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 I 

Abstract 

In the prediction of electricity prices, machine learning has proven to be significant and 

meaningful. The algorithms including Support Vector Regression (SVM), Convolutional 

Neural Networks (CNN), and other statistical-based methods and deep learning 

algorithms are being widely experimented. In this project report, we propose to use Long 

Short Term Memory (LSTM) algorithm, Autoregressive Integrated Moving Average 

(ARIMA), and Vector Autoregressive Moving Average with Exogenous Regressors 

(VARMAX) to predict the day-ahead electricity prices in France and compare the 

performance of these three algorithms. We introduce details on research design, research 

methods, research resources, and result comparisons. We achieved a mean squared error 

29.24 and a root mean squared error of 5.24 using the method we proposed. Additionally, 

we recommend using a 30-day training dataset for daily operations, as this produced a 

mean squared error of 3.47, a mean absolute percentage error 0.78, and a root-mean-

square error 1.35 in predicting the following 24-hour day-ahead electricity prices, which 

significantly improved the accuracy. 

Keywords: LSTM, ARIMA, VARMAX, Day-ahead electricity price 
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Chapter 1 

Introduction 

 

 

This chapter is composed of five parts: The first part 

introduces the background and motivations, the second part 

includes the research question, followed by the 

contributions, objectives, and structure of this report. 
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1.1 Background and Motivation 

In today's world, Internet of Things (IoT), sensor networks (RFID), and artificial 

intelligence (AI) (Yamin, 2019) are essential to our daily lives. To enpower these 

technologies, a few sources of energy have become necessary, without which our lives 

would come to a halt. Electricity is one such source. Electricity was first discovered 

through natural phenomena like lightning and friction (Forrester, 2016). With the 

invention of the electric generator and the application of various electric devices for 

commercial purposes, the electricity industry was established.   

    The prediction of electricity prices helps the suppliers and the retailers to achieve a 

higher profit as well as to deliver a better service to the customers. However, the 

electricity market has shown a bunch of uncommon features compared to other markets. 

According to the research, supply and demand conditions (Vahidinasab, Jadid, & Kazemi, 

2008), date-related effectors (Lago, De Ridder, Vrancx, & De Schutter, 2018; De Schutter, 

2018), weather conditions, and storage availability (Cartea & Figueroa, 2005) all affect 

the electricity prices.  

Machine learning methods are introduced in predicting diverse problems. Among 

which statistical based algorithms are wildly used in time series problems. However, the 

traditional machine learning algorithms are hard to perform on complex problems such 

as the electricity prices prediction. Therefore, deep learning techniques are introduced. 

Deep learning allows software to learn how to perform tasks on its own, and has proven 

to be advantageous when dealing with non-linear problems (Parloff, 2016). ChatGPT, 

which was recently released, has made transfer learning techniques popular. By 

transferring known knowledge to unfamiliar problems, these techniques can significantly 

reduce the need for data collection and labelling, as well as re-training efforts. 

In this project report, we seek a deep learning based method to predict day-ahead 

electricity prices in France in a high-efficiency and high-quality manner.   
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1.2 Research Questions 

The research questions of this report are, 

(1) Which machine learning algorithm is able to perform the day-ahead electricity 

prices prediction in France with high accuracy? 

(2) Does deep learning based algorithm perform better than the statistical algorithms 

with the day-ahead electricity prices prediction in France? 

(3) How can we accurately predict the day-ahead electricity prices in a way that is 

practical and beneficial for operations?   

This project aims to predict day-ahead electricity prices in France using deep 

learning techniques. After carefully selecting the appropriate methods, we conducted 

experiments and adjusted the hyperparameters to improve the accuracy of the predictions. 

Moreover, we took the daily operation of electricity providers into consideration, 

proposed, tested, and recommended a best practice for predicting the following 24-hour 

day-ahead electricity prices in France. In the end, we applied transfer learning techniques 

to predict the day-ahead electricity prices in other EU members states. Our hard work 

paid off - we created a highly accurate prediction model.  

1.3 Contributions 

The focus of this project is on predicting the day-ahead electricity prices in France based 

on deep learning. This method proves to be more efficient and effective compared to 

traditional statistical methods. By the end of the report, we were able to (1) train the model 

with minimal data; (2) use LSTM with the best hyperparameters; (3) generate day-ahead 

electricity prices for the next 24 hours in France; and (4) apply the pre-trained model to 

predict the day-ahead electricity prices in other EU members states, including Germany, 

Belgium and the United Kingdom. 
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1.4 Objectives of This Report 

Initially, we compare and review various methods for predicting electricity prices. Next, 

we examine the patterns exhibited by day-ahead electricity prices in France. Afterwards, 

we build a deep learning model that is both efficient and effective in predicting day-ahead 

electricity prices in France and compare the resulting model to the traditional statistical 

model. 

1.5 Structure of This Report 

The structure of this report is described as follows: 

§ Chapter 2: Literature review and discussion of relevant studies on the European 

electricity markets, the day-ahead electricity prices, Long Short Term Memory, 

Auto-Regression Integrated Moving Average, and transfer learning. 

§ Chapter 3: Introduction of research methods, which includes experimental design 

and methodologies. 

§ Chapter 4: Implementation of proposed algorithms, collection of experimental 

data, and demonstration of research outcomes through figures and tables. 

Limitations of the proposed methods will also be detailed. 

§ Chapter 5: Summary and analysis of experimental results. 

§ Chapter 6: Conclusion and statement of future work.                          
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Chapter 2 
Literature Review 

 

 

The focus of this report is on day-ahead electricity 

prices prediction in France using deep learning, this 

chapter will introduce a plenty of traditional methods 

and the relevant knowledge of deep learning.  
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2.1 Introduction 

A time series refers to a set of observations that are recorded over a period of time in a 

sequential manner (Chatfield, 2000). Time series data is characterised by large data size, 

high dimensionality, and the need for continuous updates (Fu, 2011). Day-ahead 

electricity prices can be categorised as a time series problem. There are a couple of various 

algorithms and methods that have been experimented with in the day-ahead electricity 

prices prediction. 

