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ABSTRACT 

Facial Emotion Recognition (FER) is the task of identifying human emotions from facial 
expressions. Most CNN networks are capable of recognizing expressions relatively accurately, 
especially large CNN networks. It is conducive to the recognition of expressions when more 
features are extracted from the target. The purpose of this book chapter is to improve accuracy of 
facial emotion recognition using integrated learning of lightweight networks without increasing 
the complexity or depth of the network. Compared to single lightweight models, it made a 
significant improvement. For a solution, we proposed an ensemble of mini-Xception models, where 
each expert is trained for a specific emotion and lets confidence score for the vote. Therefore, the 
expert model will transform the original multiclass task into binary tasks. We target the model to 
differentiate between a specific emotion and all others, facilitating the learning process. The 
principal innovation lies in our confidence-based voting mechanism, in which the experts “vote” 
based on their confidence scores rather than binary decisions. Furthermore, while we found the 
imbalance between emotion datasets, we introduced data augmentation methods, through 
oversampling positive samples to improve training effectiveness. Contrasted with the conventional 
mini-Xception model, our ensemble learning method showcased superior robustness, especially in 
ambiguous scenarios. 
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INTRODUCTION 

Facial Emotion Recognition (FER) currently lying at the crossroads of psychology and computer 
science, has grown immensely with the advent of machine learning and more specifically in deep 
learning. Historically, understanding and interpreting human emotions were subjective, relying 
heavily on human intuition and judgment. However, with the increasing integration of technology 
into our daily lives, objective identification of emotions through machines becomes not only 
desirable but, in many scenarios, it is essential. 
 
Delving into the nature of emotions, the basic emotion posits that humans universally experience 
the foundational emotions, namely, happiness, sadness, fear, anger, disgust, and surprise. These 
fundamental emotional states can be seen as building blocks, from which more nuanced 
emotions—such as fatigue, anxiety, or satisfaction—emerge. Practical applications of FER are 
vast and varied. In human-computer interaction, deep learning algorithms can be designed to adapt 
and respond based on the user's emotional state, creating a more intuitive and empathetic user 
experience. In healthcare, it can be employed for monitoring patients for signs of pain or distress, 
especially if they cannot communicate verbally. In automotive industry, FER can be used to 
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monitor driver's emotions and alertness, potentially preventing accidents caused by drowsiness or 
distress.  
 
In 2006, Hinton introduced the ground-breaking theory of deep learning and subsequently applied 
it innovatively to image processing. Deep learning, fundamentally rooted in the deep neural 
network, is a specialized subset of artificial neural networks. The foundation of deep learning is 
established upon the research progress in artificial neural networks. By adjusting the number of 
hidden layers, one can derive an artificial neural network model with multiple hidden layers. 
Hidden neural networks are able to learn more effectively, mirroring the cognitive processes of the 
human brain. This facilitates the efficient extraction of image features (Feng et al., 2020). 
 
Among deep learning architectures, CNNs became the poster child for FER. They consist of 
convolutional layers that can automatically and adaptively learn spatial hierarchies of features 
from input images. This property alleviated the need for hand-crafted features, a limitation of 
traditional methods. Layers within CNNs, such as pooling layers, helped in reducing spatial 
dimensions while retaining crucial information. Activation functions introduced nonlinearity, 
while enabling the network to capture complex relationships.  
 
The mini-Xception model draws inspiration from the original “Xception” architecture, which 
stands for “Extreme Inception” (Li et al., 2022). In the Keras deep learning library, Xception was 
designed to improve upon the Inception architecture by using depthwise separable convolutions. 
The result of mini-Xception model comprises of four depthwise separable convolution blocks. The 
batch normalization processes the output to stabilize and accelerate the training process. This is 
complemented by the introduction of the ReLU activation function, which infuses the model with 
the necessary non-linearity. In the forward pass, the SoftMax function is invoked to facilitate 
multi-class classification of the results. 
 
In the vast landscape of ensemble learning, the idea of leveraging multiple models to make a 
collective decision is central. One of the most intuitive and widely employed methods to achieve 
this consensus is through voting mechanisms. The intrinsic capability of deep neural networks to 
capture intricate patterns means that even a simple procedure like unweighted averaging can 
significantly enhance performance. By averaging across multiple networks, one can effectively 
reduce the model variance. This is especially impactful given that deep artificial neural networks 
(ANNs) are characterized with high variance but low bias. If the underlying models are sufficiently 
diverse or uncorrelated, their collective variance can be markedly diminished if averaged.  
 
