

Scene Understanding for Billiard Ball

Striking System

Boning Yang

A project report submitted to the Auckland University of Technology

in partial fulfillment of the requirements for the degree of

Master of Computer and Information Sciences (MCIS)

2023

School of Engineering, Computer & Mathematical Sciences

 I

Abstract

In billiards competition and training, the stability of a player’s shot is a critical factor

influencing match outcomes and individual skill development. This study employs the

YOLOv8 (You Only Look Once version 8) algorithm to perform deep learning and

recognition on billiards scenarios, aiming to real-time assess the shot stability of players

or beginners. The project focuses on two key aspects: The movement of the cue tip and

the “bridge hand” (i.e., the point of contact between the player’s hand and the cue stick)

during the shot. By continuously monitoring the position and motion of these two

elements, the model can accurately predict shot stability and provide corresponding

training or adjustment suggestions. Preliminary experimental results indicate that our

method can effectively identify unstable shooting behaviors and contribute to enhancing

players’ overall technical skills.

In this project, 472 images were manually annotated from 163 minutes of video

footage. The annotated data, initially in JSON format, were converted to YOLO format

and fed into the official YOLOv8 model for training. This yielded a customized model

tailored for detecting the cue tip and the player’s bridge hand. Detected targets were then

normalized to identify key points. The stability of the player’s shot was assessed by

calculating the slope of the line connecting points from consecutive frames.

Keywords: YOLOv8, Deep learning, OpenCV, Annotation, Real-time assessment

 II

Table of Contents

Chapter 1 Introduction ... 1

1.1 Background and Motivation .. 2

1.2 Research Questions .. 3

1.3 Contributions ... 4

1.4 Objectives of This Report .. 5

1.5 Structure of This Report .. 6

Chapter 2 Literature Review .. 7

2.1 Why YOLO? .. 8

2.2 Introduction to Several Top-Ranked Real-Time Object Detection Models 9

2.3 Characterization and Parameters of YOLOv8 ... 12

2.4 Convolutional Neural Networks .. 17

2.5 Key Evaluation Metrics and Parameters .. 18

Chapter 3 Methodology ... 20

3.1 Creation of the Dataset .. 21

3.2 Dataset Visualization ... 25

3.3 Sample Augmentation ... 26

3.4 Model Training Parameter Optimization ... 27

3.5 Introduction to Transfer Learning ... 28

3.6 Model Evaluation ... 30

3.7 Experimental Flow Chart ... 33

Chapter 4 Model Results Analysis and Deployment ... 34

4.1 Issues During Model Training ... 35

4.2 Model Deployment .. 36

Chapter 5 Demo & Conclusion and Future Work ... 39

5.1 Demos .. 40

5.2 Discussions of Demos .. 41

5.3 Conclusion ... 42

5.4 Limitations of Outcomes ... 42

5.5 Future Tasks ... 42

 III

References .. 43

List of Figures

Figure 2.1: YOLOv8 Model Structure .. 12

Figure 2.2:ConvModule of YOLOv8 .. 13

Figure3.1 Sample Annotation Explanation ... 24

Figure 3.2: Sample of Dataset ... 25

Figure 3.3: Number of annotations per sample ... 25

Figure3.4: Bounding Box Distribution and Size ... 26

Figure 3.5: Transfer learning schematic diagram .. 29

Figure 3.6: Model training results ... 30

Figure 3.7: Confusion matrix after completion of training ... 31

Figure 3.8: Precision-confidence Curve & Recall-Confidence Curve 31

Figure 3.9: Precision-Recall Curve ... 32

Figure 3.10: F1-Confidence Curve ... 32

Figure 3.11: Model Iteration and Optimization Flowchart. .. 33

Figure 4.1: Unsatisfactory model training result A (Model A) 35

Figure 4.2: Unsatisfactory model training result B (Model B) 35

Figure 4.3: Satisfactory results for Model C ... 36

Figure 4.4: Slope jitter detection ... 37

Figure 4.5: visualization of prediction results ... 38

Figure 5.1: Shooting from the top left of the pool table .. 40

Figure 5.2: Shooting from the top right of the pool table. .. 40

Figure 5.3: Details of the demo ... 40

Figure 5.4: 22-class billiard table recognition demo ... 43

 IV

List of Tables
Table 2.1: Real-time target detection ranking based on MSCOCO dataset. 8

Table 3.1: Model training results ... 30

 V

Attestation of Authorship

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by another

person (except where explicitly defined in the acknowledgments), nor material which to

a substantial extent has been submitted for the award of any other degree or diploma of a

university or other institution of higher learning.

Signature: Boning Yang Date: 5 Oct 2023

 VI

Acknowledgment

First of all, I would like to extend my heartfelt thanks to my parents for their financial

support. Their selfless and generous sponsorship enabled me to pursue and complete my

Master’s study at the Auckland University of Technology (AUT), New Zealand.

I also wish to express my profound gratitude to my primary supervisor, Dr. Wei Qi Yan.

Throughout this project, he not only endowed me with professional knowledge and

attentive guidance but also generously provided the necessary hardware support,

including a camera and tripod. I firmly believe that without Dr. Yan’s unwavering

supervision and guidance, the completion of my studies would have been immensely

challenging.

Boning Yang

Auckland, New Zealand

October 2023

1

Chapter 1

Introduction

Chapter1 comprises 5 sections: 1st section introduces the

background and motivation, 2nd section presents the

research question, 3rd section details the contributions, the

4th outlines the objectives, and the last describes the

structure of this report.

2

1.1 Background and Motivation

In recent years, despite the continuous development of billiard techniques and training

methods, for many players and coaches, accurately assessing and improving a player’s

shot stability remains a significant challenge. Every stroke,slight change in angle and

force, can lead to substantial positional variations, potentially altering the entire trajectory

of a match. Billiards, a sport that balances skill and strategy, is beloved by enthusiasts. A

successful billiard shot depends not only on strategy and visual judgment but even more

so on the stability of the player’s stroke, which directly influences the ball’s path and the

final outcome of the game.

 Traditionally, training heavily relies on the experience and observational skills of

coaches. However, this method cannot escape its inherent subjectivity, especially when

trying to capture subtle changes in a player’s movements. For individual players, self-

assessing the shot stability often proves challenging, frequently requiring the onsite

guidance of professional coaches or advanced players. And while these traditional

methods are rich in experience, they rarely provide players with precise, quantifiable

feedback.

 With the rapid advancement of modern technology, especially computer vision and

deep learning, tremendous potential and value have been demonstrated across various

fields. This opens up new possibilities in the realm of sports. Using these cutting-edge

technologies to develop a real-time shot stability system can offer billiard players instant,

objective, and accurate feedback. Not only can beginners grasp basic techniques faster,

but advanced players can also fine-tune their skills, enhancing their competitive level.

Introducing these technologies into billiards training signifies not just a significant

technological leap but also a revolutionary innovation in billiards education and training

methods, achieving a perfect fusion of technology and sports.

3

1.2 Research Questions

As discussed earlier, this report focuses on employing deep learning, computer vision,

and YOLOv8 techniques to develop a real-time system for detecting batting stability. In

order to accomplish this system, the following 6 aspects are considered in this paper:

(1) Feasibility of YOLOv8: Can the YOLOv8 deep learning architecture be effectively

adapted to detect and track the subtle movements of a billiards player’s shooting

action in real-time, especially focusing on the tip contact point and the player’s

grip (known as the "bridge")?

(2) Precision and Recall: How does the YOLOv8-based model's accuracy, in terms of

precision and recall, compare to manual annotations or other leading object

detection methods when identifying and tracking key components in a live billiard

game?

(3) Latency Issues: What is the system’s latency? Given the real-time requirements,

how quickly can the YOLOv8 model process and return feedback about a player’s

shot stability after a stroke is executed?

(4) Integration with Training Regimes: How can insights derived from the YOLOv8-

powered real-time shot stability system be effectively integrated into training

regimes to provide actionable recommendations for players to improve their

stroke consistency and accuracy?

(5) Adaptability: How adaptable is the system to different playing environments,

lighting conditions, or variations in player technique? Can it be generalized to

work across different levels of players, from novices to professionals?

(6) User Feedback: How do players and coaches perceive the feedback provided by

the YOLOv8-based shot stability system? Is the system’s feedback considered

valuable and actionable in a real-world training or competitive context?

4

These research questions aim to explore the potential of integrating YOLOv8 into the

realm of sports training, specifically focusing on the development of a real-time shot

stability system for billiards. Addressing these questions could pave the way for a more

technologically advanced and data-driven approach to billiards training.

1.3 Contributions

The primary contribution of this paper is the development of a feasible scheme for custom

training deep learning models, which is further validated through the completion of a

billiard shot stability assessment system. It includes the following four aspects:

(1) Custom Dataset Creation: This research pioneered the construction of a dedicated

dataset specifically tailored for the stability of billiard shots. This dataset

encompasses shots taken in various settings, lighting conditions, and players’

technical skills, providing a comprehensive sample base for subsequent model

training.