2.2 Day-ahead Electricity Price  

In the recent couple of decades, with the liberalisation of electricity markets (Fanone, 

Gamba, & Prokopczuk, 2013) (Lago et al., 2018), electricity prices are more market-

oriented. The supply and demand conditions became the drive of the price changes. In 

addition, with the development of renewable energy generated electricity, the electricity 

providers must maintain a balance between generation and consumption(Ahmad, Zhang, 

& Yan, 2020). Electricity providers have emphasised the importance of electricity price 

prediction due to these factors.   

    The prediction of electricity prices can be categorised into three types depending on 

the time interval. They are short-term forecasting, medium-term forecasting, and long-

term forecasting (Zahid et al., 2019). Short-term forecasting is mostly used because it 

gives better accuracy of prediction as compared to others. Short-term forecasting analyses 

the hourly or minute electricity prices. Among which the day-ahead price prediction being 

the most common. Day-ahead price is the price at which electricity is bought and sold in 

the wholesale market for delivery the next day.  

2.3 The European Electricity Markets 

The Target Electricity Model (TEM) was rolled out by the end of 2015 by the European 

Union for further integrating EU electricity markets. Improving the efficiency of cross-
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border trade over interconnectors is a crucial component of TEM (Newbery, Strbac, & 

Viehoff, 2016). This can lead to more efficient use of generation capacity, resulting in 

fewer instances of large idle capacity, which can result in significant cost savings, 

particularly during peak periods which may vary between member states. Consequently, 

the integration of electricity markets in Europe can lead to significant improvements in 

efficiency and welfare for consumers and industries in the region (Böckers, Haucap, & 

Heimeshoff, 2013). 

    France, along with Germany, Belgium, and the United Kingdom, is a member state 

of the European Union. As a result, there is potential for interconnections and cross-

border trade between these member states in Europe. 

2.4 Auto-Regression Integrated Moving Average 

Traditionally, various statistical methods perform a crucial role in the prediction of time 

series data. Moving Average (MA) calculates the discrepancies or mistakes from previous 

sets of data and using them to determine the upcoming or current values in the sequence, 

Autoregressive (AR) calculates the regression of previous series and predicts the present 

or future values in the series, and Auto-regression Integrated Moving Average (ARIMA) 

combines the MA and AR models and a differencing pre-processing step to the sequence 

in order to make it stationary (Fuller, 2009).  

    We explain how each observation is influenced by the 𝑝 previous observations 

using AR. When 𝑝 = 1	,AR can be explained as, 

                   𝑌! = 𝑐 + 𝜙"𝑌!#" + 𝜙$𝑌!#$ +⋯+ 𝜙%𝑌!#% + 𝑒!      (2.1) 

where at time 𝑡 , 𝑌!  represents the current observed value, while  𝑌!#"  denotes the 

previous observed value at time 𝑡 − 1, 𝑒! represents a random error, while 𝑐 and 𝜙" 

are both constants. If the value of 𝑝 is greater than one, more observed values of the 

series can be included on the right side of the equation. When 𝑑 = 0 or by modelling 

the differences if 𝑑 = 1 or 𝑑 = 2 between consecutive observations. In practice, the 

value of 𝑑	is seldom greater than 2. We explain how every observation is influenced by 

the previous 𝑞	errors using MA. If 𝑞 = 1, MA can be explained as, 
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                    𝑌! = 𝑐 + 𝜃"𝑒!#" + 𝑒!                           (2.2) 

where at time 𝑡 , 𝑒!  represents the random error while 𝑒!#"  refers to the previous 

random error at time 𝑡 − 1. If 𝑞	is greater than one, additional errors may be added on 

the right-hand side of the equation. 

    If the three parts are combined, it results in a wide variety of ARIMA models 

(Hyndman, 2001). The ARIMA is one of the most widely used methods due to its 

outstanding performance in the accuracy (Siami-Namini, Tavakoli, & Namin, 2018) 

(Karabiber & Xydis, 2019), and has been performed well for quite a long time. This 

method models the next step in the sequence as a linear function of the differenced 

observations and residual errors at prior time steps.  

2.5 Long Short-Term Memory 

Deep learning is more and more popular and have been one of the hottest topics to 

research due to their significant high performance. Recurrent Neuron Networks (RNN) 

utilised the sequential information in the networks (Pouyanfar et al., 2018). It has repeated 

layers to feed signals from previous timesteps back into the network. As Figure 2.1 shows 

in an RNN unit, the input 𝑥! and the output ℎ! are interconnected. The arrows looping 

back in the RNN unit indicate that the current output is stored as the next input 

(Sherstinsky, 2020).  

 

				                  	𝑥!                            ℎ!        

     

Figure 2.1 The unit of RNN 

    The RNN networks can be illustrated by Figure 2.2. This approach takes into account 

not just the effect of the previous state on the current condition; but also, the influence of 

all the past states on the current one. Therefore, it performs well on sequential data. 
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Figure 2.2 RNN networks 

    However, RNNs are limited to looking back in time for approximately ten timesteps 

therefore it is called short-term memory. To tackle this, Long-short term memory is 

introduced with extended plausible and capable to handle more than a thousand timesteps 

(Staudemeyer & Morris, 2019).  

2.6 Prediction on Day-ahead Electricity Prices 

Machine learning methods have been employed to forecast day-ahead electricity prices, 

as evidenced by the comparison chart in Table 2.1. 

An experiment was conducted on the electricity prices of Pennsylvania-New Jersey-

Maryland (PJM) using Artificial Neural Networks, resulting in a 1.97 mean absolute error. 

