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Abstract. Waste categorization and recycling are critical approaches for 
converting waste into valuable and functional materials, thereby significantly 
aiding in land preservation, reducing pollution, and optimizing resource usages. 
However, real-world classification and identification of recyclable waste face 
substantial hurdles due to the intricate and unpredictable nature of wastes, as well 
as the limited availability of comprehensive waste datasets. These factors limit 
efficacy of the existing research work in the domain of waste management. In 
this paper, we utilize semantic segmentation at individual pixel level and 
introduce a semi-supervised metod for authentic waste classification scenarios, 
leveraging the Zerowaste dataset. We devise a non-standard data augmentation 
strategy that mimics the ever-changing conditions of real-world waste 
environments. Additionally, we introduce an adaptive weighted loss function and 
dynamically adjust the ratio of positive to negative samples through a masking 
method, ensuring the model learns from relevant samples. Lastly, to maintain 
consistency between predictions made on data-augmented images and the 
original counterparts, we remove input perturbations. Our method proves to be 
effective, as verified by an array of standard experiments and ablation studies, 
achieved an accuracy improvement of 3.74% over the baseline Zerowaste 
method.  

Keywords: Semi-supervised semantic segmentation · Data 
augmentation · Waste classification · Adaptive weighted loss function 

 
1   Introduction 

 
With the advancement of industrialization and socialization, it is estimated that total 
volume of waste will increase by 20% to 2.6 billion tons per year post-2030 [21]. 
Environmental pollution caused by inadequate waste management mechanisms poses 
a global challenge requiring immediate attention. For instance, around 6 trillion tons of 
plastic waste litter the global oceans, with the difficulty of plastic degradation 
contributing to long-term pollution hazards. Moreover, soil and water pollutions are 
also globally prevalent [11, 32]. By 2020, waste recyclability rates in a few of countries 
remained unsatisfactory, barely reaching 35% [40]. 
    At present, waste treatment plants primarily employ semi-manual and semi-
automated waste classification methods. These methods, however, are not only 
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inefficient but also pose significant health risks to workers, such as inhaling excessive 
dust and harmful chemical gases emanating from waste. Therefore, there is an urgent 
need to incorporate deep learning and computer vision into waste classification and 
recycling [15], which promises a healthier approach by significantly enhancing waste 
classification efficiency and recyclability and ultimately fostering environmental 
protection and economic growth.  
    While waste classification models [10, 15, 29, 39, 48] have demonstrated 
remarkable classification accuracy, explored waste classification and detection remain 
limited and insufficiently researched for real waste classification scenarios. These 
scenarios grapple with a wide variety of waste types, intricate classification 
backgrounds, diverse waste forms, and the impact of different real-world light sources. 
Most waste classification models were refined and improved based on the Labeled 
Waste in the Wild [38], Trash Annotation in Context (TACO) [35], and TrashNet [45] 
datasets. These datasets share three common characteristics: A small amount of waste 
data (due to the higher cost of manual labeling), pristine backgrounds, and a rather 
simplistic representation of waste scene. Despite the high accuracy of these waste 
classification models, they largely overlook the complexities present in real waste 
classification scenarios, which could potentially result in model overfitting. 
    Therefore, in this paper, we propose a semi-supervised semantic segmentation 
model for the Zerowaste dataset (the first real-world industrial-grade waste dataset) [1], 
amalgamated with deep learning, specifically designed for highly complex real waste 
classification scenarios. The choice of semantic segmentation over the enhancement of 
related visual object detection methods is motivated after our observations of the 
extreme clutter in real waste classification scenarios. If there is a significant quantity 
and variety of waste, waste items can become obscured by one another. At this point, 
semantic segmentation can segment the entire image without gaps into each region, 
with each region belonging to a category. This approach is sensitive to the size, shape, 
and state of objects. Our method not only improves waste classification and mitigates 
the extensive pixel-level manual annotation work but also alleviates the data-hunger 
problem [28] during model training. From collaborative training [6, 36] and self-
training [18, 44], to generative adversarial networks [28] and the currently popular 
consistent regularization [7, 20], semi-supervised learning methods have been in 
development for a considerable duration. How can we offset the scarcity of waste 
datasets, the shortcomings of waste datasets, and the complexity of waste dataset 
scenarios? How can we employ semi-supervised learning to effectuate improvements 
in waste classification efficiency and accuracy? How can we ameliorate the extreme 
lack of pixel-level annotation in semi-supervised semantic segmentation? These 
questions interest us greatly and are addressed in this paper. 
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    In this paper, we concentrate on the consistent regularization framework to tackle 
the aforementioned issues by introducing non-uniform data augmentation tailored to 
the dataset characteristics of real waste classification scenarios. Through our 
exploration, we found that the existing data augmentation methods, such as Cutout [9], 
Cutmix [46], and Mixup [16], have limitations. For instance, Cutout omits portions of 
the image and cannot utilize the full image information, while the data post-Mixup is 
often unnatural due to local blurring. In contrast, our non-uniform data augmentation 
method neither adds nor removes image information, which is uniform and continuous, 
each changed pixel point maintains correlation, avoiding the direct addition of noise to 
the image that ensures the generalization ability of this model. Moreover, we discovered 
that in the Zerowaste dataset, two categories with low data volume lead to substantial 
differences. 
    To counteract the escalating misclassification costs, we have designed an adaptive 
weighted loss function by assigning different weight values according to the data size 
characteristics of different categories. We have added a mask to make adaptive 
adjustments to the number of positive and negative samples, compelling the model to 
filter out features that have been particularly well learned without imposing a limit. 
This improvement is based on the waste dataset that can be applied to other categories 
of unbalanced datasets. Our contributions are summarized as follows: 
(1) We construct a semi-supervised semantic segmentation waste detection model 
applied to real waste classification scenarios. Our experimental results visually 
demonstrate its state-of-the-art performance. 
(2) A novel non-uniform data augmentation method is proposed. It simulates natural 
light by making the model better adapted to the waste classification scenario. 
Additionally, it increases the amount of data and reduces network overfitting. Our 
method is smooth and continuous, ensuring the generalization ability of our proposed 
models. 
(3) An adaptive weighted loss function is designed to counter the model non-robustness 
resulting from severe data imbalance. 
    In the rest of the paper, our related work is shown in Section 2. Section 3 illustrates 
our methodology. The experiments and ablation studies are detailed in Section 4. 
Finally, our conclusions are presented in Section 5. 
 
