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Abstract In this paper, we present a novel deep learning method for detecting 
and tracking vehicles within the context of autonomous driving, particularly 
focusing on scenarios related to vehicle failures. Ensuring the precise 
identification and monitoring of vehicles is paramount for enhancing road 
safety in autonomous driving systems. Our contribution involves the 
introduction of a hybrid Siamese network that merges the capabilities of 
YOLO models with Transformers. This integration aims to address the 
limitations of Convolutional Neural Networks (CNNs) in grasping high-level 
semantic nuances, thereby facilitating accurate detection and tracking of 
multiple vehicles within a given scene. Beyond this, we also curated the 
traffic scene dataset, which serves as a resource for training a multi-vehicle 
tracking model specifically tailored to the unique characteristics of traffic 
environment. 

Keywords: Deep learning × Siamese network × Transformer × Attention 
module × Vehicle detection and tracking ×  Scene understanding. 

1. Introduction 

The comprehension of traffic scenes has emerged as a prominent research area in 
computer vision and a focal point in artificial intelligence, particularly in light of the 
progress made in autonomous driving advancements [38, 47]. The existing scholarly 
literature delves into traffic scene understanding from diverse perspectives, reflects 
the significance and widespread interest in this subject. Among them, vehicle track-
ing task stands out as a crucial component within the realm of comprehending traffic 
scenes. 

The evolution of visual object recognition and tracking, from R-CNN to Faster 
R-CNN, has traditionally relies on a two-stage training process. While this approach 
improves accuracy, it slows down visual object detection due to the increased factors 
involved. On the other hand, YOLO models adopt a single-shot grid segmentation 
approach, where each grid is responsible for recognizing the center, bounding box, 
and class label of the target simultaneously. This end-to-end framework signifi-
cantly enhances real-time capabilities, makes YOLO models much efficient, saves 
over 90% of the space in the YOLO series [1, 26]. At the same time, vehicle tracking 
using a Siamese network employes this specific type of neural network architecture 
to identify vehicles within a sequence of images or video frames. The Siamese net-
work is particularly useful for the tasks that require comparing and matching pairs 
of inputs. In the context of vehicle tracking, Siamese network aims to determine 
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whether a detected vehicle in one frame corresponds to the same vehicle in another 
frame, effectively to establish the trajectory and movement of a vehicle over time. 

However, CNNs excel at capturing localized patterns and features within data, 
rendering them exceptionally effective for tasks such as image classification and 
object detection. The utilization of fixed-size convolutional kernels with predeter-
mined receptive fields encounters difficulties in grasping extended dependencies 
and encompassing global context. This limitation can impede the performance 
which is confronted with tasks demanding an understanding of relationships among 
distant elements. 

Furthermore, CNNs lack an inherent understanding of positional relationships 
among a diversity of elements among input data. The reliance on spatial hierarchy 
of data may prove inadequate for the tasks including sequential data or scenarios 
where precise positional information holds paramount importance. Additionally, 
CNNs construct feature hierarchies through the sequences of convolutions and pool-
ing layers. While this process benefits the extraction of hierarchical features, it may 
not be optimal for the tasks that necessitate intricate modeling of multifaceted inter-
actions and dependencies across various segments of the input. 

Therefore, we turn our attention to Transformer. Transformer architecture, parti-
cularly Swin Transformer, has demonstrated strong capabilities in traffic scene un-
derstanding by improving global feature extraction ability. Swin Transformer com-
bines powerful modeling ability of Transformers with important visual signal priors, 
including hierarchy, locality, and translation invariance. The design of shifted non-
overlapping windows in Swin Transformer reduces computational complexity, 
which leads to faster speeds compared to traditional method of sliding windows 
[20]. 

Moreover, Transformers can tackle the entire input sequence with parallelization, 
enable them to better understand the global context of the sequential data. This is 
particularly advantageous for the tasks that require a holistic understanding of the 
input. Pertaining to vehicle tracking, Transformers explicitly handle with positional 
information through the addition of positional encodings. This ensures that the mo-
del deals with the order and relative positions in a sequence, makes them well-suited 
for vehicle tracking with the sequential data. 

To further enhance visual object detection and target tracking in traffic scene un-
derstanding, attention mechanisms are incorporated into deep learning networks. 
Techniques such as Squeeze-and-Excitation (SE) enable the model to focus on es-
sential channel information by learning adaptive channel weights [10]. The Convo-
lutional Block Attention Module (CBAM) combines convolution and attention mec-
hanisms together to process images from both spatial and channel perspectives [36]. 
Coordinate Attention (CA) takes into account of both channel and spatial dimensi-
ons, allows the model to emphasize on crucial channel information through learned 
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adaptive weights [9]. The mechanisms contribute to improve local feature extraction 
abilities, which result in more accurate and efficient performance of the models in 
traffic scenes [27]. 