In comparison with other algorithms such as ARIMA, the ANN produced more precise 

results by achieving a mean absolute percentage error of 6.42, whereas ARIMA reached 

11.94 (Vahidinasab et al., 2008). 

ARIMA (Karabiber and Xydis published, 2019) was utilised to forecast the day-

ahead electricity prices in Denmark's western region. When compared to Trigonometric 

Seasonal Box-Cox Transformation with ARIMA residuals Trend and Seasonal 

Components (TBATS) and Artificial Neural Networks, ARIMA produced the most 

accurate results with a mean absolute error of 33.24 and a root mean squared error of 

39.53 (Karabiber & Xydis, 2019).   

Various models were tested on day-ahead prices, including Multilayer Perceptron 

𝑥! 	

RNN 

ℎ! 	

𝑥" 	

RNN 

ℎ" 	

𝑥#  	

RNN 

ℎ# 	…

…
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(MLP), Enhanced Convolutional Neural Networks (ECNN), and Random Forest (RF). 

Results indicate that the ECNN model demonstrated exceptional accuracy, achieving a 

0.99 mean absolute error and 0.99 root mean squared error (Vahidinasab et al., 2008). 

Experiments were conducted on PJM billing data (Kuo and Huang, 2018) using 

various algorithms. The combined use of CNN and LSTM (EPNET) resulted in an 

impressive 8.84 mean absolute error and a 17.9 root mean squared error (Kuo & Huang, 

2018). 

In 2019, a bidirectional long short-term memory (BRIM) model was created and 

evelauted for predicting day-ahead electricity prices in Germany (Chen, Wang, Ma, & Jin, 

2019). The model achieved a 6.29 mean absolute error and 15.56 mean absolute 

percentage error (Chen, Wang, Ma, & Jin, 2019).  

 Gunduz, et al created an ANN transfer model to forecast day-ahead electricity 

prices in different European countries, such as France, Belgium, Germany, and Nord Pool. 

The model has been optimised and produced an mean absolute error of 4.21, an mean 

absolute percentage error of 12.29, and an root mean squared error of 7.98 specifically in 

France (Gunduz, Ugurlu, & Oksuz, 2023).  

After compared previous studies, it was discovered that deep learning techniques 

have been extensively tested for predicting day-ahead electricity prices. However, the 

results have shown that the prediction may not be stable or accurate enough. The objective 

of this study is to find a method that can achieve stability and accuracy simultaneously. 
Table 2.1 Comparison of previous studies 

Data set  Algorithm  Mean 
Absolute 
Error 

(MAE) 

Mean 
Absolute 
Percentag
e Error 

(MAPE) 

Root 
Mean 
Square 
Deviation 

(RMSE)  

Author  

and Year  

Prices in 
Pennsylvania–
New Jersey–
Maryland in 
2002  

 ANN 

ARIMA  

1.97  6.42  

11.94 

 
(Vahidinasab et 
al., 2008) 

Day-ahead 
electricity price 

TBATS 

ANN 

37.51 

41.41 

 
45.01 

48.41 

(Karabiber & 
Xydis, 2019) 
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Data set  Algorithm  Mean 
Absolute 
Error 

(MAE) 

Mean 
Absolute 
Percentag
e Error 

(MAPE) 

Root 
Mean 
Square 
Deviation 

(RMSE)  

Author  

and Year  

in Denmark-
West region  

ARIMA   33.24   39.53 

Day-ahead 
electricity price 
from 1 
November 2016 
to 15 January 
2017 

MLP 

ECNN (En
hanced 
CNN) 

RF 

1.43 

0.99 

1.91 

4.9 

18.18 

7.31 

1.19 

0.99 

1.38 

(Zahid et al., 
2019)  

  

Electric Power 
Markets (PJM) 
regulation zone 
preliminary 
billing data in 
2017 

 

SVM 

RF 

DT 

MLP 

CNN 

LSTM 

EPNET(co
mbined 
CNN and 
LSTM) 

28.98 

9.20 

9.74 

9.86 

9.80 

9.85 

8.84 

 34.28 

19.47 

24.88 

18.98 

18.9 

18.9 

17.9 

(Kuo & Huang, 
2018) 

Day-ahead 
electricity 

prices in German 
from 2011 to 
2018 

 

BRIM(bidi
rectional 
long short-
term 
memory) 

LSTM-
DNN 

6.29 

 

 

 

  10.20 

15.56 

 

 

 

23.24 

 (Chen et al., 
2019) 

Day-ahead 
electricity prices 
in various 
Europe, 
including 
Belgium, France, 
Germany, and 
Nord Pool 

ANN 

Belgium 

France 

Germany 

Nord Pool 

 

5.66 

4.21 

4.22 

1.89 

 

15.5 

12.29 

16.88 

6.93 

 

10.99 

7.98 

6.83 

4.51 

(Gunduz et al., 
2023) 
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2.7 Transfer Learning 

In the past few decades, transfer learning has become a state-of-the-art learning technique. 

Traditional machine learning relies on vast amounts of training data to develop a model 

that can predict future outcomes. In contrast, transfer learning seeks to apply existing 

knowledge from known data to unknown data. The transfer leaning can be categorised 

into two main groups: homogeneous transfer learning and heterogeneous transfer learning 

(Weiss, Khoshgoftaar, & Wang, 2016). Homogeneous transfer learning works when a 

dataset exists that is related to, but not an exact match for the domain of interest. 

Homogeneous transfer learning can be applied to construct a predictive model for the 

target domain, provided that the input feature space remains the same. On the contrary, 

heterogeneous transfer learning refers to the situation where the source and target 

domains are represented in different feature spaces.  

   Using knowledge learned from France, the prediction of day-ahead electricity prices 

in other European countries can be classified under homogeneous transfer learning, 

specifically instance-based transfer learning.    

