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Vehicle Detection and Distance Estimation 
Using Improved YOLOv7 Model 

 

ABSTRACT 

In this book chapter, we propose a low-cost distance estimation approach to develop more 
accurate predictions from a 3D perspective for vehicle detection and ranging by using inexpensive 
monocular cameras. Our distance estimation model integrates YOLOv7 model with an attention 
module (CBAM) and Transformer as well as extend the prediction vector as the fundamental 
architecture to improved high-level semantic understanding and enhanced feature extraction 
ability. This integration significantly improved detection and ranging performance, offering a 
more suitable and cost-effective solution for distance estimation. 

Keywords: Deep learning, YOLOv7, Transformer, Attention module, Vehicle detection and 
ranging, Scene understanding 

INTRODUCTION 

Scene understanding serves as a fundamental pillar of driverless technology, as vehicles can only 
make informed control decisions when they accurately and autonomously perceive the traffic and 
road scene environment (Gu, et al. 2017). Its ability to provide precise representations and 
comprehensive understanding of scenes equips it with valuable knowledge of the surroundings, 
enabling the completion of various tasks in an effective and secure manner (Ignatious, 2023; Liu 
et al., 2019).  
 
A fundamental component of scene understanding for autonomous vehicles is spatial perception 
(An, 2021; An & Yan, 2021). spatial perception provides the necessary information for the vehicle 
to perceive its surroundings accurately, make informed inferences about the scene, ensure safe and 
reliable autonomous driving (Liu, 2019, Ming, 2021). 
 
From a 3D perspective, spatial perception helps the vehicle estimate the distance and proximity of 
objects in the scene. This information is crucial for safe navigation, as it allows the vehicle to 
maintain a safe distance from other vehicles or avoid collisions with obstacles (Sarker et al., 2021; 
Guo et al., 2021; Zhang et al., 2020; Hu et al., 2020). 
 
Distance estimation can be achieved through various methods, with laser detecting and ranging 
being a prominent approach for obtaining distance information (Zalevsky et al., 2021). Laser-based 
distance measurement has gained significant interest in the development of Collision Warning 
Systems. However, LiDAR technology, though sophisticated, is costly and yields limited results, 
making it currently suitable only for testing automobiles. 
 
Alternative methods for vehicle detection and distance measurement include ultrasound, infrared, 
and microwave radar (Aliew, 2022; Özcan et al., 2020). However, each of these approaches has 
its limitations. Ultrasound and infrared-based distance measurement have certain restrictions, 
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while microwave radar is sensitive to interference, leading to unreliable detection results. 
Moreover, these methods often struggle to distinguish between different detection targets. 
 
Hardware-based tools like radar and infrared devices present challenges in terms of costs, 
integration with imaging devices, and limitations in measurement precision. As a cost-effective 
solution, discarding expensive distance measurement apparatus was proposed instead of inferring 
distance information from 2D video footage captured during vehicle detection (Mehtab et al., 
2021). This approach offers a potential alternative to the hardware-based methods, but it also 
comes with its own set of challenges and considerations. 
 
Deep learning-based ranging (distance estimation) holds significant potential for various 
applications and can be seamlessly integrated with existing approaches to yield superior results. 
By accurately calibrating the camera internal and external parameters, it becomes possible to 
determine the distance to the vehicle ahead. This information can then be utilized to provide timely 
alerts about potential accidents, simulates how objects are projected onto the image plane based 
on camera parameters or use the visual projection model that based on their appearance and 
geometric properties to estimate the distance of objects. 

 
In the realm of visual data-based ranging techniques, there are two main branches: Monocular 
camera-based ranging methods and binocular camera-based ranging methods. Monocular camera 
ranging relies on initially identifying the target by matching its image with known patterns or 
features in the scene. This initial identification is typically performed using visual object detection 
or recognition algorithms, which can locate and classify objects of interest in the image. Once the 
target object is identified, the distance estimation is based on its apparent size in the image and the 
knowledge of the real-world size of the object or its category. This method assumes that the 
physical size of the object is known or can be estimated from prior knowledge.  