(2) Customized YOLOv8 Model: By training on our custom dataset, we successfully

developed a tailor-made YOLOv8 model. This model has been specially

optimized for billiards scenarios, demonstrating higher precision and speed in

real-time detection of shooting actions.

(3) Real-time Shot Stability System: Leveraging the customized YOLOv8 model, we

constructed a real-time shot stability system. This system offers instantaneous,

objective, and precise feedback on shots to both coaches and players, facilitating

more effective guidance during training and matches.

(4) Practical Implementation: We tested the system in actual billiards training and

competitive environments, validating its value and potential in real-world

applications.

5

1.4 Objectives of This Report

The primary objective of this report is to elucidate the efforts made in developing a real-

time shot stability system for billiards, leveraging a customized YOLOv8 model. In

fulfilling this aim, the report sets forth the following specific objectives:

 To outline the underlying motivation and significance of creating a dedicated system

for assessing the stability of billiard shots, emphasizing the existing gaps and challenges

in traditional training methods.

To detail the process of constructing our custom dataset tailored for billiard shots,

discussing its diversity in settings, lighting conditions, and player techniques, and how it

stands to enhance the model training.

To delve into the intricacies of customizing the YOLOv8 model, illustrating the

specific optimizations made to suit billiards scenarios and to improve its real-time

detection capabilities.

To provide an in-depth overview of the real-time shot stability system, explaining its

functionalities, benefits, and the manner in which it offers immediate, objective feedback

to users.

To highlight the system’s application in real-world billiards training and competition,

sharing insights on its effectiveness, potential benefits.

6

1.5 Structure of This Report

The main structure of the article is as follows:

§ In Chapter 2, we delve into a comprehensive literature review, with a particular

emphasis on the YOLO model utilized in this project. We will draw comparisons

between the YOLO model and other prevalent MOT (Multiple Object Tracking)

algorithms, elucidating our rationale behind choosing YOLO for this project.

Additionally, we will introduce and discuss common parameters intrinsic to the

YOLO network.

§ In Chapter 3, we delve into methods for training a bespoke object detection system

and strategies to refine and boost its efficacy.

§ In Chapter 4, we will show some of the issues encountered during model

training and analyze them. Following this, we will implement the trained model,

harnessing a range of techniques from OpenCV to attain the intended features.

§ In Chapter 5, through the model’s application, our goal is to present a Demo

consistent with the project’s specifications. After finalizing the Demo, we will

review the project’s progression, recap the techniques employed, underscore any

challenges faced, and sketch out potential avenues for continued growth.

7

Chapter 2

Literature Review

In Chapter 2, we will discuss YOLO in comparison with other

Real-time Multiple Object Tracking algorithms and explain

our rationale for choosing YOLO along with its key

parameters.

8

2.1 Why YOLO?

Drawing from information on the "paperswithcode" website pertaining to "Real-Time

Object Detection on COCO," the term "on COCO" indicates that these algorithms

underwent training and evaluation using the MS COCO dataset. MS COCO is an

extensive dataset designed for tasks like object detection, segmentation, key-point

detection, and image captioning, comprising 328K images. Within this scope, the YOLO

algorithm showcases notable efficiency.

The data in the table below comes from the website “paperswithcode”. The

algorithms are ranked based on Box AP, revealing the best-performing real-time object

detection methods. The details are presented in the following table.

Table 2.1: Real-time target detection ranking based on MSCOCO dataset.

Rank Model Box AP FPS Paper Year

1 YOLOv6-L6 57.2 46 YOLOv6 v3.0: A Full-Scale Reloading 2023

2 PRB-FPN6-MSP 57.2 27
Parallel Residual Bi-Fusion Feature Pyramid

Network for Accurate Single-Shot Object Detection
2020

3 YOLOv7-E6E 56.8 36

YOLOv7: Trainable bag-of-freebies sets new state-

of-the-art for real-time object detectors

2022

4 YOLOv7-D6 56.6 44 2022

5 YOLOv7-E6 56 56 2022

6 YOLOv7-W6 54.9 84 2022

7 PP-YOLOE+_X 54.7 45
PP-YOLOE: An evolved version of YOLO

2022

8 PP-YOLOE+_L 54.0 78 2022

9 PRB-FPN-MSP 53.3 94
Parallel Residual Bi-Fusion Feature Pyramid

Network for Accurate Single-Shot Object Detection
2020

10 Gold-YOLO-L 53.28 116
Gold-YOLO: Efficient Object Detector via Gather-

and-Distribute Mechanism
2023

From Table 2.1, it is evident that among the top 10 real-time object detection

rankings, 8 are based on the YOLO algorithm. This clearly demonstrates the significant

advantage of YOLO in real-time object detection.

9

2.2 Introduction to Several Top-Ranked Real-Time Object

Detection Models

YOLOv6-L6 introduces enhancements to the original YOLOv6, including network

design modifications, anchor-assisted training, and self-distillation. In terms of design, it

employs bidirectional connections for the neck of object detector, catering better to

varying object scales, ensuring accurate detection across different resolutions. Anchor-

assisted training is another pivotal improvement, stabilizing the training process and

bolstering performance, as empirical evidence shows superior results using anchors over

non-anchor methods on YOLOv6. Lastly, self-distillation leverages knowledge transfer

between models of varied sizes, refining the model’s generalization and accuracy.

Collectively, these advancements significantly boost YOLOv6’s accuracy and real-time

capabilities.(Li et al., 2023)

PRB-FPN, which stands for Parallel Residual Bi-Fusion Feature Pyramid Network,

is a design architecture for object detection. It is tailored to pinpoint both minute and

sizable objects with precision and efficiency. This architecture brings forth multiple

advancements to tackle the constraints found in current feature pyramid configurations.

Its hallmark lies in the concurrent merging of contextual features sourced from

neighboring layers.

Contrary to conventional feature pyramids that merge expansive feature maps,

leading to a surge in memory use, PRB-FPN employs a bi-fusion technique that adeptly

integrates deep and surface-level feature layers. The network is structured around three

pivotal components:

1. The Bi-Fusion Module (BFM), which promotes the concurrent amalgamation of

features from neighboring layers, bolstering detection precision across a spectrum

of object dimensions.

10

2. The Concatenation and Re-organization (CORE) Module establishes a bottom-up

feature fusion route and refines these features to sustain a comprehensive context.

3. The Residual CORE design intertwines ResNet-driven residuals with the CORE,

facilitating adaptable training and ensuring harmony with a range of backbone

structures, ultimately enhancing detection capabilities.

In essence, the PRB-FPN network design excels in precise and streamlined object

detection, adept at identifying a diverse array of object sizes and categories. It stands out

with top-tier results on the MS COCO datasets.(P.-Y. Chen et al., 2021)

YOLOv7 has made notable advancements in real-time object detection, outpacing

existing detectors in terms of both speed and precision. According to the presented data,

three primary models were designed based on various GPU settings: YOLOv7-tiny,

YOLOv7, and YOLOv7-W6, which demonstrated remarkable improvements in

parameters, computation, and accuracy over baseline models. By incorporating

innovative architectural and training optimization methods such as VoVNet, PRN,

CSPNet, and the new "bag-of-freebies" strategy, YOLOv7 ensures enhanced information

fusion and multi-scale feature extraction. Notably, the efficient ELAN structure serves as

the foundational architecture, further amplifying model performance. In essence, by

leveraging pioneering techniques and components like VoVNet, PRN, CSPNet, and

ELAN, YOLOv7 has set new benchmarks in real-time object detection, exhibiting

substantial advancements in both architecture and training optimization.(C.-Y. Wang et

al., 2023)

PP-YOLOE, an adaptation of the PP-YOLOv2 model, incorporates multiple

refinements to the foundational YOLO architecture. These include the adoption of an

anchor-free paradigm, eliminating the reliance on anchor boxes for detection. It integrates

a more robust backbone and neck structure, featuring components like CSPRepResStage

and ET-head, enhancing feature extraction. Furthermore, it introduces a dynamic label

11

assignment algorithm (TAL) for more precise target label allocation. The enhancements

in PP-YOLOE translate to significant performance gains.

On the COCO test-dev dataset, PP-YOLOE-l achieved a mean average precision

(mAP) of 51.4%, marking a 1.9% improvement from PP-YOLOv2. In terms of inference

speed on Tesla V100, it reached 78.1 FPS, a 13.35% speed boost compared to PP-

YOLOv2. When juxtaposed with YOLOX, PP-YOLOE-l saw a 1.3% rise in mAP and a

24.96% acceleration in speed. Hence, PP-YOLOE, through its architectural and

algorithmic enhancements, strikes an optimal balance between detection accuracy and

speed.(S. Xu et al., n.d.)

Gold-YOLO, an advanced adaptation of the YOLO series models such as YOLOv1-

v3, introduces the Gather-and-Distribute (GD) mechanism to address previous

information fusion challenges inherent in the series. Through the employment of

convolution and self-attention operations, it elevates multi-scale feature fusion. Uniquely,

Gold-YOLO incorporates the unsupervised pre-training MAE-style method. As a result,

upon evaluation on a Tesla T4 GPU using TensorRT, Gold-YOLO-N outperforms earlier

versions such as YOLOv8-N, YOLOv6-3.0-N, and YOLOv7-Tiny, leading by 2.6%,

2.4%, and 6.6% respectively. Additionally, Gold-YOLO-S and Gold-YOLO-M showcase

considerable improvements in AP and speed against counterparts, including YOLOX-S,

PPYOLOE-S, and YOLOv6-3.0-M.(C. Wang et al., n.d.)