  



13 
 

 

Chapter 3 
Methodology 

 

 

The main content of this chapter is to clearly articulate research 

methods, which satisfy the objectives of this report. The chapter 

mainly covers the details of research methodology for day-ahead 

electricity prices prediction in France using deep learning which 

will be clearly introduced with the confident and imaginative use 

of the feature description methods.  
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3.1 Method Design 

The design methodology is illustrated in Figure 3.1, which includes the following main 

steps: data collection, data preparation, feature selection, training and testing, 

hyperparameter tuning, and evaluation. In this chapter, we will provide a detailed 

overview of each step. 

                                            
Figure 3.1 The method design         

3.2 Data Collection 

We obtained the data from the ENTSO-E Transparency Platform 

(https://www.entsoe.eu/data/). ENTSO-E is a reliable provider of market data for 

European electricity markets. The transparency platform was launched in 2015, offering 

a wide range of data, such as day-ahead prices, generation and consumption loads in 

various countries in Europe.  

https://www.entsoe.eu/data/
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    Microsoft Power BI is a data analysis tool that provides multiple functions for data 

transformation and data visualisation. We utilised the Power Query (Webb, 2014) 

functions to create an external dataset with calendar date features, generated from the 

Date module. The functions, including Month and Day of Week, provide the numerical 

month and day of the week (starting from Sunday) respectively. Additionally, we utilised 

the column split function in Power Query to separate the date and time from the timestamp 

column. We used the Append function to merge the raw data by year into one dataset 

comprising of three years' worth of data.  

3.3 Explore Data Analysis 

Exploratory data analysis (EDA) is a crucial step in uncovering dataset patterns. To 

analyse the data, we utilised the line chart visual in Power BI (Ferrari & Russo, 2016) to 

display trends.     

3.4 Data Preparation 

Before applying algorithms, it is crucial to clean the data. There are various methods to 

accomplish this, including replacing any missing data with the mean or median of other 

data. Additionally, some methods were created for big data cleansing such as Cleanix 

(Wang et al., 2014) and KATARA(Chu et al., 2015) etc. However, the simplest approach 

is to remove any missing or illegal data; while we need to keep in mind that this action 

may decrease the size of the dataset and affect the performance of the algorithm. 

    In this experiment, external data was introduced, and we need to add its features to 

the dataset. To accomplish this, we utilised the relationship function in Power BI to 

combine the calendar with the prices. A relationship was established as depicted in Figure 

3.2, connecting the date in both tables with a one-to-many relationship. 
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Figure 3.2 The relationship between date in Calendar and date in Day-ahead Electricity 

Prices 

3.5 Feature Selection 

In this project, we took use of the Pearson correlation coefficient to determine if there is 

a relationship between two variables. Correlation refers to the extent of association 

between two variables (Asuero, Sayago, & González, 2006). The Pearson correlation 

coefficient is a way to measure linear correlation. It gives the ratio between the covariance 

of two variables and the product of their standard deviations as equation 3.1 shows. The 

correlation is quantified with a number that ranges from −1 to +1; with 0 indicating 

no correlation, −1  indicating a perfect correlation, and −1  indicating a negative 

correlation (Akoglu, 2018). As the value moves away from 0, the strength of the 

correlation increases, whether it is positive or negative. 

𝑟 = ∑ ((!
"
!#$ #(̅)(+!#+,)
(-#").%.&

                  (3.1) 

PCA, or principal component analysis, is a technique used to reduce the number of 

variables in a dataset while retaining the maximum amount of relevant information 

(Daffertshofer, Lamoth, Meijer, & Beek, 2004). PCA provides the percentage of variance 
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explained by each selected component. The main purpose of using PCA is to identify the 

most significant variance present in the dataset, therefore, to remove the less significant 

variable. This calculation involves three steps: (1) standardising the data using equation 

3.2; (2) computing the covariance matrix; and (3) determining the eigenvectors and 

eigenvalues. 

𝑍 = 	 /0123#430-
5!0-6076	63/90!9:-

                          (3.2) 

3.6 Algorithms 

3.6.1 LSTM 

Long short-term memory is a similar control flow as a recurrent neural network, as it 

processes data passing on information as it propagates forward. LSTM is one of the most 

advanced networks to process temporal sequences, due to complex features such as non-

linearity, non-stationarity, and sequence correlation (Staudemeyer & Morris, 2019). A 

LSTM cell can be illustrated as Figure 3.3. The information is sent to three different gates 

where it undergoes processing through the application of activation functions. Once 

processed, the results from each gate are multiplied and added together before being 

passed on to the next cell. 

 

Figure 3.3 LSTM Cell 
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We are use of the LSTM class in library Keras which is built in Python, in which the 

activation function is tanh as equation 3.3 illustrates and the recurrent activation function 

is sigmoid as equation 3.4 shows. The LSTM works well as it introduces three gates, the 

input gate, the forget gate and the output gate(Van Houdt, Mosquera, & Nápoles, 2020).  

    The activation function is expressed as, 

tanh(𝑥) = 3%#3'%

3%;3'%
                        (3.3) 

which returns a value between −1 and +1 to regulate the network in the input gate. 

    The recurrent activation function is expressed as,  

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = "
";3'%

                       (3.4) 

which returns a value between	0 and	1, and is used to decide whether the factors 

passed through are important or not in the forget gate. 

    The input gate regulates the factors passed through by using the activation function 

and evaluates the factors that are important or not by using the recurrent function. Then 

combining the results from the two functions as the output of the input gate.  

Lastly, the output gate calculates the current cell state by multiplying the value 

returned by the forget gate and the current cell state to drop meaningless factors, and then 

adding the output of the input gate to pass it to the next cell. 