 
Within monocular camera ranging, there are several approaches. The circumferential ranging 
method utilizes a fisheye lens, which can result in more extensive lens distortion (Bremer et al., 
2023). However, using a fisheye lens can result in more extensive lens distortion compared to 
traditional rectilinear lenses. Lens distortion can affect the apparent size and shape of objects in 
the image, leading to inaccuracies in the perceived dimensions of objects. This impacts the 
accuracy of distance estimation based on apparent size.  
 
Moreover, fisheye lens distortion is nonlinear and more complex than rectilinear lens distortion. 
Accurately calibrating the fisheye camera to correct for distortion requires more sophisticated 
calibration methods and introduces additional computational overhead. Another approach is 
forward-looking camera ranging, characterized by reduced aberration in the front-view lens helps 
capture more accurate and undistorted images of the scene in front of the vehicle and the camera 
being mounted beneath the rearview mirror of the vehicle offers a relatively stable and vibration-
free location for the camera, which improves the quality of the captured images (Karimanzira et 
al., 2021). The third approach is oblique camera ranging, which is distinguished by its larger angle 
of view (Fukushima, Farzad, & Torras, 2017; Cai et al., 2020). Each of these methods has its 
unique characteristics and applications in distance estimation using monocular cameras. 
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In contrast to the distance measurement method used by the forward-facing camera, the 
circumferential fisheye camera does not rely on mathematical geometry for distance ranging. The 
reason is that the lens faces downward, resulting in high aberration coefficients, making traditional 
geometric distance ranging prone to significant errors. Instead, the distance ranging concept for 
the circumferential fisheye camera is based on a single-strain matrix and affine transformation. 
 
Binocular camera ranging utilizes a pair of cameras to perceive the 3D structure of a scene. This 
method is inspired by human vision, where our brain uses information from both eyes to estimate 
depth and perceive the world in three dimensions. In a binocular camera system, the two cameras 
are positioned side by side, mimicking the separation between human eyes. Each camera captures 
a slightly different view of the scene due to the horizontal displacement. The images from the two 
cameras are then employed to compute the disparity, which is horizontal difference between 
corresponding points in the left and the right images.  
 
Binocular estimation offers several advantages. One notable benefit is that it doesn't require prior 
recognition of objects, allowing for an unlimited recognition rate. All obstacles can be directly 
evaluated without the need for pre-existing knowledge. Moreover, binocular estimation doesn't 
rely on maintaining a sample database, as it operates without the concept of a sample. On the other 
hand, monocular estimation also comes with its own set of advantages. It is a cost-effective 
solution, requiring less computational resources, making it more accessible for various 
applications. Additionally, its relatively simple system design makes it easier to implement and 
deploy in practical scenes. 
 
The focus of this book chapter is on using deep learning to significantly reduce human workload 
in distance estimation for vehicle scene understanding. We employ the attention mechanism and 
Transformer on YOLOv7 as well as extend the prediction vector to estimate the distance between 
vehicles. Our proposed vehicle ranging model, YOLOv7-CBAM-Transformer, effectively 
improves the model's understanding of local and global features, thereby enhancing the 
performance of the original YOLO series models. 
 
We have the related work section, following by the sections methodology and result analysis. 
Finally, we present the conclusion and future work as well as references. 
 

RELATED WORK 

Vehicle detection forms the basis for vehicle ranging, estimating the distance from the vehicle in 
front is essential for vehicle collision avoidance systems. As a result, an increasing number of 
articles in the field of computer vision are focusing on the challenges related to vehicle detection 
and range estimation. 
 
We delve into two areas of literature. In the first area, we explore vehicle detection and range 
estimation using a binocular camera. Binocular stereo vision involves using two cameras with a 
known baseline to capture images of the same scene from slightly different viewpoints. Generally, 
the first step of binocular stereo distance estimation is to make key points or features in the left 
and right images are identified, and corresponding points are matched between the two images. 
Then the disparity between matched points is calculated to represent the relative distance of visual 
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objects in the scene. Finally, using the disparity and known camera parameters to compute the 
depth information for each pixel is conducted. 
 
