, texture-deficient areas, and occlusions—difficulties that

monocular methods may encounter in accurately gauging depth under similar conditions

(Shu et al., 2022; Wang et al., 2022). Contrasting binocular depth estimation, monocular

depth estimation centers around a single camera, making it a more economical and

straightforward implementation when compared to binocular configurations that

necessitate two cameras. Furthermore, the applicability of monocular depth estimation

extends to a broader array of devices, including smartphones, drones with single

cameras, and robots, where spatial and budgetary constraints could hinder the use of

multiple cameras. Consequently, for researchers operating within limited budget and

equipment parameters, monocular depth estimation emerges as a viable cost-saving

alternative while still upholding the prerequisite accuracy.

Presently, there exists a plethora of successful monocular depth estimation models

based on deep learning. For instance, an innovative approach employs a deep neural

network model grounded in a semantic divide-and-conquer strategy (Wang et al., 2020).

This strategy entails breaking down an image into semantic segments encompassing

object instances and background stuff categories. Subsequently, depth maps are

predicted for each segment within a standardized space. The primary objective is to

simplify the complexity of depth prediction while harnessing the consistent depth

patterns within semantic groups. The proposed framework, dubbed SDC-Depth Net,

encompasses four essential components: a backbone network, a segmentation module, a

depth prediction module, and a depth aggregation module. The backbone network

extracts feature representations from the input image. The segmentation module

engages in semantic and instance segmentation to partition the image into semantic
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segments. The depth prediction module computes depth maps tailored to semantic

segments and individual object classes. The depth aggregation module assembles and

combines the segment-specific depth maps to generate a coherent global depth map.

This approach results in enhanced depth estimation performance, culminating in

achieving state-of-the-art outcomes across diverse benchmarks.

However, due to the characteristics of CNN, some global features are often ignored

by the model compared to local features. In order to make up for this shortcoming, some

studies combine CNN with the Transformer of the self-attention module to achieve

depth estimation.

The BinsFormer is constructed from three core components: the pixel-level module,

the Transformer module, and the depth estimation module (Li, Wang, Liu & Jiang,

2022). The pixel-level module incorporates a backbone and decoder to capture and

magnify image features. Within the Transformer module, a Transformer decoder is

utilized to anticipate bins and embeddings, treating the generation of bins as a problem

of predicting sets. This novel approach enables the model to explore global insights and

forecast bins that facilitate integral depth estimation. The depth estimation module

harmonizes the outputs from the previous modules to yield the ultimate depth prediction.

Furthermore, an auxiliary scene comprehension query is integrated into the Transformer

decoder to foretell the classification of the input surroundings. This supplementary

query aids in generating suitable bins through implicit guidance.

Additionally, a multi-scale decoder architecture is introduced, enabling a

comprehensive grasp of spatial geometric details and gradual refinement of depth

estimation. This is achieved through the interplay between Transformer queries and

multi-scale features, fostering the aggregation of features at varying levels of

granularity.

Simultaneously, for CNNs, the inherent focus on local interactions through

convolutions imposes constraints on their ability to effectively capture distant

relationships, especially within shallow feature layers. This becomes particularly



47

problematic when discerning intricate foreground-background structures becomes

challenging, especially in scenarios where object differentiation is complex. The

MonoViT framework ingeniously combines Convolutional layers with Transformer

blocks, amalgamating localized object-specific insights with broader scene-wide

connections (Zhao et al., 2022). This innovative approach addresses the shortcomings of

prior methods, which are hindered by the relatively confined scope of CNNs, resulting

in struggles to adequately model long-range dependencies. The Depth Network

leverages the power of both Transformers and convolutional layers to refine feature

extraction and facilitate accurate depth prediction. Concurrently, a streamlined Pose

Network is employed for the estimation of relative poses between consecutive frames,

effectively enhancing the framework's overall performance.

2.9 Vehicle Tracking

Over the past decade, deep learning methods have demonstrated strong capabilities in

visual object tracking. Conventional object tracking algorithms rely on particle filtering,

which necessitates a large number of particles for classifier training, resulting in

complex convolutional layers for feature extraction (Elhani et al., 2023). To enhance

accuracy and speed, many algorithms have combined deep learning methods with

relevant filtering techniques. HCFT utilizes VGG-16 to extract features from Conv3-4,

Conv4-4, and Conv5-4, training corresponding correlation filters to locate the target

accurately. Similarly, HDT utilizes a combination of multi-layer depth features and

correlation conversion, enhancing the depth from three to six layers and adopting

adaptive weight addition (Ma et al., 2020; Qi et al., 2021).

The another type of network to implement tracking task is Siamese networks, a

typical end-to-end deep learning correlation filtering method, have been used to simulate

the entire process of related filtering. One branch saves target template information,

while the other extracts features in the search region. The merged parts generate the
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response map, reflecting the target's state (Bertinetto et al., 2016). Siamese networks

excel in one-shot and few-shot learning scenarios that can effectively learn to

distinguish between different object instances using only a few examples, making them

suitable for tracking tasks where acquiring extensive labeled data is challenging. At the

same time, Siamese networks directly learn a similarity metric in the feature space. This

characteristic is well-suited for tracking tasks where the focus is on finding the

similarity between the target object's features and those of the candidate regions.

One of the primary hurdles in tracking tasks involves the intricate interplay between

background elements and objects within complex environments. To tackle this issue, the

joint Siamese attention-aware network (JSANet) integrates self-attention and

cross-attention modules, strategically designed to surmount the challenges arising from

subtle features and background noise (Song et al., 2022). The self-attention modules

introduced in this framework synergize channel and spatial attention mechanisms. The

channel attention component accentuates pertinent channel coefficients to spotlight

high-scoring channels, whereas the spatial attention module transforms spatial domain

data, ensuring precise identification of crucial regions. Moreover, the cross-attention

element orchestrates the fusion of contextual dependencies between the target template

and the search image through cross-channel attention. This sophisticated approach

enables the unveiling of correlations between objects with temporal associations. The

utilization of Siamese region proposal networks (SiamRPNs) further amplifies this

methodology, enabling the prediction of a singular tracking region based on the feature

streams that have been modulated by attention mechanisms.

However, most models focus on single-target tracking, while multitarget tracking

research progress is relatively slower due to limited datasets and references.

Single-target tracking is often used for short-term image sequences, while multitarget

tracking deals with longer videos, involving various targets' appearance, occlusion, and

departure. The implementation methods also differ, with single-target tracking

prioritizing target relocation, while multitarget tracking focuses on matching detected
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targets. Multitarget tracking algorithms can be detection-based or non-detection-based,

and they are further classified into online tracking and offline tracking based on frame

processing and utilization of subsequent frames ( Luo et al., 2021).

A multiple target tracking method proposed by Sun et al (2021) involves using a

detector to identify targets in video image space, predicting the position and motion of

the targets in the next frame using a Kalman filter, calculating the overlap between

detection and prediction boxes using Complete Intersection over Union (CIoU) as a

distance measure, and using the Hungarian algorithm to perform data association

between multiple targets. The Hungarian algorithm can effectively handle situations

where there are multiple detections and tracks, and the number of detections might not

match the number of tracks. It assigns each detection to a track and vice versa, making it

robust against cases where the number of objects being tracked changes dynamically.

Furthermore, the Hungarian algorithm guarantees finding the globally optimal solution

to the assignment problem. This means that it provides the best possible assignment that

minimizes the total cost among all possible combinations, ensuring high-quality

associations between detections and tracks (Wang & Liu, 2022; Gai, He & Zhou, 2021).

2.10 Distance Estimation

Vehicle detection forms the basis for vehicle ranging, and estimating the distance from

the vehicle in front is essential for vehicle collision avoidance systems. As a result, an

increasing number of articles in the field of computer vision are focusing on the

challenges related to vehicle detection and range estimation.

We delve into two areas of literature. In the first area, we explore vehicle detection

and range estimation using a binocular camera. Binocular stereo vision involves using

two cameras with a known baseline to capture images of the same scene from slightly

different viewpoints. Generally, the first step of binocular stereo distance estimation is

to make key points or features in the left and right images are identified, and



50

corresponding points are matched between the two images. And then calculate the

disparity between matched points to represent the relative distance of objects in the

scene. Finally, using the disparity and known camera parameters to compute the depth

information for each pixel.

A multi-resolution stereovision system is proposed by Chui et al (2020). The system

creates image pyramids by down-sampling the captured images to different resolutions.

Each level in the pyramid represents a different scale of the scene. The process includes

feature extraction, feature matching, disparity calculation, depth estimation, and

fusion/refinement steps for each level of the image pyramid. By performing these steps

at multiple resolutions, the system can handle objects at different distances effectively.

Also, there are some studies estimating distance by identifying corners with high

eigenvalues in segmented regions of both images (Alvarado et al., 2022). The model

segments the left and right images to identify regions of interest. Image segmentation

techniques such as thresholding, edge detection, or clustering can be used to group

pixels with similar characteristics into distinct regions. And then, within each segmented

region, apply a corner detection algorithm to identify key points or corners. Corner

detection algorithms like Harris corner detector or Shi-Tomasi corner detector are

commonly used. These algorithms identify points where there are significant variations

in intensity in multiple directions, making them suitable for detecting distinctive

features. Once the corners are identified, calculate the eigenvalues of the gradient matrix

at each corner point. The eigenvalues represent the rate of change of intensity in the x

and y directions around the corner point. High eigenvalues indicate strong intensity

changes, which correspond to well-defined corners. After matching and disparity

estimation, apply triangulation to compute the 3D coordinates of the scene points

corresponding to the matched corners in both images. With the 3D coordinates of the

matched points, estimate the distance of the objects in the scene from the cameras. The

distance can be calculated using simple geometric principles or calibrated camera
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parameters.

Binocular distance estimation, which relies on using two cameras to capture images

of the same scene from slightly different viewpoints, has certain disadvantages when

compared to monocular distance estimation, which uses a single camera. Firstly,

binocular distance estimation requires the use of two cameras, increasing the hardware

complexity and cost compared to monocular systems that only need a single camera.

Furthermore, accurate calibration of the stereo camera setup is crucial for precise

distance estimation. Calibration involves determining the intrinsic and extrinsic

parameters of both cameras, and any errors in calibration can lead to inaccurate distance

measurements. Also, the baseline between the two cameras limits the effective field of

view for distance estimation. Objects outside this field of view may not be accurately

measured using the stereo vision system. At the same time, in complex scenes,

occlusions and disparities between the left and right images can make feature matching

and distance estimation challenging. These situations can lead to errors in distance

estimation, especially for regions with insufficient texture or ambiguous features.

Finally, changes in lighting conditions, reflections, and other environmental factors can

affect the performance of binocular distance estimation, making it less robust in certain

scenarios.

In contrast, monocular distance estimation, though having its own set of challenges,

offers some advantages. Monocular distance estimation requires only one camera,

making it a simpler and more cost-effective solution compared to binocular setups. And

since monocular cameras are ubiquitous in many devices, it's easier to integrate

monocular distance estimation into various applications and platforms. Moreover,

monocular cameras can be placed in a variety of positions and orientations, providing

more flexibility in system design. At the same time, recent advances in deep learning,

especially with monocular distance estimation networks, have improved the accuracy

and robustness of monocular distance estimation methods.
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Monocular camera-based distance estimation relies on various cues or

assumptions. Some research leverages cues such as perspective, size, and occlusion to

estimate distance in the scene (Parker et al., 2022). And there are also same studies

estimate distance by analyzing the movement of objects in consecutive frames or using

visual odometry techniques (He et al., 2020). Normally, monocular camera-based

distance estimation need to establish correspondences between the extracted features in

the image and the corresponding points in the real world (Vijayanarasimhan et al., 2017).

This can be achieved by manually identifying the matching points or using known 3D

reference points. And then using the camera calibration parameters and the matched

feature correspondences, apply triangulation to obtain 3D coordinates (X, Y, Z) of the

real-world points. Triangulation calculates the intersection of rays originating from the

camera center and passing through the matched feature points. Since the initial 3D

coordinates are only up to an unknown scale factor, the known dimensions are needed to

estimate the scale and convert the 3D coordinates to actual world coordinates. Once the

actual world coordinates of the structures, objects, or road segments are obtained, the

distances between points of interest in the scene can be computed by measuring the

Euclidean distance between their corresponding 3D coordinates.

There has been some research implements monocular distance estimation using

inverse perspective mapping (IPM) from a bird's-eye view. This transformation allows

to estimate distances directly in the transformed view, which simplifies distance

estimation. Perform a perspective transformation (IPM) is to map the image from the

camera's perspective to a bird's-eye view. In the bird's-eye view, parallel lines become

parallel and perpendicular to the ground, simplifying distance estimation. And then a

mapping between the bird's-eye view and the real-world coordinates is created. This

mapping relates the pixel coordinates in the transformed view to the corresponding

real-world 3D points (Vakili et al., 2020).

Several studies have explored the integration of attention mechanisms to enhance
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the accuracy of distance estimation models. An innovative strategy has emerged that

integrates global relative constraints to promote consistent vehicle state estimations.

This methodology emphasizes the significance of capturing both contextual and spatial

details during the estimation process. The architecture of MSANet, the proposed

framework, is elaborated, encompassing distinct streams for motion, context-awareness,

and spatial information extraction from input data. To achieve enhanced estimation

accuracy, the multi-stream attention fusion (MSAF) block is introduced as a means to

effectively amalgamate these distinct features (Huang, Huang & Hsu, 2021).

Furthermore, certain research endeavors have integrated Transformer and attention

modules into their models. The present paper proposes an advanced system rooted in

deep learning, designed to autonomously identify physical distancing through the

analysis of surveillance footage from security cameras. In this approach, TH-YOLOv5

is adopted for the purpose of object detection and classification, while Deepsort is

employed to track individuals detected within bounding boxes outlined in the video

material.

An innovative facet of this methodology involves the incorporation of Transformer

Heads (TH) into the TH-YOLOv5 framework. This addition capitalizes on the

self-attention mechanism, thus augmenting the model's predictive capabilities.

Furthermore, the Convolutional Block Attention Model (CBAM) is introduced to

pinpoint regions of interest within densely populated scenes. To achieve this, specific

convolutional and bottleneck blocks are replaced with transformer encoder blocks,

drawing inspiration from the architecture of vision transformers. This adaptation

enables more comprehensive acquisition of global and contextual information, proving

especially advantageous in intricate scenarios involving occlusions. These transformer

encoder blocks are seamlessly integrated into the head segment of the backbone,

enhancing feature representation and ultimately contributing to heightened object

detection performance.
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Moreover, the incorporation of the CBAM module aids the TH-YOLOv5 model in

directing its attention towards pertinent target elements present in images captured by

CCTV cameras.

The system estimates the depth between the camera and objects by utilizing

coordinate transformations and camera intrinsics. The pairwise L2 normalization is used

to calculate the distance between tracked individuals, and a violation index is computed

to identify breaches of physical distance rules (Junayed & Islam, 2022).

Chapter 3 Methodology

The main focus of this chapter is on the research methods

used for vehicle scene understanding. It will delve into the

specifics of scene segmentation, vehicle tracking, distance

estimation, and depth estimation. Furthermore, the chapter

will outline the evaluation methods utilized throughout this

thesis.
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3.1 Research Design

Our research introduces a comprehensive experimental approach utilizing deep learning

for various tasks, including semantic segmentation, vehicle tracking, distance estimation,

and depth estimation. The main goal is to assess the impact of deep learning on

enhancing traffic scene understanding. Simultaneously, our investigation aims to

enhance the model's cognitive capabilities for high-level semantics by exploring both

2D and 3D aspects. Additionally, we seek to address the black box characteristics of

CNN and the tendency to overly focus on local features, thus improving the model's

comprehension of both local and global features.