We now discuss three crucial hyperparameters: the number of LSTM units, the 

number of layers, and the choice of optimiser. The number of LSTM units impacts the 

layer's ability to learn patterns from sequential data by determining its complexity and 

capacity. More units can capture more complex dependencies, but this also increases 

computational requirements and the possibility of overfitting. The depth of an LSTM 

model is determined by the number of layers, with deeper networks capturing more 

complex patterns. However, this also requires more computational resources. The choice 

of optimiser determines the update rules that affect the speed and stability of training. A 
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widely used optimisation algorithm in deep learning is the Adam optimiser, which 

combines the advantages of both the Adaptive Gradient Algorithm (AdaGrad) and Root 

Mean Square Propagation (RMSProp). This optimiser adjusts the learning rates for each 

parameter by considering the moving averages of the gradients and squared gradients. 

The optimiser applied in this project is Adam.  

3.6.2 ARIMA 

Another algorithm applied in this project is ARIMA. We removed the seasonality and the 

trend of the dataset so that ARIMA can be applied. A series is considered stationary if its 

mean remains constant despite a change in time origin, resulting in the expected value 

being consistent across all time points. Additionally, the variable's variance must remain 

stable throughout time, and neither the mean nor variance should depend on the time of 

measurement (Vasileiadou & Vliegenthart, 2014). The three parameters 𝑑 refers to the 

number of differencing transformations required by the time series to get stationary; 𝑝 

refers the lag order; and 𝑞 refers the order of the moving average. The 𝑞 and 𝑝 will be 

tuned based on the value of Auto Correlation Function (ACF) and Partial Correlation 

Function (PCAF). 

The Auto Correlation Function takes all past observations into account, regardless 

of their impact on the present or future time period. It calculates the correlation between 

the current time period, denoted as 𝑡 and a previous time period denoted as 𝑡 − 𝑘. This 

calculation includes all the intervals, or lags, between these two time periods. The 

correlation is calculated using the Pearson Correlation formula. 

    The correlation between two variables 𝑦" and 𝑦$ is expressed as,  

𝜌 = 	 <:/(+$,+()
>$>(

                         (3.5) 

where 𝑐𝑜𝑣 stands for coefficient of variation and 𝜎"	,𝜎$ are their standard deviations. 

     The PACF calculates the partial correlation between time periods 𝑡 and 𝑡 − 𝑘, but 
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it only considers the direct impact of time lags on future time periods. For instance, if 

today's stock price depends on the stock price from three days ago, it may not take into 

account yesterday's closing price. Therefore, we only consider the relevant time lags 

between 𝑡	and 𝑡 − 𝑘 and ignore any insignificant time lags in between. To obtain each 

partial correlation, we conduct a series of regressions in the following form:  

𝑦F! = 𝜙$"𝑦F!#" +	𝜙$$𝑦F!#$ +	𝑒!                         (3.6) 

where 𝑦F! is the original series minus the sample mean 𝑦! − 𝑦G.  The estimate of 𝜙$$ 

will give the value of the partial autocorrelation of order 2. The optimal value of 𝑝 is 

determined by whether the PACF meets the cut-off point, while the optimal value of 𝑞 

is determined by whether the ACF meets the cut-off point. 

3.6.3 VARMAX 

In this project, the third algorithm utilised is the Vector Autoregressive Moving Average 

with Exogenous Regressors (VARMAX). Equation (3.7) represents the mathematical 

formulation for VARMAX model. 

𝑦! = 𝑎 + 𝑋! . 𝑏 + 𝐴"𝑦!#" +⋯+ 𝐴%𝑦!#% + 𝜀! + 𝐵"𝜀!#" +⋯+ 𝐵?𝜀!#?  (3.7) 

where at time 𝑡, the variable 𝑦! represents a k×1 vector of response time series variables, 

consisting of 𝑘 elements. The constant vector 𝑎, also with 𝑘 elements, serves as an 

offset. The k×r matrix 𝑋! represents exogenous terms at each time 𝑡, where 𝑟 is the 

number of exogenous series. The constant vector 𝑏 , with a size of 𝑟 , acts as the 

regression coefficients. The product 𝑋! multiplied by 𝑏 results in a vector of size 𝑘. 

For each 	𝑗 , the k×k parameter matrices 𝐴"  and 𝐵"  are autoregressive and moving 

average matrices, respectively. There are 𝑝  autoregressive matrices and 𝑞  moving 

average matrices. Finally, the 𝜀! represents the vector error (Kadiyala & Kumar, 2014). 

3.7 Program Implementation 

We utilised various libraries including pandas, numpy, sklearn, matplot, matplotlib, keras, 
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statsmodels, and datetime to develop the program in Jupyter notebook using Python 3.7.7. 

The results were run on a computer with Intel(R) Core (TM) i7-9700KF CPU @ 3.60GHz 

with 32 GB RAM.  

3.8 Evaluation Methods 

The evaluation methods in this report are Mean Squared Error (MSE), Root Mean Square 

Deviation (RMSE), and Mean Absolute Percentage Error (MAPE). MSE is calculated as 

the average of the squared forecast error values. The mathematical formulation is as 

equation 3.8 shows. By squaring the forecast error values, they are forced to be positive 

and larger errors are given more weight. This means that very large or outlier forecast 

errors are squared, resulting in a larger mean squared error score. Essentially, this score 

penalises models that make larger incorrect forecasts, resulting in worse performance. 

     𝑀𝑆𝐸 = 	 "
-
∑ (𝑌9 − 𝑌T9)$-
9@"                         (3.8) 

    The mathematical formulation of RMSE is as follows,  

     𝑅𝑀𝑆𝐸 = 	V∑ (+A!#+!)(

-
-
9@"                         (3.9) 

where the RMSE is the square root of MSE, they are monotonically correlated. Therefore, 

following the same evaluation of MSE, the smaller the RMSE the better the model. The 

mathematical formulation of MAPE is as follows,  

   𝑀𝐴𝑃𝐸 = "
-
∑ XB)#C)

B)
X-

!@"                     (3.10) 

which has an intuitive interpretation in terms of relative error, making it useful for tasks 

where sensitivity to relative variations is more important than absolute variations. 