In hard voting, each model in the ensemble “votes” for a specific class. The class that receives the 
majority of votes is chosen as the final prediction. It's straightforward and doesn't require 
probability estimates. The advantages of voting mechanisms is by aggregating predictions, the 
ensemble smoothens out the biases and variances of individual models, which leads to a model 
that's less prone to overfitting. 
 
In the context of ensemble models, majority voting refers to taking the mode of predictions across 
all models to arrive at the final prediction. This method is often effective if all models are equally 
reliable. 
 

𝑦final	 = 𝑚𝑜𝑑𝑒(𝑦', 𝑦(, … , 𝑦))                                        (1) 
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where 𝑦* is the prediction from the 𝑖+, expert model. If most models predict a specific expression 
for an input image, that expression is taken as the final predicted class. 
 
Instead of giving equal importance to all models, weighted voting takes into consideration of the 
confidence or reliability of each prediction of model. This ensures that more reliable models have 
a greater influence on the final decision. 
 

𝑦final	 = 𝑎𝑟𝑔𝑚𝑎𝑥- ∑ 𝑤*𝑝( 𝑦 = 𝑗 ∣∣ 𝑥,𝑀* ))
*.'                                (2) 

 
where 𝑝( 𝑦 = 𝑗 ∣∣ 𝑥,𝑀* ) is the probability of data x belonging to class j as predicted by model 𝑀*, 
𝑤* is the weight (or confidence score) of the 𝑖+, model.	𝑎𝑟𝑔𝑚𝑎𝑥- ensures that the class with the 
highest aggregated score is selected as the final prediction. 
 
Confidence scores play a crucial role in our voting mechanism. Pertaining to a binary 
classification, where each expert model determines whether an input image belongs to a specific 
expression or the “other” class: 
 

𝑐* = 𝑝( 𝑦 = 1 ∣∣ 𝑥,𝑀* )                                                (3) 
 

where 𝑐* 	is the confidence score for the 𝑖+, model, 𝑝( 𝑦 = 1 ∣∣ 𝑥,𝑀* ) is the probability that data x 
belongs to the target expression as predicted by model 𝑀*. High confidence scores indicate strong 
certainty in a prediction of model, making it a suitable weight in our weighted voting scheme. 
 
In this book chapter, a novel approach is proposed for emotion recognition by leveraging a unique 
methodology that incorporates weighted confidence scores. The primary innovation lies in the 
dynamic incorporation of predefined weights to the confidence scores produced by individual 
models specialized in recognizing specific emotions. These weights are not arbitrary but are 
derived from prior accuracy metrics, offering a degree of reliability and prediction. Based on 
historical accuracy rates, weights are assigned to each emotion. For instance, “Anger” is associated 
with a weight of 0.79. This signifies that the prediction confidence of this model for “Anger” would 
be adjusted by multiplying it with 0.79.  
 
For each label or emotion, the corresponding specialized model is utilized to predict the confidence 
score for that particular emotion on the test image data. Each raw confidence score is then 
multiplied by its respective weight, creating a weighted confidence score. This step is central to 
this approach. The emotion associated with the highest weighted confidence score is considered 
the predicted emotion for the test image. 

RELATED WORK 

A facial expression recognition method was proposed based on convolutional neural network 
ensemble learning (Jia et al. 2020). The method takes use of three sub-networks and an SVM 
classifier to integrate the output of the three networks to obtain the final result. The model achieved 
a facial expression recognition accuracy of 71.27% on the FER2013 dataset. 
 



 4 

The mini-Xception model – a lightweight and efficient variant of the original Xception architecture 
was designed for on-device real-time applications. Its depth-wise separable convolutions ensure 
fewer parameters and operations without compromising much on performance, which makes it a 
prime candidate for ensemble learning, especially in scenarios demanding speed and efficiency. 
 
In Facial Emotion Recognition (FER), fine distinctions between emotions often mean the 
difference between accurate and subpar models, the amalgamation of ensemble learning and mini-
Xception model becomes particularly compelling. By pooling together multiple mini-Xception 
models, each was trained with slight variations or focuses, the ensemble learning is positioned to 
capture a broader range of facial emotional nuances. 
 