A multi-resolution stereovision system was proposed (Chui et al., 2020). The system created image 
pyramids by down-sampling the captured images to different resolutions. Each level in the 
pyramid represents a different scale of the scene. The process includes feature extraction, feature 
matching, disparity calculation, depth estimation, and fusion/refinement steps for each level of the 
image pyramid. By performing these steps at multiple resolutions, the system can handle visual 
objects at different distances effectively. 
 
The estimating distance was proffered by identifying corners with high eigenvalues in segmented 
regions of both images (Alvarado et al., 2022). The model segments the left and right images to 
identify regions of interest. Image segmentation methods such as thresholding, edge detection, or 
clustering can be applied to group pixels with similar characteristics into distinct regions. Within 
each segmented region, a corner detection algorithm was propounded to identify key points or 
corners. Corner detection algorithms like Harris corner detector or Shi-Tomasi corner detector 
were accommodated. These algorithms identify points where there are significant variations in 
intensity in multiple directions, making them suitable for detecting distinctive features. Once the 
corners are identified, the eigenvalues of the gradient matrix are calculated. The eigenvalues 
represent the rate of changes of intensity in x-axis and y-axis directions around the corner point. 
High eigenvalues indicate strong intensity changes, which correspond to well-defined corners. 
After matching and disparity estimation, triangulation was employed to compute the 3D 
coordinates of the scene points corresponding to the matched corners in both images. With the 3D 
coordinates of the matched points, estimate the distance of the objects in the scene from the 
cameras. The distance can be calculated using simple geometric principles or calibrated camera 
parameters. 
 
Binocular distance estimation, which relies on using two cameras to capture images of the same 
scene from slightly different viewpoints, has certain disadvantages when compared to monocular 
distance estimation, which uses a single camera. Firstly, binocular distance estimation requires the 
use of two cameras, increasing the hardware complexity and cost compared to monocular systems 
that only need a single camera. Furthermore, accurate calibration of stereo cameras is crucial for 
precise distance estimation.  
 
Calibration involves determining the intrinsic and extrinsic parameters of both cameras, any errors 
in calibration can lead to inaccurate distance measurements. Also, the baseline between the two 
cameras limits the effective field of view for distance estimation. Visual objects outside this field 
of view may not be accurately measured by using the stereo vision system. At the same time, in 
complex scenes, occlusions and disparities between the left and right images can make feature 
matching and distance estimation challenging. These situations can lead to errors in distance 
estimation, especially for regions with insufficient texture or ambiguous features. Finally, changes 
in lighting conditions, reflections, and other environmental factors can affect the performance of 
binocular distance estimation, making it less robust in certain scenarios.  
 
In contrast, monocular distance estimation, though having its own set of challenges, offers a slew 
of advantages. Monocular distance estimation requires only one camera, making it a simpler and 



 5 

more cost-effective solution compared to binocular setups. Since monocular cameras are 
ubiquitous in a few of devices, it's easier to integrate monocular distance estimation into various 
applications and platforms. Moreover, monocular cameras can be placed in a variety of positions 
and orientations, providing more flexibility in system design. At the same time, recent advances 
in deep learning, especially with monocular distance estimation networks, have improved the 
accuracy and robustness of monocular distance estimation methods. 
 
