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Abstract. In view of this consideration, advanced YOLOv8 was employed as an 
identification algorithm by using deep learning to fruit identification. YOLOv8 
algorithm is the improved version of YOLO (You Only Look Once) on object 
detection area. the large-scale datasets training and real-time objects detection 
seem to acquire more accuracy by YOLOv8. This multimedia visual recognition 
technology based on deep learning has the possibility of surpassing previous 
research in fresh fruit identification. This use case can use the anchor box in 
dynamic video and static images to locate the fruit and display relevant 
information. After Targeted dataset training, model adjustment and optimization, 
the detection accuracy may be improved, and the detection time may also be 
effectively reduced; Thus, the advantage makes YOLOv8 a popular choice for 
fruit identification tasks in research and industry. We scan the fruits through the 
camera of the smartphone, and fruits on the phone screen will be framed and 
automatically displayed the name and sweetness with labels.  
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1   Introduction 

Various types of fruits such as mango, kiwifruit, and papaya are available in the market, 
but not all varieties may be available in all regions. Fruit recognition, which relies on 
AI technology, can assist consumers in determining the sweetness or sourness of fruits. 
In this essay, the YOLOv8 model was utilized to develop a deep learning system for 
fruit identification, using over 3,000 video images and pictures collected from the 
Countdown and New World supermarkets. The goal was to improve the accuracy of 
fruit identification. The model was trained using images captured from the rear camera 
of a standard smartphone to enhance practicality. The experiment results will be 
presented, and this experience can support future research in this area. 

2   Literature Review 

The benefits of utilizing deep learning in machine learning are quite evident, 
particularly in the domain of computer vision. Doulamis and his team [1] conducted 
research to assess the advantages and constraints of deep learning, and also discussed 
the future directions of computer vision design based on various practical applications.        
   The human and animal brain can process and understand diverse types of 
information, enabling the recognition of complex structures in large-scale data. Deep 
learning emulates this mechanism by establishing numerous data abstraction and 
computational layers. Unsupervised and supervised feature learning algorithms, 
hierarchical probability models, and neural networks are all examples of deep learning. 
When confronted with a large volume of complex data, deep learning has been shown 
to outperform previous technologies. The development of neural networks was spurred 
by McCulloch and Pitts' desire [2] to create an artificial brain, with the MCP model 
serving as the earliest neuron model. LeNet [3] and Long Short-Term Memory [4] have 
also made significant contributions to the field. However, the true era of deep learning 
began in 2006, when Hinton and colleagues [5] made a major breakthrough with a Deep 
Belief Network that employed multiple layers of Restricted Boltzmann Machines. This 
structure can facilitate layer-by-layer local training and learning without supervision, 
which is why deep learning frameworks and algorithms have gained popularity in 
recent decades. 
   Open high-quality large datasets and GPUs with high computational capabilities 
have greatly improved model training, thereby promoting the development of network 
and machine learning. Other factors that have contributed to this progress include 
addressing issues such as gradient disappearance that are caused by out-of-saturation 
activation functions, and the emergence of more powerful frameworks such as 
discarding, batch normalization, and data augmentation, as well as new regularization 
technologies like Mxnet, TensorFlow, and Theano [6]. Deep learning has made 
significant strides in addressing visual problems such as semantic segmentation [7], [8], 
human motion tracking [9] [10], human action recognition [11], [12], visual object 
detection [13], [14], and human pose estimation [15] [16]. The three most typical deep 
learning frameworks in this context are Stacked (Denoising) Autoencoders, Deep 
Belief Networks (DBNs), and Convolutional Neural Networks (CNNs). 