2   Related Work 
 
2.1   Waste Detection 
 
Over the past few years, waste datasets have been updated continuously. The TrashNet 
dataset for recyclable waste [45] was proposed, which contains more than 2,000 
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annotated images, including six classes, i.e., paper shell, plastic, paper, metal, glass, 
and trash, all of which were collected by shooting under natural light illumination. This 
dataset is characterized by the simplicity of containing only one object in each image, 
the background of the object is mostly white. Subsequently, UAVVaste [22] was 
publicly used, which is a collection of outdoor waste collected by using aerial 
photography from drones in urban environments. It has about 770 waste images and 
over 3,700 waste objects, all labeled in the "waste" category.  
    Finally, a more popular waste dataset is TACO [35]. The background of trash 
images is intricate, including indoor, beach, street, vegetation, and water, with 1,500 
images in 28 categories and about 4,800 labeled objects. However, the annotations in 
TACO do not belong to the waste category, which can interfere with the learning of the 
model. Although these three typical waste datasets have their characteristics, they do 
not play all the advantages in real waste classification scenarios and are more suitable 
for waste detection in the field. 

On the other hand, the performance of waste detection using deep learning models 
has also been gradually improving. A genetic algorithm was employed to optimize the 
traditional CNN model, DenseNet121, which achieved a high accuracy of 99.6% on the 
TrashNet dataset [29]. Thus, the effectiveness of the proposed model and the RGBD-
based MJU-waste segmentation dataset were all verified by performing a rough 
segmentation operation on the data first and then selecting the target region for 
meticulous segmentation. If the backbone network adopted ResNet-101 [17] and the 
baseline employed DeepLabv3 [5], the IOU mean was 97.14 [39]. Ultimately, applied 
to the waste classification task, the one-stage deep learning model YOLO achieved 
94.79% of the mAP value after a lightweight improvement. All the three waste 
classification models achieved an accuracy rate of more than 90% [10]. However, they 
were applied to simple dataset backgrounds, monolithic waste items, and less stacked 
and obscured waste states, which made the detection results potentially uneven. The 
improved algorithms are lack of relevance and less consideration of the real form and 
characteristics of the waste. Therefore, we improve the model performance by 
performing data augmentation and loss function improvement for real waste plant 
classification scenarios based on the Zerowaste dataset. 
 