The YOLO series, comprising iterations like YOLOv6-L6, YOLOv7, PP-YOLOE,

and Gold-YOLO, underscores the adaptability and superiority of YOLO in the realm of

real-time object detection. With each successive version, YOLO has demonstrated

remarkable enhancements, be it through the bidirectional connections in YOLOv6-L6,

the architectural and training optimizations in YOLOv7, or the innovative Gather-and-

Distribute mechanism in Gold-YOLO. The continual refinements across the series, paired

with their proven efficacy on benchmarks, highlight YOLO’s adaptability. Its flexible

design and consistent performance make it an ideal choice for diverse real-time object

12

detection tasks, substantiating its preeminence in the domain.

2.3 Characterization and Parameters of YOLOv8

Figure 2.1: YOLOv8 Model Structure

Figure 2.1 shows the network structure of the YOLOv8 model in .pt format opened using

the Netron software. By referring to the official diagram provided by the open-source

community Open-mmlab, it can be understood that modules 0-9 are the Backbone part of

YOLO, 10-21 are the Neck part, and 22 is the Head part.

13

YOLO, an acronym for “You Only Look Once”, is a deep learning framework for

object detection. It primarily comprises three segments: the Backbone, Neck, and Head.

The Backbone, typically a deep convolutional neural network such as VGG, ResNet, or

DarkNet, is tasked with deriving basic spatial and contextual features from unprocessed

images.(Ayob et al., 2021; Demetriou et al., 2023; Sujatha et al., 2023; Zhou et al., 2019)

The Neck component, structures such as FPN or PANet, is added post-Backbone and is

aimed at integrating and enhancing features of varying depths and resolutions to capture

multi-scale information of objects. The Head, on the other hand, directly predicts the

object’s class, location, and size based on the features obtained from the Neck. In essence,

the entire YOLO framework first extracts image features through the Backbone, enhances

and integrates them via the Neck, and subsequently outputs the final object detection

results through the Head.(Huang et al., 2023; Vasanthi & Mohan, 2023; C. Wang et al.,

n.d.; Z. Zhang et al., 2021)

Figure 2.2:ConvModule of YOLOv8

From Figure 2.2, we can clearly see that 1´3´640´640 describes a four-dimensional

tensor, where the four dimensions are as follows:

“1” denotes the batch size, signifying a single image in the batch.

“3” symbolizes the channel count, representing the trio of color channels: red, green, and

blue..

The initial 640 signifies the image's height, while the subsequent 640 indicates its width.

14

In the first line of convolution parameters W<16´3´3´3>:

“16” refers to the count of output channels, indicating that this convolutional layer will

generate 16 distinct feature maps.

“3” denotes the number of input channels, commonly associated with the three-color

channels in an RGB image. “3´3” represents the dimensions of the convolutional kernel,

with both its height and width being 3.(Lecun et al., 1998)

Therefore, W<16´3´3´3> describes a four-dimensional weight tensor. Each output

channel has a 3´3 convolutional kernel spanning 3 channels.

In the second line with B<16>:

“16” indicates that this value corresponds to the number of output channels.

The subsequent four lines delineate essential characteristics of the 2D convolution

process:

dilations = 1, 1

This means there are no extra gaps between the elements in the convolutional kernel,

i.e., a standard convolution operation is used. If the dilations value is greater than 1, there

will be extra “gaps” between the kernel’s elements, known as “dilated convolution” or

“atrous convolution”.(Yu & Koltun, 2015)

kernel_shape = 3, 3:

This defines the size of the convolutional kernel. Specifically, both the height and

width of the kernel are 3 pixels.

pads = 1, 1, 1, 1:

This is the padding value, used to add extra pixels around the input feature map.

Here, the padding size is 1 pixel. Typically, the first two values in the padding list

represent the top and bottom padding in the height direction, while the last two values

represent the left and right padding in the width direction. In this case, 1 pixel of padding

is added to all four sides.(Lecun et al., 1998)

strides = 2, 2:

This specifies the stride of the convolutional kernel as it traverses the input feature map.

15

With a stride of 2, the kernel moves 2 pixels both horizontally and vertically for each step.

Typically, this action will halve the size of the resulting output feature map compared to

its input.

Thus, after passing through the convolution, the output tensor is observed to be

1´16´320´320.

Sigmoid (often called the logistic function) and ReLU are indeed two different

activation functions used in neural networks.

The sigmoid function squeezes its output values into a range between 0 and

1.(Ramachandran et al., 2017) Its expression is:

𝜎(𝑥) =
1

1 + 𝑒!"
(2.1)

The term “SiLU” is not the traditional term used for Sigmoid; instead, SiLU often

refers to a newer activation function which is the product of the input and its sigmoid,

defined as 𝑥 ´ 𝜎(𝑥). It is also sometimes called the Swish activation function.

ReLU (Rectified Linear Unit):

Due to its straightforward nature and effectiveness, ReLU stands out as a widely used

activation function in deep learning. It introduces non-linearity into the model without

requiring expensive computations. (Krizhevsky et al., 2017)The ReLU function is

mathematically represented as:

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (2.2)

Exactly. If the input is positive, the function outputs the same positive value. However,

for any negative or zero input, the function outputs 0.

The main difference between Sigmoid and ReLU is in their shapes and value ranges.

Sigmoid outputs values between 0 and 1 that is S-shaped. In contrast, ReLU outputs

values between 0 and infinity and looks like a ramp function. Every activation function

offers its unique strengths and limitations. The selection often hinges on the particular

challenge at hand and the neural network architecture in place.(Banerjee et al., 2019;

16

Mastromichalakis, 2021; Sharma, 2022)

After that we see Mul, which in this convolution acts as a BatchNorm2d. In deep

learning, BatchNorm2d or Batch Normalization is a commonly used regularization

technique designed to accelerate network training and enhance its performance. The

fundamental idea behind batch normalization is to normalize activations on each mini

batch of data to have a mean of 0 and a variance of 1. Then, two learnable parameters

(i.e., a scale and an offset parameter) are applied to scale and shift the normalized

values.(Ioffe & Szegedy, 2015)

The computational formula for BatchNorm2d is:

𝑥0# =
𝑥# − 𝜇
√𝜎$ + 𝜖

(2.3)

	

𝑦# = 𝛾𝑥0# + 𝛽 (2.4)

where:

𝑥# represents the input value.

𝜇 and 𝜎$ are the mean and variance of the mini-batch, respectively.

𝜖 is a small number to ensure the denominator isn’t zero.

𝛾 is the scale parameter.

𝛽 is the offset parameter.

𝑥0# is the normalized value.

𝑦# is the output value.

In eq.(2.4), the part related to the Mul operation is the step multiplying by the scale

parameter 𝛾. This essentially scales the normalized values, allowing the network to learn

the best scale suitable for the task. Introducing this operation enhances the network’s

adaptability and allows Batch Normalization to both regularize and maintain the

network’s representational capacity.(Kozlov et al., 2022; X. Xu et al., 2020; Y. Zhang &

Freris, 2023)

17

2.4 Convolutional Neural Networks

Since 1995, CNNs(Convolutional Neural Networks) have been employed in digital image

processing. Convolutional kernels are typically come in sizes like 3´3, 5´5, 7´7, and 9´9,

among others. The convolution operation produces receptive fields that form the feature

maps in a convolutional neural network. Each receptive field maps to a particular section

of the source image. (H. Chen & Ji, 2022; Jia et al., 2022; Trung et al., 2022) Convolution

is a mathematical process that combines two functions to yield a third, providing insight

into how one function alters or influences the other's shape. Convolutional Neural

Networks are prevalent in areas like image processing, voice recognition, and sequential

data analysis.(W. Q. Yan, 2021)

Three equations are used below to demonstrate the convolution operation, average

pooling and maximum pooling.

First, take 𝐅 = <𝑓",&
(()=

×
 at level 𝑘 , 𝑝((), 𝑞((), 𝑟((), 𝑠(() ∈ ℛ , g() is a nonlinear

function, an operation of convolution is:

𝑓",&
((,-) = 𝑔<𝑝(() ⋅ 𝑓",&

(() + 𝑞(() ⋅ 𝑓",-,&
(() + 𝑟(() ⋅ 𝑓",&,-

(() + 𝑠(() ⋅ 𝑓",-,&,-
(() = (2.5)

where 𝑓",&
(()denotes the position in the layer k feature mapping The value of 𝑥, 𝑦, 𝑥, 𝑦 are

two-dimensional coordinates that indicate a specific location or pixel. When convolution

is performed, a new feature mapping 𝑓((,-) is computed based on 𝑓(().

𝑝(() ⋅ 𝑓",&
(() represents the multiplication of the pixel with the coefficient 𝑝(().