    In 2016, YOLO was created by Joseph et al [17]. YOLOv8 means the eighth- 
version of YOLO models, not appear suddenly, but evolve from an earlier version of 
YOLOv5 by ultralytics, the initial group which created YOLO. The improvement from 
YOLOv5 to YOLOv8 includes the Backbone and head structure, anchor and training 
strategy of the epoch. In the backbone part, The C2f structure with richer gradient flow 
in YOLOv8 is selected to replace the C3 structure in YOLOv5. In order to reduce the 
number of blocks of the largest stage in the backbone network, the models with 
different scaling factors N/S/M/L/X no longer share a set of model parameters. The 
M/L/X large model also reduces the number of output channels of the last stage, further 
reducing the number of parameters and calculations. Meanwhile, anchor-based was an 
alternative by Anchor-Free, TAL (Task Alignment Learning) dynamic matching 
adopted, and DFL (Distribution Focal Loss) and CIoU Loss are utilized as the loss 
function of the regression branch, which makes classification tasks correspond to 
regression tasks.  
    According to previous studies, the sweetness of the fruit is able to be indicated by 
the Brix value, which can be used by the infrared detector to determine which leads to 
non-destructive fruits during identification [18]. The change in fruit skin colour during 
ripening does not completely represent the change in fruit acidity and sweetness. For 
instance, the intensification of surface colouration was related to the initial colour 
intensity of the mangoes. Fruits with a more intensive initial red or yellow colouration 
ripened more rapidly than mangoes with less intensive colouration. Fully ripened 
mangoes which had initially a more intensive coloration had developed a more 
desirable internal colouration and a higher content of T.S.S. It was said that both, the 
maximum red and maximum yellow colour intensities at harvest, could serve as a good 
index of mango maturity. 

3   Our Methods 

This article employs the YOLOv8n and YOLOv8s models to train a customized fruit 
dataset, avoiding the use of existing datasets which could lead to overfitting during 
training. The YOLOv8 model adopts a CNN (Convolutional Neural Network) structure 
for extracting image features through convolution. 
    To implement an image recognition algorithm using neural networks, powerful 
hardware support is required. To address this limitation, we utilized Google Colab 
which offers a standard GPU and VM to run YOLOv8 project. Additionally, we 
connected Google Drive as a notebook to edit the code file. YOLOv8 is highly suitable 
for fruit detection as it can identify various commonly detected objects. Compared to 
larger and more complex models, the lightweight YOLOv8n and YOLOv8s have 
default parameters that enable faster training and loading speed. 

 



3.1   YOLOv8 Model 

YOLOv8 is developed based on convolution neural network, which can detect objects 
in images and videos. It is a derivative of a neural network similar to human and animal 
brains that is considered as an artificial neural network. 
    Fig 1 demonstrates the confidence level of the framed object by using Yolov8n and 
YOLOv8s model. The result of image validation with the maximum confidence level 
frame will be displayed after the last epoch with the iteration in the training process 
consisted of back-propagation and automatic weight adjustment. The Mosaic 
enhancement was closed in the last 10 epoch that is the salient features of YOLOv8. 

 

Fig 1. The confidence of YOLOv8 results 

    The structure of YOLOv8 is approximate to YOLOv5 in the main structure 
comprise of three parts, the backbone, neck and head. The convolution structure in the 
upper sampling stage has been deleted in YOLOv8. Decoupled-Head was added with 
reg_max as the number of channels of regression head. The CSP structure in the 
backbone is still retained by YOLOv8. The original image is convolved and sliced to 
form feature maps, which contain the feature vectors of the fruit image for final training. 
The FPN structure uses up-sampling to fuse feature information from higher layers and 
obtain a feature map for prediction. In the new structure, strong positioning features are 
transmitted upward through PAN despite C3 modules being replaced by C2f. The 
combination of FPN and PAN allows for parameter aggregation of different detection 
layers from various backbone layers, resulting in a larger receptive field and more 
abstract extracted features. This structure facilitates the combination of high-level 
semantic features with detailed object classification information, thus improving 
feature extraction ability. 