Monocular camera-based distance estimation relies on various cues or assumptions. The cues such 
as perspective, size, and occlusion to estimate distance were observed in the scene (Parker et al., 
2022). The distance was estimated by analysing the movement of objects in consecutive frames or 
using visual odometry techniques (He et al., 2020). Normally, monocular camera-based distance 
estimation needs to establish correspondences between the extracted features in the image and the 
corresponding points in the real world (Vijayanarasimhan et al., 2017). This can be achieved by 
manually identifying the matching points or using known 3D reference points. Through using the 
camera calibration parameters and the matched feature correspondences, triangulation was 
employed to obtain 3D coordinates of real-world points. Triangulation was utilized to calculate 
the intersection of rays originating from the camera center and passing through the matched feature 
points. Since the initial 3D coordinates are only up to an unknown scale factor, the known 
dimensions are needed to estimate the scale and convert the 3D coordinates to actual world 
coordinates. Once the actual world coordinates of the structures, objects, or road segments are 
obtained, the distances between points of interest in the scene can be computed by measuring the 
Euclidean distance between their corresponding 3D coordinates. 
 
There has monocular distance estimation using inverse perspective mapping (IPM) from a bird's-
eye view. This transformation allows to estimate distances directly in the transformed view, which 
simplifies distance estimation. A perspective transformation (IPM) was deployed to map the image 
from the view perspective to a bird's-eye view. In the bird's-eye view, parallel lines become parallel 
and perpendicular to the ground, simplifying distance estimation. A mapping between the bird's-
eye view and the real-world coordinates is created. This mapping relates the pixel coordinates in 
the transformed view to the corresponding real-world 3D points (Vakili et al., 2020). 
 
The integration of attention mechanisms was employed to enhance the accuracy of distance 
estimation models. An innovative strategy has emerged that integrates global relative constraints 
to promote consistent vehicle state estimations. This methodology emphasizes on the significance 
of capturing both contextual and spatial details during the estimation process. The architecture of 
MSANet, the proposed framework, was elaborated, encompassing distinct streams for motion, 
context-awareness, and spatial information extraction from input data. To achieve enhanced 
estimation accuracy, the multi-stream attention fusion (MSAF) block was introduced as a means 
to effectively amalgamate these distinct features (Huang, Huang & Hsu, 2021). 
 
Furthermore, Transformer and attention modules have been integrated. An advanced system rooted 
in deep learning was designed to autonomously identify physical distancing through the analysis 
of surveillance footage from security cameras. In this approach, TH-YOLOv5 was adopted for the 
purpose of object detection and classification, while DeepSort was employed to track individuals 
detected within bounding boxes outlined in the video material. 
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An innovative facet of this methodology involves the incorporation of Transformer Heads (TH) 
into the TH-YOLOv5 framework. This addition capitalizes on the self-attention mechanism, thus 
augmenting the model's predictive capabilities. Furthermore, the Convolutional Block Attention 
Model (CBAM) was introduced to pinpoint regions of interest within densely populated scenes. 
To achieve this, specific convolutional and bottleneck blocks were replaced with transformer 
encoder blocks, drawing inspiration from the architecture of vision transformers. This adaptation 
enables more comprehensive acquisition of global and contextual information, proving especially 
advantageous in intricate scenarios involving occlusions. These transformer encoder blocks are 
seamlessly integrated into the head segment of the backbone, enhancing feature representation and 
ultimately contributing to heightened object detection performance. 
 
Moreover, the incorporation of CBAM module aided the TH-YOLOv5 model in directing its 
attention towards pertinent target elements present in images captured by using CCTV cameras. 
The system estimated the depth between the camera and objects by utilizing coordinate 
transformations and camera intrinsics. The pairwise L2 normalization was harnessed to calculate 
the distance between tracked individuals, and a violation index is computed to identify breaches 
of physical distance rules (Junayed & Islam, 2022). 
 
In summary, In order to highlight our contributions of the proposed work and compare it with the 
achieved results in the literature (Liu, et al. 2019, Liu, et al. 2022), we would like to emphasize on 
that we adopt the attention mechanism and Transformer on YOLOv7 to estimate the distance 
between vehicles. Our proposed vehicle ranging model, YOLOv7-CBAM-Transformer, 
effectively improves the model understanding of local and global features, thereby enhancing the 
performance of the original YOLO series models. 
 