2.2   Semi-supervised Learning 
 
The core idea of semi-supervised learning is how to maximize the use of unlabeled data 
to advance model learning. Consistency regularization [12, 28, 34, 41] and entropy 
minimization [3, 4, 13] are two popular semi-supervised learning paradigms. 
Consistency regularization serves to reduce the phenomenon of overfitting. If unlabeled 
data is perturbed, its prediction result should not change significantly, i.e., it has 
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predictive consistency. Entropy minimization combines unlabeled data, labeled data, 
and pseudo-labeled data to make the network predictions more confident. Other training 
strategies, data augmentation, such as Cutout [9], Cutmix [46], and Mixup [16], are 
applied in semi-supervised learning to increase the utilization of unlabeled data to 
improve the performance of the model. Nevertheless, these methods may not maintain 
the localization and generalization ability of the data. In contrast, the focus of our non-
uniform data augmentation is on continuous improvement of smoothing at the pixel 
level, which ensures the generalization ability of the proposed model. 
 
2.3   Semi-supervised Semantic Segmentation 
 
Different from object detection, semantic segmentation goes down to the exact pixel 
point in the image, the semantic information assigned to each pixel is the position of 
that pixel point in the image. However, pixel-level annotated data is much difficult to 
obtain and suffers from severe overfitting problems, so the development of semi-
supervised semantic segmentation is inevitable. In the early stage, typical Generative 
Adversarial Networks (GANs) [14] models extract valid training signals from 
unlabeled data [19, 33]. Later, semi-supervised semantic segmentation follows a semi-
supervised learning paradigm for model training [3, 4, 12, 13, 31, 34, 41], such as 
entropy minimization and consistency regularization, etc. Similarly, data augmentation 
methods are crucial for semi-supervised semantic segmentation has also been revealed 
[12]. Therefore, our approach greatly reduces the labor cost required for pixel-level 
labeling, improves the performance of the semi-supervised semantic segmentation 
model, and further solves the problem of lack of data for waste classification tasks. 
 
3   Our Method 
 
3.1   The Structure of Our Framework 
 
In this paper, we utilize U-Net as the baseline and ResNet-50 as the backbone network 
to validate our proposed non-uniform data augmentation and adaptive weighted loss 
function. The network structure is illustrated in Fig. 1. While model training with 
unlabeled data, data without non-uniform data augmentation and data with non-uniform 
data augmentation produced L1 loss, which is to ensure the consistency of the results 
predicted by these two types of data, and the better the model results if the L1 loss is 
approximately small. Finally, drop perturbation is added to both the original input 
channel and the feature channel to improve the generalization ability of the model. 
 
3.2   Non-uniform Data Augmentation 
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Our non-uniform data augmentation encompasses not only lighting tasks to simulate 
real scenes, but also polymorphic tasks to emulate waste objects. These correspond 
respectively to non-uniform color data augmentation and non-uniform offset data 
augmentation. 
 

 

 
Fig. 1 The structure of our network 

 

 
Fig. 2 The typical samples of non-uniform color data augmentation, which is applied to a 
completely random strategy 
 
Non-Uniform Color Data Augmentation. Non-uniform color data augmentation 
randomly simulates real-world natural lighting, which is different from random 
brightness data augmentation [42]. Random brightness simply increases or decreases 
the same pixel value randomly for all pixels, while our data augmentation makes the 
pixel points all completely random, as shown in Fig. 2. From Fig. 2(a) to Fig. 2(d), 
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these figures showcase the light being shaded from the top, bottom, left, and right of 
the object. Fig. 2(e) has darker light near the edges of the image and brighter light near 
the middle of the image, while Fig. 2(f) is exactly the opposite of Fig. 2(e). After that, 
Fig. 2(g) and Fig. 2(h) represent the case of intensely brighter and deeply darker light, 
respectively. Fig. 2 only shows eight images with typical representative non-uniform 
color data augmentation methods, similar but not identical samples, as shown in Fig. 3.  
 

 
Fig. 3 The selected samples from atypical non-uniform color data augmentation  

 

 
Fig. 4 Comparison of the original image and the image after data augmentation. (a) is the original 
image in the Zerowaste dataset, we see that in the original image, the light is also blocked. The 
color of the lower left corner is darker than the upper right corner because the light is blocked on 
the left side. (b) is the image after non-uniform color data augmentation. At this point, we see 
that the light of the image is blocked from the upper left angle, and the lower right corner is 
brighter. 
 