 

Fig 2. The structure of YOLOv8 model 

    In YOLOv8, the C2f module was employed to replace the C3 module, realizing 
further lightweight; Meanwhile, YOLOv8 still retains the SPPF module used in 
YOLOv5 and other architectures. Fig. 1 shows the structure of the C3 module and C2f 
module. The C2f module is designed with reference to the idea of the C3 module and 
ELAN lead to more abundant gradient flow information while ensuring lightweight for 
YOLOv8. Fig. 2 and Fig. 3 depict the structure of the C3 module and C2f module. 

 

Fig 3. The structure of C3 module 

 

Fig 4. The structure of C2f module 



3.2   Loss Function 

   We intuitively see from the loss function whether the operation results meet the 
expectations including cls_loss (classification loss), box_loss (location loss) and 
obj_loss (confidence loss). YOLOv8 takes use of VFL (Varifocal Loss) function to 
calculate the loss of classification and confidence loss of the object and uses DFL 
(Distribution Focal Loss) + CIOU as the loss of bounding box regression. The class 
imbalance issue [19] can be addressed, and the binary cross entropy loss is the 
predecessor of VFL. In eq.(1), p and q predict IACS and target score respectively. The 
ground truth class of q in the foreground point is set as IoU between ground truth and 
the generated bounding box or else 0. Contrast with foreground point, for all classes, 
target q in the background point is 0. 

𝑉𝐹𝐿(𝑝, 𝑞) = *
−𝑞(𝑞 log(𝑝) + (1 − 𝑞) log(1 − 𝑝))			𝑞 > 0
−𝛼𝑝! log(1 − 𝑝) 																																	𝑞 = 0 				 

(1) 

   In the condition of arbitrary and flexible distribution, around the continuous 
locations of target bounding boxes, DFL makes the network focus on learning the 
probabilities of values rapidly. This approach was proposed [20] to tackle the issue that 
the original FL (Focal Loss) only supports discrete {1, 0} category labels currently. 

3.3   CIoU 

The CIoU loss function incorporates the scale, center distance, and aspect ratio of the 
bounding box prediction with the intersection over union (IoU) measure. In equation 
(3), the function 𝜐 evaluates the consistency of the aspect ratio, while in eq. (4), 𝛼 
balances the contribution of the various terms in the loss function. The distance between 
the predicted and real bounding box centers is represented by 𝒹 in eq. (5), and c 
represents the diagonal distance of the minimum bounding box containing the two 
boxes. L_CIoU is the final loss value used for bounding box regression. 
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3.4   Training Process 



Once Google Colab was employed to train, validate, and predict the fruit datasets 
should install the ultralytics package of YOLOv8 after disconnecting the runtime. The 
graphical result will be not generated until training is completed. The graphical results 
will not be saved unless the 'save’ parameter is set as true. In this experiment, data-
enhanced images were segmented into train, validation and test datasets by a split 
function based on python; Moreover, the XML format files of the images were labelled 
manually, and subsequently, convert to Yolo datasets format. 23 varieties of fruit 
identification run as YOLOv8n and YOLOv8s with a list of sweetness, which was 
marked as Brix value, and Brix value of major fruit are cited from previous studies [21-
40] in Table 1. 