However, there are some drawbacks to using MAPE. Its use is restricted to strictly 

positive data by definition and it is biased towards low forecasts, making it unsuitable for 

predictive models where large errors are expected(Chicco, Warrens, & Jurman, 2021). 

The smaller the MAPE the better the model.  
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3.9 Transfer Learning 

This paper used transfer learning, which can be defined as follows: a domain 𝐷 consists 

of a feature space 𝑋  and a marginal probability distribution 𝑃(𝑋) , where              

𝑋	 = 	 {𝑥", …	 , 𝑥-} ∈ 	𝑋. A task 𝑇 consists of two components: a label space 𝑌 and a 

predictive function 𝑓. The function is trained using feature vector and label pairs {𝑥9 	, 𝑦9}, 

where 𝑥9 	 ∈ 	𝑋 and 𝑦9 	 ∈ 	𝑌. The set of data used as the source domain is denoted as 𝐷# 

consisting of data instances {(𝑥𝑠1	, 𝑦𝑠1), …	, (𝑥𝑠𝑛	, 𝑦𝑠𝑛)}, where	𝑥𝑠𝑖 	 ∈ 	𝑋𝑠	 represents the 

ith data instance of 𝐷#	and 𝑦#( ∈ 	𝑌# represents its corresponding class label. Similarly, 

the target domain is denoted as 𝐷! , consisting of data instances 

{(𝑥𝑡1	, 𝑦𝑡1), …	, (	𝑥𝑡𝑛	, 𝑦𝑡𝑛)},  where 𝑥!( 	 ∈ 	𝑋!	  represents the ith data instance and      

𝑦!( 	 ∈ 	𝑌!  represents its corresponding class label. Additionally, the source task is 

represented as 𝑇#, the target task as 𝑇!, the source predictive function as 𝑓#, and the target 

predictive function as 𝑓! (Zhuang et al., 2020). 

Transfer learning is the process of improving the predictive function 𝑓!	 of a target 

domain 𝐷!  by utilising related information from a source domain 𝐷#  with a 

corresponding source task 𝑇#. This is achieved by transferring knowledge from the source 

domain 𝐷#  utilising the task 𝑇5  to the target domain 𝐷! , where 𝐷# ≠	𝐷!		  or 𝑇# ≠	𝑇! 

(Zhuang et al., 2020). 
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Chapter 4 

Results 

 

 

The main content of this chapter is to demonstrate the 

experimental results. In the end, this chapter will also 

discuss the limitations of the project. 
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4.1 Data Collection and EDA 

The yearly raw data was downloaded from ENTSO-E, and then combined into one on 

Power BI. It contains hourly day-ahead electricity prices in France from 2019 to 2022 

with two columns, the time stamp and the day-ahead electricity price in euro per 

megawatt-hour (EUR/MWh). The final dataset has 35,068 rows and five columns.  

   The EDA as Figure 4.1 shows the prices were stable from 2019 to June 2021, with an 

average of 40.32. However, prices have significantly increased since July 2021, with an 

average of 159.01(294.59% increase) in 2021 and 275.88(584.23% increase) in 2022.  

    It is interesting to note that there were 207 rows with negative or zero prices. 

Additionally, there were 4 (0.01%) missing values in the four-year period. Lastly, there 

was a spike in average price at 7 and 8 in the morning on the 4th of April 2022, reaching 

2850.39 (933.2% higher than normal). 

 

Figure 4.1 Average day-ahead electricity prices from 2019 to 2022 

    The combined dataset now included three calendar date attributes: time, month, and 

weekday. According to Figure 4.2, the highest prices were observed at 8 AM in the 

morning and 7 PM in the evening. Additionally, the highest prices were recorded in 

August and December. On the other hand, prices were lower on weekends compared to 

weekdays. 
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Figure 4.2 Day-ahead electricity prices by Time Month and Weekday from 2019 to 2022 

4.2 Data Preparation and Feature Selection 

In Section 4.1, we noted that the missing values only comprised 0.01% of the dataset, 

which is too insignificant to impact the results. Therefore, we removed them from the 

dataset. 

    We have tested the correlation coefficient, as shown in Figure 4.3. Despite the fact 

that the date and time attributes appear to correlate with the prices during EDA, the 

correlation coefficient indicated that they are not significant. It is worth noting that all the 

attributes are derived from the time stamp column, which already contains this 

information. 
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Figure 4.3 Correlation Coefficient 

By applying PCA selection, the correlation coefficient results are further validated. 

Figure 4.4 shows that the top component is the time stamp, followed by the time column. 

 
Figure 4.4 PCA Scores 

After the evaluation, three datasets have been prepared for the experiment. They 

were: 1) dataset A, which contains three years' worth of day-ahead prices from 1/1/2019 

to 31/12/2022 in France; 2) dataset B, which contains one year's worth of day-ahead 

prices from 1/1/2022 to 31/12/2022 in France; and 3) dataset C, which also contains one 

year's worth of day-ahead prices from 1/1/2022 to 31/12/2022 in France, but with the 

calendar date attributes included. More details about each data set can be found in Table 

4.1. 
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Table 4.1 Datasets experimented 

Dataset Date Range Column Row 
A_training 1/1/2019 to 31/12/2021 2 26,304 
A_testing 1/1/2022 to 31/12/2022 2 8,760 
B_training 1/1/2022 to 30/6/2022 2 4,343 
B_testing 1/7/2022 to 31/12/2022 2 4,417 
C_training 1/1/2022 to 30/6/2022 5 4,343 
C_testing 1/7/2022 to 31/12/2022 5 4,417 

To apply ARIMA and VARMAX, the datasets need to be prepared by analysing their 

seasonality and trend. Since this was a short-term price prediction and the prices were 

recorded hourly, a half-day lag (lag = 12) was chosen for the experiment. Figure 4.5 

reveals a significant upward trend, and there is an obvious up-and-down seasonal pattern 

with a half-day lag. 