𝑞(() ⋅ 𝑓",-,&
(() is the multiplication of the pixel below with the coefficient 𝑞(()

𝑟(() ⋅ 𝑓",&,-
(() is the multiplication of the pixel to the right with the coefficient 𝑟(()

𝑠(() ⋅ 𝑓",-,&,-
(() is the multiplication of the diagonal pixel with the coefficient 𝑠(()

All these values are summed up and passed through a nonlinear function g(⋅) to produce

a pixel in the new feature map.

18

After that, there is the average pooling process, expressed in the following equation:

𝑓"̅,&
((,-) =

1
4<𝑝

(() ⋅ 𝑓",&
(() + 𝑞(() ⋅ 𝑓",-,&

(() + 𝑟(() ⋅ 𝑓",&,-
(() + 𝑠(() ⋅ 𝑓",-,&,-

(() = (2.6)

This describes how to take a 2x2 block from the feature map and calculate the average of

these four pixels. The four coordinates (𝑥, 𝑦), (𝑥 + 1, 𝑦), (𝑥, 𝑦 + 1), (𝑥 + 1, 𝑦 + 1)

describe a 2x2 area. This is commonly used to halve the size of the feature map.

Max pooling is also a dimensionality reduction method, but it selects the maximum value

from a 2´2 pixel block as the pixel value for the new feature map.

𝑓*."
((,-) = 𝑚𝑎𝑥<𝑝(() ⋅ 𝑓",&

((), 𝑞(() ⋅ 𝑓",-,&
(() , 𝑟(() ⋅ 𝑓",&,-

(() , 𝑠(() ⋅ 𝑓",-,&,-
(() = (2.7)

Similar to average pooling, but instead of calculating the average of the pixels, it

selects the maximum value among these four pixels. During max pooling, a max filter,

denoted as max(×), is utilized on distinct, non-overlapping sections of the initial

representation.

2.5 Key Evaluation Metrics and Parameters

YOLO, an acronym for “You Only Look Once”, is a distinguished object detection

approach that examines an entire image in just one forward operation, enabling

instantaneous detection. When evaluating the effectiveness of YOLO or similar object

detection methods, key metrics such as Precision, Recall, mAP (mean Average Precision),

and IoU (Intersection over Union) are considered. These metrics help in assessing the

accuracy and robustness of the model. Here are some common evaluation metrics:

Precision =
 True Positives(TP)

 True Positives(TP) + False Positives(FP)
(2.8)

If the model predicts the presence of 100 objects and 90 of them are correct, the precision

is /0
-00

= 0.9 or 90%.

19

From all the actual positive samples, the proportion that was correctly detected.

Recall =
 True Positives (TP)

 True Positives (TP) + False Negatives (FN)
(2.9)

If there are 100 actual objects and your model detected only 80 of them, the recall is

10
-00

= 0.8 or 80%.

The F1 score is a balance between precision and recall, and is particularly useful when

the distribution of categories is uneven.

𝐹1 = 2 ×
 Precision × Recall
 Precision + Recall

(2.10)

That definition corresponds to the IoU (Intersection over Union). It's a measure used in

object detection to quantify the overlap between two bounding boxes.(Everingham et

al., 2010)

𝐼𝑜𝑈 =
 Area of Overlap (Intersection)

 Area of Union (Union)
(2.11)

The evaluation metrics mentioned above serve as a means to quantify the

performance and accuracy of models in object detection tasks. These metrics provide a

way to gauge the model’s performance and accuracy when tweaking the model or

comparing different models.

20

Chapter 3

Methodology

During this chapter, we will delve into the iterative process

and optimization techniques employed to realize our final

model objectives.

21

3.1 Creation of the Dataset

Data collection equipment is our personal laptop and Ultra HD Webcam (provided by the

school)

The resolution (3840Í2160), FPS (29), total video files collected 78.9GB, duration 162

minutes.

Raw Data Information

To achieve a comprehensive analysis, we embarked on a data collection journey focused

on billiards. The footage was captured from a total of 12 distinct angles. The cumulative

duration of these videos is 162 minutes. With a recording pace of 29 frames every second,

this amounts to an impressive 282,480 frames in total.

In the data preprocessing phase, we took a strategic approach. Instead of using every

frame, we extracted images from the video at consistent intervals - every 80 frames. This

method yielded 3,531 images. By doing so, we maintained the chronological integrity of

the events while also reducing redundancy in the data. Each of these image samples boasts

a resolution of 3840x2160 pixels.

To efficiently transform the video content into image data, we employed a Python script.

This script was tailored to segment the video into images at our predefined intervals.

Sample Dehomogenization

In object detection tasks, diversity in the data is crucial for both the training and

generalization of the model. Although we extracted 3,531 images from the raw footage,

many of these images displayed evident similarities. When confronted with such a highly

homogenized dataset, there’s a notable risk: the model might overfit to these repeated or

similar samples, compromising its predictive ability on new data.

To address this and optimize our dataset, we decided to employ the Structural

Similarity Index (SSIM) algorithm. SSIM is a classic method used to quantify the visual

similarity between two images. We used SSIM to compare each image to its neighboring

images and efficiently removed those samples that bore a high resemblance to others

22

based on a predetermined threshold.

This step was undertaken with a dual intention. While shrinking the dataset size was

one facet, the more crucial objective was to enrich the model's training experience with a

diverse array of samples. Ensuring variety in the data helps in fostering a model that's

more robust and adaptable to various scenarios. This can be viewed as an indirect data

augmentation technique, with the central aim being to bolster the model’s generalization

capabilities.

After extracting all the video frames as images, we trimmed the images, deleting those

with excessively high similarity. We used SSIM (Structural Similarity Index Measure) for

this purpose.(Fuentes-Hurtado et al., 2022)

SSIM mainly focuses on three key features of an image: Luminance, Contrast, and

Structure.(Z. Wang et al., 2004)

Luminance is measured by average gray level, obtained by averaging the values of all

pixels.

𝜇" =
1
𝑁U  

2

#3-

𝑥# (3.1.1)

The luminance contrast function 𝑙(𝑥, 𝑦) is a function expressed in terms of 𝜇" and 𝜇&

𝑙(𝑥, 𝑦) =
2𝜇"𝜇& + 𝐶-
𝜇"$ + 𝜇&$ + 𝐶-

(3.1.2)

Here, 𝐶- is a constant, 𝐶- = (𝐾-𝐿)$, where 𝐿 is the number of gray levels in the image.

For an 8-bit grayscale image, 𝐿= 255, 𝐾- << 1.

Using the standard deviation of the image as the measure.

𝜎" = [
1

𝑁 − 1U  
2

#3-

(𝑥# − 𝜇")$\

-
$

(3.1.3)

The contrast comparison function A is a function of 1 and 2, expressed as:

𝐶(𝑥, 𝑦) =
2𝜎"𝜎& + 𝐶$
𝜎"$ + 𝜎&$ + 𝐶$

(3.1.4)

23

Constant 𝐶$ = (𝐾$𝐿)$, and 𝐾$ << 1.

The structural comparison compares ("!4!)
5!

 and 6&!4"7
5"

 after normalization, which can

be measured by the correlation coefficient.

𝑆(𝑥, 𝑦) =
𝜎"& + 𝐶8
𝜎"𝜎& + 𝐶8

(3.1.5)

𝜎"& =
1

𝑁 − 1U  
2

#3-

(𝑥# − 𝜇")^𝑦# − 𝜇&_ (3.1.6)

where, 𝐶8 = 9#
$

The constants 𝐶-, 𝐶$, and 𝐶8 are set to prevent instability in the function’s value when

it approaches 0.

In this way, the general equation for SSIM can be written as:

SSIM	(𝑥, 𝑦) = [𝐼(𝑥, 𝑦)]:[𝑐(𝑥, 𝑦)];[𝑠(𝑥, 𝑦)]< (3.1.7)

Where 𝛼, 𝛽, and 𝛾 respectively represent the proportions of different features in the

SSIM measurement. When all are 1 and 𝐶8 = 9#
$

, we can expand the general formula for

SSIM as:

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
^2𝜇"𝜇& + 𝐶-_^2𝜎"& + 𝐶$_

^𝜇"$ + 𝜇&$ + 𝐶-_^𝜎"$ + 𝜎&$ + 𝐶$_
(3.1.8)

After using the above easy methods, we ultimately extracted 472 images from the 78.9G

of video data. Afterwards, we used the image annotation tool LabelMe to annotate the

extracted images, resulting in annotation files in JSON format. Then, we need to convert

the JSON annotation information into the YOLO format.

Once we have secured the image data alongside its corresponding annotations in the

YOLO format, it’s imperative to partition this dataset into two distinct sets: one for

24

training and another for testing. Commonly, a split ratio of 80:20 is adhered to, allocating

80% of the data to training and the remaining 20% to testing. This ensures that the model

is exposed to a vast majority of the data during training, while still reserving a significant

portion for validation, helping in gauging its real-world performance and robustness.

Annotation & Target Detection Display

As shown in Figure 3.1, the model has four detection targets, namely, hand, cue, sp, and

hp. "sp" stands for StandPoint, which is a support point where the player sets the cue stick

when taking a shot. "hp" stands for HitPoint, also referred to as the Tip in billiards terms,

which is the point where the cue stick makes contacts with the cue.