Applying non-uniform color data augmentation to the Zerowaste dataset, the 
position of the pixel values in the image is left unchanged, the samples after non-
uniform color data augmentation are obtained by randomly and continuously changing 
the values of the pixels. As shown in Fig. 4(b), the light from the top left of the image 
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is blocked, while the light from the bottom right of the image is enhanced after waste 
classification is carried out. Compared with the Fig. 4(a) in the dataset, the upper left 
part of Fig. 4(b) is darkened, and the lower right part is brightened, simulating the 
situation where the waste samples are disturbed by different light for the same number, 
the same object, and the same shooting angle. 

 
Non-Uniform Offset Data Augmentation. Fig. 5(b) is shown as a compressed version 
of Fig. 5(a) or the whole pixel is shown an upward translation trend. Fig .5(d) is 
displayed as an enlarged version of Fig .5(c) or the overall pixels are panned to the 
right. This is our non-uniform offset data augmentation, which is different from the 
simple scale and aspect-ratio-based transformations for image augmentation. 
Specifically, each pixel in the image is given a different, random offset, such that one 
pixel is shifted by 1 pixel and another pixel is shifted by 3 pixels, and this offset is 
gradually reduced if it reaches a maximum peak value.   
 

 
Fig. 5 Comparison of the original image with the image after data augmentation. (a) and (c) are 
original images in the Zerowaste dataset, and almost all the waste exists distorted and folded in 
different forms. Therefore, after non-uniform offset data augmentation, the morphology of the 
waste objects in (b) and (d) is smoothly variegated. 
 

Let i∈IW×H×C, i denotes a training sample, and this sample consists of two 
dimensions x and y. The purpose of non-uniform offset data augmentation is to generate 
a new training image 𝚤̃(x,y). We define the formula 𝚤̃(x,y) for as follows: 
 

            𝚤̃(𝑥, 𝑦) = 	∆𝑖(𝑥, 𝑦) ∗ sin	(2π ∗ r	/𝑣!) + 	𝑖(𝑥, 𝑦)，            (1) 
and 
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                 𝑣! = 	1200 + 200 ∗ ((𝑟 − 0.5) ∗ 2)                  (2) 
 
where x and y are the intensity of each pixel at x-axis direction and y-axis direction, 
respectively. ∆𝑖(x, y) is the initial value of the offset that we randomly assigned to the 
pixels, after which it is multiplied with the sine function to obtain the final pixel offset. 
r represents a random number that conforms to a uniform distribution in the range of 0 
to 1.0, which serves to make the Sine function value also conform to the random 
criterion. Finally, 𝑣!	indicates the random peak of the sine wave. The equation of 
∆𝑖(x,y) is shown as follows: 

              𝑥	~	𝑈𝑛𝑖𝑓(0,𝑊),																					𝑦	~	𝑈𝑛𝑖𝑓(0, 𝐻),              (3) 
and 

∆𝑖(𝑥, 𝑦) = C
∆𝑥 = 𝑣" + 15 ∗ D(𝑟 − 0.5) ∗ 2E							𝑟 < 0.5	
∆𝑦 = 𝑣" + 15 ∗ D(𝑟 − 0.5) ∗ 2E							𝑟 ≥ 0.5

        (4) 

 
where 𝑣" means that we define a fixed value 70 for the pixel and perform a random 
addition and subtraction calculation on this fixed value to get the final value of ∆𝑖(x, 
y). Then, Eq. 4 means that Δi = Δx when r <0.5 and Δi = Δy when r>=0.5. Thus, we 
keep the offset within a range. In this experiment, the initial value of the offset is taken 
to be between 55 and 85 (this initial value can be adjusted according to the scene of 
different datasets). The initial value 70 and the range of randomly selected offsets are 
the optimal choices determined through our experiments. As illustrated in Eq. 1, we 
calculate the final offset by using the initial value and a sine function (other 
computations such as cosine, cubic function, and quadratic function can also be 
employed, contingent on the characteristics of different dataset scenes).  
 