To balance the classes, we artificially increase the number of instances of the minority class by 
using methods like SMOTE, which generates synthetic samples; Brightness & contrast adjustment 
is a method for modifying the brightness and contrast of images by simulating different lighting 
conditions, crucial for FER in diverse environments; Elastic deformations are designed for slight 
warping of facial images that can mimic different facial expressions and nuances. 
 

		𝑁/ = 𝑁 + 𝑆𝑀𝑂𝑇𝐸?𝑁minority	, αA                                        (4) 
 

where 𝑁/ is the new sample size after oversampling. 	𝑁  is the original sample 
size. 	𝑁minority	 represents the count of minority class samples. 	𝛼  is the oversampling ratio, 
determining how many synthetic samples to create. Instead of increasing the minority class, 
undersampling reduces the instances of the majority class to balance the classes. 

	
𝑁/ = 𝑁 − 	RandomUndersample	?𝑁majority	, βA                  (5) 

 
where 𝑁/ is the new sample size after undersampling, 	𝑁  is the original sample 
size, 𝑁minority	represents the count of minority class samples, 𝛽 is the undersampling ratio, dictating 
the fraction of majority class samples to be removed. 
 
Binary mini-Xception models are at the heart of this ensemble learning, each fine-tuned for 
recognizing a specific emotion. Instead of a singular model attempting to classify multiple 
emotions, this approach offers dedicated experts for each emotion, ensuring a deeper 
understanding and more precise classification for that particular emotion. 
 
Based on confidence-based voting mechanism, once each binary mini-Xception model makes a 
prediction for its corresponding emotion, the system doesn't merely count the votes. Instead, it 
considers the confidence or probability associated with each prediction. This approach ensures that 
the final decision takes into account not just the number of models favouring a particular emotion 
but also their respective certainty levels. 

THE METHODOLOGY 

In this book chapter, we examine the lightweight model mini-Xception.  We used Jupyter Lab and 
Colab for code development, experimentation, and visualization. Jupyter Lab was used on an 
operating system based on Ubuntu 20.04 LTS, which was equipped with an Nvidia 3070 GPU. 
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With TensorFlow running on Google Colab, this project was able to use its cloud-based 
computational resources in parallel and to utilize its integrated T4 GPUs. A flexible computational 
environment was achieved by combining local resources with cloud-based platforms. The model 
was trained using Jupyter Lab locally following stability and model debugging using Colab.  
 
Our dataset of FER2013 is based on an automatically collected dataset derived from the Google 
Image API. In the FER-2013 dataset, human accuracy averages around 65%. However, Tang's 
approach in 2013 led to a test accuracy of 71.2% by utilizing a CNN combined with L2-SVM loss, 
marking a significant milestone and subsequently winning him the ICML 2013 Challenges in 
Representation Learning (Tang, 2013). Subsequent advancements have yielded even better results. 
For instance, in 2016, Kim et al. reported an impressive 73.73% test accuracy. The methodology 
involved an ensemble of CNNs processing both aligned and non-aligned images. A standout aspect 
of the method was a pre-processing alignment step conducted by using a dedicated Deep 
Convolutional Network, which essentially learned from an optimal mapping (Kim, Dong, Roh, 
Kim, & Lee, 2016). Similarly, in 2017, Connie proposed a unique model blending both SIFT and 
CNN features. The innovative approach, which aggregated insights from three distinct models, 
resulted in a commendable 73.4% accuracy (Connie, Al-Shabi, Cheah, & Goh, 2017). Notably, 
Zhang et al. achieved a 75.1% test accuracy by amalgamating training data from a variety of 
sources, underlining the potential of harnessing diverse information in training (Zhang, Luo, Loy, 
& Tang, 2015). 
 
The FER2013 dataset suffers from an imbalance in the distribution of its emotion classes. For the 
applications, such an imbalance can lead to a biased model that disproportionately favourites the 
majority class. In response to this, we implemented a hybrid technique to level the class 
distribution. (Renda et al., 2019) 
 
We expanded the representation of the target emotion class by replicating its instances. 
Specifically, the samples of the desired emotion (denoted as the target emotion) were oversampled 
by using a factor (pos_multiplier), effectively increasing their count. For instance, with 
pos_multiplier is set to 2, the target class samples would be doubled. To further refine the balance, 
the non-target emotion classes were undersampled. This was achieved by randomly removing a 
proportion (neg_multiplier) of samples from these classes. For example, a neg_multiplier such as 
0.3 would result in the removal of approximately 30% of the non-target class samples. 
 