In this paper, we propose a new method for scene analysis to achieve higher real-
time multitarget vehicle detection and tracking as well as scene understanding. Our 
method makes use of visual features from YOLO model and Siamese network, it 
also combined Transformer and attention module in order to understand high level 
semantic of the scene as we improve the extraction ability of both local feature and 
globle feature.  

In the remaining parts of this paper, our prior knowledge is reviewed in Section 
2; the proposed method is presented in Section 3; our experimental and test results 
are showcased in Section 4 and conclusion is drawn in Section 5. 

 
2. Literature Review 

Over the past decade, deep learning methods have demonstrated strong capabilities 
in visual object tracking. Conventional object tracking algorithms rely on particle 
filtering, which necessitates a large number of particles for classifier training, 
resulting in complex convolutional layers for feature extraction [7]. To enhance 
accuracy and speed, a number of algorithms have combined deep learning methods 
with relevant filtering techniques. HCFT utilizes VGG-16 to extract features from 
Conv3-4, Conv4-4, and Conv5-4, training corresponding correlation filters to locate 
the target accurately. Similarly, HDT utilizes a combination of multi-layer depth 
features and correlations, while enhancing the depth from three to six layers and 
adopting adaptive weight addition [22, 28]. 

Another network to implement tracking task is Siamese networks, a typical model 
with the deep learning correlation filtering method, which have been employed to 
simulate the entire process of related filtering. One branch saves target template 
information, while the other extracts features in the search region. The merged parts 
generate the response map while reflecting the target state [3]. Siamese networks 
excel in one-shot and few-shot learning scenarios that can effectively learn to 
distinguish between different object instances using only a few examples through 
making them suitable for tracking tasks where acquiring extensive labeled data is 
challenging. At the same time, Siamese networks directly learn a similarity metric 
in the feature space. This characteristic is well-suited for tracking tasks where the 
focus is on finding the similarity between the target object features and those of the 
candidate regions. 

One of the primary hurdles in target tracking tasks involves the intricate interplay 
between background elements and objects within complex environments. To tackle 
this issue, the joint Siamese attention-aware network (JSANet) integrates self-
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attention and cross-attention modules, strategically designed to surmount the 
challenges arising from subtle features and background noise [32]. The self-
attention modules introduced in this framework synergize channel and spatial 
attention mechanisms. The channel attention component accentuates pertinent 
channel coefficients to spotlight high-scoring channels, whereas the spatial attention 
module transforms spatial domain data, which ensures precise identification of 
crucial regions. Moreover, the cross-attention element orchestrates the fusion of 
contextual dependencies between the target template and the search image through 
cross-channel attention. This sophisticated approach enables the unveiling 
correlations between objects with temporal associations. The utilization of Siamese 
region proposal networks (SiamRPNs) further amplifies this methodology via 
enabling the prediction of a singular tracking region based on the feature streams 
that have been modulated by attention mechanisms. 

However, most models focus on single-target tracking, while multitarget tracking 
research progress is relatively slower due to limited datasets and references. Single-
target tracking is often employed for short-term image sequences, while multitarget 
tracking deals with longer videos, involving various appearance, occlusion, and 
separation of targets. The implementation methods also differ, with single-target 
tracking prioritizing target relocation, while multitarget tracking focuses on 
matching detected targets. Multitarget tracking algorithms can be detection-based 
or non-detection-based, which are further classified into online tracking and offline 
tracking based on frame processing and utilization of subsequent frames [21]. 

A multitarget tracking method [31] includes a detector to identify targets in video 
image space, predicts the position and motion of the targets in the next frame using 
Kalman filter that calculates the overlapping between detection and prediction boxes 
using Complete Intersection over Union (CIoU) as a distance measure via the 
Hungarian algorithm to perform data association between multiple targets. The 
Hungarian algorithm can effectively handle situations where there are multiple 
detections and tracks, and the number of detections might not match the number of 
tracks. It assigns each detection to a track and vice versa, which makes it robust 
against cases where the number of objects being tracked dynamically. Furthermore, 
the Hungarian algorithm guarantees finding the globally optimal solution to the 
assignment problem. This means that it provides the best possible assignment that 
minimizes the total cost among all possible combinations, ensures high-quality 
associations between detections and tracks [8, 34]. 

 
3. Methodology 

Fig. 1 depicts the proposed vehicle tracking model. The implementation of the pro-
posed tracking network involves utilizing a modified SiamRPN subnetwork. In 
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contrast to the original SiamRPN, the modified SiamRPN sub-network has been in-
tegrated with Hungarian algorithm [13]. This integration allows for the advancement 
of single-target tracking to multitarget tracking.  