Figure3.1 Sample Annotation Explanation

25

3.2 Dataset Visualization

Figure 3.2: Sample of Dataset

In Figure 3.2, we see the data samples from the dataset. We can observe that the samples

used for training are fed in full size (samples include the pool table, background, and

characters), which implies that there are a lot of impurities or irrelevant information

present in the samples.

Figure 3.3: Number of annotations per sample

In the dataset, only rectangles were used to annotate the objects for detection. In all

the samples, the number of annotated objects in each sample is 4, 3, and 2, respectively,

as shown in Figure 3.3. This implies that the distribution of detection targets within the

samples is uneven.

26

(a)

(b)

Figure3.4: Bounding Box Distribution and Size

In Figure 3.4(a), the distribution of the bounding boxes throughout the image is

shown. It can be observed that most annotations are concentrated in the center of the

sample. Meanwhile, in (b), it is evident that the area of the annotation boxes is minimal,

with most of them occupying only about 1% of the sample.

3.3 Sample Augmentation

In the initial training without sample augmentation, the first version of the model achieved

a mAP of only 0.7, which did not meet our expectations. Therefore, we proceeded with

sample augmentation, increasing the dataset from 472 samples to 944. The original

samples were rotated 15 degrees counterclockwise, and corresponding JSON files were

also generated.

This operation can be described as:

Original sample set

𝑆 = {𝑠-, 𝑠$, … , 𝑠=>$} (3.3.1)

rotation operation

𝑠#? = Rotate(𝑠# , −15∘) (3.3.2)

27

Sample after rotation

𝑆? = {𝑠-? , 𝑠$? , … , 𝑠=>$? } (3.3.3)

Combined sample

𝑆total = 𝑆 ∪ 𝑆? (3.3.4)

|𝑆total | = 944 (3.3.5)

After expanding the dataset, the mAP of the retrained model increased to 0.89.

3.4 Model Training Parameter Optimization

Despite increasing the sample quantities, we still didn’t achieve the desired accuracy.

Consequently, during the model training process, we experimentally adjusted the image

size parameter ‘imgsz’ to investigate its impact on model accuracy and training

efficiency.(Hao et al., 2022; Liu et al., 2020; S. Zhang, 2022)

We gradually increased the value of imgsz, starting from 640, passing through

1280, and ultimately reaching 2560. With the increase in image size, the model’s

accuracy also saw significant improvements. Specifically, with imgsz at 640, the

model’s accuracy stood at 0.747. When the value was raised to 1280, the accuracy

reached 0.91. And at imgsz of 2560, the model’s accuracy further increased to 0.954.

While a larger imgsz value can enhance model accuracy, it also introduces a

substantial computational cost. In our experimental setup, using the same hardware and

dataset, when imgsz was increased from 640 to 1280, the model’s training time surged

from 0.546 hours to a staggering 17.406 hours.

Therefore, although adjusting the imgsz parameter can significantly boost the

model’s performance, it also implies a higher consumption of computational resources.

In practical applications, there’s a need to strike a balance between accuracy and

computational efficiency, choosing an appropriate imgsz value.

28

3.5 Introduction to Transfer Learning

Transfer learning capitalizes on the concept of utilizing knowledge gained while solving

one problem to assist in addressing a different but related problem. Instead of starting

from scratch, a model that's already been trained on a particular task is fine-tuned to adapt

to a new task. By reusing parameters, features, or samples from a previously trained

model, the time and resources needed for training on the new task can be considerably

reduced. The applicability of transfer learning largely depends on the similarity between

the original and target tasks, as well as the characteristics of the domains in question. This

approach is especially beneficial in scenarios where data is scarce or when training a

comprehensive model from the ground up is computationally intensive. Some common

methods include fine-tuning and feature extraction. In the process, various aspects such

as samples, instances, parameters, and features can be transferred to enhance the

performance on the new task.(Sarker, 2021; Tsinghua University et al., 2018; J. Yan &

Wang, 2022) Transfer learning thrives on the premise of reusing knowledge from a source

task to benefit a target task. However, its efficacy is contingent on the compatibility of

labels between these tasks. If there's a stark divergence in labels, a straightforward transfer

might falter. It's essential to ensure that the underlying patterns and features learned in the

source task are relevant and adaptable to the target task. In cases where labels diverge

significantly, techniques like domain adaptation or feature-level transfer might be more

apt than directly leveraging pre-trained models. Despite these constraints, one of the

strengths of transfer learning is its flexibility in using models across different domains

and tasks. However, it’s essential to note that distinct domains often lead to separate tasks,

each with its own distribution. This can affect the performance when applying knowledge

from one domain to another.(Brownlow et al., 2018; Sukhija et al., 2018) Different

machine learning paradigms, including inductive learning, transductive learning, and

unsupervised learning methods like clustering, can be applied within the framework of

transfer learning. Each of these paradigms may have distinct domains, tasks, and

algorithms when applied to transfer learning.(Hu et al., 2022; Kobylarz et al., 2020; Xiao

29

et al., 2021; Yang et al., 2022)

In this report, we initialized the training of the YOLO object model using a pre-

trained model from the large-scale MsCOCO dataset. Subsequently, we fine-tuned this

model on our specific billiards dataset. The advantage of this approach is that it quickly

adapts the model to the new dataset, saving training time and computational resources.

Transfer learning is suitable when the target dataset and the pre-trained dataset have some

degree of relevance.

Figure 3.5: Transfer learning schematic diagram

Transfer learning typically focuses on a scenario with a source domain 𝐷A and a

target domain 𝐷B. 𝐷A and 𝐷B can be expressed as follows:

𝐷A = {𝑥# , 𝑦#}#
2$ (3.1.9)

𝐷B = {𝑥# , 𝑦#}#
2% (3.1.10)

𝑖: It is an index used to refer to a specific data sample and its corresponding label. In the

source domain 𝐷A ,	 𝑥# 	, 𝑦# 	 respectively represent the 𝑖th data sample and its label.

𝑁A and 𝑁B: These two symbols represent the total number of data samples in the

source and target domains, respectively.

Given the source domain 𝐷A and source task 𝑇A , target domain 𝐷B and target

task 𝑇B, transfer learning aims to harness knowledge from a source domain and task to

enhance the learning of the prediction function in the desired target domain.

30

3.6 Model Evaluation

Figure 3.6: Model training results

As shown in Figure 3.6, the best prediction model was obtained after 240 training

epochs on the NVIDIA RTX A5000. The training process lasted for 2.548 hours.

Table 3.1: Model training results

Class Box(Precision) Recall mAP50

All 0.946 0.924 0.956

0 0.946 0.974 0.992

hp 0.932 0.798 0.893

hand 1 0.999 0.995

sp 0.905 0.926 0.943

As shown in Table 3.1, the overall accuracy of the model can reach 94.6%, which

meets expectations.

31

Figure 3.7: Confusion matrix after completion of training

Based on the data from Figure 3.7, the samples hp and samples sp are matched to

each other and their true number is 94 samples for each class, in the figure we can learn

that the accuracy of the hp class is not as expected and is able to recognize 75 samples

out of 94 samples with a recognition rate of 79%. Each column indicates the count of

instances for a given true class, whereas each row shows the count of instances

predicted for that specific class. From this chart, we can determine which classes the

model identifies well and which it struggles with, allowing for subsequent optimization

of the dataset.(Dixit & Nain Chi, 2021; Jayaram et al., 2023; Umadevi T P & Murugan

A, 2021)

(a)

(b)

Figure 3.8: Precision-confidence Curve & Recall-Confidence Curve

The figure 3.8 (a) depicts the Precision-Confidence curve, indicating that all classes

can be recognized when the confidence reaches 0.845, but there’s also a possibility of

missing some classes with low confidence. Meanwhile,(b) is the Recall-Confidence curve,

showing that the detection of classes becomes more comprehensive as the confidence

32

decreases.(Boyd et al., 2013; Oksuz et al., 2018)

Figure 3.9: Precision-Recall Curve

In Figure 3.9, mAP refers to Mean Average Precision. It’s evident that as precision

increases, recall tends to decrease. However, we hope that our model can detect all classes

as much as possible while maintaining high accuracy. Hence, our objective is to have our

curve gravitate towards the (1,1) point, implying an aspiration for the area under the mAP

curve to be near 1.(Altukroni et al., 2023; Çelik et al., 2023; Çelik & Çelik, 2023; Yen et

al., 2021)

Figure 3.10: F1-Confidence Curve

The F1-score serves as a metric for classification tasks. Many machine learning

competitions, especially those involving multi-class challenges, employ the F1-score for

final evaluation. Representing the harmonic mean of precision and recall, its value ranges

33

between 0 and 1, with 1 being the maximum. From the figure 3.10, we can observe that

for all classes, the F1 score reaches 0.93 when the confidence level is at

0.174.(Jayapermana et al., 2022; Jayasundara et al., 2022; Thakur & M, 2022)

3.7 Experimental Flow Chart

Figure 3.11: Model Iteration and Optimization Flowchart.