Table 1. Comparison table of fruit name and brix value 

Name Brix Value Name Brix Value Name Brix Value 

Strawberry 7.125° Rockmelon 10° Cherry sweetheart 13.99° 

Raspberry 10° Yellow peach 13° Pear packham 10~11° 

Papaya philippine 10.4° Mandarin 10.6~12.9° Apricot 7.45~17° 

Melon honeydew 10.9° Orange suntreat 13.8~16.5° Red grape 15~20.6° 

Pineapple 16.6° Lemon 9° Apple granny smith 12.5° 

Kiwi Italian 7.37~11° Plum 12~32° 
  

4   Our Results 

4.1   Our Datasets 

The images of the training dataset were captured as high-quality mobile video from the 
countdown and the new market supermarkets in New Zealand. The video is processed 
as a slice every 50 frames to obtain the original images of the dataset that were 
1920*1080 resolution. In this era of highly developed mobile Internet and smartphones, 
the resolution of these images is more consistent with the scene when the program is 
installed on mainstream smartphones to identify the fruit. 
   Fig 5 illustrates some sample images in datasets. The same category of fruit was 
labelled as a name of folder by using real name, variety and referable Brix value, and 
the images of 23 different fruit were collated and stored in this directory such as 
“apple_granny_smith@sweetness_under12.5°Brix” and 
“yellow_peach@sweetness_around13°Brix”. These images are completely random 
including highly similar images; However, there are no duplicate images. A single 
variety of fruit appears in every image and the number may not be one with a blocking 
relationship. The proportion among the training dataset, testing dataset and validation 
dataset was set as 9:0.5:0.5. 



   Before the experiment, the images were preprocessed to prevent the convolution 
process from overfitting; Moreover, the data was rotated, as shown in Fig. 6, to increase 
the quantity of the data and enhance the accuracy. 

 

 Fig 5. Image samples in datasets  

 

Fig 6. Data augmentation of image by rotation 

Adding noise to images before training can help improve the generalization 
performance of deep learning models by making them more robust to variations and 
noise in real-world data. It can also prevent overfitting, encourage the model to learn 
more useful features, and help avoid memorization of specific training examples. Based 
on the characteristics of the fruit dataset, the mottles were added as the special type of 
noise to simulate the overripe and rotten skin. Fig. 7 displays the images after salt noise 
injection as data augmentation that were processed by MATLAB. 

 



 
Fig 7. Noise injection for original image 

    YOLOv8n had 225 layers, 3,011,043 parameters, 3,011,027 gradients, and 100 
epochs completed in 4.542 hours. Compared with YOLOv8n model, the YOLOv8s 
model had the same layer and approximately one-hour faster training speed; However, 
the parameters and gradients reached 11,144,888 and 11,144,872 respectively. Almost 
all confidence in the results is over 0.94 which is demonstrated in Fig .8. Fig. 9 depicts 
the accuracy in confusion matrix. YOLOv8n and YOLOv8s present the same accuracy 
of all classes that is over 90%. The accuracy of a single category is called AP (Average 
Precision) and the average accuracy of all categories is known as mAP. The mAP50 
represents the average accuracy of all categories when the IoU is 50, which is calculated 
by determining the AP of all images in each category. A higher AP value indicates 
better accuracy for that category. The results of the experiment, shown in Fig. 10, 
indicate that the mAP50 and mAP50-90 values trained by YOLOv8n and YOLOv8s 
are as expected. 

 

Fig 8. Fruit identification result with confidence 



 

Fig 9. The confusion matrix 

 

Fig 10. The value of mAP50 and mAP50-95 

 



5   Conclusion and future work 

In our experiment, over 3,000 fruit images were trained by using YOLOv8 algorithm, 
such as “mango”, “banana”, “papaya”, that can purchase in the countdown and the new 
world supermarkets. In the training process, the detection accuracy of fruit got over 
90%. The experimental results demonstrate that the confidence level of all classes was 
more than 90% in the validation process. 
    In this experiment, YOLOv8n and YOLOv8s models were employed, but there 
are three other models available, namely YOLOv8l, YOLOv8m, and YOLOv8x. The 
variations among these models lie in the number of convolution kernels, network 
structure, depth, and width, resulting in different mAP values. AP measures the 
performance of individual categories, while mAP is the average of all AP values. The 
pre-trained checkpoints released by ultralytics showed that YOLOv8x has higher mAP 
compared to YOLOv8n and YOLOv8s. Model pruning is a primary approach to reduce 
the number of convolution kernels, depth, and width in the network structure. These 
differences among models are based on theoretical studies of model pruning and 
inspired by the phenomenon that the number of useless synapses in the human brain 
increases and then decreases with age [41]. 
    After conducted these experiments, fruit identification may be relatively mature. 
In addition, the measurement approach of Brix value needs to be improved if the 
program used in a real scene. The real-time fruit brix value should be measured, updated, 
and released by supermarkets. 
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