Recognizing the notably smaller representation of the “Disgust” emotion in the dataset, we 
adjusted the oversampling factor specifically for this class, thereby with a greater emphasis during 
the balancing process. After postprocessing, the balanced dataset underwent a re-evaluation of its 
class distribution. The resultant dataset exhibited a more equitable distribution between the target 
emotion and the remaining emotions, with a sample ratio of approximately 1:1.5 (target to non-
target). The balanced datasets can facilitate more robust model training, fostering improved 
generalization and reduced bias towards any specific emotion class. 
 
In the context of our facial emotion recognition, each emotion-specific model, termed as an 
“expert”, focuses on the accurate detection of a particular emotion. Each expert was individually 
trained and validated against the FER2013 dataset. Each expert model underwent an initial training 
phase of 50 epochs. Post this phase, the models were equipped with pre-trained weights, and the 
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training process was extended for an additional 20 epochs. For most emotion categories, the 
models showcased impressive accuracy, often hovering around the 85% mark in binary 
classification scenarios.  
 
RESULT ANALYSIS  
 

(a)  (b) 
Figure 1: Comparison between (a) If all confidence scores = 1.0 and (b) If confidence scores 

change 

From Figure 1 (a), with an overarching accuracy of 78%, the model demonstrates considerable 
strength in recognizing a broad spectrum of emotions. Notably, its prowess is pronounced in 
distinguishing emotions like “Happy” and “Surprise”, as evidenced by the remarkable F1 scores 
of 0.93 and 0.86, respectively. Moreover, the model adaptiveness extends to the “Neutral” 
emotion, reflected by a noteworthy recall rate of 0.83. This metric signifies the ability of model to 
effectively capture the majority of instances associated with neutral expressions, underscoring its 
balanced performance across various emotion categories. 
 
Figure 1 (b) shows the performance metrics after changing the confidence score for each emotion 
category: “Anger” at 1.0, “Disgust” at 0.8, “Fear” at 1.0, “Happy” at 1, “Sad” at 0.91, “Surprise” 
at 1.0, and “Neutral” at 0.92. 
 
As a result of modifying these confidence scores, there is a discernible shift in performance 
metrics. By retaining its standard, the model exhibits an overall accuracy of 75%, affirming its 
consistency in identifying emotions spanning various categories. Notably, its proficiency in 
detecting “Happy” emotions remains undiminished, as evidenced by an F1 score of 0.93. 
 
As a result of Figure 1 (a) to Figure 1 (b), an enhancement in recall is evident for categories like 
“Fear” and “Neutral”, registering values of 0.70 and 0.81 respectively, suggesting an improved 
capacity in accurately detecting true instances of these emotions. However, precision in detecting 
“Anger” sees a decrease, registering at 0.66, hinting at potential misclassifications where non-
anger instances might be erroneously recognized as anger. The emotion “Disgust” emerges as a 
persistent challenge, yielding a modest F1 score 0.35. The outcome, coupled with diminished 
support, insinuates a possible paucity of data samples for this class, which may be a contributory 
factor to its suboptimal performance. Additionally, the “Sad” class reveals a decline in its F1 score 
to 0.61, attributed to a decrease in recall, suggesting potential oversights in identifying genuine 
instances of sadness following confidence adjustment. While these confidence alterations render 
enhancements in specific facets, they also spotlight potential zones in the model which might 
benefit from meticulous fine-tuning or supplementary data for performance amelioration. 
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(a)  (b) 
Figure 2: ROC curve Comparison between (a) If all confidence scores = 1.0 and (b) If 

confidence scores change 

In Figure 2 (a), “Happy” emotion stands out with an impressive AUC (Area Under the Curve) of 
0.96, underscoring the exemplary capability to discern true positives from negatives within this 
category. Meanwhile, emotions such as “Fear”, “Sad”, “Surprise”, and “Neutral” exhibit AUC 
values surpassing 0.80, reflecting their substantial discriminatory efficacy within the model. 
However, the “Disgust” class presents a challenge, registering an AUC of 0.67.  
 
Followed the adjustment in confidence scores as shown in Figure 2 (b), there were discernible, 
albeit minor, shifts in the AUC (Area Under the Curve) values of most emotions. For instance, the 
AUC for “Fear” witnessed an enhancement, climbing from 0.80 to 0.82. Contrarily, “Sad” 
experienced a decline, receding from 0.83 to 0.74. 
 