3.1.1 Research Design for Scene Segmentation

In order to enhance the understanding of traffic scenes for autonomous vehicles,

high-performance models need to not only segment various elements from the scene but

also comprehend the high-level semantics of both the scene and objects. Deep learning

is employed in this research project to mimic the characteristics and functioning

principles of the human brain and neurons, enabling the comprehension of complex

traffic scenes' high-level semantics.

In the context of human cognitive processing of scenes, the bottom layer of

network extracts the most fundamental features, such as visual and auditory information.

The higher layers of the network combine these fundamental operations and make

decisions based on them. Ultimately, the top layer of the network infers the implicit

semantics of the information, confirming semantic expression and understanding (Taye,

2023).

The high-level semantics, especially the positional relationships between visual

objects in the scene, are of significant importance and the ultimate goal of deep learning.

To further investigate vehicle-related scenes, the spatial connections of visual objects
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for semantic segmentation are investigated.

The hierarchical relationships in capsule networks are central to their ability to

capture complex features, spatial hierarchies, and semantic relationships within data.

This architecture facilitates more nuanced and contextually rich representations, making

capsule networks effective for tasks in deep learning. Remarkably, CapsNet achieves

sophisticated results with only a small quantity of data compared to what traditional

CNNs require.

Figure 3.1 presents a detailed comparison between the working principles of CNN

and the human brain. Several key points can be highlighted:

Human brain cognition involves not just a single neuron focusing on a single

feature, but rather a group of neurons focusing on a single characteristic. Unlike a single

neuron that produces only one value, a neuron group can output a vector.

In CNN, the same element appearing in multiple places activates the same neuron,

whereas different entities in the same position seem to activate different neurons in the

human brain. Even entities with minor differences at the same position activate the same

set of neurons, while the same object at a different position triggers distinct groups of

neurons. This indicates that the human brain's recognition possesses a generalizability of

position and adaptability to entity changes.

Human brain, when repeatedly stimulated by similar objects, creates specific

connections to accelerate and enhance recognition. However, CNN lacks this capacity

for forming specific connections based on repeated exposure to comparable elements.
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Figure 3.1 Comparation of the working principle of CNN with that of human brain

The primary difference between a capsule network and a CNN lies in the nature of

their neurons. In a capsule network, neurons are comprehensive and contain all relevant

information about the feature they represent, including its length, angle, orientation, and

more. On the other hand, in a traditional CNN, each neuron is a standalone unit and

lacks the capability to represent information such as location and angle. This is why

CNNs often rely on data augmentation, where images from different angles and

positions of the same object are added to the training set, to improve the model's overall

performance.

In this context, capsules exhibit similarity to the human brain, as they can replicate

the human brain to understand objects from different perspectives and positions. The

concept of inverse rendering in the capsule network reflects this operating mechanism

of the human brain.

Inside a capsule, several scalar operations are typically performed, including:

Multiplication of the input vector by the weight matrix using a matrix: This

operation captures essential spatial correlations between low-level and high-level image

features.
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Weighting of the vector inputs: These weights determine which capsule of a higher

level will receive the output of the current capsule. This is achieved through dynamic

routing.

Summing the vectors with weights: The vectors are combined using the assigned

weights.

Nonlinearization using the squash function: This function compresses the vector,

ensuring its length remains between 1 and 0 while preserving its direction.

Dynamic routing establishes connections between capsules, and during the routing

process, the lower-level capsule serves as the input vector for the upper-level capsule.

The lower-level capsule generates a prediction vector for each higher-level capsule it

may be sent to by multiplying its own output with a weight matrix. If the scalar product

of the prediction vector is significant, it indicates a reliable forecast. Top-down feedback

occurs from the higher capsule's output, which enhances the coupling coefficient of the

upper capsule while reducing the coupling coefficient of other capsules.

In contrast to CNNs and the backpropagation algorithm, CapsNets and the dynamic

routing algorithm exhibit a simpler network structure and parameter configuration.

Capsule networks have fewer layers and connections, and the routing mechanism

provides a more direct path for information flow compared to backpropagation, which

involves computing gradients layer by layer.

However, despite their relative simplicity in terms of architecture and training set,

capsule networks still necessitate a substantial allocation of memory and computational

time due to certain factors. Firstly, the dynamic routing algorithm used in capsule

networks involves iterative computations between capsules in different layers, which

can be computationally expensive, especially as the number of capsules and their

dimensions increase. Furthermore, capsule networks need to store information about the

pose and instantiation of entities, which increases the memory requirements compared
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to traditional CNNs. To address this memory issue, we aim to improve the network's

architecture and routing algorithm.

The proposed approach introduces local kernel routing, where children are routed

only within the local region of the given space. Furthermore, the transformation matrix

for a member of the grid is shared within the same capsule type, but not across different

capsule types. To address the global connectivity loss caused by routing, we enhance the

capsule network with a “deconvolution" capsule that performs a transposed convolution

operation using a routing protocol. By adopting the suggested deep convolution

deconvolution architecture, we can retain global context information, significantly

reduce the number of network parameters, alleviate memory usage, and achieve

state-of-the-art results. Our capsule network, as illustrated in Figure 3.2, incorporates

both posture and appearance data (Liu, Yan & Kasabov, 2022).

Unlike Convolutional Neural Networks where scalars represent object features,

CapsNet is a renowned neural network for vector representation. If a subcapsule agrees

with its parent capsule, it generates a vector output. The connection between the lower

capsule and the parent capsule is influenced by the parent capsule's prediction, aligning

with the actual output. The conventional CapsNet employs dynamic routing to compute

an N × N matrix that transforms the child vector �� of size N into the parent vector ��

of size N. Additionally, a novel technique is introduced that utilizes the matrix

describing the object's pose and appearance for feature representation (Dhamidi &

El-Sharkawy, 2020).

To optimize the model's performance, feature representation is achieved by

combining the posture matrix and the appearance matrix using a transformation matrix.

By combining the appearance feature vector A of size N with the transformation

parameter matrix, a resulting matrix of size N × N is obtained. The position vector ��

of child i is then transformed into the posture matrix ��−� of parent n, defined as:
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��−� = ����−�� . (3.1)

The vector �� of the child I is translated into the matrix ��−� of the parent n,

which is defined as follows:

��−� = (�� + ��−�)��−�� (3.2)

where ��−�� is the transformation matrix of pose, ��−�� is the transformation matrix of

appearance, ��−� is learn bias, image coordinates (x, y) are combined with each �� .

The final parental pose and appearance matrix �� and �� are obtained by combining

all their transformation matrix, which are defined as follows:

�� = ������ℎ ���−�� ��−� (3.3)

and

�� = �����ℎ ���−���−�� (3.4)

where ��−� is the weighting factor defined in the routing algorithm. The squash(·) is a

nonlinear function which is proffered by Hinton (2017). Another nonlinear function

Psquash(·) for pose matrix is defined as

������ℎ � = �
������(�)

(3.5)

The dynamic routing mechanism defines �� → n through the cross-correlation

iterative optimization strategy between the child and parent vectors. Based on this

concept, we multiply the pose features and appearance features that have been

processed

��−� = ��−� , �� �· ��−� , �� � (3.6)

where , � denotes the Frobenius inner product. Finally, the weighting factors ��−�
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for each child are calculated by applying the sigmoid function to ��→n.

Figure 3.2 The architecture of segmentation capsule network

We generate a group of capsules �� (x, y) and �� (x, y) for each pixel (x, y) or

intermediate layer in the input image (x, y), as illustrated in Figure 3.3. Moreover, a

convolution kernel of size n × n is applied to the posture matrix �� and the matrix ��

to incorporate neighborhood information into the network. The projected multilabel

subdivision L represents the index of the last activated capsule at each position (x, y):

� x, y = ����max ( �� �, � �, �� �, � �) (3.7)
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Figure 3.3 Composition of capsules

Figure 3.4 The raw images of the training data
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Figure 3.5 The ground truth of the training dataset

The evaluations of the proposed network are conducted using a custom dataset

acquired from a vehicle camera on Auckland highways. As shown in Figure 3.4, our

dataset comprises of 1,200 images of motorways in Auckland at a resolution of 1024

×1024.

The ground truth segmentation labels were manually annotated, resulting in six

classes: vehicle, sky, tree, building, road, and traffic sign, as depicted in Figure 3.5.

Thus, our segmentation model is trained on a dataset containing 1,200 images, which is

then divided into a training set and a test set in a ratio of 3:1. For memory and time

efficiency, we resize all data to 128 × 128 pixels and apply intensity preprocessing to

the dataset. We rescaled the input images to ensure that the pixel values of each image

fall within the range of [-1.0, 1.0]. To avoid overfitting, we applied data augmentation
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techniques to the dataset, introducing spatial alterations such as translation, scaling,

rotation, and elastic deformation, as well as intensity-wise adjustments like translation

and scaling of the input images.

3.1.2 Research Design for Depth Estimation

In this thesis, we will use the combination of Transformer and CNN to achieve depth

estimation. Transformers are designed to handle long-range dependencies in data, which

is essential for depth estimation. In scenes with complex structures and occlusions,

information from distant regions can influence the depth prediction. The attention

mechanism in transformers allows the model to focus on relevant regions while

ignoring irrelevant or noisy parts of the input. This helps improve the accuracy of depth

estimation, especially in challenging scenes. Moreover, transformers can aggregate

information from the entire input sequence simultaneously. This global context is

valuable for depth estimation, as it helps the model understand the overall scene layout

and make more informed depth predictions. Transformers use positional encoding to

inject spatial information into the input, which helps the model understand the spatial

relationships between pixels.

We are use of Swin transformer encoder as the encoder of our proposed depth

estimation network. The key idea is to divide the input image into non-overlapping

patches, which are then processed using a hierarchical architecture. Instead of

processing the patches sequentially, the Swin Transformer employs a two-dimensional

shifted window mechanism. It shifts the window over the patches to capture interactions

between different spatial locations efficiently. In this way, each patch can attend to a

larger contextual area, allowing the model to capture long-range dependencies. The

Swin Transformer takes use of a hierarchical design, incorporating multiple stages of

transformer blocks. Each stage processes the output of the previous stage, with

increasing resolution. The lower stages capture local information, while the higher
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stages focus on modeling global dependencies. This hierarchical approach enables the

model to process high-resolution images more efficiently than a single-stage

transformer (Liu et al., 2021).

Our proposed depth estimation decoder utilizes a CNN decoder, which is composed

of a sequence of deconvolutional layers followed by convolutional layers with Rectified

Linear Unit (ReLU) activations. The deconvolutional layers are designed with 2× 2

kernels and a stride of 2, effectively doubling the input size, while the convolutional

layers employ 3×3 kernels and a stride of 1. The network's feature depth progresses

through 512→256→128→64. Lastly, a 1×1 convolutional layer is applied as the final

layer to generate the depth map prediction. The network architecture of our proposed

depth estimation model is shown in Figure 3.6.
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Figure 3.6 The network architecture of depth estimation

3.1.3 Research Design for Vehicle Tracking

Figure 3.7 depicts the functional diagram of the proposed vehicle tracking model. The

implementation of the proposed tracking network involves utilizing a modified

SiamRPN subnetwork. In contrast to the original SiamRPN, the modified SiamRPN

sub-network has been integrated with the Hungarian algorithm (Kuhn, 2012). This

integration allows for the advancement of single-target tracking to multi-target tracking.

Figure 3.7 A diagram of the vehicle tracking model

The Multiple-object tracking is different from Single-object tracking. The

Single-object tracking focuses on tracking a single specific vehicle throughout the video

sequence. The goal is to follow the movement of a particular vehicle, keeping it in focus

and providing its trajectory over time. Our proposed multiple-object tracking is to detect

and track all vehicles present in the scene, assigning unique identities to each vehicle

and keeping track of their individual trajectories. The way in this thesis to implement

multi-target tracking by using YOLOv5 combined with attention modules and

Transformer for object detection to detect all vehicles in each frame and then using

Hungarian tracking algorithms to associate the detected objects across frames.
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For each detected vehicle in the current frame, calculate the distance between its

bounding box and the bounding boxes of all previously tracked vehicles in the previous

frame. Use the Hungarian algorithm to find the best assignment of detected vehicles to

previously tracked vehicles based on the distance matrix. The Hungarian algorithm

efficiently solves the assignment problem, maximizing the total similarity between

detected vehicles and tracked vehicles. If a detected vehicle is assigned to an existing

track, update the track with the vehicle's new position and other information. If a

detected vehicle is not assigned to any existing track, create a new track for that vehicle.

To handle occlusions or vehicles leaving the scene, remove any tracks that have not

been assigned a detected vehicle for a certain number of frames (An et al., 2021).

To enhance the performance of vehicle detection in traffic scenes, the target

detection component of this model combines Transformer, CBAM and YOLOv5 that

shown in Figure 3.8. YOLOv5 inherits its structure from the four-part networks

YOLOv3 and YOLOv4, consisting of Input, backbone, neck, and prediction stages

(Bochkovskiy et al., 2020; Redmon & Farhadi, 2018).

However, YOLOv5 introduces further improvements, including data augmentation

at the input side, as well as adaptive anchor frames and adaptive image scaling functions.

These enhancements contribute to better accuracy in anchor location and faster

inferencing speed (Chuyi et al., 2022; Chienyao et al., 2022).
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Figure 3.8 The diagram of improved YOLOv5 as used in the proposed method

Similar to YOLOv4, YOLOv5 also employs Darknet as the backbone to extract

features from input images (Redmon & Farhadi, 2017). Additionally, YOLOv5 benefits

from the Cross Stage Partial Network (CSPNet), which addresses the gradient problem

in network optimization for other large-scale CNN frameworks. CSPNet integrates

gradient changes into the feature map from start to finish, leading to a reduction in
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model parameters and floating-point operations (FLOPs) value. This approach allows

for a reduction in model size while maintaining both inference speed and accuracy.

In the proposed YOLOv5-CBAM-Transformer, by learning the four offsets of tx, ty,

tw and th, the bounding box coordinates obtained by regression are bx, by, bw, bh, that is,

the positioning and size of the bounding boxes are interconnected with the feature map.

Among them, tx and ty represent the predicted coordinate offset values, while tw and th

denote the scaling factors.:

�� = 2� �� − 0.5 + �� (3.8)

�� = 2� �� − 0.5 + �� (3.9)

�� = ��(2�(��))2 (3.10)

�ℎ = �ℎ(2�(�ℎ))2 (3.11)

where cx and cy correspond to the coordinates of the upper left corner of the grid cell in

the feature map, while Pw and Ph represent the width and height of the predefined anchor

box mapped to the feature map.