 
Table 1 The offset values 

 
Pixel numbers Offset values 
000 0.0000000000000000 
001 0.4715737324604586 
002 0.9431290236200252 
003 1.4146474328989704 
…… …… 
250 75.40823542253278 
251 75.41026314065878 
252 75.40934187486734 
253 75.40547166118532 
…… …… 
297 72.33678257778097 
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298 72.20210897214199 
299 72.06461184024413 
…… …… 

 
Table 1 presents the offsets for x-axis. Our data augmentation method is 

continuous and naturally smooth in transition. In the Zerowaste dataset, approximately 
6,212 unlabeled images are collected. The deficiency in data volume can be 
substantially addressed by using non-uniform data augmentation. Given that our 
method operates by mapping each pixel of the image to the original image, creating 
variations in the pixel value and position stands distinct from noise addition which 
merely darkens a pixel and incites abrupt pixel changes. Our non-uniform data 
augmentation is neither independent nor random, but continuous with a natural smooth 
transition. This enhances the generalization ability of our proposed model and brings it 
closer to actual waste classification scenarios. Furthermore, since non-uniform data 
augmentation neither deletes nor adds pixels, it circumvents the problem of erroneous 
positive and negative sample assignment due to image resizing. 
 
Adaptive weighted loss function. While training the model, we observe that two 
classes (Metal and Rigid Plastic) in the dataset had low numbers of waste images, which 
result in an extreme imbalance of the data distribution, and the model did not extract 
the features of these two categories well. To solve this problem, we designed a new 
adaptive weighted loss function, as seen in Eq. 5, Eq. 6, and Eq. 7. 
 
                        𝐿!#$ = − %

&
{∑ 𝑙𝑜𝑠𝑠(𝑝')(

')% }													               (5) 
 

                     𝑙𝑜𝑠𝑠(𝑝') = P𝑒
*+,! ∙ ln 𝑝' , 𝑝' < 𝜂
0,																							𝑝' ≥ 𝜂                  (6)  

 
                            𝑍 = ∑ [𝑝' < 𝜂](

')%                         (7) 
 
where i refers to a pixel, Z represents the number of e in the mask, which is equivalent 
to a planning coefficient, η is a hyperparameter set to 0.99. Moreover, w denotes the 
weight and 𝑝'  shows the prediction probability of a pixel. 𝑒*	refers to the overall 
weight assigned to each waste class, and w is set by us in the experiments.  
    Since there are four waste classes and one background class, we assign w as 3 to 
the Metal class and Rigid Plastic class based on the feature of less data volume in these 
two classes. All other classes have w = 1.0, which is the best value for training results 
after we have conducted a number of ablation experiments. 𝑒, is to justify a weight 
assignment of this pixel itself. If 𝑒,	is stable, p should be large, so that the value of 𝑒, 
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becomes small. Conversely, if the value p is too small, the weight assigned to it will be 
larger. In this way, it is straightforward to bring the data to a balanced state. 

Furthermore, we set a mask as 0 if 𝑝' is greater than or equal to η, as provided in 
Eq. 6. By the way, the number of positive and negative samples is self-adjusted by 
mask, which filters out the features that are particularly well learned in the model and 
without limiting the number. Finally, the weights are then multiplied by the cross 
entropy to obtain the final loss function value, not as same as OhemCELoss [37], a 
typical weighting loss method, which restricts the proportion of positive and negative 
samples, while we do not restrict them, the positive samples also acquire valuable 
features by achieving a simple and effective way to improve the performance of the 
model. 
 
4 Our Experiments 
 
4.1   Datasets 
 
We propose a novel non-uniform data augmentation and adaptive weighted loss 
function to train the semantic segmentation of the Zerowaste dataset for the purpose to 
improve the accuracy and efficiency of real waste factories in performing waste 
classification. The Zerowaste dataset contains three branches, namely Zerowaste-f, 
Zerowaste-s, and Zerowaste-w. We mainly take use of the Zerowaste-s dataset, which 
is available for semi-supervised tasks and contains 6,212 unlabeled images. 
Additionally, the Zerowaste dataset has four waste categories, i.e., Cardboard, Soft 
plastic, Rigid plastic, and Metal. We evaluate the model with the metric mean(IoU) and 
perform ablation experiments to verify the effectiveness of our proposed method. 
 
4.2 Implementation Details 
 
Our experiments were based on a server with RTX A5000 GPU and AMD EPYC 7543 
CPU. Installed code editors VSCode, neural network framework PyTorch, CUDA, 
CUDNN, and, OpenCV. The specific experimental parameters are reflected in Table 2. 
 