Remarkably, the emotions displayed a robust performance: “Happy” managed to sustain its 
commendable AUC, registering only a slight dip to 0.95. Meanwhile, “Surprise” showed a 
promising upward trend, elevating from 0.91 to 0.92. However, challenges persisted with the 
“Disgust” class. 

CONCLUSION 

In this book chapter, in advancing emotion recognition through the integration of ensemble 
learning into the mini-Xception framework, we observed marked enhancements in terms of both 
accuracy and prediction confidence. Yet, like all empirical investigations, our research is not 
without its limitations. Here we outline the principal constraints of our study: 

Our primary data source was the FER2013 dataset. While it offers a comprehensive collection of 
facial expressions, potential biases, noise, or imbalances in specific emotional categories may 
exist. Such shortcomings can influence the ability of model to generalize effectively across a 
myriad of real-world situations. 

While the mini-Xception model offers computational efficiency, its relatively simpler architecture 
might not encapsulate all subtleties of facial expressions as proficiently as more intricate models. 
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Furthermore, our ensemble approach, which amalgamates a number of “expert” models, might 
compromise on real-time processing capabilities due to increased computational demands. 

Our ensemble framework fundamentally rests on binary classifiers, dedicated to distinguishing 
between two emotions. This binary emphasis might not encapsulate the multifaceted nature of 
human emotions, especially in scenarios where emotions blur boundaries.  

REFERENCES   
 
Ahonen, T., Hadid, A., & Pietikäinen, M. (2006). Face description with local binary patterns: 

Application to face recognition. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 28(12), 2037–2041. https://doi.org/10.1109/tpami.2006.244 

Connie, T., Al-Shabi, M., Cheah, W. P., & Goh, M. K. O. (2017). Facial expression recognition 
using a hybrid CNN–SIFT aggregator. In Lecture Notes in Computer Science (pp. 139–
149). https://doi.org/10.1007/978-3-319-69456-6_12 

Chirra, V. R. R., Reddy, U. S., & Kolli, V. K. K. (2021). Virtual facial expression recognition 
using deep CNN with ensemble learning. Journal of Ambient Intelligence and Humanized 
Computing, 12(12), 10581–10599.   

Cui, W., Yan, W.  (2016) A scheme for face recognition in complex environments. International 
Journal of Digital Crime and Forensics (IJDCF) 8 (1), 26-36.  

Fan, Y., Lam, J. C., & Li, V. O. K. (2018). Multi-region ensemble convolutional neural network 
for facial expression recognition. In Lecture Notes in Computer Science (pp. 84–94). 
https://doi.org/10.1007/978-3-030-01418-6_9 

Fayek, H. M., Lech, M., & Cavedon, L. (2016). Modeling subjectiveness in emotion recognition 
with deep neural networks: Ensembles vs soft labels. International Joint Conference on 
Neural Networks (IJCNN).https://doi.org/10.1109/ijcnn.2016.7727250 

Feng, Y., Pang, T., Li, M., & Guan, Y. (2020). Small sample face recognition based on ensemble 
deep learning. Chinese Control and Decision Conference (CCDC).  

Gao, X., Nguyen, M., Yan, W. (2021) Face image inpainting based on generative adversarial 
network. International Conference on Image and Vision Computing New Zealand.  

Gao, X., Nguyen, M., Yan, W. (2022) A face image inpainting method based on autoencoder and 
adversarial generative networks. Pacific-Rim Symposium on Image and Video 
Technology. 

García, S., & Herrera, F. (2009). Evolutionary undersampling for classification with imbalanced 
datasets: Proposals and taxonomy. Evolutionary Computation, 17(3), 275–306. 

 https://doi.org/10.1162/evco.2009.17.3.275 
Habib, A. S. B., & Tasnim, T. (2020). An ensemble hard voting model for cardiovascular disease 

prediction. International Conference on Sustainable Technologies for Industry 4.0 (STI). 
https://doi.org/10.1109/sti50764.2020.9350514 

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by 
reducing internal covariate shift. http://export.arxiv.org/pdf/1502.03167 

Jia, C., Li, C. L., & Zhou, Y. (2020). Facial expression recognition based on the ensemble learning 
of CNNs. IEEE International Conference on Signal Processing. 

  https://doi.org/10.1109/icspcc50002.2020.9259543  



 9 

Kim, B., Dong, S., Roh, J., Kim, G., & Lee, S. Y. (2016). Fusing aligned and non-aligned face 
information for automatic affect recognition in the wild: A deep learning approach. IEEE 
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 

 https://doi.org/10.1109/cvprw.2016.187 
Kyeremateng-Boateng, H., Josyula, D. P., & Conn, M. (2023). Computing confidence score for 

neural network predictions from latent features. International Conference on Control, 
Communication and Computing (ICCC). 