The major difference in the loss function between YOLOv5 and the previous

YOLO series lies in the computation of the positive sample anchor area. The

classification and confidence branches utilize Binary Cross Entropy (BCE) loss, while

the bbox (Bounding box) branch employs the GIoU loss. BCE loss is well-suited for

binary classification tasks, such as determining whether an object is a vehicle or not, and

estimating confidence scores associated with the predictions. And GIoU loss takes into

account the spatial overlap between predicted bounding boxes and ground truth boxes,

leading to better localization accuracy. Moreover, GIoU loss penalizes predicted boxes

based on the extent of overlap with ground truth boxes, making it robust to cases where

multiple objects overlap. At the same time, GIoU loss considers the difference in sizes

and shapes between predicted and ground truth bounding boxes, which is particularly
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beneficial for handling variations in vehicle sizes and aspect ratios.

BCE ���, �� =− ��� × log �� − (1 − ���) × log (1 − ��) (3.12)

GIoU = �∩�
�∪�

− ��−�
��

(3.13)

where �� represents the minimum overlap area of the two boxes. To consider the

aspect ratio of the bounding boxes in the loss function, the CIoU loss is utilized as the

boundary regression loss function:

����� = 1 − ��� + �2 �, ���

�2
+ �� (3.14)

� = 4
�2
(������ ���

ℎ��
− ������ �

ℎ
)2 (3.15)

where b and bgt represent the centre points of the predicted bounding box and the ground

truth bounding box, respectively; ρ denotes the Euclidean distance between the two

center points, while c represents the diagonal distance of the smallest enclosing area that

contains both the predicted box and the ground truth box. Additionally, α is the weight

applied in the calculation.

The matching strategy in YOLOv3 ensures that each ground truth bounding box is

assigned a unique anchor. The rule dictates that, while guaranteeing the maximum

Intersection over Union (IOU), a ground truth box cannot be matched to predictions

across all three prediction layers simultaneously. However, this matching strategy does

not account for cases where one ground truth bounding box corresponds to multiple

anchors, nor does it consider the appropriateness of anchor settings. Consequently, if a

ground truth bounding box is associated with multiple anchors, it may slow down the

overall model convergence. In this thesis, the approach of augmenting the number of

positive sample anchors is used to expedite convergence. This is the key reason why

YOLOv5 achieves rapid convergence in practical applications. In contrast to the max

IOU matching rule used in previous versions, YOLOv5 abandons this approach for any
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output layer. Instead, it directly utilizes the shape rule for matching, wherein the

bounding box and the anchor of the current layer are employed to calculate the aspect

ratio.When the aspect ratio exceeds the predefined threshold, the object feature is

revealed. For the remaining bounding boxes, YOLOv5 identifies the nearest two grids

that encompass the box based on which grid it falls into. By applying the rounding rule,

these three grids are collectively deemed responsible for predicting the box. By

employing this approach, the number of positive samples is roughly estimated to have

increased by at least three times compared to the previous YOLO series.

To further enhance the performance of the model, we have incorporated the

attention mechanism module and Transformer with YOLOv5. The attention mechanism

simulates the internal process of biological observation behavior, where it aligns internal

experience with external senses, thereby enhancing the precision of observation in

specific areas. For instance, during the processing of an image, human vision promptly

scans the global image to identify a target area for concentrated focus, referred to as the

focus of attention. Subsequently, a greater allocation of attentional resources is directed

towards this region to acquire more comprehensive information regarding the attended

target and, simultaneously, to suppress irrelevant information from other regions.

In summary, the attention mechanism assigns distinct weighting parameters to

individual elements of the input, thereby intensifying focus on elements that bear

similarity to the input and concurrently suppressing superfluous information. Its

principal advantage lies in its capacity to simultaneously account for global and local

connections in a single step, facilitating parallel computation, a crucial attribute

especially pertinent to big data scenarios.

In this experiment, our primary research objective is to enhance the performance of

the original YOLOv5 network by incorporating the CBAM in conjunction with Swin

Transformer (Woo et al., 2019; Liu et al., 2021). The integration of CBAM facilitates
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the network in determining what and where to focus when analyzing intricate traffic

environments by leveraging both spatial and channel feature connections. The network's

neck is responsible for reprocessing crucial environmental features extracted from the

backbone, transmitting them to the head, and subsequently producing prediction

outcomes. To achieve this, we strategically insert the CBAM module after each

Concatenation operation, refining the information of the channel and spatial feature

fusion layer. This refinement assists the model in allocating greater attention to key

information within the complex traffic environment. The experiment aims to ascertain

whether the inclusion of CBAM can lead to improved performance compared to the

original YOLOv5.

The architecture of the CBAM attention mechanism module consists of two main

components: spatial attention and channel attention. Upon receiving the feature map as

input, it undergoes the channel attention process. Global Average Pooling and Global

Max Pooling operations are performed based on the width and height of the feature map.

Subsequently, the channel attention weight is obtained through the Multilayer

Perceptron (MLP), and further normalized using the Sigmoid function. Finally, the

original input feature map is recalibrated channel by channel through element-wise

multiplication, completing the channel attention-based feature recalibration

In pursuit of attention features in the spatial dimension, the feature map derived

from channel attention undergoes both global maximum pooling and global average

pooling operations, resulting in a transformation of the feature dimension from H×W to

1×1. Afterward, the dimension of the feature map is reduced via convolution with a 7×7

kernel, followed by the application of the ReLU activation function. Subsequently, the

feature map is restored to its original dimension through another convolutional operation,

culminating in the completion of the feature map's recalibration process.

Within the spatial attention module, spatial attention features are obtained using
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global average pooling and maximum pooling techniques. The establishment of spatial

feature correlations is achieved through two convolutional operations, ensuring that the

input and output dimensions remain unchanged. The utilization of a 7×7 convolutional

kernel significantly reduces the parameters and computational complexity, facilitating

the establishment of high-dimensional spatial feature correlations. Following the

application of CBAM, the new feature map acquires attention weights in both the

channel and spatial dimensions. This improvement significantly enhances the

interconnection between each feature in the channel and space, thereby promoting the

extraction of effective target features.

For comparison with CBAM, we also explored the Squeeze-and-Excitation (SE)

attention mechanism (Hu, Shen & Sun, 2018). The SE attention mechanism was

introduced to address the issue arising from the varying significance of different

channels within a feature map during the convolutional pooling process. In conventional

convolutional pooling, each channel of a feature map is inherently considered equally

important. However, in practical scenarios, the significance of different channels varies.

The SE attention enhancement model focuses on the object in two steps: squeeze

and excitation. Global average pooling of channel information for the input feature map

(squeeze). Conditional on input x, the squeeze step for the c-th channel can be expressed

as

�� =
1

�∗� �=1
�

�=1
� ��(�, �)�� (3.16)

in the equation, �c represents the output of the c-th channel. The input x originates

from a convolutional layer with a predetermined kernel size, and the squeeze operation

enables the model to gather global information.

The information after squeeze is multiplied onto the input feature map by two fully

connection layers, the activation function and then normalized. The aim of the excitation
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is to completely capture the dependencies between channels:

� = � ∗ �(��) (3.17)

�� = �2(����)(�1(�)) (3.18)

where �1 and �2 are two linear transforms that capture the importance of each

channel through learning.

SE is incorporated into YOLOv5 using two approaches: firstly, attention is added to

the final layer of the backbone, and secondly, all occurrences of C3 in the backbone are

replaced. In the discussion section, we will conduct a detailed analysis of the impact of

both approaches on the results.

The Coordinate Attention (CA) is the second attention mechanism we tested. CA

disassembles channel attention into two one-dimensional feature encoding processes,

each designed to gather features along two distinct spatial orientations. As a result, this

configuration enables the capturing of long-range dependencies along one spatial

direction while preserving precise positioning information along the other spatial

direction. The generated feature maps are encoded as a pair of direction-aware and

location-sensitive attention maps, which can be combined with the input feature maps to

enhance the representation of the target object (Hou et al., 2021).

The incorporation of the CA attention mechanism involves two steps: the

embedding of the coordinate message and the generation of the coordinate attention.

Given an input X, each channel undergoes encoding along the horizontal and vertical

coordinates through pooling kernels of size (H, 1) or (1, W), respectively. Consequently,

the output of channel c with height 1.0 can be represented as:

��ℎ ℎ = 1
� 0≤�≤� ��(ℎ, �)� (3.19)
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The output of channel c with width W can be expressed as:

��� � = 1
� 0≤�≤� ��(�, �)� (3.20)

The transformations yield a pair of direction-aware feature maps by consolidating

data along each of the two spatial directions. This is distinct from the singular feature

vector generation approach employed in the channel attention (SE) method. Through

these modifications, the attention module is capable of capturing long-term

dependencies along one spatial direction while retaining precise positional information

along the other spatial direction. As a result, the network becomes more adept at

accurately identifying the object of interest.

After undergoing the information embedding transformation, this section performs a

concatenation operation on the aforementioned transformations. Subsequently, the

concatenated output is further processed using the 1×1 convolutional transformation

function:

� = � �1([�ℎ, ��]) (3.21)

where [,] denotes the concatenate operation along the spatial dimension, δ represents the

non-linear activation function, and f denotes the intermediate feature mapping that

encodes spatial information in both horizontal and vertical directions. Furthermore, the

other two 11 convolutional transformation functions �1, �ℎ and �� are employed to

transform into tensors with the same number of channels as the input X, respectively:

�ℎ = �(�ℎ(�ℎ)) (3.22)

�� = �(��(��)) (3.23)

Output Y:
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�� �, � = �� �, � ∗ ��ℎ � ∗ ���(�) (3.24)

Due to the Transformer's pronounced ability to capture global information, it

exhibits superior performance in comprehending dense and occluded objects within

intricate traffic environments. Consequently, we integrate the Swin Transformer's

encoder into the head of each YOLOv5, effectively combining the two networks.

The primary technological breakthrough in the Swin Transformer lies in its adoption

of localization and shifted windows. By employing non-overlapping windows for

self-attention computation, localized self-attention is computed within each scale feature

map's window. However, the computation between different scales has remained

localized, leading to a deficiency in information interaction between windows. To

overcome this limitation, the Swin Transformer incorporates shifted windows at varying

levels, encompassing both W_MSA (Window Multi-head Self-Attention) and SW_MSA

(Shifted Window Multi-head Self-Attention) (Liu et al., 2021).

We assume that the feature map passed into Swin Transformer Block is ��−1 which

passes through LayerNorm and MSA and then adds with Zl−1 and adds to get ���. After

passing through a LayerNorm and MLP, Z� l is directly connected to Z� l and added to

obtain Zl:

��� = �−���(��(��−1)) + ��−1, (3.25)

�� = ���(��(���)) + ���, (3.26)

Z� l+1 = SW −MSA(LN(Zl)) + Zl, (3.27)

Zl+1 = MLP(LN(Z� l+1)) + Z� l+1, (3.28)

The regression modified SiamRPN, integrated with YOLOv5-CBAM-Transformer,

assumes the role of target tracking. Within this model, the region proposal network

(RPN) comprises two branches, each responsible for foreground and background
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classification, as well as proposal regression, respectively.

Siamese-RPN employs a fully connected CNN without padding. The network

consists of two branches: the template branch, which takes the target patch from the

historical frame as input, and the detection branch, which uses the target patch from the

current frame as input (Xu, Zhang & Brownjohn, 2021). To ensure compatibility with

subsequent tasks, both branches share the same parameters in the CNN. We denote the

feature maps of these two branches as φ(x) and φ(z), respectively (Zhang et al., 2021).

Similar to the RPN network in Faster R-CNN, when there are k (k > 0) anchors, the

network is required to produce a channel map with dimensions 2k for object

classification and a 4k channel map for anchor regression. Consequently, φ(z) is initially

split into two branches, [φ(z)]cls and [φ(z)]reg, through two separate convolution

operations, corresponding to 2k and 4k channels, respectively. Similarly, φ(x) is also

divided into two branches, [φ(x)]cls and [φ(z)]reg, using convolution operations. The

channels in φ(x) remain unchanged, while a specialized convolution operation is applied

using [φ(z)]cls and [φ(z)]reg as the convolution kernels. Convolution operations are

performed on the feature maps [φ(x)]cls and [φ(x)]reg, respectively. Finally, the outputs

after the convolution consist of 17172k and 17174k channels.

��×ℎ×2���� = [�(�)]��� ⋆ � � ��� (3.29)

��×ℎ×4�
��� = [�(�)]��� ⋆ [�(�)]��� (3.30)

where ⋆ represents the convolution operation. The final classification branch outputs a

feature map with 2k channels, k is the number of anchors. This feature map will be

grouped into pairs and split into k groups, each group has a score map with two channels

that represents the scores of the foreground and the background, respectively. In a

similar way, for the regression branch, the final output of 4k channel feature maps, each

of which has a group with 4 channels that represents the center position and size of the
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anchor, which is also divided into k groups.

Considering tracking as a one-shot detection, where z represents the template part

and x denotes the detection part, the Siamese feature extraction subnet is represented by

the function � (•), and the RPN subnet is denoted by function ζ(•). The one-shot

detection can be expressed as follows:

min
�

1
� �=1

� ℒ(� � ��;� ; � ��;� , ��)� (3.31)

Regarding proposal selection, SiamRPN utilizes the cosine window and scale

change penalty to reorganize the proposal scores, ultimately obtaining the optimal

proposal. Following the elimination of outliers, a cosine window is applied to mitigate

large displacements, while a penalty is incorporated to suppress substantial changes in

size and ratio.

������� = ��∗max
�
�'
,�
'

� ∗max ( �
�'
,�'�) (3.32)

where k denotes a hyperparameter, r represents the aspect ratio of the proposal, r'

denotes the height to width ratio of the last frame, and s and s' respectively signify the

overall scale of the proposal and the last frame (Li et al., 2018; Rao et al., 2020).

Data association is a critical process in multitarget tracking, primarily focused on

matching multiple targets between frames. This entails tasks such as identifying new

targets, tracking disappearing targets, and matching vehicle IDs between the previous

and current frames. Existing data association methods often draw upon operations

research approaches. In this thesis, we adopt the classic Hungarian matching algorithm

to accomplish the task of multi-target vehicle tracking. Below, we provide a step-by-step

explanation of Hungarian matching algorithm:

Step 1. Determine the smallest element in each row of the matrix and subtract the
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corresponding smallest element from each element in that row.

Step 2. Check if the algorithm's objective has been achieved. If not, proceed to the

next step; otherwise, terminate.

Step 3. Determine the smallest element in each column of the modified matrix and

subtract the corresponding smallest element from each element in that column.

Step 4. Cover all the 0s using the fewest possible vertical and horizontal lines.

Step 5. Check if the number of covered rows equals the order of the matrix. If so,

the optimal matching solution is obtained. Otherwise, proceed to step 6.

Step 6. Find the minimum value in the uncovered portion. Subtract this value from

each element in the uncovered rows and add it to each element in the covered columns.

Return to step 4.

This algorithm is applied in the multitarget tracking problem to find the optimal

matching solution for multiple targets in two frames (Kuhn, 2012).

3.1.4 Research Design for Distance Estimation

In our distance estimation model, we adopt YOLOv7 as the foundational architecture.

Additionally, we integrate Swin Transformer and CBAM into the model to enhance the

feature extraction capabilities further (Woo et al., 2019; Chienyao, Alexey & Mark,

2022; Liu et al., 2021).

The design of YOLOv7 aims to address two specific challenges. Firstly, it

introduces the concept of gradient propagation routes, which facilitates a structured

model re-referencing approach. This approach enables the analysis of structural

re-referencing techniques that are pertinent to each network layer.