Table 2 Training parameters of our experiments 
 

Classes Parameters 
Initial learning rate 
Optimizer 
Weight decay 
Batch size 
Epoch 

1e-4 
Adamw 
1e-3 
26 
100 
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4.3 Results 
 
Our method is based on the Zerowaste dataset to improve the model of real waste factory 
classification scenarios, so we follow the result comparison rules of the Zerowaste 
baseline to ensure the fairness and validity of the experiments. In Table 3, the mean(IoU) 
of the test set from our Unet method (semi) of ResNet-50 is 55.37%, which is higher 
than the experimental results obtained in the Zerowaste baseline of about 3.74%. If we 
do not utilize ResNet-50 but with EfficientNet, the IoU is also reduced by 0.39%. 
Besides, to obtain visual comparison results, we applied our method to DeepLabv3+ [5] 
(the same baseline method as Zerowaste, whose backbone network is ResNet-101) and 
obtained a mean(IoU) value of 54.77%, which is higher than the original value of 3.14%. 
It proves that our method is effective that can noticeably improve the value of the 
mean(IoU). After that, following the experimental approach of Zerowaste, we compared 
it with UniMatch [43], AugSeg [47], ReCo [26], CCT [33], and EPS [23]. The 
mean(IoU) of the semi test sets of the UniMatch, AugSeg, and ReCo method is 54.65%, 
53.88%, and 44.12%, respectively, which are lower than that of our method. Finally, 
regarding CCT and EPS, all their mean(IoU) values are below 33%, while our method 
is up to 55.37%. Moreover, since the Transformer model has improved the performance 
of the classification model and segmentation model, we also tested the 
CLUSTERFORMER [24] and Swin Transformer [27], the obtained mAP values were 
52.76% and 53.21%, respectively. We see that our method is also applicable in the 
Transformer models. 
 

Table 3 Comparisons of mean(IoU) results of different methods 
 

Method Supervision Validation Test 
Ours(Unet+Resnet-50) semi 49.27 55.37 
Ours(Unet+EfficientNet) semi 49.01 54.98 
Ours(DeepLabv3+) semi 48.89 54.77 
CLUSTERFORMER semi 47.95 53.21 
Swin Transformer semi 46.98 52.76 
Unet full 46.02 51.88 
DeepLabv3+ full 45.61 52.30 
DeepLabv3+ semi 46.13 51.63 
UniMatch semi 48.53 54.65 
AugSeg semi 47.12 53.88 
Reco full 51.30 52.28 
Reco semi 49.49 44.12 
CCT full 30.79 29.32 
CCT semi 28.70 32.49 
EPS weak-f 13.75 13.91 
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After the U-Net method was implemented, the value of mean(IoU) is only 0.6% 

higher than using the DeepLabv3+ method, but we still choose to apply U-Net model 
as our semi-supervised waste semantic segmentation network. This is because U-Net 
model consists of an encoder and a decoder that not only obtains the global features of 
the image but also restores the spatial information of the image, and has remarkable 
performance in processing smaller datasets, while DeepLabv3+ is suitable for 
processing large datasets. With the experimental results, we see that our method yields 
impressive results. Fig. 6(a) and Fig. 6(b) illustrate the mean(IoU) and loss plots of our 
method, respectively. This shows all the mean(IoU) and loss values during the training 
process. Another, darker-colored, less undulating fold is the approximate tendency of 
the mean(IoU) curve and the loss curve, it is present to highlight the focused changes in 
the curve.  

Furthermore, we adopt the SGD optimizer, because though the SGD optimizer is 
less efficient than the Adamw optimizer, it has more stable training results. We are 
surprised to see that the SGD optimizer utilized exhibits unsatisfied performance in our 
model, leading to a negative effect on the training outcomes, as shown in Fig. 7. Its loss 
values are on average higher than those of the Adamw optimizer. 

 

 
Fig. 6 The mean(IoU) and loss values of our method 

 

 
Fig. 7 The loss value of our method when using SGD optimizer 
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5 Ablation Study  
 
5.1   Analysis of the Adaptive Weighted Loss Function 
 
Table 4 Comparisons of mean(IoU) with the application of adaptive weighted loss function 

 
Adaptive weighted loss function Mean (IoU, %) 
w/o 54.12 
w/ 55.37 

 
The loss function is harnessed to evaluate the deviation of model prediction from the 

true value, the selection of loss function will impact the training results of the model. In 
this paper, we propose an adaptive weighted loss function and conduct experiments, as 
shown in Table 4. The mean (IoU) using our loss function is higher than the mean(IoU) 
without our loss function by 1.25%. We improve the performance of the model by a 
simple weighting method, effectively and efficiently. There is still room for 
improvement in the adaptive weighted loss function, and we believe that exploring 
more dynamic adaptive weighting schemes is an interesting direction for future 
work.  
 