METHODOLOGY 

In our distance estimation model, we adopt YOLOv7 as the foundational architecture. 
Additionally, we integrate Swin Transformer and Convolutional Block Attention module into the 
model to enhance the feature extraction capabilities further (Woo et al., 2019; Chienyao, Alexey 
& Mark, 2022; Liu et al., 2021). 
 
The design of YOLOv7 aims to address two specific challenges. Firstly, it introduces the concept 
of gradient propagation routes, which facilitates a structured model re-referencing approach. This 
approach enables the analysis of structural re-referencing techniques that are pertinent to each 
network layer. 
 
Training models with multiple output layers using a dynamic label assignment poses additional 
challenges, particularly concerning the assignment of dynamic targets to the outputs of different 
branches. To address this challenge, a novel approach was proposed called the coarse-to-fine 
guided label assignment technique for labeling assignment. This method offers a solution to 
overcome the issue of assigning dynamic targets to the outputs of various branches. 
 
Our model, as illustrated in Fig.1, incorporates the Convolutional Block Attention Module 
(CBAM) to enhance the feature extraction process, thereby avoiding alterations to the original 
feature extraction. Moreover, the inclusion of the Transformer enhances the model capacity to 
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comprehend global semantics, allowing YOLOv7, which primarily emphasizes on local 
information processing, to achieve a more comprehensive understanding of traffic scenes. The 
Convolutional Block Attention Module encompassing the Channel Attention (CAM) and the 
Spatial Attention Module (SAM) (Woo, Park, Lee & Kweon, 2019). The CAM computes attention 
maps by analysing the interdependencies among channels, determining which channels contain 
significant information for a given context. The channel attention mechanism allows the network 
to emphasize important channels while reducing the influence of less relevant ones.  
 
On the other hand, the SAM computes attention maps to highlight spatial regions containing 
relevant information. This mechanism enables the network to adaptively focus on specific parts of 
the image while downplaying background or less informative areas. The CAM focuses on 
capturing channel-wise relationships within the feature maps. It consists of an MLP followed by 
an element-wise summation and a sigmoid activation function. The MLP processes the input 
feature map and computes channel-wise attention weights that highlight informative channels and 
suppress less relevant ones. The attention weights obtained from the MLP are scaled by using the 
sigmoid activation function to ensure they lie within the range of 0 to 1. The scaled attention 
weights are then applied element-wise to the original feature map to enhance informative channels, 
 
M!(F) = σ 'MLP*AvgPool(F)0 + MLP*MaxPool(F)04 = σ(W" 'W#*F$%&' 04 +
	W"*W#(F($)' )0)                                                                                                                          (1) 
 
where 𝜎 represents the sigmoid function, while 𝑊# and 𝑊" are the shared MLP weights for both 
inputs, 𝑊# ∈ ℝ

!/+×!
, and 𝑊" ∈ ℝ

!×!/+
. The ReLU activation function is applied following these 

weights. 
 
The SAM analyzes spatial relationships within the feature maps to highlight important spatial 
regions. It involves two operations: Max pooling and convolution. Max pooling captures global 
context by summarizing the most significant spatial information within each channel. Convolution 
captures local context by processing the feature map with a convolutional filter to capture spatial 
dependencies. The outputs of max pooling and convolution are combined by using an element-
wise summation. The combined outputs undergo a sigmoid activation to produce spatial attention 
weights. The spatial attention weights are applied to the feature map to highlight relevant spatial 
regions (Li et al., 2023), 
 

M-(F) = σ*f .×.([AvgPool(F);MaxPool(F)])0 = σ(f.×.([F$%&- ; F($)- ]))                  (2) 

where 𝜎 denotes the sigmoid function and 𝑓.×. represents a convolution operation with the filter 
size of 7×7. 
 