Training models with multiple output layers using a dynamic label assignment
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technique poses additional challenges, particularly concerning the assignment of

dynamic targets to the outputs of different branches. To address this challenge, a novel

approach is proposed called the coarse-to-fine guided label assignment technique for

labeling assignment. This technique offers a solution to overcome the issue of assigning

dynamic targets to the outputs of various branches.

Our model, as illustrated in Figure 3.9, incorporates the CBAM to enhance the

feature extraction process, thereby avoiding alterations to the original feature extraction

(Kailin et al., 2022). Moreover, the inclusion of the Transformer enhances the model's

capacity to comprehend global semantics, allowing YOLOv7, which primarily

emphasizes local information processing, to achieve a more comprehensive

understanding of traffic scenes. The CBAM encompassing the Channel Attention (CAM)

and the Spatial Attention Module (SAM) (Woo, Park, Lee & Kweon, 2019). The CAM

computes attention maps by analyzing the interdependencies among channels,

determining which channels contain significant information for a given context. The

channel attention mechanism allows the network to emphasize important channels while

reducing the influence of less relevant ones. On the other hand, the SAM computes

attention maps to highlight spatial regions containing relevant information. This

mechanism enables the network to adaptively focus on specific parts of the image while

downplaying background or less informative areas. The CAM focuses on capturing

channel-wise relationships within the feature maps. It consists of an MLP followed by

an element-wise summation and a sigmoid activation function. The MLP processes the

input feature map and computes channel-wise attention weights that highlight

informative channels and suppress less relevant ones. The attention weights obtained

from the MLP are scaled using the sigmoid activation function to ensure they lie within

the range of 0 to 1. The scaled attention weights are then applied element-wise to the

original feature map to enhance informative channels,

�� � = � ��� ������� � + ��� ������� � = �(�1 �0 ����� +
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�1 �0 ����� ) (3.33)

where σ represents the sigmoid function, while W0 and W1 are the shared MLP

weights for both inputs. �0 ∈ ℝ�/�×� , and �1 ∈ ℝ�×�/� . The ReLU activation

function is applied following these weights.

The SAM analyzes spatial relationships within the feature maps to highlight

important spatial regions. It involves two operations: max pooling and convolution.

Max pooling captures global context by summarizing the most significant spatial

information within each channel. Convolution captures local context by processing the

feature map with a convolutional filter to capture spatial dependencies. The outputs of

max pooling and convolution are combined using an element-wise summation. The

combined outputs undergo a sigmoid activation to produce spatial attention weights.

The spatial attention weights are applied to the feature map to highlight relevant spatial

regions (Li et al., 2023),

�� � = � �7×7 ������� � ;������� � = �(�7×7([����� ; ����� ])) (3.34)

where � denotes the sigmoid function and �7×7 represents a convolution operation

with the filter size of 7×7.

CBAM has demonstrated its effectiveness in improving the discriminative power of

CNNs and boosting their accuracy on various benchmarks and datasets. Its ability to

adaptively emphasize salient features while suppressing irrelevant ones helps networks

achieve better generalization and robustness, making CBAM a valuable tool for

advancing the capabilities of deep learning models in the field of computer vision.
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Figure 3.9 The architecture of YOLOv7-CBAM-Transformer

Nonetheless, the YOLOv7 network holds a significant advantage in extracting

foundational features and visual structures. These low-level features encompass

essential points, lines, and fundamental image elements at the patch level. These

fundamental features exhibit distinct geometric characteristics and often emphasize
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consistency or covariance under transformations such as translation and rotation. Once

the fundamental visual components are identified, the emphasis shifts towards

comprehending the advanced visual meaning. This centers on grasping the

interconnections among these components, shaping them into objects, and perceiving

how the spatial arrangement of objects generates a scene. Presently, the Transformer

model is widely regarded as proficient and efficient in managing the intricate

relationships among these components. As a result, we remove the last ELAN in the

YOLOv7 backbone and some ELANs in the neck and instead integrate the Swin

Transformer encoder. By implementing this operation, we can accentuate the benefits of

the self-attention mechanism while simultaneously reducing computational overhead.

Moreover, the introduction of Transformer in the neck allows for capturing correlations

and significance between different regions, enhancing the model's ability to adapt to

targets of varying sizes (Zhang, 2023).

As we implement YOLOv7-CBAM-Transformer, our goal is not only to detect the

position of the vehicle but also to estimate the distance between the vehicle in front and

the current position. To achieve this, we have extended the prediction vector to

incorporate distance estimation information.

The original prediction vector contains bounding box anchor coordinates A (x, y, w,

h) and category confidence C (c1, c2). In order to make the model realize the ranging

function, we add the distance element D (d) to the prediction vector. The extended

prediction vector is shown in the Figure 3.10.
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Figure 3.10 The extended prediction vector for distance estimation

The distance loss is defined as

���������(�, �) = �(��,�' − ��,�)2=� �=0
� ��,�,�(��,�,�' − ��,�,�)2� (3.35)

where ��,�,� is k-th class probability in (i, j)-th cell. The weighting constant � is

introduced to balance the importance of the distance loss with other losses, preventing it

from dominating the overall training process. In our experiment, we set � to a value of

1 × 102.

3.2 Evaluation Methods

3.2.1 Evaluation Methods of Semantic Segmentation

The performance of the segmentation model is evaluated using the Intersection over

Union (IoU) metric, aiming to evaluate the quality of semantic segmentation results by

quantifying the alignment between predicted and ground truth masks.

In Table 3.1, p and p’ represent actual and predicted positive samples, respectively.

Likewise, n and n’ represent actual and predicted negative samples. P denotes the total

number of actual positive instances in the dataset, while N represents the total number

of actual negative samples.
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Table 3.1 Form of classification criteria

Mathematically, IOU is calculated as the ratio of the intersection of the predicted

and ground truth masks to their union. Equation (3.36) outlines the computation of IoU

as follows:

IoU = TP / (TP + FP + FN). (3.36)

3.2.2 Evaluation Methods of Vehicle Tracking

In our experiments, we utilize the multitarget tracking accuracy (MOTA) and

multiobject tracking precision (MOTP) to assess the algorithm's ability to continuously

track objects. MOTA measures the accuracy and effectiveness of object tracking

algorithms, particularly in the context of computer vision tasks like multiple object

tracking. It quantifies how well an algorithm is able to track objects over time, taking

into account various factors that contribute to tracking errors. It accounts for irregular

accumulations in tracking, including false positives (FP) and false negatives (FN),

among others. MOTA focuses on accurately judging multiple objects in consecutive

frames and precisely determining their positions to achieve uninterrupted continuous

tracking.
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���� = 1 − ��+��+����
����� ������ �� �������

(3.37)

where ���� means identity switches occur when the algorithm associates two objects

with each other incorrectly, resulting in tracking errors.

On the other hand, MOTP focuses on measuring the accuracy of the predicted

object positions by quantifying the average displacement between the predicted and the

corresponding ground truth positions of tracked objects. The formula to calculate

MOTP involves summing up the distances between each predicted object position and

its corresponding ground truth position and then dividing by the total number of

matched object pairs:

MOTP= 1
�����ℎ �=1

�����ℎ ��
��

� (3.38)

where �����ℎ is the total number of matched object pairs; �� is the Euclidean distance

between the predicted position and the corresponding ground truth position for the i-th

object pair; �� is the number of frames in which the i-th object pair is present.

3.2.3 Evaluation Methods of Depth Estimation and Distance Estimation

Our depth estimation model is assessed using various metrics, including root mean

squared error (RMSE), absolute relative error, and squared relative error, and delta

accuracy. However, for the main evaluation of our distance estimation, we primarily

focus on the RMSE：

������ = 1
�

��−��
∗

��
� (3.39)

����� = 1
�

��−��
∗ 2

��
� (3.40)

where �� and ��∗ are the ground truth and predicted depth at pixel i and N is the total

number of pixels.
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RMSE= 1
� �=1

� �� − ��∗ 2� (3.41)

����_��� = 1
� �=1

� ���(��) − ���(��∗))2� (3.42)

where �� is the real depth information, ��∗ is the predicted depth value.

The delta accuracy �� of �� , ��� ( ��
��
∗ ,

��
∗

��
) = � < � for threshold values t = 1.25,

1.252, 1.253 ;

Select the maximum value of ��
��
∗ and ��

∗

��
, and calculate the percentage of pixels in ��

that are smaller than the threshold t in the total pixels. The closer it is to 1.0, the better

the effect, so the larger the threshold, that is, the result obtained when the threshold is

1.253 is better. Better than the result with a threshold of 1.25

3.3 The Originality of This Thesis

The originality of scene segmentation:

(1) The datasets used for scene segmentation were specifically collected and labeled for

New Zealand traffic scenes, ensuring a more suitable model for local environments.

(2) This work represents the application of CapsNet for scene segmentation for

understanding higher level semantic, showcasing outstanding performance in this

context.

The originality of depth estimation:

(1) The use of Swin Transformer as an encoder for depth estimation models,

contributing to improved performance.

The originality of vehicle tracking:
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(1) The datasets employed for vehicle tracking were uniquely created and annotated for

New Zealand traffic scenes, resulting in a more tailored model for local conditions.

(2) Combination of attention modules (CBAM, SE, CA) to YOLOv5, enhancing local

feature extraction capabilities, combined with Transformer to improve global feature

understanding and adaptability to objects of different sizes.

(3) Utilization of SiamRPN along with the Hungarian algorithm for multi-objective

vehicle tracking, enabling efficient and accurate tracking of multiple targets.

The originality of distance estimation:

(1) Customized datasets of New Zealand traffic scenes were used for distance

estimation, ensuring a model suitable for local scenes.

(2) Incorporation of the attention module (CBAM) and Transformer into YOLOv7,

leading to improved global feature comprehension and adaptability to objects of varying

sizes. We also added extented distance estimation vector to the model for distance

regression.
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Chapter 4 Results

In this chapter, we will present the comprehensive methodology

for vehicle-related scene understanding. Here, we will establish

the experimental environment and discuss the results of scene

segmentation, vehicle tracking, depth estimation and distance

estimation. The chapter aims to provide a thorough explanation

of the methodologies and the obtained outcomes for each aspect

of the study.
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4.1 Experimental Parameters and Environment

4.1.1 Experimental Parameters and Environment for Semantic Segmentation

Coping with the substantial number of parameters that require processing is among the

most formidable challenges when training a deep learning model. These parameters

encompass various aspects, such as the width and depth of the network, the connection

patterns, and the design of hyperparameters, including the critical task of debugging the

loss function. In addition to the parameters mentioned earlier, other crucial factors such

as learning rates, batch sample sizes, and optimizer settings also play a significant role.

The substantial number of parameters in the network model can directly or indirectly

influence its effective tolerance during the training process. Enhancing each of these

factors individually can be a time-consuming and resource-intensive task.

Thus, it is essential to prioritize sensible debugging based on hyperparameters to

optimize the model effectively and efficiently. The main focus of this work centres on

monitoring and understanding the traffic environment surrounding the vehicle. It

employs the Intel Core i7-8550 processor to train deep neural networks, and the system

is equipped with 8 GB of RAM for efficient file storage. In this thesis, digital photos are

pre-processed and network refinement is conducted using the MATLAB 2019a

environment. To train the neural network, specific parameters listed in Table 4.1 are

established.

Ensuring rapid convergence of the loss function during the training phase critically

relies on selecting an appropriate initial weight for the network. Nonetheless, when

randomly initializing the network weights, there is no assurance that the starting weights

will be in a favourable state for each initialization. In the event of an issue with the

initial weight setting, it is possible that the loss function might converge to a local

minimum. Hence, selecting an appropriate initial weight is crucial for achieving a global
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optimum model. To address this concern, the AdaDelta optimizer is employed in this

model. AdaDelta, an extension of AdaGrad, was introduced by Zeiler in 2012 to tackle

the issue of AdaGrad monotonically decreasing learning rate. Unlike AdaGrad, which

computes all gradient squares, AdaDelta limits the window size for calculating previous

gradients. Furthermore, AdaDelta eliminates the need to set a default learning rate in the

update rule, thus accelerating model training in the short- and medium-term. With the

AdaDelta optimizer, the loss fluctuations around local minimums are managed

effectively during late-stage training.

The learning rate is a crucial hyperparameter in model training that significantly

impacts the training process. In general, using an appropriate learning rate or a set of

well-chosen learning rates can lead to faster model training and improved accuracy. An

excessively high or low learning rate directly impacts the model's convergence. A very

low learning rate results in slow training as the network's weights are updated only

minimally. Conversely, a very high learning rate may cause training to diverge or result

in unstable and erratic changes in the model's parameters. Striking the right balance in

setting the learning rate is crucial for effective model training. Nevertheless, an

excessively high learning rate can have undesirable effects on the loss function. In this

thesis, we have set the initial learning rate to 1.

Choosing a right Max epoch is also a importance for training a good deep learning

model. Training a deep learning model for too many epochs can lead to overfitting.

Overfitting occurs when the model becomes too specialized in the training data and fails

to generalize well to new, unseen data. By limiting the number of epochs, you can

prevent the model from memorizing the training data and promote better generalization.

Also, training deep learning models can be computationally expensive and

time-consuming. Choosing the appropriate number of epochs ensures that you strike a

balance between training the model long enough to learn meaningful patterns and

avoiding excessive computational costs.
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While the learning rate directly influences the model's convergence state, the batch

size plays a significant role in the model's generalization performance. Larger batch

sizes can help reduce gradient noise, leading to more stable training and smoother

convergence of the model. However, very large batch sizes might result in suboptimal

generalization. Moreover, larger batch sizes can lead to faster training since the model

processes more samples in parallel. However, excessively large batch sizes might slow

down convergence or cause memory constraints. Also, smaller batch sizes can promote

better generalization as they introduce more noise to the optimization process,

preventing the model from overfitting to the training data. At the same time, smaller

batch sizes might help the model avoid getting trapped in local minima, making it more

likely to find better global minima during training.

CheckpointPath is configured to a temporary location, where the network

checkpoint is automatically saved after the completion of each training iteration. This

process ensures that the model's progress is periodically saved, providing a safety net in

case of unexpected interruptions such as system failures or power losses during training.

If training is halted unexpectedly, the stored checkpoint can be utilized to restore and

continue the training process from the most recent point of progress, thereby preventing

the loss of valuable training data and facilitating smoother training resumption.
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Table 4.1 Training Parameters

Throughout the training process, we carefully monitored the progress of epochs

and the associated loss for our four tasks. Figure 4.1 presents the data spanning
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iterations 100 to 1900 of semantic segmentation. As the training iterations progressed,

we observed a consistent decrease in the loss, indicating that the model was gradually

improving its performance and optimizing its parameters.

Figure 4.1 Partial training data

4.1.2 Experimental Parameters and Environment for Depth Estimation

The depth estimation experiment was conducted using Microsoft Windows 10

Operating System, with the PyTorch deep learning development framework and Python

as the primary development language. The depth estimation experiment utilized the

Intel CORE i7 CPU, with the programming tool Google Colab, leveraging its own K80

GPU acceleration. During training, the Adam optimizer was employed with a batch size

of 1. The initial learning rate was set to 0.0001, and the training process was conducted

for 30 epochs. This configuration allowed for efficient training and evaluation of the

depth estimation model, making use of both CPU and GPU resources to achieve

accurate and timely results.
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4.1.3 Experimental Parameters and Environment for Vehicle Tracking

The vehicle tracking experiment utilized MS Windows 10 operating system along with

the PyTorch deep learning development framework, employing Python as the primary

programming language. These tools provided a robust and versatile environment for

implementing and evaluating the vehicle tracking model, enabling efficient processing

and analysis of traffic scenes and object tracking. Intel CORE i7 CPU was employed,

and Google Colab served as the programming tool with its own K80 GPU acceleration,

ensuring efficient computation and model training. Adam optimization algorithm was

utilized during training, with a batch size of 16 and adjusted beta1 parameter for

momentum and beta2 parameter set to 0.999. The initial learning rate was set to 0.0001,

and the model underwent training for a total of 150 epochs, optimizing the tracking

performance over multiple iterations.