As shown in Figure 3.11, the entire experimental process is based on continuous

training and evaluation. We expect the model’s recognition accuracy for all classes to

achieve over 0.95 mAP before proceeding with model deployment and real-time testing.

34

Chapter 4

Model Results Analysis

and Deployment

The main content of this chapter is summarized the issues

encountered during model training and analyze them.

Subsequently, we will deploy the trained model and achieve

our desired functionalities using various methods from

OpenCV.

35

4.1 Issues During Model Training

Apart from the initial issues with setting up the training environment, our primary concern

was the progress of the pre-trained model after undergoing transfer learning with a custom

dataset. During the initial training, due to insufficient samples in the dataset and incorrect

“imagesize” parameters, there were two unsatisfactory training outcomes. The detailed

results are shown in the following figure:

Figure 4.1: Unsatisfactory model training result A (Model A)

Figure 4.2: Unsatisfactory model training result B (Model B)

Figure 4.1 and Figure 4.2 were trained using the same dataset. The difference

during their training was that the ‘imageSize’ increased from 640 to 1280. This change

improved the accuracy of Model B in Figure 22 from 0.662 to 0.917. Therefore, when

using the YOLO pre-trained model for transfer learning, increasing the ‘imageSize’

parameter can enhance the accuracy.

However, in Model B, the accuracy for the “hp” class is still below 0.9, which is not up

to expectations. Therefore, we adjusted the dataset in the following steps.

36

Figure 4.3: Satisfactory results for Model C

As shown in Figure 4.3, after expanding the sample size in the dataset to 472

images, we obtained a model with an accuracy 0.946. This model meets our

expectations.

Figures 4.1, 4.2, and 4.3 represent the three iterations of the model, with each

resulting model being labeled as Model A, Model B, and Model C, respectively. The

result, as shown in Figure 4.3, met our expectations with an accuracy of 0.946 mAP;

this is Model C. Both Model A and Model B utilized the same dataset. During the

iterative training, the parameter ‘imgsz’ was adjusted, expanded from the original 640 to

1280. This change propelled Model A’s mAP value from 0.662 to a significant 0.917.

However, this was the mAP for all classes; the ‘hp’ class’s detection accuracy was still

below 0.9. Transitioning from Model B to Model C, we augmented the dataset,

increasing from 172 images to 472 images. We finally elevated the mAP value for ‘hp’

to 0.893, which boosted the overall mAP value for all classes to 0.946.

4.2 Model Deployment

After obtaining a high-accuracy model, we normalized the prediction boxes for “hp” and

“sp” to obtain points. These two points correspond to the contact point of the cue stick in

37

a billiards game, also known as the ‘tip’, and the ‘bridge’, where the player supports the

cue stick. By connecting these two points, we form a line. When the player strokes the

ball, the stability of the slope of this line is monitored to determine whether the player’s

shot is stable. At the same time, text will be displayed on the prediction screen and sound

will be emitted to prompt the player whether their aiming and shooting are stable.

Figures 4.4 and 4.5 showcase the code for detecting slope jitter and the visualization of

prediction outcomes, respectively.

Figure 4.4: Slope jitter detection

Slope(𝑚) =
Δ𝑦
Δ𝑥

(4.2.1)

Where,

Δ𝑦 = 𝑦$ − 𝑦- (4.2.2)

Δ𝑥 = 𝑥$ − 𝑥- (4.2.3)

Here, (𝑥-,	 𝑦-)	and	(𝑥$,	 𝑦$)	are	the	coordinates	of	two	consecutive	points.	

Jittering = �arctan(𝑚) − arctan^𝑚prev _� > threshold	 	 	 	 	 	 	 	 	 (4.2.4)	

Where 𝑚 is the current calculated slope, and 𝑚prev is the previously calculated slope.

To detect significant variation between two consecutive slopes, we compute their

difference (transforming the slope into angles using the arctangent function) and see if

this difference surpasses a set threshold. If it exceeds the threshold, we consider jitter to

be detected.

38

Figure 4.5: visualization of prediction results

As shown in Figure 4.5, we crafted the visualize_results function to bring object detection

outcomes to visual representation. In executing this, we employed dictionary structures,

points and color, to respectively archive center point coordinates and colors tied to distinct

categories. Our toolset from OpenCV, such as cv2.rectangle, cv2.putText, and cv2.line,

facilitated the drawing of bounding boxes, the overlaying of text labels onto the image,

and the creation of lines between two coordinates. Leveraging the provided jitter_detector,

we’re equipped to discern jitters between two successive points. A detection cues a

warning display on the image; in its absence, an auditory signal is emitted, coupled with

the display, "Strike Standard". We’ve incorporated checks for the boxes attribute within

the results, verifying its transformation potential into a numpy array, and modulating the

bounding box and label visual based on category identification. Enhancing visualization,

category nomenclature was shifted from hp to tip, and standard strikes are audibly

underscored with the winsound.Beep feedback.

39

Chapter 5

Demo & Conclusion and Future Work

By applying the model, we aim to achieve a Demo that

aligns with the project's requirements. Once the Demo is

ready, we'll reflect on the project's journey, summarize the

methodologies used, highlighting any limitations

encountered, and outlining next steps for further

development.

40

5.1 Demos

Figure 5.1: Shooting from the top left of the pool table

Figure 5.2: Shooting from the top right of the pool table.

Figures 5.1 and 5.2 clearly show us that the system can detect whether the cue stick

is stable when the player shoots from different positions. There will be text prompts in

the top left corner of the demo.

Figure 5.3: Details of the demo

41

As shown in Figure 5.3, the key targets the system uses to determine whether the

player’s stroke is stable are ‘sp’ and ‘tip’. After normalizing these two detection target

boxes, the system obtains the positions of the center points of the boxes and connects

them with a line (this line is white in the Figure 5.3). The variation in the slope of this

line serves as the basis for judging the stability of the player’s stroke.

5.2 Discussions of Demos

In the pursuit of enhancing billiard training methodologies, our system, rooted in the

capabilities of the yolov8m pretrained model, provides a revolutionary approach to

evaluate the stability of players during their shots. This system is particularly beneficial

for players and beginners during regular training sessions as it determines the steadiness

of their strokes. The essence of our model revolves around the precise identification of

two pivotal points: the sp, symbolizing the "snooker bridge" - a paramount region in a

player’s hand for efficiently gripping and supporting the cue stick, and the hp, indicating

the point where the cue makes contact with the ball. The stability and relationship between

these points are fundamental metrics, shedding light on a player’s cue alignment

proficiency and overall stability. Such factors significantly dictate the accuracy and

consistency of shots in real-world gameplay or training.

Our innovative system offers the ability to promptly discern and evaluate the

fluctuations and stability of these crucial coordinates, whether in a real-time setting or

post-game video reviews. By offering both coaches and players this profound analytical

tool, we are opening a window into the nuances of technical strengths and potential

enhancements. Such an innovation, to a degree, can operate as a surrogate to traditional

billiard coaches, focusing on rectifying players’ striking patterns and movements, and

thereby augmenting their competitive stature. We are optimistic that our solution will

pave the way for players to refine their techniques, leading to heightened performance in

the game.

42

5.3 Conclusion

The core of the entire project lies in the iterative training and optimization of the model.

In terms of results, this development is undoubtedly successful. After only four rounds

of model training and parameter tuning, we obtained a model with a precision of 0.946

mAP. The model can recognize from different angles the four positions when a billiard

player strikes the ball: the hand, the cue ball, the hp(hitting point of the cue stick), and

the sp(stand point of the cue stick). Among them, the sp is a relatively complex feature

point, which is the contact point between the cue stick and the player’s webbing. These

findings prove that YOLOv8 can use minimal computational resources and develop a

customized recognition model in a short period.

This project delved into a bespoke and confidential development process for

YOLOv8, the newest convolutional neural network, underscoring its promising

capabilities in the realm of sports.

5.4 Limitations of Outcomes

Due to the short development cycle, samples under different lighting conditions were not

collected when building the dataset. As a result, the model’s prediction accuracy might be

unstable in various lighting environments. The system has only completed a demo so far

and hasn’t developed a full GUI. Therefore, general users would need to learn how to use

this system.

5.5 Future Tasks

In subsequent development, we plan to incorporate the recognition of the entire billiard

table surface and the balls. This will encompass a total of 22 classes, which will include

6 pockets and 16 balls.

The following figure 5.2 is a preliminary demo containing 22 classes. In the image,

the balls were still not recognized. This is because the prediction accuracy of the model

has not yet met expectations.

43

Figure 5.4: 22-class billiard table recognition demo

Afterwards, we aim to train a YOLO prediction model that meets expectations for the

22 classes. To achieve a precision of 0.95 mAP or above for a model with 22 categories,

it’s essential to make structural improvements to the base model. This necessitates a

multitude of ablation experiments to identify components that are particularly sensitive

to ball-related objectives. Subsequently, we will also employ the Taguchi method (often

referred to as orthogonal array testing) to analyze the weight of the impact of each

parameter tuning on model accuracy. This will further optimize the training speed of the

model and reduce the time it takes for model training.