CBAM has demonstrated its effectiveness in improving the discriminative power of CNNs and 
boosting their accuracy on various benchmarks and datasets. Its ability to adaptively emphasize on 
salient features while suppressing irrelevant ones helps networks achieve better generalization and 
robustness (Pan, 2018; Pan, 2020; Pan, 2021), making CBAM a valuable tool for advancing the 
capabilities of deep learning models in the field of computer vision. 
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Nonetheless, YOLOv7 network holds a significant advantage in extracting foundational features 
and visual structures. These low-level features encompass essential points, lines, and fundamental 
image elements at the patch level. These fundamental features exhibit distinct geometric 
characteristics and often emphasize consistency or covariance under transformations such as 
translation and rotation. Once the fundamental visual components are identified, the emphasis 
shifts towards comprehending the advanced visual meaning. This centers on grasping the 
interconnections among these components, shaping them into objects, and perceiving how the 
spatial arrangement of objects generates a scene.  
 
Presently, the Transformer model is widely regarded as proficient and efficient in managing the 
intricate relationships among these components. As a result, we remove the last ELAN in the 
YOLOv7 backbone and ELANs in the neck and instead integrate the Swin Transformer encoder. 
By implementing this operation, we accentuate the benefits of the self-attention mechanism while 
simultaneously reducing computational overhead. Moreover, the introduction of Transformer in 
the neck allows for capturing correlations and significance between different regions, enhancing 
the model ability to adapt to targets of varying sizes (Zhang, 2023). 
 



 9 

 
Fig. 1 The architecture of YOLOv7-CBAM-Transformer 

 
 
As we implement YOLOv7-CBAM-Transformer, our goal is not only to detect the position of the 
vehicle but also to estimate the distance between the vehicle in front and the current position. To 
achieve this, we have extended the prediction vector to incorporate distance estimation 
information. 
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The original prediction vector contains bounding box anchor coordinates A(x, y, w, h) and category 
confidence C (c1, c2). In order to make the model realize the ranging function, we add the distance 
element D (d) to the prediction vector. The extended prediction vector is shown in the Fig. 2. 

 
Fig. 2 The extended prediction vector for distanace estimation 

 

The distance loss is defined as 

l/0-1$2'3(i, j) = ω(d0,56 − d0,5)7=ω∑ C0,5,8(d0,5,86 − d0,5,8)7'
89#                     (3) 

where 𝐶0,5,8 is k-th class probability in (i, j)-th cell. The weighting constant 𝜔 is introduced to 
balance the importance of the distance loss with other losses, preventing it from dominating the 
overall training process. In our experiment, we set 𝜔 to a value of 1 × 107. 
 

RESULT ANALYSIS  

In this book chapter, we present a novel vehicle detection and distance estimation model for low-
cost monocular cameras, enhanced with an attention module and Transformer, utilizing deep 
learning techniques. The experimental setup involved using PYTHON 2.7, an RTX5000 GPU, and 
32GB RAM. The example data samples in the experiments were from the KITTI dataset. The 
KITTI dataset comprises both intrinsic and extrinsic characteristics of the in-car camera, along 
with the coordinates, width, and height of the detection boxes. For the development of our deep 
learning model, we randomly selected 4,000 samples and divided them into a 7:3 ratio for training 
and testing. The results presented in this section correspond to state-of-the-art approaches. Fig. 3 
illustrates the satisfactory vehicle recognition and distance estimation performance achieved by 
our modified YOLOv7 (YOLOv7-CBAM-Transformer) with the extended prediction vector. 

To train our YOLOv7-CBAM-Transformer, we set the following parameters: epochs as 5,000, 
batch size as 1.0, and learning rate as 0.01. Fig. 4 illustrates the network training process, shown 
that validation loss decreases steadily between 0 and 1,000 iterations. After reached 1,000 epochs, 
the loss curves stabilize at 0.082. 
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Fig. 3 The example of vehicle detection and distance estimation using YOLOv7-CBAM-
Transformer 

Table 1 shows a quantitative comparison of the KITTI-constructed dataset for each of the 
evaluation measures listed. YOLO models and the transformer model are evaluated in this 
comparison. The results indicate that YOLOv7 outperforms all previous YOLO models, including 
the transformer. Moreover, our YOLOv7-CBAM-Transformer, which incorporates the 
convolutional block attention module, outperforms the original YOLOv7. The combination of the 
convolutional block attention module with YOLOv7 demonstrates significantly improved results. 
Notably, the addition of the Swin Transformer leads to a reduction of 0.382 in RMSE compared 
to the previous model. Overall, our YOLOv7-CBAM-Transformer achieves a total reduction of 
0.456 in RMSE compared to the original YOLOv7 model. 