4.1.4 Experimental Parameters and Environment for Distance Estimation

For the distance estimation experiment, we employed the Windows10 operating system

along with the PyTorch deep learning development framework and Python as the

programming language. The experiment utilized an Intel CORE i7 CPU and made use

of Google Colab as the programming tool, benefiting from its own K80 GPU

acceleration for efficient computation. We set the hyperparameters as follows:

iterations=5000, batch_size=1, and learning_rate=0.01 to effectively train our modified

YOLOv7 model for accurate distance estimation.

4.2 Experimental Results

Deep learning was utilized to achieve comprehensive scene understanding in both 2D

and 3D aspects in our research. A series of experiments were conducted to assess the

effectiveness of deep learning in various tasks, including scene segmentation, vehicle
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tracking, distance estimation, and depth estimation. The outcomes of these experiments

showcase the remarkable advantages of employing deep learning for enhancing scene

understanding and analysis. In particular, by incorporating CapsNet and introducing

Transformer, attention modules, and regression modifications adding to CNN, we aim to

address the limitations of traditional CNN models. This approach enables the

development of a more robust and comprehensive model capable of understanding and

processing higher-level semantic information effectively.

4.2.1 Results of Semantic Segmentation

The semantic segmentation capsule model generates outputs representing various

classes, including buildings, sky, road, and trees, as depicted in Figure 4.2. However, the

proposed model may not perform optimally on vehicles, especially in scenes where

multiple cars overlap.

Based on the experimental data presented in Table 4.2, our proposed model

demonstrates exceptional performance in both the sky and building categories,

achieving accuracy rates of 96.06% and 96.82%, respectively. The segmentation results

of this model for the two segmentation objects, roads and trees, are also commendable,

achieving accuracy rates of 79.67% and 86.3%, respectively.

Figure 4.3 displays the training loss of our model. As the number of training

iterations increases, the loss steadily decreases until it converges at 10,000 training

iterations. After 30,000 iterations, the training loss reaches 0.014.

To validate the performance of our model, we conduct similar experiments on

U-Net and SegNet, two segmentation networks known for their excellence in semantic

segmentation. In order to establish an equitable comparison between the capsule

network and CNN, we apply linear upsampling instead of deconvolution in U-Net and

SegNet. Additionally, we reduce the number of intermediate convolution outputs to 16
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and the number of levels to 4. This adjustment allows for a more equitable evaluation of

the performance of both models. We ensured that U-Net and SegNet had the same

number of parameters as our suggested model. For the loss function, we utilized

pixel-wise softmax cross entropy. Pixel-wise softmax cross entropy computes the loss

for each pixel individually, which means it can provide fine-grained feedback to the

network. This allows the model to learn to classify each pixel accurately, leading to

precise segmentation results. The experimental results are presented in Table 4.2.

Figure 4.2 The results of capsule network segmentation

The experimental results reveal that U-Net achieves a significantly higher IoU of

60.58% compared to SegNet. Furthermore, U-Net outperforms SegNet by at least 11%

in each class. When comparing U-Net to the mean IoU of our model on this dataset, our

model performs only 0.43 percent better than U-Net. However, our model achieved

comparable accuracy to SegNet while utilizing fewer parameters, resulting in faster
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training. Nevertheless, there is room for improvement in the segmentation performance

of vehicles and traffic signs. This might be attributed to the lower pixel values of

vehicles in the image and the limited number of training samples for TrafficSigns.

Further research and data augmentation techniques could help enhance the model's

performance in these specific areas.

Figure 4.3 The loss curve of training process

To conduct a comprehensive evaluation of our model, we analyzed its performance

using both a single vector feature representation and a conventional dynamic routing

method. To perform the same experiment, we replace the appearance matrix with a

vector using either dynamic routing (CapVec-DR) or our proposed VS routing

(CapVec-VS) method.

Among the models adopting a single vector feature expression approach,

CapVec-DR Dynamic routing mechanism exhibits the lowest accuracy, as demonstrated

in Table 4.3. CapVec-VS, with a more refined routing method, outperforms CapVec-DR

by 1.18%. Nonetheless, both of these models utilizing vector feature expression exhibit

lower accuracy when compared to our proposed model. Our proposed model
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outperforms the other two models in terms of performance.

Figure 4.4 illustrates a comparison of the test loss between CapVec-DR,

CapVec-VS, and our model. CapVec-VS exhibited the highest loss value in the test after

the first 2,000 iterations, while our model achieved the lowest loss value. While the

drop curves of CapVec-VS and our model show similarities, it is noteworthy that the

CapVec curve consistently remains lower at each point compared to the other two

models. This indicates that the VS routeing mechanism might lead to faster convergence

of the model compared to the dynamic routeing mechanism. Although CapVec-DR and

CapVec-VS show similar loss values after 30,000 iterations, our model achieves the

lowest loss value among the three. In comparison to the average losses from the

experiments, our model achieved the lowest value of 0.38. On the other hand,

CapVec-DR and CapVec-VS had average losses of 0.65 and 0.57, respectively.

Table 4.2 Comparison of different models in the same dataset

Table 4.3 Comparisons between two model variants
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Figure 4.4 Comparison of testing loss

Furthermore, we observe the performance of our model by retraining it using the

Cityscapes and CamVid datasets in Table 4.4. A comparative analysis is conducted

against other state of the art traffic scene semantic segmentation models. Notably, our

model achieves a significant improvement in mIoU on the Cityscapes dataset.

Specifically, our model's mIoU surpasses that of BiseNet v2 (Yu et al., 2021) by 2.19%

and exceeds DFANet's (Li et al., 2019) mIoU by 5.49%.

In a reciprocal evaluation, we also subject BiseNet v2 (Yu et al., 2021) and

DFANet (Li et al., 2019) to training with our dataset. The results substantiate our

model's superiority over BiseNet v2 (Yu et al., 2021), exhibiting a mIoU advancement

of 2.63%.
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In conclusion, the experiment revealed that the capsule network-based model

outperforms classic semantic segmentation models (SegNet and U-Net) and state of the

art models (BiseNet v2 and DFANet). Furthermore, the use of a combination of

appearance and pose expressions in the model leads to improved scene segmentation

ability compared to using a single vector expression and traditional dynamic routing

methods.

Table 4.4 Comparing our model to other state of the art models in different datasets

Dataset Model mIoU

CityScapes

BiseNet v2 (Yu et al., 2021) 72.62%

DFANet (Li et al., 2019) 70.32%

Our model 75.81%

CamVid

BiseNet v2 (Yu et al., 2021) 68.79%

DFANet (Li et al., 2019) 64.75%

Our model 69.24%

Our dataset

BiseNet v2 (Yu et al., 2021) 71.98%

DFANet (Li et al., 2019) 74.21%

Our model 74.61%

4.2.2 Results of Depth Estimation

The experiments are conducted using the KITTI dataset, which consists of calibrated

video registered to LiDAR measurements of a city, acquired from a moving vehicle. The

KITTI dataset is employed for evaluating the performance of computer vision
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technologies, such as stereo, optical flow, visual odometry, 3D object detection, and 3D

tracking. The dataset comprises in-vehicle environment and motorway scenes, featuring

up to 15 vehicles and 30 pedestrians per image, along with varying levels of occlusion

and truncation. The dataset consists of 389 pairs of stereo images and corresponding

optical flow maps, a visual ranging sequence spanning 39.2 kilometers, and over

200,000 sampled and synchronized 10Hz images with 3D labeled objects. The original

dataset was classified into categories such as 'Road,' 'City,' 'Residential,' 'Campus,' and

'Person.' KITTI comprises a total of 151 sequences, each accompanied by raw data

captured from the cameras for each frame. The resolution of the rectified RGB images

varies significantly depending on the calibration settings, but it is approximately

1242×375 pixels.

As shown in Figure 4.5, we randomly extracted 5,000 data samples from the KITTI

dataset for the purpose of training and testing. The dataset is then split into a training set

and a test set using a 7:3 ratio. The pixel dimensions of all training images are resized to

320×1024.

In this experiment, the swin transformer is employed as the encoder, while a CNN

serves as the decoder's network structure to accomplish depth estimation. The primary

objective is to leverage the transformer-based encoder to address the limitations of CNN

in global feature extraction. The generated depth maps from our network are illustrated

in Figure 4.8.

In order to assess the network's robustness and accuracy effectively, we consider

eight evaluation indicators throughout the training process. These indicators include

training loss, a1, a2, a3, Absolute Relative Error, RMSE, RMSE_log, and Squared

Relative Error. In Figure 4.6, the training curve is shown for a learning rate of 0.0001,

batch size of 1, and epoch of 30.
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Figure 4.5 The original RGB images training data

Up to epoch 15, we observe a clear decreasing trend in the training loss curve in

Figure 4.6, and all error curves in Figure 4.7 display a gradual reduction that X-axis

represents epoch. Simultaneously, the curves of a1, a2, and a3 show a smooth increase.

The minor oscillations observed in the falling and rising curves are attributed to a slight

imbalance in the randomly sampled data from the KITTI dataset. After epoch 15, the

training curves of each indicator start to stabilize, indicating the successful convergence

of the network.
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Figure 4.6 The training loss curves of depth estimation

Figure 4.7 The evaluation curves of depth estimation

During the optimization process, the loss function undergoes reduction, reflecting

the network's improvement. The user-selectable hyperparameters, such as the learning

rate, batch size, and number of epochs, play a vital role in influencing the training

outcome. These hyperparameters are essential components in determining the model's

performance and convergence during training.

Epoch

Loss
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Figure 4.8 The depth estimation of traffic scenes with color maps at pixel level
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Therefore, we conducted an evaluation of the model under different epoch settings.

Specifically, we trained the model with epoch values of 20, 25, 30, and 35, and observed

the changes in the evaluation metrics. The results are presented in Table 4.5. When the

epoch was set to 20, the model achieved the highest and most favourable results for a1

and a2 metrics. Setting the epoch to 30 resulted in the lowest training loss of 0.668, and

it also led to relatively lower absolute relative error and RMSE log compared to other

settings. However, the benefits of the 30-epoch setting were more prominent for RMSE

and Squared relative error metrics. Notably, the RMSE value reached 4.083 in our early

experimental findings.

Table 4.5 The validation results in different settings of epoch

Training loss a1 a2 a3 abs_rel RMSE RMSE_log sq_rel
EPOCH20 0.689 0.8748 0.9642 0.986 0.114 4.291 0.1792 0.7615
EPOCH25 0.6882 0.873 0.9639 0.9863 0.1155 4.231 0.1794 0.7443
EPOCH30 0.668 0.869 0.9627 0.9857 0.1167 4.083 0.1824 0.7397
EPOCH35 0.671 0.862 0.9615 0.9854 0.1173 4.211 0.1931 0.7429

The results demonstrate that the model accurately determines the distance

relationships in the scene. Additionally, the output images show clear edges of vehicles,

buildings, traffic lights, and other objects. The color maps also provide fairly decent

depth information for the primary objects. Overall, the model's performance is

impressive, showcasing its ability to understand the scene and provide accurate depth

estimation.

To ensure the stability and reliability of our network, we utilize Root Mean Squared

Error (RMSE), Absolute Relative Error (AbsRel), and Squared Relative Error (SqRel)

as evaluation metrics to assess the performance of DensDepth (Alhashim et al., 2018)

and our proposed models, as presented in Table 4.6, while training on the same dataset.

DensDepth represents a cutting-edge neural network that employs CNN for depth

estimation. Similar to our network, it follows an encoder-decoder architecture. The key

distinction lies in our network's utilization of a Transformer-based encoder, while
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DensDepth utilizes a CNN-based encoder called DenseNet-169. In DensDepth, the

encoder takes the input RGB image and transforms it into a feature vector using the

pre-trained DenseNet-169 network, which was originally trained on ImageNet.

Subsequently, this feature vector undergoes a sequence of up-sampling layers to

construct the final depth map, which is produced at half the input resolution. These

up-sampling layers, along with their corresponding skip-connections, collectively

constitute the decoder of the DensDepth model. Upon comparison, our model

outperforms DensDepth in every evaluation metric, particularly in RMSE and Rq_rel,

where it achieves significantly better results, with improvements of 0.32 and 0.129,

respectively.

Table 4.6 Comparison of the performance of our method and DensNet

DensDepth (Alhashim et
al., 2018)

Ours

Loss 0.704 0.688

a1 0.853 0.869

a2 0.959 0.962

a3 0.9849 0.985

Abs_rel 0.125 0.117

RMSE 4.548 4.228

RMSE_log 0.188 0.182

Sq_rel 0.874 0.745

In conclusion, in this experiment, we found that our model utilizing the swin

transformer as the encoder demonstrates excellent performance in accomplishing the

depth estimation task. At the same time, we also verified that the our transformer-based

model is more suitable for the depth estimation task than the CNN-based encoder.
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4.2.3 Results of Vehicle Tracking

We collected a substantial amount of visual data from traffic scenes using a driving

recorder and created a dataset focusing on vehicles as the target objects. From this

dataset, we selected 3,000 high-quality images for processing and labeling, dividing

them into a training set and a test set with a 3:1 ratio. Additionally, we applied data

augmentation techniques such as rotation, flipping, and translation to enhance the

dataset's diversity.

Through the experimental results of vehicle detection using

YOLOv5-CBAM-Transformer observe that the model accurately detects both larger

vehicles nearby and smaller ones in the distance. Moreover, there is no noticeable shift

in the position of the bounding box, even for smaller vehicles in the distance. The

effectiveness of this vehicle detection task provides crucial support for subsequent

vehicle tracking, as illustrated in Figure 4.9. The tracking boxes' scales in the vehicle

tracking task are highly adaptive, adjusting according to the varying distances between

vehicles. Our model assigns the same ID to the same target, allowing for effective

detection and tracking of vehicles even in the presence of occlusions.

The proposed model employs three loss functions to evaluate its performance in

different aspects: bounding box attribute, object confidence, and class probability score,

as depicted in Figure 4.10. The bounding box loss assesses how accurately the model

predicts the position of the bounding box through regression. The object confidence loss

evaluates the model's confidence in detecting objects and how accurate its predictions

are for the box containing an object. The classification loss measures the model's ability

to distinguish between objects and backgrounds. In addition, we use precision and recall

as metrics to assess the quality of the results. Precision indicates the proportion of true

positive predictions among all positive predictions made by the model, while recall

measures the proportion of true positive predictions among all actual positive instances

in the dataset. These evaluation metrics help us understand the model's performance
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comprehensively.

During the training process, the curve trends of bounding box loss, objective loss,

and classification loss, as depicted in Figure 4.10, follow a similar pattern. In the initial

50 epochs, all three loss curves experience a rapid decline, indicating the model's rapid

learning and adjustment. Subsequently, from 50 epochs to 150 epochs, the three loss

curves gradually stabilize, suggesting that the model starts to converge and fit the data.