  https://doi.org/10.1109/iccc57789.2023.10165294  
Le, H., Nguyen, M., Yan, W. Q., & Lo, S. (2021). Training a convolutional neural network for 

transportation sign detection using synthetic dataset. 2021 36th International Conference 
on Image and Vision Computing New Zealand (IVCNZ). 
https://doi.org/10.1109/ivcnz54163.2021.9653398 

Li, C., Li, D., Zhao, M., & Li, H. (2022). A light-weight convolutional neural network for facial 
expression recognition using Mini-Xception neural networks. IEEE International 
Conference on Current Development in Engineering and Technology (CCET). 

  https://doi.org/10.1109/qrs-c57518.2022.00104 
Liu, K., Zhang, M., & Pan, Z. (2016). Facial expression recognition with CNN ensemble. 

International Conference on Cyberworlds.   
Liu, M., Yan, W. (2022) Masked face recognition in real-time using MobileNetV2. ACM ICCCV. 
Nguyen, M., Yan, W. (2022) Temporal color-coded facial-expression recognition using 

convolutional neural network. International Summit Smart City 360°: Science and 
Technologies for Smart Cities. 

Nguyen, M., Yan, W. (2023) From faces to traffic lights: A multi-scale approach for emotional 
state representation. IEEE International Conference on Smart City. 

Powers, D. (2020). Evaluation: from precision, recall and F-measure to ROC, informedness, 
markedness and correlation. (Cornell University). 

  https://doi.org/10.48550/arxiv.2010.16061 
Renda, A., Barsacchi, M., Bechini, A., & Marcelloni, F. (2019). Comparing ensemble strategies 

for deep learning: An application to facial expression recognition. Expert Systems with 
Applications, 136, 1–11. https://doi.org/10.1016/j.eswa.2019.06.025 

Song, C., He, L., Yan, W., Nand, P.  (2019) An improved selective facial extraction model for age 
estimation. International Conference on Image and Vision Computing New Zealand. 

Sridhar, K., Lin, W., & Busso, C. (2021). Generative approach using soft-labels to learn 
uncertainty in predicting emotional attributes. International Conference on Affective 
Computing and Intelligent Interaction (ACII).  

Sun, L., Ge, C., & Zhong, Y. (2021). Design and implementation of face emotion recognition 
system based on CNN Mini-Xception Frameworks. Journal of Physics, 2010(1), 012123. 
https://doi.org/10.1088/1742-6596/2010/1/012123 

Tang, J., Su, Q., Su, B., Fong, S., Cao, W., & Gong, X. (2020). Parallel ensemble learning of 
convolutional neural networks and local binary patterns for face recognition. Computer 
Methods and Programs in Biomedicine, 197, 105622. 

Tang, Y. (2013). Deep learning using linear support vector machines. (Cornell University).   
Wang, H., Yan, W. (2022) Face detection and recognition from distance based on deep learning. 

Aiding Forensic Investigation Through Deep Learning and Machine Learning 
Framework. IGI Global. 



 10 

Wang, Y., & Lu, F. (2021). An adaptive boosting algorithm based on weighted feature selection 
and category classification confidence. Applied Intelligence, 51(10), 6837–6858. 
https://doi.org/10.1007/s10489-020-02184-3 

Webb, G. I., & Zheng, Z. (2004). Multistrategy ensemble learning: Reducing error by combining 
ensemble learning methods. IEEE Transactions on Knowledge and Data Engineering, 
16(8), 980–991. https://doi.org/10.1109/tkde.2004.29 

Yan, W. (2021). Computational methods for deep learning. Spring. https://doi.org/10.1007/978-
3-030-61081-4 

Zehra, N., Azeem, S. H., & Farhan, M. (2021). Human activity recognition through ensemble 
learning of multiple convolutional neural networks. Annual Conference on Information 
Sciences and Systems (CISS). https://doi.org/10.1109/ciss50987.2021.9400290  

Zhang, Z., Luo, P., Loy, C. C., & Tang, X. (2015). Learning social relation traits from face images. 
IEEE International Conference on Computer Vision (ICCV). 

  https://doi.org/10.1109/iccv.2015.414 
 