 

Figure 4.5 Seasonality and trend analysis 

4.3 Hyperparameter Tuning 

4.3.1 LSTM 

When working with LSTM, there are two crucial hyperparameters to consider: epoch and 

batch. The epochs refer to the number of times the learning algorithm passes through the 

entire training dataset. Each sample in the training dataset is given an opportunity to 

update the internal model parameters during an epoch. An epoch is made up of one or 

more batches. 
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The batch size refers to the amount of samples that are processed before updating 

the model. It is important to note that the batch size should be at least one and no greater 

than the number of samples in the training dataset. There are no set rules for configuring 

these parameters. Experiments with different values to determine what works best are 

adopted and used in this project. 

4.3.2 ARIMA 

When it comes to differencing, a value of two might be best, but we decided to plot the 

original dataset in both cases (as shown in Figure 4.6). We did not notice a significant 

difference in the selection of 𝑑 , so we opted for a simpler model with a better 

performance by selecting a value of one for 𝑑.  

 

Figure 4.6 The selection of 𝑑 

In Chapter 3, we were introduced to ACF and PACF, which are calculated and 

displayed in Figures 4.7 and 4.8. The ACF and PACF both show that only the first lag is 

significantly outside of the limit, and although the second lag is slightly outside as well, 

it is not too far. As a result, we chose to set the value of both 𝑝 and 𝑞 to one.  

 

Figure 4.7 The selection of 𝑞 



29 
 

 

 

Figure 4.8 The selection of 𝑝 

4.4 Results and Comparison  

Table 4.2 displays the results of running and testing various algorithms with different 

datasets. It is evident that algorithms utilising dataset B have demonstrated superior 

outcomes, which further validated our exploratory data analysis (EDA) by revealing a 

significant increase in electricity prices since 2022. Based on the data, it appears that the 

optimal outcome was reached with two layers, 150 units, 250 epochs, and a batch size of 

32. The resulting mean squared error was 29.24 and the root mean squared error was 5.45. 

The entire process took three minutes and 0.7 seconds to execute.  

Table 4.2 Algorithms applied and evaluation 

Dataset Algorithm Hyperparameters Execution 
Time MSE RMSE 

A   ARIMA p=1 d=1 q=1 2.4s 2349.29 275.93 

A   LSTM 

Layers=1 
Units=150 

epochs=150 
batch size=16 

6m10s 
3,640.99 

60.34 

A   LSTM 

Layers=1 
Units=200 

epochs=200 
batch size=16 

12m32s 
2,970.89 

54.51 
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Dataset Algorithm Hyperparameters Execution 
Time MSE RMSE 

A   LSTM 

Layers=1 
Units=200 

epochs=200 
batch size=32 

8m45s 
2,633.38 

51.32 

A   LSTM 

Layers=2 
Units=250 

epochs=250 
batch size=32 

22m44.2s 
1710.43 

41.36 

B ARIMA p=1 d=1 q=1 0.7s 1527.28 203.95 

B LSTM 

Layers=1 
Units=150 

epochs=150 
batch size=16 

54s 
247.37 

15.73 

B LSTM 

Layers=1 
Units=200 

epochs=200 
batch size=16 

1m24s 
186.78 

13.67 

B LSTM 

Layers=1 
Units=200 

epochs=200 
batch size=32 

49s 
99.92 

10 

B LSTM 

Layers=1 
Units=250 

epochs=250 
batch size=32 

1m23s 
54.45 

7.38 

B LSTM 

Layers=2 
Units=250 

epochs=250 
batch size=32 

3m 0.7s 
29.24 

5.41 

C  VARIMA p=1 d=1 q=1 2m13s 1,527.28 39.08 

C LSTM 

Layers=1 
Units=150 

epochs=150 
batch size=16 

1m16s 31,751.46 178.19 

C LSTM 

Layers=1 
Units=200 

epochs=200 
batch size=16 

1m58s 29,545.47 171.89 

C LSTM Layers=1 
Units=200 1m22s 30,146.96 173.63 
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Dataset Algorithm Hyperparameters Execution 
Time MSE RMSE 

epochs=200 
batch size=32 

C LSTM 

Layers=2 
Units=250 

epochs=250 
batch size=32 

5m2s 30,836.25 175.6 

The LSTM network is structured as Figure 4.9 shows.  

 
Figure 4.9 Model structure 

 

The visualisation of the best prediction adopted using LSTM with data set B and 

having two layers, 250 units, the number of epochs equals 250 and the number of batch 

size equals 32 is displayed in Figure 4.10. 

 
Figure 4.10 Predictions 

 

Here we conducted an analysis of the amount of training data. In the daily operation, 
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we want to minimize the size of training data so that it lowers down the time needed for 

daily prediction and it increases the performance of the model at the same time. We 

experimented with datasets of varying sizes, including 30 days, 15 days, 7 days, 3 days, 

and 1 day. Our goal was to predict 24-hour future outcomes. We selected three datasets 

randomly for each interval from dataset B and have displayed the results in Table 4.3. 

Based on the data, it appears that the optimal outcome was achieved with a 30-day interval, 

resulting in a 20.28 mean squared error, 0.9 mean absolute percentage error, and 3.64 

root-mean-square error.  

As shown in Figure 4.11, the three 30-day training datasets have been visualised to 

predict the day-ahead electricity prices for the next 24 hours. 