Simultaneously, the precision and recall curves show a tendency to plateau at around the

75th epoch and 50th epoch, respectively. To comprehensively evaluate the model's

performance, we trained the model using various Intersection over Union (IOU)

thresholds, ranging from 0.50 to 0.95. The final average precision of the model for the

detection of 2214 vehicles is 0.995, as shown in Figure 4.11, indicating the high

accuracy and robustness of the network in detecting vehicles.

During the evaluation of vehicle tracking performance, we vary the location error

thresholds during the training process to compute precision values for each threshold

and assess the model's performance based on the area under the curve. Additionally, we

calculate the ratio of frames successfully tracked in the sequence to the total number of

frames at different overlap rate thresholds. In both Figure 4.12 and Figure 4.13, the

plotted points on the curves are positioned above the diagonal lines, indicating that the

model's performance is satisfactory. These results signify that the model is capable of

accurately tracking vehicles, with the achieved performance surpassing the expected

baseline.
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Figure 4.9 Experimental results of object tracking



111

Figure 4.10 Evaluations of vehicle detection with multiple methods (X-axis represents
epoch)

Figure 4.11 The mean average precision curve for a detection task

By comparing the state-of-the-art models SSD, YOLOv4, YOLOv5 and our

modified networks YOLOv5-CA, YOLOv5-SE, YOLOv5-CA-transformer,

YOLOv5-SE-Transformer, YOLOv5-CBAM and YOLOv5-CBAM-Transformer are

shown in Table 4.7 that in the case of a batch size of 16, our proposed
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YOLOv5-CBAM-Transformer is excellent in FPS and mAP. We can also know from the

comparison between the combination of YOLOv5 plus various attention modules and

the results of adding Transformer to them that Transformer can effectively improve the

detection average precision and mean average precision of our three modified YOLOv5

(YOLOv5-CA, YOLOv5-SE and YOLOv5-CBAM). In order to ensure the accuracy and

robustness of this model, we also combined our modified SiamRPN with

YOLOv5-CBAM, DaSiamese with YOLOv5-CBAM and

YOLOv5-CBAM-Transformer, compared the performance of our model

(YOLOv5-CBAM-Transformer + modified SiamRPN) in Table 4.8.

DaSiamRPN+YOLOv5-CBAM MOTA performed the best among the other three

models, but it was still 1.10% lower than the proposed model. For MOTP, the

performance of YOLOv5-CBAM + modified SiamRPN is the best among the other

three models, but it is 0.30% lower than the proposed model. Moreover, from the results,

we can see that under the premise of combination of our proposed

YOLOv5-CBAM-Transformer which can receive the best detection result than other

models, the effect of using modified SiamRPN is better than that of DaSiamRPN in

MOTA (5.2% higher) while they are not much different on MOTP.

The proposed model takes use of a large number of training data from our traffic

scene in Auckland and provides convenience for future research on traffic signs and road

conditions. Secondly, this model combines the two our modifications of advanced deep

learning models of YOLOv5-CBAM-Transformer and the SiamRPN for the first time to

realize the understanding of the traffic scenes. The experimental results show that the

model is satisfactory in detecting and tracking different sizes of vehicles in the distance

in complex vehicle-related scene, and the bounding box has strong adaptability to

vehicles of different sizes in dynamic traffic scenes. This model added CBAM and

Transformer encoder to YOLOv5 for improving the detection performance and applies

Hungarian algorithm to achieve multi-object tracking, so that the model is able to

efficiently detect and track multiple vehicles in a complex traffic environment.
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Figure 4.12 The curve related to the thresholds of location errors and precisions

Figure 4.13 The curve reflected the relationship between the overlapping thresholds and
success rates

Table 4.7 Comparisons of different detection methods

Methods mAPs_0.5 mAPs_0.5:0.95 FPS
Batch

sizes

SSD 98.10 85.60 39 16
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YOLOv4 97.60 77.90 35 16

YOLOv5 98.40 87.30 37 16

YOLOv5-CA 97.80 82.10 36 16

YOLOv5-CA-Tr

amsformer
97.80 82.30 35 16

YOLOv5-SE 95.90 72.20 37 16

YOLOv5-SE-Tr

ansformer
96.50 77.80 37 16

YOLOv5-CBA

M
98.90 88.10 36 16

YOLOv5-CBA

M-Transformer
99.50 88.70 37 16

Table 4.8 Comparisons of various tracking methods

Models
MOTA

(%)

MOTP

(%)

MT ML FP FN FM

YOLOv5-CBAM-Transformer + DaSiamRPN 33.70 74.10 21.2 39.7 307 3998 84

YOLOv5-CBAM +DaSiamRPN 37.80 75.90 19.4 36.2 311 14427 171

The proposed

YOLOv5-CBAM+Modified-SiamRPN
37.30 76.40 12.6 45.8 591 12769 198

The proposed

YOLOv5-CBAM-Transformer+Modified-SiamRPN
38.90 76.70 15.5 32.7 276 15962 247

In summary, in this experiment, although the detection speed of our proposed

YOLOv5-CBAM-Transformer is not the fastest in FPS, the detection precisions under

the same conditions is higher than that of other compared models. And we found that

when YOLOv5-CBAM is with the Swin Transformer, it can effectively improve the

accuracy by 1.1%. Moreover, compared to other Siamese Networks (DaSiamRPN), our
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modification of SiamRPN performs more prominently in vehicle tracking tasks.

4.2.4 Results of Distance Estimation

This thesis presents a novel vehicle detection and distance estimation model for

low-cost monocular cameras, enhanced with an attention module and Transformer,

utilizing deep learning techniques. The experimental setup involved using Python 2.7,

an RTX5000 GPU, and 32GB RAM. The example data used in the experiments was

sourced from the KITTI dataset. The KITTI dataset comprises both intrinsic and

extrinsic characteristics of the in-car camera, along with the coordinates, width, and

height of the detection boxes. For the development of our deep learning model, we

randomly selected 4,000 samples and divided them into a 7:3 ratio for training and

testing. The results presented in this section correspond to state-of-the-art approaches.

Figure 4.14 illustrates the satisfactory vehicle recognition and distance estimation

performance achieved by our modified YOLOv7 (YOLOv7-CBAM-Transformer) with

the extended prediction vector (Khan et al., 2017).

To train our YOLOv7-CBAM-Transformer, we set the following parameters:

epochs=5000, batch size=1.0, and learning rate=0.01. Figure 4.15 illustrates the network

training process, showing that validation loss decreases steadily between 0 and 1000

iterations. After reaching 1000 epochs, the loss curves stabilize at 0.082.

Table 4.9 provides a quantitative comparison of the KITTI-constructed dataset for

each of the evaluation measures listed. Several YOLO models and the transformer

model are evaluated in this comparison. The results indicate that YOLOv7 outperforms

all previous YOLO models, including the transformer. Moreover, our

YOLOv7-CBAM-Transformer, which incorporates the CBAM, outperforms the original

YOLOv7. The combination of the CBAM with YOLOv7 demonstrates significantly

improved results. Notably, the addition of the Swin Transformer leads to a reduction of

0.382 in RMSE compared to the previous model. Overall, our
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YOLOv7-CBAM-Transformer achieves a total reduction of 0.456 in RMSE compared

to the original YOLOv7 model.

Figure 4.14 The example of vehicle detection and distance estimation using
YOLOv7-CBAM-Transformer

Additionally, the distances were divided into three categories: 0-10m, 10-20m,

and >20m. In Table 4.10, we obtain the average RMSE for each group. Our

YOLOv7-CBAM-Transformer outperforms the original YOLOv7 in 0-10m and 10-20m
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distance categories. In summary, the data presented in Table 4.9 and Table 4.10 suggest

that the YOLOv7-CBAM-Transformer model is more effective in handling object

detection and distance estimation tasks. Moreover, the model with Transformer is

reduced by at least 0.2 in the RMSE of each distance category compared with

YOLOv7-CBAM; compared with the original YOLOv7, it is reduced by at least 0.303

in distance caegory of 0-10m and 10-20m.

Figure 4.15 The diagram of training process of YOLOv7-CBAM. The blue curve
indicates the validation loss.

Table 4.9 Comparative Analysis of Multiple Deep Neural Networks

epoch



118

Table 4.10 Average RMSE of different neural networks in different distance categories

Table 4.11 Comparing our model to other state of the art model of distance estimation

Model RMSE

GC-ASPP-YOLOv3-D (Lian et al., 2022) 3.985

Ours (YOLOv7-CBAM-Transformer) 3.701

In the context of identical dataset, we conducted a comparative analysis between

our model and another state of the art distance estimation model GC-ASPP-YOLOv3-D

in Table 4.11 (Lian et al., 2022). The results highlight the distinct advantages of our
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model, particularly in terms of RMSE, where it outperforms GC-ASPP-YOLOv3-D.

In summary, in this experiment, we found that in addition to YOLOv7 being more

suitable for vehicle distance estimation in KITTI dataset than YOLOv5, YOLOv6 and

original Swin Transformer, adding CBAM can successfully further reduce the

estimation error of the model. Moreover, we found that YOLOv7 with CBAM is more

suitable for distance estimation within 20 meters, while the original YOLOv7 is more

prominent when estimating the distance of vehicles beyond 20m. By further

improvement, our proposed YOLOv7-CBAM-Transformer produced the better results

even compare with YOLOv7-CBAM.
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Chapter 5 Analysis and Discussions

In this chapter, we will explore how design decisions

have influenced the performance of our models. We

will also delve into the reasoning behind these

decisions and evaluate whether they have yielded the

anticipated outcomes. Additionally, we analyze and

compare the values of various parameters utilized in

the model to gain insights into their impact on

performance.
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We have directly introduced the results of scene understanding. In this chapter, we

analyse and discuss the output of each of the four tasks: scene segmentation, vehicle

tracking, depth estimation and distance estimation by comparing the data from a large

number of ablation experiments. The analysis results favorably demonstrate that our

final model structure allows for maximum optimization of the model's performance.

5.1 Analysis and Discussion of Vehicle Tracking

In Chapters 3 and Chapter 4, we describe the network structure and experimental results

of vehicle tracking in detail. In this chapter, we perform ablation experiments using

different network structures and training parameters to verify that our final model is

optimal and robust.

Firstly, we discuss the size of the network, the memory footprint and the number of

parameters by comparing YOLOv5 with several variants of YOLO. It is well known

that lighter, faster and easier-to-deploy models are preferred, provided they perform

well. This is because the lighter and faster models are less complex and can be trained

with much less computation and faster results.

The existing models are generally made lighter by reducing the number of flops,

memory and parameters and faster by adding a shuffle channel and channel clipping to

the YOLOv5 head. By removing the Focus layer and quadruple slice operations, the

model quantization accuracy is reduced to within acceptable limits, to the point where

the model is easier to deploy.

YOLO-fastest, Shufflev2-YOLOv5, YOLOv4-Tiny, and YOLOv3-Tiny are four

models that have been structurally altered to make the YOLO family of models lighter

and faster.

Shufflev2-YOLOv5 network structure mainly uses a shuffle block with a shuffle

channel as the backbone and a YOLOv5 head as the header. The design philosophy
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behind Shufflev2 involves streamlining the architecture to enhance efficiency and

performance. This includes removing the Focus layer to eliminate multiple slice

operations and avoiding redundant usage of the C3 Layer and the high channel C3

Layer. The C3 Layer is an improved version of YOLOv5 CSPBottleneck, known for its

simplicity, speed, and superior results with minimal losses. These optimizations

contribute to the overall effectiveness and computational efficiency of Shufflev2.

Nonetheless, the C3 Layer utilizes multiple separate convolutions, and experiments

have demonstrated that frequent use of C3 Layer and higher channel counts in C3 Layer

occupy more cache space, leading to slower operations. Furthermore, the yolov5 head's

channel clipping is also implemented. Additionally, the ShuffleNetv2 backbone removes

the 1024 conv and 5×5 pooling. These optimizations are implemented to improve the

overall efficiency and speed of the model.

The YOLO-Fastest network utilizes ShuffleNetV2 as its backbone, the light-FPN

network as its Neck part, and consists of three components in the head: classification,

regression, and detection. Notably, YOLO-Fastest extensively employs depthwise

separable convolution to achieve remarkable speed, reduce the number of parameters,

and facilitate efficient deployment on mobile devices.

The YOLOv4-Tiny structure is a lightweight version of YOLOv4, comprising only

6 million parameters, which is one-tenth of the original model. This reduction in

parameters significantly improves the detection speed of the model. The complete

network structure consists of 38 layers, including three residual units, a LeakyReLU

activation function, two feature layers dedicated to target classification and regression,

and a Feature Pyramid Network (FPN) to efficiently merge the essential feature layers.

Moreover, the network incorporates the CSPnet structure, employing channel splitting

in the feature extraction network. This process divides the output feature layer channels

after a 3x3 convolution into two parts, and then selects the second part for further

processing.
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The YOLOv3-Tiny structure is a simplified version of YOLOv3, aimed at reducing

network complexity. In contrast to YOLOv3, the tiny version significantly compresses

the network and omits the use of a res layer, retaining only two different scales of

YOLO output layers. For a comprehensive comparison of the five models based on

input size, FLOPs, and parameters, refer to Table 5.1. We can see that YOLO-fastest and

Shufflev2-YOLOv5 require the smallest input size. At the same time, YOLO-Fastest has

lower flops and parameters than shufflev2-YOLOv5. This shows that YOLO-Fastest is a

much simpler network. However, with an input size of 416416, Shufflev2-YOLOv5

requires fewer flops and parameters than YOLOv4-Tiny and YOLOv3-Tiny. In contrast,

the network structure and computation of YOLOv5 are slightly higher than that of the

other YOLO variants in Table 5.1.

Table 5.1 A comparison of the five models in terms of input size, FLOPs (floating-point
operations), and parameters.

Network Input size Flops Parameters

YOLO-fastest 320320 0.25G 0.35M

Shufflev2-YOLOv5 320320 1.43G 1.62M

Shufflev2-YOLOv5 416416 2.42G 1.62M

YOLOv4-tiny 416416 5.62G 8.86M

YOLOv3-tiny 416416 6.96G 6.06M

YOLOv5 640640 17.0G 7.30M

In order to evaluate the six models more fairly, the two evaluation indicators that

mAP@0.5 and mAP@0.5:0.95 were compared in Figure 5.1. The mAP@0.5:0.95

denotes the average mAP at different IoU thresholds from 0.5 to 0.95 in steps of 0.05

(0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95). Similarly, mAP@0.5 denotes the

average mAP at different IoU thresholds from 0.5 to 1. The comparison of the results
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reveals a significant difference in mAP (mean Average Precision) when using different

IOU (Intersection over Union) thresholds. Specifically, the mAP when the IOU

threshold is greater than 0.5 is notably higher compared to when the IOU threshold falls

within the range of 0.5 to 1. This disparity occurs because the mAP calculation at IOU

thresholds from 0.5 to 0.95 excludes the IOU threshold of 1, leading to a rounded-off

effect in the calculation process.