Additionally, the distances were divided into three categories: 0-10m, 10-20m, and  >20m. In Table 
2, we obtain the average RMSE for each group. Our YOLOv7-CBAM-Transformer outperforms 
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the original YOLOv7 in 0-10m and 10-20m distance categories. In summary, the data presented in 
Table 1 and Table 2 shows that the YOLOv7-CBAM-Transformer model is much effective in 
handling object detection and distance estimation tasks. Moreover, the model with Transformer is 
reduced by at least 0.2 in the RMSE of each distance category compared with YOLOv7-CBAM. 
Compared with the original YOLOv7, it is reduced by at least 0.303 in distance category of 0-10m 
and 10-20m. 

 

Fig. 4 The diagram of training process of YOLOv7-CBAM. The blue curve indicates the validation 
loss. 

Table 1 Comparative Analysis of Multiple Deep Neural Networks 

Models RMSE 

YOLOv5 4.121 

YOLOv6 4.483 

YOLOv7 4.157 

YOLOv7-CBAM 4.083 

YOLOv7-CBAM-Transformer 3.701 

Swin Transformer 4.776 
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Table 2 Average RMSE of different neural networks in different distance  

Models 0-10m 10-20m >20m 

YOLOv7 4.502 4.357 3.612 

YOLOv7-CBAM 4.499 3.667 4.083 

YOLOv7-CBAM-Transformer 4.199 3.021 3.883 

Table 3 Comparing our model to other state of the art model of distance estimation 

Model RMSE 

GC-ASPP-YOLOv3-D (Lian et al., 2022) 3.985 

Ours (YOLOv7-CBAM-Transformer) 3.701 

In the context of identical dataset, we conducted a comparative analysis between our model and 
another estimation model GC-ASPP-YOLOv3-D in Table 3 (Lian et al., 2022). The results 
highlight the distinct advantages of our model, particularly in terms of RMSE, where it 
outperforms GC-ASPP-YOLOv3-D. 

In summary, in addition to YOLOv7 being more suitable for vehicle distance estimation in KITTI 
dataset than YOLOv5, YOLOv6 and original Swin Transformer, adding CBAM can successfully 
further reduce the estimation error of the model. Moreover, we found that YOLOv7 with CBAM 
is much suitable for distance estimation within 20 meters, while the original YOLOv7 is prominent 
when estimating the distance of vehicles beyond 20m. By further improvement, our proposed 
YOLOv7-CBAM-Transformer produced the better results even compare with YOLOv7-CBAM. 

CONCLUSION 

Our primary focus was on developing an advanced deep learning-based model tailored for low-
cost monocular cameras, with the aim of optimizing hardware costs (Gowdra, et al., 2021). By 
accurately detecting vehicles and applying extended distance estimation vector, our model obtains 
the bounding box coordinates, enabling precise distance calculations. Through experimentation, 
we discovered that combining YOLOv7-CBAM-Transformer with the extended distance 
estimation vector yielded the best results, achieved a remarkable 0.456 improvement in RMSE 
compared to the original YOLOv7 model. In our analysis of the results, we observed that the 
YOLOv7-CBAM-Transformer outperforms the original YOLOv7-CBAM model in distance 
measurement. It exhibited enhanced accuracy and reduced occurrences of false detections and 
missed detections. This highlights the significant impact of the Transformer, which contributed to 
improve the feature understanding and its adaptability to diverse distances of vehicles in the 
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scenes. In future, we would like to explore how to use generative pre-trained transformer models 
to measure the distance between vehicles (Yam, 2019; Yan, 2023). 
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