5.2   Analysis of w values 
 
In this paper, the Zerowaste dataset has four categories, namely Cardboard, Soft plastic, 
Rigid plastic, and Metal. But in the semantic segmentation, it is also necessary to add 
the background category. Therefore, our experiment contains five classes. However, 
after observation, the data volume of the Metal classs and Rigid Plastic class only 
accounted for 3.6% and 16.6% of the total dataset, respectively, which show the 
extreme imbalance of the dataset. After the initial training, the mean(IoU) of these two 
categories was only about 20.00%, which was much lower than that of other categories, 
resulting in lowering the overall training of the model results. Our adaptive weighted 
loss function improves this problem by adding the same weight values for both 
categories. According to the design of our loss function, we perform ablation 
experiments on the w values in the adaptive weighted loss function in this subsection. 

There are five classes to be weighted, the initial w value is set as 1.0. The model 
is trained to obtain a mean(IoU) of 52.69%. We envision that the value of mean(IoU) 
will not be positively correlated with the value of w. If only the Metal class and Rigid 
Plastic class are given greater weight values, it would lead to overfitting the model. 
Therefore, we did not assign large values to these two categories, which is detailed in 
Table 5. The best training result is that if the value of w is 3, and the mean(IoU) is as 
high as 55.37%. The lowest mean(IoU) value of 52.60% is when the value of w is set 
to 5. Besides, the mean(IoU) with w equal to 1 is 0.09 higher than 52.60%. Finally, the 
second highest mean(IoU) value is 54.02%, which is 1.35% lower than 55.37% (when 
the w value is 3.5). This verifies our conjecture that w value cannot be set too large. 
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Table 5 Comparisons of mean(IoU) with different w values 

 
w value mean(IoU) 
1 52.69 
2 53.07 
2.5 53.55 
3 55.37 
3.5 54.02 
4 53.18 
5 52.60 

 
Next, since Metal class and Rigid Plastic class also have different amounts of data 

samples, we assign two different sets to these two categories. As an example, let w 
values be 3 and 2 (or 4 and 2), corresponding to the Metal category and Rigid Plastic 
category, respectively. However, the mean(IoU) did not increase due to the finer 
differentiation of the w values, both about 53% (which is different from our conjecture). 
We speculate that this maybe due to the difference in data volume between the Metal 
class and the Rigid Plastic class which is small. Moreover, another reason is that the 
simplified assigning w values do not raise the mean(IoU) values if the difference in data 
volume is small. In future work, we will further investigate the results with a variety of 
w values. Fig. 8 is the typical losses with different weights. 
 

 
Fig. 8 The typical loss values with different w value 

 
5.3   Analysis of Non-uniform Data Augmentation 
 

Table 6 Comparisons of mean(IoU) with various data augmentation methods 
 

 Data augmentation strategies  
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Methods Zerowaste 
baseline 

Non-uniform 
data 
augmentation 

Cutout Cutmix Mixup mean(IoU) 

DeepLabv3+ √     51.63 
 √  52.88 

Ours 
(DeepLabv3+) 

√     53.52 
 √  54.77 

Ours 
(Unet) 

√     52.88 
 √ 55.37 

√ 52.21 
√ 53.86 

√ 54.08 
 
In this paper, we conduct an in-depth study of non-uniform data augmentation and 
compare them with other data augmentation methods. In Table 6, we list the results of 
our experiments. The best result is our non-uniform data augmentation, which is up to 
55.37%. Then, we keep U-Net model and employed Cutout, Cutmix, and Mixup for 
replacement, and obtained mean(IoU) values are 52.21%, 53.86%, and 54.08%, 
respectively, which are all lower than our method. For a fair comparison with the 
Zerowaste baseline method, we also conducted the experiments in the case of using 
DeepLabv3+ as the segmentation network. However, it was only for comparing our 
method with the method in the Zerowaste, so Cutout, Cutmix, and Mixup were not 
tested. The results are remarkable in that our non-uniform data augmentation can 
increase the mean(IoU) value of the model by about 2.49% on average. 
 