We also found that YOLO-fastest with the fewest flops and parameters only

obtained 81.40% and 73.10% on mAP@0.5 and mAP@0.5:0.95. In contrast, YOLOv5,

which required the most Flops and parameters, gains 98.40% and 87.30% on mAP@0.5

and mAP@0.5:0.95. The rest of the models (Shufflev2-YOLOv5, YOLOv4-Tiny and

YOLOv3-Tiny) performed below YOLOv5. Compared to Shufflev2-YOLOv5 with

different input sizes, Shufflev2-YOLOv5 with a larger input size outperforms the

smaller input size by more than 2% on both mAP@0.5 and mAP@0.5:0.95.

Therefore, though the streamlined network structure and parameters reduce the

computational effort, the model performance suffers. To ensure the best performance of

our model, YOLOv5 is the best choice.

As described in Chapter 3, to further improve network performance, we have added

Swin Transformer to our improved attention module based network YOLOv5-CBAM.

As setting different training parameters directly affects the accuracy and stability of the

network, we have analyzed YOLOv5-CBAM and YOLOv5-CBAM-Transformer with

respect to the two parameters, batch size and epoch, in order to find the optimal

parameters.
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Figure 5.1 Comparison of the mAP of different YOLO variant models with different
IoU thresholds

We trained the networks YOLOv5-CBAM and YOLOv5-CBAM-Transformer by

setting the batch size to 4, 8, 16, 32 and epoch to 100, 110, 120, 130, 140, 150, 160, 170

and 180 while keeping other variables constant. We obtained the most satisfactory

mAP@0.5, which is 99.5, at a batch size of 16 and an epoch of 150 that in

YOLOv5-CBAM-Transformer. We did the same comparison experiment on

YOLOv5-CBAM, and the results showed that mAP@0.5 reached its maximum at a

batch size of 4 and an epoch of 130. By comparing the optimal mAPs in Table 5.2 and

Table 5.3, we can demonstrate that Swin Transformer has a strong ability of helping our

improved model YOLOv5-CBAM obtain meaningful enhancement.
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Table 5.2 Comparison of mAPs of YOLOv5-CBAM-Transformer in different batch
sizes and epochs

BatchSize\Epoch 100

epochs

110

epochs

120

epochs

130

epochs

140

epochs

150

epochs

160

epochs

170

epochs

180

epochs

Batch size =32 62.0 62.9 65.1 70.1 69.8 73.1 69.7 68.8 66.5

Batch size =16 90.7 92.0 96.3 97.9 99.1 99.5 98.3 97.6 95.9

Batch size =8 93.4 93.2 93.5 92.2 94.0 94.3 95.9 98.4 96.2

Batch size =4 70.9 77.7 76.9 77.2 80.8 82.2 83.7 88.6 85.4

Table 5.3 Comparison of mAPs of YOLOv5-CBAM in different batch sizes and epochs

BatchSize\Epoch 100

epochs

110

epochs

120

epochs

130

epochs

140

epochs

150

epochs

160

epochs

170

epochs

180

epochs

Batch size =32 65.4 69.9 67.4 64.7 66.9 65.8 64.2 60.5 57.3

Batch size =16 63.6 66.6 67.3 69.0 69.8 67.4 67.9 66.3 63.2

Batch size =8 85.5 87.9 88.7 88.3 86.9 83.1 81.0 77.4 80.6

Batch size =4 90.9 92.6 95.3 98.9 96.5 95.9 96.8 96.0 95.1

In Chapter 3 and Chapter 4, our final vehicle tracking model was implemented

using YOLOv5-CBAM-Transformer + regression modified SiamRPN. Not only did we
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show that YOLOv5-CBAM-Transformer with modified SiamRPN performs better than

the model without Transformer by comparing a large amount of experimental data, but

we also observed some frames in the video.

The result shows in Figure 5.2 that both models perform well in tracking obscured

vehicles and smaller vehicles in the distance. However, YOLOv5-CBAM+modified

SiamRPN experienced missed detections on medium-sized vehicles, while

YOLOv5-CBAM-Transformer+modified SiamRPN detected all vehicles on the scene

very well.

In Figure 5.3, we present a performance comparison between the two models in

Scene 2. By looking at them, we see that both models are accurate at tracking vehicles

at long distances. However, YOLOv5-CBAM-Transformer+modified SiamRPN

successfully detects vehicles that are turning. This proves that

YOLOv5-CBAM-Transformer+modified SiamRPN can not only detect vehicles

travelling in the same direction and the opposite direction but can also successfully

make detections from other viewpoints without any drift in the detection frame.

In Figure 5.4, the YOLOv5-CBAM+modified SiamRPN incorrectly detects the

distant bridge as a vehicle; despite the distance and small size, the

YOLOv5-CBAM-Transformer+modified SiamRPN does not show this false detection.

In summary, we have verified through testing and comparison that the

YOLOv5-CBAM-Transformer+modified SiamRPN can accurately track vehicles from

long range, close range and side view. At the same time, the

YOLOv5-CBAM-Transformer+modified SiamRPN can accurately track obscured

vehicles and ensure no offset in the detection frame.
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Figure 5.2 Comparison of the performance of YOLOv5-CBAM-Transformer with
modified SiamRPN and YOLOv5-CBAM with modified SiamRPN on the scene1.
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Figure 5.3 Comparison of the performance of YOLOv5-CBAM-Transformer with
modified SiamRPN and YOLOv5-CBAM with modified SiamRPN on the scene2.



130

Figure 5.4 Comparison of the performance of YOLOv5-CBAM-Transformer with
modified SiamRPN and YOLOv5-CBAM with modified SiamRPN on the scene2.

5.2 Analysis and Discussion of Distance Estimation

In this chapter, we conduct a comprehensive analysis of the model's stability and

robustness by exploring various variants of the base YOLOv7 model within the same

experimental environment. We incorporate different modules and specific functional
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layers and compare them with our proposed YOLOv7-CBAM-Transformer.

Additionally, we carried out experiments to validate the reliability of the

hyperparameters used in the models during the experiments. Moreover, we assess the

performance of different models at various distance ranges. Through these experiments,

we aim to showcase the superiority of our final model, demonstrating its outstanding

performance and effectiveness.

Initially, we selected YOLOv7 as the main network structure for distance estimation.

This decision was driven by the fact that YOLOv7 offers substantial enhancements in

real-time object detection accuracy without significantly increasing the inference cost.

The experimental results presented in Chapter 4 demonstrate that YOLOv7 surpasses

other well-known object detectors in terms of detection accuracy. In summary, YOLOv7

offers a faster and more robust network architecture, efficient feature integration,

accurate target detection performance, a robust loss function, and higher efficiency in

label assignment and model training. It outperforms other models, making it a

compelling choice for our research. YOLOv7-X is an extension of YOLOv7 that

incorporates a module scale and a composite scaling method to adjust the depth and

width scale of the entire model. These modifications aim to enhance the performance

and adaptability of the network.

Model scaling serves the primary purpose of adjusting crucial properties of the

model to create a model that suits various applications. This process involves

optimizing the model's width (number of channels), depth (number of stages), and

resolution (input image size) to achieve the desired performance and adaptability for

specific tasks. In conventional methods using cascade-based architectures, the scaling

factors are not analyzed independently but considered together. For instance, increasing

the model depth may affect the ratio between input and output channels of the transition

layer, potentially impacting the model's hardware utilization. This is the reason

YOLOv7 was selected as the base model for this experiment. The composite scaling
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method ensures that the model's properties remain consistent with the initial design,

thereby preserving its optimal structure.

We also referenced YOLOv7-Tiny to participate in the comparison experiments.

The 'small' suffix for computer vision models indicates that they are optimized for edge

AI and deep learning workloads, making them more lightweight and efficient. In

contrast to the other YOLOv7 variants, the edge-optimized YOLOv7-Tiny utilizes leaky

ReLU as the activation function, while the other models employ SiLU as the activation

function.

Table 5.4 Comparison of the size and performance of YOLOv7 and its variant models
on the KITTI dataset

Parameter Flops Precision Recall mAP@0.5 mAP@0.5:0.95

YOLOv7 36.9M 104.7G 94.8% 92.1% 96.9% 73%

YOLOv7-X 71.3M 189.9G 93.5% 91.3% 95.1% 70.5%

YOLOv7-Tiny 6.2M 13.8G 84.3% 80.5% 87.3%
60.8%

Table 5.4 shows that although YOLOv7-X utilizes a composite scaling method with

depth and width scales, it does not yield significant improvements on the KITTI dataset.

YOLOv7 slightly outperforms YOLOv7-X and significantly outperforms

YOLOv7-Tiny in evaluation metrics such as precision, recall, and mAP. Moreover,

YOLOv7 achieves better performance than YOLOv7-Tiny while using less than 50% of

the parameters. Additionally, YOLOv7 outperforms YOLOv7-X while utilizing 50%

fewer parameters. As a result, YOLOv7 can be considered the most suitable model

among the three for ensuring detection accuracy and computational efficiency in this

experiment.

In order to enhance the detection performance of the YOLOv7 model and maximize
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its accuracy for subsequent distance estimation tasks, we attempted to incorporate four

different modules (SkAttention, CBAM, and GAMAttention) into YOLOv7 and

compared their effects (Li, Wang, Hu & Yang, 2019; Liu, Shao & Hoffmann, 2021; Woo

et al., 2019).

In a typical convolutional neural network, the artificial neurons in each layer are

designed to have the same size for their receptive fields. It is widely recognized in the

neuroscience community that the receptive field size of visual cortical neurons is

influenced by the stimulus, a factor that is often overlooked when constructing CNNs. A

dynamic selection mechanism has been proposed for CNNs, enabling each neuron to

adaptively adjust its receptive field size based on multiple scales of input information.

The proposed building block is called a Selective Kernel (SK) unit, which incorporates

multiple branches with different kernel sizes. These branches are fused using softmax

attention, guided by the information present in each of these branches. The varying

attention given to these branches leads to different effective receptive field sizes for

neurons in the fusion layer. Multiple SK units are stacked in a deep network known as

Selective Kernel Networks (Li, Wang, Hu & Yang, 2019).

The first improvement is the SK Attention mechanism, which draws inspiration

from the SENet (Squeeze-and-Excitation) and dynamically fuses the outputs of

individual convolutional kernels by calculating channel weights adaptively for each

kernel. This allows the network to emphasize the target to be detected and enhances the

detection results.

To overcome the limitations of previous methods that neglect preserving

information in channels and spatial dimensions, we introduce a novel global scheduling

mechanism called GAM Attention. This approach aims to enhance the performance of

deep neural networks by minimizing information reduction and amplifying global

interaction representation. GAM Attention incorporates a multilayer perceptron 3D

permutation for channel attention and a convolutional spatial attention submodule (Liu,
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Shao & Hoffmann, 2021). Additionally, the third enhancement involves integrating

CBAM, which was discussed comprehensively in Chapter 3 and Chapter 4.

Table 5.5 Comparison of the size and performance of YOLOv7 and its variant models
on the KITTI dataset

mAP@0.5 mAP@0.5:0.95

YOLOv7_SKAttention 90.3% 62.9%

YOLOv7_CBAM 97.7% 75.4%

YOLOv7_GAMAttention 96.0% 66.2%

Figure 5.5 Comparison of the results of YOLOv7 training on different epochs on
mAP@0.5

The results show in Table 5.5 that the combination of YOLOv7 and SKAttention

was disappointing, as the mAP@0.5 of the model with SKAttention inserted dropped by

6.3% compared to the original YOLOv7. At the same time, the addition of
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GAMAttention to YOLOv7 did not result in an increase in the expressiveness of the

model. However, CBAM gave a 0.8% boost to YOLOv7 on mAP@0.5 and a 2.4%

boost on mAP@0.5:0.95. Therefore, this experiment can show that the combination of

YOLOv7 and CBAM can effectively improve the detection accuracy and contribute to

the accuracy of the subsequent distance estimation.

Therefore, we finally chose the best-performing CBAM combined with YOLOv7 as

the basic framework, and added Transformer to further improve the ability of the model.

Due to the large image size of the KITTI dataset, we decided to choose a more

significant epoch number and a smaller batch size to ensure the training effect of

YOLOv7_CBAM_Transformer. We experimented with different epoch numbers (epoch

= 3500, 4000, 4500, 5000, 5500 and 6000) while fixing batch_size = 1 and learning_

rate = 0.01. As shown in Figure 5.5, the curve tends to increase from 3,500 to 5,000, and

the accuracy decreases significantly from 5,000 to 6,000.

Table 5.6 Comparison of the performance of different model in different distance

0-10m 10-20m >20m Average

YOLOv7 4.502 4.357 3.612 4.157

YOLOv7_SKAttention 4.790 4.533 4.574 4.632

YOLOv7_CBAM 4.499 3.667 4.083 4.083

YOLOv7_GAMAttention 4.621 3.695 4.527 4.281

YOLOv7-CBAM-Transformer 4.199 3.021 3.883 3.872

At the end of the experiment, our modified YOLOv7 models evaluate their RMSE

mailto:mAP@0.5:0.95
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at different distance ranges. We found that in Table 5.6, YOLOv7 is suitable for

estimating the distance from the vehicle to more than 20m among the four models that

did not include Transformer in the comparison. In contrast, YOLOv7-CBAM is suitable

for the distance of 0-10m vehicles in the range of 0-10m, and YOLOv7_GAMAttention

is more accurate than other models in measuring the distance in the range of 10-20m. In

terms of the average RMSE of the three ranges, YOLOv7_CBAM still has an advantage.

Compared to the original YOLOv7 range, YOLOv7_CBAM improves the average

RMSE by about 0.02. After adding Transformer, the model is higher than other

networks without Transformer in 0-10m, 10-20m and Average.

Figure 5.6 Distance estimation performance of different models on the same frame
(group A)

For a more intuitive analysis of the performance of the different models in distance

estimation, the performance of the YOLOv7-CBAM-Transformer and the

YOLOv7-CBAM in four different traffic scenes are listed in Figure 5.6, Figure 5.7,

Figure 5.8 and Figure 5.9, respectively. The orange box shows the confidence of the
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vehicle detection, and the black box shows the estimated distance. Although our

estimated distance values were kept to three decimal places, we kept only integer places

in the resulting image to avoid the result boxes obscuring each other and cluttering the

resulting image. When calculating the RMSE, we still use the results with three decimal

places retained.

In group A, the YOLOv7-CBAM-Transformer accurately predicts the distances

without any error of object 1 and object 6. According to the data shown in Table 5.7,

when compared to YOLOv7-CBMA, the YOLOv7-CBAM-Transformer is more

accurate when compared to the YOLOv7-CBAM for the other objects. At the same time,

the YOLOv7-CBAM appears to miss the detection of distant vehicles during the

detection process, which is one of the reasons for the significant difference in the mean

absolute error between the two models in the scene of group A.

Table 5.7 Comparison of the estimated distance results of the two models in group A in
same scene

Estimated distance

(YOLOv7-CBAM)

Estimated distance

(YOLOv7-CBAM-Transformer)
True distance

Object1

(group A)
4 m 1 m 1 m

Object2

(group A)
11 m 7 m 9 m

Object3

(group A)
20 m 17 m 14 m

Object4

(group A)
44 m 33 m 36 m
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Object5

(group A)
Nan 40 m 39 m

Object6

(group A)
49 m 41 m 41 m

Mean absolute

error
5.4 1.5 /

Figure 5.7 Distance estimation performance of different models on the same frame
(group B)

Table 5.8 Comparison of the estimated distance results of the two models in group B in
same scene

Estimated distance

(YOLOv7-CBAM)

Estimated distance

(YOLOv7-CBAM-Transformer)
True distance
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Object1

(group B)
6 m 7 m 7 m

Object2

(group B)
7 m Nan 8 m

Mean absolute

error
1.0 4.0 /

Figure 5.8 Distance estimation performance of different models on the same frame
(group C)

A total of 2 objects are in the scene in group B. The YOLOv7-CBAM successfully

detects two objects, while the YOLOv7-CBAM-Transformer fails to detect object2,

which is heavily obscured by object1. Although the YOLOv7-CBAM-Transformer

accurately estimated the distance of object1, its mean absolute error, which is shown in

Table 5.8 was significantly higher due to the missed detection.