References

Altukroni, A., Alsaeedi, A., Gonzalez-Losada, C., Lee, J. H., Alabudh, M., Mirah, M., El-

Amri, S., & Ezz El-Deen, O. (2023). Detection of the pathological exposure of

pulp using an artificial intelligence tool: A multicentric study over periapical

radiographs. BMC Oral Health, 23(1), 553. https://doi.org/10.1186/s12903-023-

03251-0

An, N., Yan, W. (2021) Multitarget tracking using Siamese neural networks. ACM

Transactions on Multimedia Computing, Communications and Applications.

An, N. (2020) Anomalies Detection and Tracking Using Siamese Neural Networks.

Master’s Thesis. Auckland University of Technology, New Zealand.

Ayob, A. F., Khairuddin, K., Mustafah, Y. M., Salisa, A. R., & Kadir, K. (2021). Analysis

of pruned neural networks (MobileNetV2-YOLO v2) for underwater object

detection. In Z. Md Zain, H. Ahmad, D. Pebrianti, M. Mustafa, N. R. H. Abdullah,

44

R. Samad, & M. Mat Noh (Eds.), Proceedings of the 11th National Technical

Seminar on Unmanned System Technology 2019 (Vol. 666, pp. 87–98). Springer

Nature Singapore. https://doi.org/10.1007/978-981-15-5281-6_7

Banerjee, C., Mukherjee, T., & Pasiliao, E. (2019). An empirical study on generalizations

of the ReLU activation function. ACM Southeast Conference, 164–167.

https://doi.org/10.1145/3299815.3314450

Boyd, K., Eng, K. H., & Page, C. D. (2013). Area under the precision-recall curve: point

estimates and confidence intervals. In C. Salinesi, M. C. Norrie, & Ó. Pastor (Eds.),

Advanced Information Systems Engineering (Vol. 7908, pp. 451–466). Springer

Berlin Heidelberg. https://doi.org/10.1007/978-3-642-40994-3_29

Brownlow, J., Chu, C., Xu, G., Culbert, B., Fu, B., & Meng, Q. (2018). A multiple source

based transfer learning framework for marketing campaigns. International Joint

Conference on Neural Networks (IJCNN), 1–8.

https://doi.org/10.1109/IJCNN.2018.8489772

Cao, X. (2022) Pose Estimation of Swimmers from Digital Images Using Deep Learning.

Master’s Thesis, Auckland University of Technology.

Cao, X. and Yan, W. (2022) Pose estimation for swimmers in video surveillance.

Multimedia Tools and Applications, Springer.

Çelik, B., & Çelik, M. E. (2023). Root dilaceration using deep learning: a diagnostic

approach. Applied Sciences, 13(14), 8260. https://doi.org/10.3390/app13148260

Çelik, B., Savaştaer, E. F., Kaya, H. I., & Çelik, M. E. (2023). The role of deep learning

for periapical lesion detection on panoramic radiographs. Dentomaxillofacial

Radiology, 20230118. https://doi.org/10.1259/dmfr.20230118

Chen, H., & Ji, Q. (2022). Convolutional neural network with attention mechanism for

image-based smoke detection. 2022 4th International Conference on Advances in

45

Computer Technology, Information Science and Communications (CTISC), 1–8.

https://doi.org/10.1109/CTISC54888.2022.9849826

Chen, P.-Y., Chang, M.-C., Hsieh, J.-W., & Chen, Y.-S. (2021). Parallel residual bi-fusion

feature pyramid network for accurate single-shot object detection. IEEE

Transactions on Image Processing, 30, 9099–9111.

https://doi.org/10.1109/TIP.2021.3118953

Demetriou, D., Mavromatidis, P., Robert, P. M., Papadopoulos, H., Petrou, M. F., &

Nicolaides, D. (2023). Real-time construction demolition waste detection using

state-of-the-art deep learning methods; Single – Stage vs Two-Stage Detectors

[Preprint]. SSRN. https://doi.org/10.2139/ssrn.4330569

Dixit, A., & Nain Chi, Y. (2021). Classification and recognition of urban tree defects in a

small dataset using convolutional neural network, Resnet-50 Architecture, and

Data Augmentation. Journal of Forests, 8(1), 61–70.

https://doi.org/10.18488/journal.101.2021.81.61.70

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2010). The

pascal visual object classes (voc) challenge. International Journal of Computer

Vision, 88(2), 303–338. https://doi.org/10.1007/s11263-009-0275-4

Fuentes-Hurtado, F., Delaire, T., Levet, F., Sibarita, J.-B., & Viasnoff, V. (2022). MID3A:

microscopy image denoising meets differentiable data augmentation. 2022

International Joint Conference on Neural Networks (IJCNN), 1–9.

https://doi.org/10.1109/IJCNN55064.2022.9892954

Gowdra, N., Sinha, R., MacDonell, S., Yan, W. (2021) Maximum Categorical Cross

Entropy (MCCE): A noise-robust alternative loss function to mitigate racial bias

in Convolutional Neural Networks (CNNs) by reducing overfitting. Pattern

Recognition.

Gowdra, N. (2021) Entropy-Based Optimization Strategies for Convolutional Neural

46

Networks. PhD Thesis, Auckland University of Technology, New Zealand.

Hao, Z., Post, C. J., Mikhailova, E. A., Lin, L., Liu, J., & Yu, K. (2022). How does sample

labeling and distribution affect the accuracy and efficiency of a deep learning

model for individual tree-crown detection and delineation. Remote Sensing, 14(7),

1561. https://doi.org/10.3390/rs14071561

Herrera, A., Beck, A., Bell, D., Miller, P., Wu, Q., Yan, W. (2008) Behavior analysis and

prediction in image sequences using rough sets. International Machine Vision and

Image Processing Conference (pp.71-76)

Hu, Q., Si, X., Qin, A., Lv, Y., & Liu, M. (2022). Balanced adaptation regularization based

transfer learning for unsupervised cross-domain fault diagnosis. IEEE Sensors

Journal, 22(12), 12139–12151. https://doi.org/10.1109/JSEN.2022.3174396

Huang, M., Liu, Z., Liu, T., & Wang, J. (2023). CCDS-YOLO: Multi-Category synthetic

aperture radar image object detection model based on yolov5s. Electronics,

12(16), 3497. https://doi.org/10.3390/electronics12163497

Ioffe, S., & Szegedy, C. (2015). Batch normalization: accelerating deep network training

by reducing internal covariate shift. https://doi.org/10.48550/ARXIV.1502.03167

Jayapermana, R., Aradea, A., & Kurniati, N. I. (2022). Implementation of stacking

ensemble classifier for multi-class classification of covid-19 vaccines topics on

Twitter. Scientific Journal of Informatics, 9(1), 8–15.

https://doi.org/10.15294/sji.v9i1.31648

Jayaram, M., Kalpana, G., Borra, S. R., & Bhavani, B. D. (2023). A brief study on rice

diseases recognition and image classification: Fusion deep belief network and S-

particle swarm optimization algorithm. International Journal of Electrical and

Computer Engineering (IJECE), 13(6), 6302.

https://doi.org/10.11591/ijece.v13i6.pp6302-6311

47

Jayasundara, S., Indika, A., & Herath, D. (2022). Interpretable Student Performance

Prediction Using Explainable Boosting Machine for Multi-Class Classification.

2022 2nd International Conference on Advanced Research in Computing (ICARC),

391–396. https://doi.org/10.1109/ICARC54489.2022.9753867

Jia, X., Peng, Y., Li, J., Xin, Y., Ge, B., & Liu, S. (2022). Pyramid dilated convolutional

neural network for image denoising. Journal of Electronic Imaging, 31(02).

https://doi.org/10.1117/1.JEI.31.2.023024

Kieran, D., Yan, W. (2010) A framework for an event-driven video surveillance system.

Advanced Video and Signal Based Surveillance (AVSS).

Kobylarz, J., Bird, J. J., Faria, D. R., Ribeiro, E. P., & Ekárt, A. (2020). Thumbs up,

thumbs down: Non-verbal human-robot interaction through real-time EMG

classification via inductive and supervised transductive transfer learning. Journal

of Ambient Intelligence And Humanized Computing, 11(12), 6021–6031.

https://doi.org/10.1007/s12652-020-01852-z

Kozlov, D., Pavlov, S., Zuev, A., Bakulin, M., Krylova, M., & Kharchikov, I. (2022).

Dual-valued Neural Networks. IEEE International Conference on Advanced

Video and Signal Based Surveillance (AVSS), 1–8.

https://doi.org/10.1109/AVSS56176.2022.9959227

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep

convolutional neural networks. Communications of the ACM, 60(6), 84–90.

https://doi.org/10.1145/3065386

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

https://doi.org/10.1109/5.726791

Li, F., Zhang, Y., Yan, W., Klette, R. (2016) Adaptive and compressive target tracking

based on feature point matching. International Conference on Pattern

48

Recognition (ICPR), (pp.2734-2739).

Li, C., Li, L., Geng, Y., Jiang, H., Cheng, M., Zhang, B., Ke, Z., Xu, X., & Chu, X. (2023).