 

Table 4.3 Evaluation on the impact of different length of training data sets 

Dataset Shape Algorithm Parameters MSE MAPE RMSE 

30 days 
Training  
720 rows 

Testing 24 rows 
LSTM 

layer=2 
units=250 

epochs=250 
batch size=32 

3.47 
0.78 1.35 

15 days 
Training 

 360 rows 
Testing 24 rows 

LSTM 

Layer=2 
Units=250 
epochs=50 

batch size=2 

13.6 
1.42 3.63 

7 days   
Training 

 168 rows 
Testing 24 rows 

LSTM 

Layer=2 
Units=250 
epochs=50 

batch size=2 

852.9 
9.58 24.73 

3 days   Training 72 rows 
Testing 24 rows LSTM 

Layer=2 
Units=250 
epochs=25 

batch size=1 

4367.16 
28.18 65.37 

1 day   Training 24 rows 
Testing 24 rows LSTM 

Layer=2 
Units=250 
epochs=25 

batch size=1 

17058.43 
59.66 120.79 
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Figure 4.11 Final predictions of using 30-day training dataset  

4.5 Transfer Learning 

Upon completion of the project, we implemented transfer learning techniques by utilising 

training dataset B to fine-tune a pre-existing LSTM model. We then applied this model to 

forecast the day-ahead electricity prices in Germany, Belgium, and the UK. The results 

of this transfer learning approach can be found in Table 4.4, showcasing its impressive 

success.  

Table 4.4 Transfer leaning on other countries in Europe and evaluation 

Training 
Dataset 

Testing 
Dataset Algorithm Parameters MSE RMSE 

B_training 

Germany 
1/7/2022 – 
31/12/2022 LSTM 

Layer=1 
Units=250 

epochs=250 
batch size=32 

12.15 

 
3.49 

B_training 

Belgium 
1/7/2022 – 
31/12/2022 LSTM 

Layer=1 
Units=250 

epochs=250 
batch size=32 

28.0 

 
5.29 

B_training 

UK 
1/7/2022 – 
31/12/2022 LSTM 

Layer=1 
Units=250 

epochs=250 
batch size=32 

1.28 

 
1.13 
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    Figure 4.12 displays the visualisation of transfer learning applied on day-ahead 
electricity prices prediction in Germany, Belgium, and UK.  
 

 
(a)                                  (b) 

 
                   (c) 

Figure 4.12 Transfer learning on day-ahead electricity prices in (a) Germany, (b) 
Belgium, and (c) UK 

4.6 Limitations of this ResearchProject 

The LSTM is suitable and feasible to predict the day-ahead electricity prices in France. 

However, the limitations of this paper are: (1) the experiments focus on short-term 

predictions; it may not take the patterns of yearly trend into account; and (2) it may not 

be responsible to other influences to the whole electricity markets such as social problems 

and the debate of using nuclear electricity generation etc. 
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Chapter 5 

Analysis and Discussions 

 

 

In this chapter, experimental results are analysed and 

compared. Comparisons of the results under various 

conditions will be mentioned. 
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5.1 Analysis 

To summarise, our research found that the LSTM model is effective in predicting day-

ahead electricity prices in France. The mean squared error we achieved was 29.24 and the 

root mean squared error was 5.24, both of which were better than the results achieved by 

traditional statistical methods including ARIMA with a mean squared error of 1527.28 

and a root mean squared error of 203.95, and VARMAX with a mean squared error of 

1527.28 and a root mean squared error of 39.08.  

We also recommend using a 30-day training dataset for daily operations, as this 

produced a mean squared error of 3.47, a mean absolute percentage error of 0.78, and a 

root mean square error of 1.35. These results are significantly better than those reported 

in previous studies outlined in Chapter 2. 

Lastly, we analysed the transfer learning techniques on performing the day-ahead 

electricity prices prediction in other state members in European Union.   

5.2 Discussions 

We conducted experiments to compare the performance of LSTM and ARIMA in 

predicting day-ahead electricity prices in France. Our analysis of the two algorithms' 

performance under different conditions revealed that LSTM generally outperforms 

ARIMA. However, when using dataset C, we discovered that the performance of LSTM 

decreased and was worse than the performance of VARMAX. We concluded that LSTM 

may be sensitive to insignificant attributes, making feature selection an important step 

before using the LSTM algorithm. However, this requires to be further experimented and 

proven.   
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Chapter 6 

Conclusion and Future Work 

 

 

In this chapter, we will summarise the subject and method of 

this project and propose new research direction according to 

the result and insufficiency of the experiment, preparing for 

the future work. 
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6.1 Conclusion 

In conclusion, the purpose of this report is to propose and implement a method to predict 

the day-ahead electricity prices in France using deep learning. Three major tasks were 

defined and implemented: (1) LSTM, ARIMA, and VARMAX were tested on various 

length of dataset; the results of each were evaluated and compared; (2) a test on the impact 

of different length of dataset for predicting the following 24-hour day-ahead electricity 

prices were conducted; and (3) we tested transfer learning technique to the day-ahead 

electricity prices in other countries in the European Union. By doing so, three research 

questions were answered: (1) LSTM performs effectively and efficiently on day-ahead 

electricity prices prediction in France by achieving a mean squared error 29.24 and the 

root mean squared error 5.24; (2) deep learning based algorithm performs better than 

statistical algorithms on complex problems like the day-ahead electricity prices prediction 

in France; and (3) in practice, a 30-day training dataset is sufficient to predict the next 24-

hour day-ahead electricity prices in France. 

    Furthermore, the experiment on transfer learning has been highly successful in 

predicting day-ahead electricity prices in Germany, Belgium, and the UK.     

6.2 Future Work 

In order to improve our predictions, we plan to undertake the following tasks in the future: 

(1) analysing whether negative electricity prices, and the spike that occurred in April 2022 

affects the performance of the prediction; (2) examining the relationship between 

electricity storage and pricing by analysing load data, as discussed in Chapter 1; and (3) 

to divide the analysis by season and different times of the day. 
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