140

In the scene of group C shown in Figure 5.8, both models successfully detected all

six vehicles and performed very similarly on each object. Overall, the

YOLOv7-CBAM-Transformer performs slightly better than the YOLOv7-CBAM in this

scene. When comparing the mean absolute error in Table 5.9, the

YOLOv7-CBAM-Transformer is 0.33 lower than the YOLOv7-CBAM.

Table 5.9 Comparison of the estimated distance results of the two models in group C in
same scene

Estimated distance

(YOLOv7-CBAM)

Estimated distance

(YOLOv7-CBAM-Transformer)
True distance

Object1

(group C)
0 m 0 m 1 m

Object2

(group C)
6 m 6 m 8 m

Object3

(group C)
14 m 14 m 13 m

Object4

(group C)
20 m 21 m 21 m

Object5

(group C)
30 m 29 m 28 m

Object6

(group C)
29 m 39 m 35 m

Mean absolute

error
1.83 1.5 /
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Figure 5.9 Distance estimation performance of different models on the same frame
(group D)

Table 5.10 Comparison of the estimated distance results of the two models in group D in
same scene

Estimated distance

(YOLOv7-CBAM)

Estimated distance

(YOLOv7-CBAM-Transformer)
True distance

Object1

(group D)

11 m 10 m 9 m

Object2

(group D)

/ 27 m 25m

Object3

(group D)

25 m 23 m 21 m

Object4 26 m 20 m /
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(group D)

Mean

absolute

error

19 8.3 /

In Table 5.10, the highest mean absolute error was achieved for both models in

group D, as both models incorrectly detected object4 (landmark) as a vehicle. In

addition, the YOLOv7-CBAM has a missed detection on object2. Therefore, although it

performs well on the other objects, the omissions and misdetections still significantly

impact the global performance.

In summary, by analysing the performance of the different models in the vehicle

scene, we found that the accuracy of vehicle detection has a crucial impact on the

subsequent distance estimation, especially in the case of missed and wrong detections,

which can have a fatal impact on the overall assessment of distance estimation.

Therefore, for this experiment, the selection of a correct vehicle detection model plays

an extremely positive role in the distance estimation task and maximises the accuracy of

the distance estimation. Moreover, after comparison, it is found that adding our

proposed YOLOv7-CBAM-Transformer is more suitable for the detection and ranging

of vehicles at different distances than YOLOv7-CBAM and is more accurate in the

ranging of long-distance vehicles.

5.3 Analysis and Discussion of Depth Estimation

In this part, we provide a comprehensive demonstration of the stability and reliability of

our depth estimation models. We investigate the model utilizing Transformer as encoder

and the model utilizing CNN as encoder separately, delving into the details of their

performance and robustness.

In Figure 5.10, Figure 5.11 and Figure 5.12, we have selected the three most
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typical traffic scenes to analyse, to the extent that the performance of the two models

can be more intuitively understood. In the scene in Figure.5.10 (Group A), both models

compute depth for most of the objects in the scene. However, the Transformer as

encoder model is much more sophisticated in terms of detail handling. We have marked

the difference between the two depth maps in Figure 5. 10, Figure 5. 11 and Figure 5. 12

with red circles. We can see that the Transformer as encoder model successfully and

completely detects the large trees in the middle and on the right side of the scene in

Figure 5.10. In contrast, the CNN as encoder model does not detect the trees in the

middle of the scene and does not completely detect the trees on the right side of the

scene.
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Figure 5.10 Comparison of generated depth images by using Transformer and CNN as
the encoder of Models (group A)

In Figure 5.11, we find more advantages of Transformer as encoder. The most

obvious one is the stop sign on the far right of the scene, and the pedestrian next to the

car. The model with Transformer as encoder also gives full detail to the tree trunk on the

right side of the scene. Secondly, the vehicles in the middle of the scene in the distance

are also detected more completely by Transformer-based model.

Figure 5.11 Comparison of generated depth images by using CNN and Transformer as
the encoder of model (group B)
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In Figure 5.12, CNN-based model computes the depth of the sky in the distance to

be the same as the depth of the trees in the near distance, except for the treatment of the

stop sign hanging from the light pole. In contrast, Transformer-based model handles

these details very well.

Through a comprehensive series of comparisons, it becomes evident that the model

employing Transformer as an encoder is more proficient in accurately estimating the

depth of vehicle-related scenes in the KITTI dataset.

Figure 5.12 Comparison of generated depth images by using CNN and Transformer as
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the encoder of model (group C)

5.4 Analysis of Scene Segmentation

In this part, we aim to showcase the efficacy of our scene segmentation model by

conducting a comparison of how image resolution affects the model's performance.

Additionally, we assess the impact of different models on our Auckland traffic scene

dataset.

Table 5.11 Comparing the effect of different image resolutions on the effectiveness of
semantic segmentation models

Models Image resolution mIOU

SegNet
512×512 58.73%

1024×1024 60.54%

UNet
512×512 69.25%

1024×1024 74.18%

Ours
512×512 71.83%

1024×1024 74.61%

In Table 5.11, we compare the sensitivity of the different models to the resolution of

the images. We have chosen two of the most classical models in semantic segmentation,

SegNet and UNet, to compare with our model. The results show that upscaling the

resolution from 512 × 512 to 1024 × 1024 improves our model mIOU by 2.78%.

Meanwhile, it improves by 1.81% and 4.93% on SegNet and UNet, respectively. This

shows that appropriately increasing the resolution can most effectively improve the

model performance on UNet. However, SegNet is not sensitive to changes in image

resolution.

We also took the same number of samples from the Cityscape dataset to train our
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model and found the best combination of its optimal batch size and epoch through

multiple experiments.

Table 5.12 Comparing the effect of different epochs and batch size on the effectiveness
of semantic segmentation models

BatchSize\Epoch 20000

epochs

25000

epochs

30000

epochs

35000

epochs

40000

epochs

45000

epochs

Batch size =16 60.37% 62.91% 64.87% 63.40% 68.93% 69.11%

Batch size =8 67.20% 60.01% 63.48% 74.71% 75.81% 75.12%

Batch size =4 64.17% 64.09% 67.79% 72.15% 74.33% 75.27%

We have experimented from 20,000 epochs to 45,000 epochs with 4 batch size, 8

batch size and 16 batch size. Finally, the results shown in Table 5.12 demonstrate 40000

epochs with 8 batch size produced the best performance on the Cityscape dataset. On

the Cityscape dataset, our model achieves the best performance of 75.81%. Compared

to using our own labelled Auckland traffic dataset, the training results of the public

dataset are more accurate. This may be because the labelling of public datasets is more

accurate and detailed, and the level of detail of labelling directly affects the training

effect.
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Chapter 6 Conclusion and Future Work

This chapter delves into a comprehensive exploration of

vehicle-related scene understanding, providing detailed

explanations of research findings and innovative research

methodologies. In this chapter, we present these arguments at a

scholarly level. Moreover, we integrate and organize the

conclusions within the context, while also identifying potential

areas for future work at the conclusion of this thesis.
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6.1 Conclusion

The aim of this thesis is to employ deep learning for comprehensive traffic scene

understanding, encompassing both 2D and 3D aspects, including scene segmentation,

vehicle tracking, depth estimation, and distance estimation. The neural network's

effectiveness and the dataset's utility were demonstrated through hyperparameter tuning

and experimentation with various model variants. The primary contributions of this

thesis are listed as follows:

Every stage of the research, encompassing dataset pre-processing, neural network

design and training, model evaluation, and result comparison, was accomplished

successfully. The KITTI dataset and the Auckland traffic scenes dataset were utilized as

training and testing sets throughout the research. The Auckland traffic scenes dataset

was meticulously collected and annotated by ourselves, providing a substantial number

of raw images along with precise annotations of the Auckland traffic environment. The

dataset includes pixel-level annotations for scene segmentation and bounding box

annotations for vehicle tracking. This valuable resource enables effective neural

network training and evaluation for various aspects of traffic scene understanding.

Moreover, comprehensive comparative validations conducted on the Auckland traffic

dataset demonstrate outstanding performance for both scene segmentation models and

vehicle tracking models. Additionally, our models exhibit impressive results in scene

depth estimation and distance estimation tasks, leveraging the KITTI public dataset.

These findings collectively highlight the effectiveness and robustness of our proposed

approaches in the domain of traffic scene understanding.

By comparing the different input sizes, flops, parameters of YOLOv5 and four
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different YOLOv5 variants (YOLO-fastest, ShuffleV2-YOLOv5, YOLOv4-Tiny,

YOLOv3-Tiny), and their performance in vehicle tracking tasks, we found that although

the small and lightweight model reduces computation and processing time, it loses

accuracy and degrades the performance of the model to a large extent. Experiments

show that YOLOv5 outperforms the smallest YOLO-fastest by 13% on mAP@0.5. We

also improved YOLOv5 network by adding various attention modules (CA, SE and

CBAM) and combined Swin Transformer encoder to these improved YOLOv5 networks

and compare the impact of the Transformer and attention models on the vehicle tracking

task. By comparing, we added the CBAM and Swin Transformer encoder to achieve

38.9% MOTA and 76.7% MOTP. The experiment demonstrated the Swin Transformer is

powerful for helping to improve the combination of attention modules with YOLOv5

network, especially to YOLOv5-CBAM. We also combined SiamRPN with the

Hungarian algorithm to achieve multi-target tracking.

In the depth estimation task, we introduced a significant improvement by

combination of Transformer encoder and CNN decoder as the architecture. Our

comparison between Transformer-based encoder and CNN-based encoder revealed that

Transformer-based model performs better in preserving scene details. The experiments

showcased that using Transformer as the encoder recieve the RMSE of 0.688 and Sq_rel

of 0.745 in the depth estimation model, making it more accurate when evaluated on the

KITTI dataset.

For distance estimation, our primary focus was to develop an advanced deep

learning-based model tailored for low-cost monocular cameras, with the aim of

optimizing hardware costs. By accurately detecting vehicles and applying extended

distance estimation vector, our model obtains the bounding box coordinates, enabling

precise distance calculations. Through experimentation, we discovered that combining

YOLOv7-CBAM-Transformer with the extended distance estimation vector yielded the

best results, achieving a remarkable 0.456 improvement in RMSE compared to the
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original YOLOv7 model. In our analysis of the results, we observed that the

YOLOv7-CBAM-Transformer outperforms the original YOLOv7-CBAM model in

distance measurement. It exhibited enhanced accuracy and reduced occurrences of false

detections and missed detections. This highlights the significant impact of the

Transformer, which contributed to improving the model's feature understanding and its

adaptability to diverse distances of vehicles in the scenes.

Combining the VS routeing method with CapsNet, we perform semantic

segmentation based on posture and appearance features in scene segmentation. In our

research, we employed a capsule network equipped with a diverse set of matrix to

achieve exceptional semantic segmentation performance. This was accomplished

through our curated dataset of Auckland traffic scenes, which we collected and

meticulously annotated. By employing CapsNets and adopting the VS routing method,

we observed that the model achieved faster convergence compared to the dynamic

routing mechanism. During the experiment, our model demonstrated higher IoUs and

better segmentation results compared to U-Net and SegNet. Specifically, our model

achieved an IoU of 74.61% on our custom dataset. This proposed technique aims to

effectively segment various visual elements in the driving environment, thereby

enhancing the safety of autonomous vehicles.

6.2 Future Work

6.2.1 FutureWork of Scene Segmentation

(1) To improve scene understanding, we plan to collect more diverse samples in various

weather and lighting conditions from multiple locations.

(2) We intend to enhance our training dataset by acquiring a larger number of

high-quality images using dedicated camera equipment. This will enable us to capture

more specific object characteristics for better scene understanding.
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(3) Our dataset will be expanded to include additional classifications such as

streetlamps, lane lines, and traffic signals, providing a more comprehensive scene

representation.

(4) Fine-tuning the weights and other parameters of our proposed model will be

conducted to enhance the precision of smaller classes, such as cars, to achieve more

accurate detections.

(5) In order to capture temporal information and understand the behaviours of

surrounding vehicles (e.g., lane changes, turns), we plan to incorporate the LSTM

module. This addition will help in handling occlusions and enriching the overall scene

understanding.

6.2.2 FutureWork of Vehicle Tracking

(1) We plan to expand our dataset by including a larger number of diverse automobile

instances in the Auckland traffic scenes.

(2) Fine-tuning the neural network will enable us to handle larger input images,

allowing the model to learn more precise features.

(3) We aim to add a classification function to the model so that it can not only detect

vehicles but also identify their types.

(4) In future research, we intend to enhance the model's functionality by leveraging

multitasking capabilities, enabling it to recognize and track other classes of objects in

vehicle-related traffic scenes, in addition to detecting vehicles.

(5) To improve vehicle tracking precision, we will expand the dataset to include

interference objects, enhance the model's anti-interference capabilities, and reduce the

false detection rate of vehicle tracking.
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6.2.3 FutureWork of Depth Estimation

(1) In our experiments, we utilized Swin Transformer-based encoder to enhance depth

estimation accuracy. For future work, we should explore and test various other type of

Transformer as encoder, aiming to further reduce the estimation error.

(2) Incorporating time series feature analysis to develop a video-based depth estimation

model should be considered. Additionally, efforts to streamline the model's complexity

or computational load should be made to achieve real-time estimation and improve fps

(frames per second).

(3) To ensure the model's stability and robustness, we should incorporate additional

evaluation methods and loss functions, which will provide a comprehensive assessment

of its performance and generalization capabilities.

6.2.4 FutureWork of Distance Estimation

(1) Our experiment successfully enhanced accuracy by integrating attention modules

and the Transformer encoder. For future work, we will explore additional methods to

further improve model performance, such as incorporating small object detection layers

or combining them with LSTM for enhanced capabilities.

(2) To ensure the model's versatility and generalization, we plan to conduct experiments

and tests on various public datasets. Expanding testing to include datasets like

cityscapes will help us assess the model's performance under diverse traffic scene

conditions.

(3) In future research, we will consider integrating time series feature analysis to

develop a video-based distance estimation model. Additionally, we will work on

optimizing the model's complexity and computational effort to achieve real-time

estimation and improve fps (frames per second).
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Abbreviations

VS routing Vector-Space Routing

CBAM Convolutional Block Attention Module

CNN Convolutional Neutal Network

CapsNet Capsule Neural Network

SE Squeeze-and-Excitation

CA Coordinate Attention

LSTM Long Short-Term Memory

MLP Multilayer Perceptron

MSA Multi-head Self-Attention

W_MSA Window Multi-head Self-Attention

SW_MSA Shifted Window Multi-head Self-Attention

CAM Channel Attention Module

SAM Spatial Attention Module

MOTA Multitarget Tracking Accuracy

MOTP Multiobject Tracking Precision

FP False Positives

FN False Negatives

RMSE Root Mean Squared Error
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