5.4   Analysis of the Initial Offset Value 
 
In Section 3.2, we narrated setting the initial value for non-uniform offset data 
augmentation, 70 as the best solution, which is what we have obtained after the ablation 
experiment. Table 7 shows that if the initial value is set to 30, the mean(IoU) will reach 
the lowest value of 51.97%. In addition, if the initial value is set to 100, it also causes 
a decrease in the mean(IoU) value. Fig. 9 illustrates the comparison plot of the 
mean(IoU) with the initial value set to 30 and 100. We suppose that the pixel values of 
the images range from 0 to 255, if the initial value of data augmentation is too large or 
too small, it cannot get the global information of the images and will cause the network 
to ignore image features. Therefore, in this experiment, we choose 70 as our initial 
offset value of data augmentation. 
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Fig. 9 Comparison of the mean(IoU) with the initial value set to 30 and 100 

 
Table 7 Comparison of mean(IoU) with different initial offset value 

 
Initial offset value mean(IoU) 
30 51.97 
50 53.12 
70 55.37 
100 53.93 

 
5.5   Analysis of the Application of Non-uniform Data Augmentation 
 
Since our non-uniform data augmentation includes the transformation of pixel colors 
and pixel positions, we compared these two methods. If we only use non-uniform color 
data augmentation, the value of mean(IoU) is 54.39%, which improves the Zerowaste 
baseline by 1.41%. In contrast, applying non-uniform offset data augmentation 
improves the mean(IoU) value of the baseline method by 1.08%. Table 8 shows that 
our methods are effective and data augmentation for simulated light is more useful than 
data augmentation for simulated polymorphism. The reason for the difference needs to 
be explored in depth. We speculate that it is due to the hyperparameter settings of these 
two data augmentation methods. Therefore, in future, we will further improve our 
model.  
    Afterwards, to verify the comprehensiveness of the proposed method, we used the 
ResNet-101 model to compare with other data augmentation methods [25] on the 
CIFAR-10 dataset, the results are given in Table 9. We see that non-uniform data 
augmentation also enhances classification performance by about 0.12%. In our 
experiments, our method shows that robustness to image disturbances such as 
illumination variation, scale variation, rotation and tilt. This implies that it may also be 
resistant to some adversarial attacks. However, an assessment of specific attacks may 
needed, such as Adversarial Patch [2] and Physical-object-oriented MDE Attack [8]. 
Therefore, we plan to specifically test our method's resistance to these advanced 
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adversarial attacks in future work and further adjust and improve it to address these 
challenges. 
 

Table 8 Comparison of mean(IoU) of the application of non-uniform data augmentation 
 

Non-uniform data augmentation mAP 
Non-uniform color data ugmentation 54.29 
Non-uniform offset data ugmentation 53.96 
Both 55.37 

 
Table 9 Comparison of mean(IoU) of the application of non-uniform data augmentation 

applied to image classification task 
 

Data augmentation methods Top-1 Error 
Cutout 3.10 
Mixup 3.09 
CutMix 2.88 
OHL-Auto-Aug 2.79 
Non-uniform data ugmentation 2.67 

 
6  Conclusion 
 
We present a pioneering approach to waste classification that incorporates a novel non-
uniform data augmentation technique. This method excels in simulating various 
environmental conditions such as natural lighting and object polymorphism, 
significantly enhancing the model's robustness. Coupled with an adaptive weighted loss 
function, our method, when applied to the U-Net architecture, elevates the mean 
Intersection over Union (IoU) by 3.74%. This underscores the efficacy and simplicity 
of our method in handling real-world waste classification challenges. 

While addressing the scarcity of large labeled datasets in waste classification, we 
see our approach leverages semi-supervised semantic segmentation algorithms. This 
not only mitigates the financial burden of manual annotation but also enriches the 
Zerowaste dataset, thereby amplifying the model's efficiency and reliability in waste 
classification. 
    Our methodology, though tailored for waste classification, offers transferable 
insights that could be adapted to other domains, including traffic detection tasks on 
datasets like COCO and Pascal. Specifically, our non-uniform offset data augmentation 
methods employs sinusoidal computations, but it can also accommodate other 
mathematical functions like cosine or quadratic equations for broader applications.  
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    Looking ahead, we aspire to extend our method to additional deep learning 
challenges, continually seeking enhancements. Moreover, there's potential for further 
refinements in non-uniform color data augmentation. For instance, beyond altering 
light and shadow, we plan to explore how manipulating object colors could further 
improve the model's performance. This serves as a fertile ground for future research. 
Finally, we suspect that the simplicity of adaptive weighted loss function is a limitation 
of our research work. Although it improved the accuracy of the model in this paper, 
there is still room for improvement. In the future, we will conduct further research 
projects on adaptive weighted loss functions to design more efficient and effective loss 
function.  
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