YOLOv6 v3.0: A Full-Scale Reloading.

https://doi.org/10.48550/ARXIV.2301.05586

Liang, C., Lu, J., Yan, W. (2022) Human action recognition from digital videos based on

deep learning. ACM ICCCV.

Liu, C., Yan, W. (2020) Gait recognition using deep learning. Handbook of Research on

Multimedia Cyber Security (pp.214-226)

Liu, P., Wang, X., Yin, L., & Liu, B. (2020). Flat random forest: A new ensemble learning

method towards better training efficiency and adaptive model size to deep forest.

International Journal of Machine Learning and Cybernetics, 11(11), 2501–2513.

https://doi.org/10.1007/s13042-020-01136-0

Liu, Z., Yan, W., Yang, B. (2018) Image denoising based on a CNN model. International

Conference on Control, Automation and Robotics.

Lu, J. (2016) Empirical Approaches for Human Behavior Analytics. Master’s Thesis.

Auckland University of Technology, New Zealand.

Lu, J., Shen, J., Yan, W., Boris, B. (2017) An empirical study for human behaviors

analysis. International Journal of Digital Crime and Forensics 9 (3), 11-17.

Lu, J., Nguyen, M., Yan, W. (2018) Pedestrian detection using deep learning. IEEE AVSS.

Lu, J., Nguyen, M., Yan, W. (2020) Human behavior recognition using deep learning.

International Conference on Image and Vision Computing New Zealand.

Lu, J., Nguyen, M., Yan, W. (2020) Comparative evaluations of human behavior

recognition using deep learning. Handbook of Research on Multimedia Cyber

Security, 176-189.

49

Lu, J., Nguyen, M., Yan, W. (2021) Sign language recognition from digital videos using

deep learning methods. International Symposium on Geometry and Vision.

Lu, J. (2021) Deep Learning Methods for Human Behavior Recognition. PhD Thesis.

Auckland University of Technology, New Zealand.

Mastromichalakis, S. (2021). SigmoReLU: An improvement activation function by

combining sigmoid and ReLU. ENGINEERING.

https://doi.org/10.20944/preprints202106.0252.v1

Oksuz, K., Cam, B. C., Akbas, E., & Kalkan, S. (2018). Localization Recall Precision

(LRP): A New Performance Metric for Object Detection. In V. Ferrari, M. Hebert,

C. Sminchisescu, & Y. Weiss (Eds.), Computer Vision – ECCV 2018 (Vol. 11211,

pp. 521–537). Springer International Publishing. https://doi.org/10.1007/978-3-

030-01234-2_31

Pan, C., Yan, W. (2018) A learning-based positive feedback in salient object detection.

International Conference on Image and Vision Computing New Zealand.

Pan, C., Yan, W. (2020) Object detection based on saturation of visual perception.

Multimedia Tools and Applications, 79 (27-28), 19925-19944.

Pan, C., Liu, J., Yan, W., Zhou, Y. (2021) Salient object detection based on visual

perceptual saturation and two-stream hybrid networks. IEEE Transactions on

Image Processing.

Ramachandran, P., Zoph, B., & Le, Q. V. (2017). Searching for Activation Functions

(arXiv:1710.05941). arXiv. http://arxiv.org/abs/1710.05941

Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and

Research Directions. SN Computer Science, 2(3), 160.

https://doi.org/10.1007/s42979-021-00592-x

Sharma, O. (2022). Exploring the statistical properties and developing a non-linear

50

activation function. International Conference on Automation, Computing and

Renewable Systems (ICACRS), 1370–1375.

https://doi.org/10.1109/ICACRS55517.2022.10029124

Sujatha, K., Amrutha, K., & Veeranjaneyulu, N. (2023). Enhancing object detection with

Mask R-CNN: a deep learning perspective. International Conference on Network,

Multimedia and Information Technology (NMITCON), 1–6.

https://doi.org/10.1109/NMITCON58196.2023.10276033

Sukhija, S., Krishnan, N. C., & Kumar, D. (2018). Supervised heterogeneous transfer

learning using random forests. Proceedings of the ACM India Joint International

Conference on Data Science and Management of Data, 157–166.

https://doi.org/10.1145/3152494.3152510

Thakur, P. M., & M, T. (2022). Multi-class classification of twitter sentiments using

frequency based, LSTM and BERT methods. International Journal for Research

in Applied Science and Engineering Technology, 10(4), 3393–3402.

https://doi.org/10.22214/ijraset.2022.42085

Trung, N. T., Trinh, D.-H., Trung, N. L., & Luong, M. (2022). Low-dose CT image

denoising using deep convolutional neural networks with extended receptive

fields. Signal, Image and Video Processing, 16(7), 1963–1971.

https://doi.org/10.1007/s11760-022-02157-8

Chen, K., He, Z., Wang, S. X. (2018). Learning-based data analytics: Moving towards

transparent power grids. CSEE Journal of Power and Energy Systems, 4(1), 67–

82. https://doi.org/10.17775/CSEEJPES.2017.01070

Umadevi T P & Murugan A. (2021). Enhanced handwritten document recognition using

confusion matrix analysis. In D. J. Hemanth, M. Elhosney, T. N. Nguyen, & S.

Lakshmanan (Eds.), Advances in Parallel Computing. IOS Press.

https://doi.org/10.3233/APC210131

51

Vasanthi, P., & Mohan, L. (2023). Multi-Head-Self-Attention based YOLOv5X-

transformer for multi-scale object detection. Multimedia Tools and Applications.

https://doi.org/10.1007/s11042-023-15773-4

Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2023). YOLOv7: Trainable bag-of-

freebies sets new state-of-the-art for real-time object detectors. IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), 7464–7475.

https://doi.org/10.1109/CVPR52729.2023.00721

Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality

assessment: from error visibility to structural similarity. IEEE Transactions on

Image Processing, 13(4), 600–612. https://doi.org/10.1109/TIP.2003.819861

Xiao, F., Pang, L., Lan, Y., Wang, Y., Shen, H., & Cheng, X. (2021). Transductive learning

for unsupervised text style transfer. Proceedings of the 2021 Conference on

Empirical Methods in Natural Language Processing, 2510–2521.

https://doi.org/10.18653/v1/2021.emnlp-main.195

Xu, X., Chen, Q., Xie, L., & Su, H. (2020). Batch-Normalization-based soft filter pruning

for deep convolutional neural networks. International Conference on Control,

Automation, Robotics and Vision (ICARCV), 951–956.

https://doi.org/10.1109/ICARCV50220.2020.9305319

Yan, J., & Wang, X. (2022). Unsupervised and semi‐supervised learning: The next frontier

in machine learning for plant systems biology. The Plant Journal, 111(6), 1527–

1538. https://doi.org/10.1111/tpj.15905

Yan, W. Q. (2019). Introduction to Intelligent Surveillance: Surveillance Data Capture,

Transmission, and Analytics. Springer International Publishing.

Yan, W. Q. (202). Computational Methods for Deep Learning: Theoretic, Practice and

Applications. Springer International Publishing.

52

Yang, P., Chen, J., Wu, L., & Li, S. (2022). Fault identification of electric submersible

pumps based on unsupervised and multi-source transfer learning integration.

Sustainability, 14(16), 9870. https://doi.org/10.3390/su14169870

Yen, S.-Y., Huang, H.-E., Lien, G.-S., Liu, C.-W., Chu, C.-F., Huang, W.-M., & Suk, F.-

M. (2021). Automatic lumen detection and magnetic alignment control for

magnetic-assisted capsule colonoscope system optimization. Scientific Reports,

11(1), 6460. https://doi.org/10.1038/s41598-021-86101-9

Yu, F., & Koltun, V. (2015). Multi-scale context aggregation by dilated convolutions.

https://doi.org/10.48550/ARXIV.1511.07122

Yu, Z. (2021) Deep Learning Methods for Human Action Recognition. Master’s Thesis,

Auckland University of Technology, New Zealand.

Yu, Z., Yan, W. (2020) Human action recognition using deep learning methods.

International Conference on Image and Vision Computing New Zealand.

Zhang, S. (2022). Evaluation of the physical education teaching and training efficiency

by the integration of ideological and political courses with lightweight deep

learning. Computational Intelligence and Neuroscience, 1–10.

https://doi.org/10.1155/2022/4670523

Zhang, Y., & Freris, N. M. (2023). Adaptive filter pruning via sensitivity feedback. IEEE

Transactions on Neural Networks and Learning Systems, 1–13.

https://doi.org/10.1109/TNNLS.2023.3246263

Zhang, Z., Lu, X., Cao, G., Yang, Y., Jiao, L., & Liu, F. (2021). ViT-YOLO: Transformer-

based YOLO for object detection. IEEE/CVF International Conference on

Computer Vision Workshops (ICCVW), 2799–2808.

Zhou, L., Wei, S., Cui, Z., & Ding, W. (2019). YOLO-RD: A lightweight object detection

network for range doppler radar images. IOP Conference Series: Materials

53

Science and Engineering, 563(4), 042027.

Zhou, H., Nguyen, M., Yan, W. (2023) Computational analysis of table tennis matches

from real-time videos using deep learning. PSIVT 2023.