 
Fig. 1 The vehicle tracking model 

 
    The multiobject tracking is different from single-object tracking. The single-ob-
ject tracking focuses on a single specific vehicle throughout a video sequence. The 
goal is to follow the movement of a particular vehicle, keep it in focus and provide 
its trajectory over time. Our proposed multiobject tracking is to detect and track all 
vehicles presented in the scene, assign unique identities to each vehicle and keep 
tracking along individual trajectory. The way in this paper is to implement multi-
target tracking by using YOLO model combined with attention modules and Trans-
former for visual object detection in each frame and then use Hungarian algorithms 
to associate the detected objects across video frames. 

For each detected vehicle in the current frame, we calculate the distance between 
its bounding box and the bounding boxes of all previously tracked vehicles in the 
previous frame. We make use of Hungarian algorithm to find the best assignment of 
detected vehicles to previously tracked vehicles based on the distance matrix. The 
Hungarian algorithm efficiently solves the assignment problem, maximizes the total 
similarity between detected vehicles and tracked vehicles. If a detected vehicle is 
assigned to an existing track, we update the tracking with the new position and other 
information related to this vehicle. If a detected vehicle is not assigned to any exis-
ting track, we create a new tracking for that vehicle. To handle occlusions or vehicles 
leaving the scene, we remove any tracks that have not been assigned a detected ve-
hicle for a certain number of frames [2]. 
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Fig. 2 The improved YOLO model in the proposed method 

 
In order to enhance the performance of vehicle detection in traffic scenes, the 

target detection component of this model combines Transformer, Convolutional 
Block Attention Module (CBAM) and YOLO model that shown in Fig. 2. YOLO 
model inherits its structure from the four-part networks, consisting of input, back-
bone, neck, and prediction stages [4, 30]. 

However, YOLO model introduces further improvements, including data aug-
mentation at the input side, as well as adaptive anchor frames and adaptive image 
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scaling functions. These enhancements contribute to better accuracy in anchor loca-
tion and faster inferencing speed [5, 6]. 

YOLO models also employ Darknet as the backbone to extract features from input 
images [30]. Additionally, YOLO models benefit from the Cross Stage Partial 
Network (CSPNet), which addresses the gradient problem in network optimization 
for other large-scale CNN frameworks. CSPNet integrates gradient changes into the 
feature map from start to finish, which leads to a reduction in model parameters and 
floating-point operations (FLOPs) value. This approach allows for a reduction in 
model size while maintaining both inference speed and accuracy.  

In the proposed model, through learning the four offsets of 𝑡!, 𝑡", 𝑡# and 𝑡$, the 
bounding box coordinates obtained by regression are 𝑏!, 𝑏", 𝑏#, 𝑏$, that is, the po-
sitioning and size of the bounding boxes are interconnected with the feature map. 
Among them, 𝑡! and 𝑡" represent the predicted coordinate offset values, while 𝑡# 
and 𝑡$ denote the scaling factors.:  

b% = 2σ(t%) − 0.5 + c%                                       (1) 
b& = 2σ0t&1 − 0.5 + c&                                      (2) 
b' = p'(2σ(t'))(                                             (3) 
b) = p)(2σ(t)))(                                               (4) 

where 𝑐! and 𝑐" correspond to the coordinates of the upper left corner of the grid 
cell in the feature map, while 𝑝#  and 𝑝$  represent the width and height of the 
predefined anchor box mapped to the feature map. 
    The major difference in the loss function lies in the computation of the positive 
sample anchor area. The classification and confidence branches utilize Binary Cross 
Entropy (BCE) loss, while the bbox (Bounding box) branch employs the GIoU loss, 
 

        BCE(c8*, c*) = −c8* × log(c*) − (1 − c8*) × log(1 − c*)             (5)  

GIoU = |,∩.|
|,∪.|

− |,!01|
|,!|

                                         (6) 

where 𝐴2 represents the minimum overlap area of the two boxes. To consider the 
aspect ratio of the bounding boxes in the loss function, the CIoU loss is utilized as 
the boundary regression loss function: 

               L3451 = 1 − IoU + 6"78,8#$:
;"

+ αv                          (7) 

          v = <
="
(arctan'

#$

)#$
− arctan'

)
)(                          (8) 

where 𝑏 and 𝑏>? represent the center points of the predicted bounding box and the 
ground truth bounding box, respectively; ρ denotes the Euclidean distance between 
the two center points, while c represents the diagonal distance of the smallest 
enclosing area that contains both the predicted box and the ground truth box. 
Additionally, α is the weight applied in the calculation. 
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The matching strategy in YOLO models ensures that each ground truth bounding 
box is assigned a unique anchor. The rule dictates that, while guaranteeing the maxi-
mum Intersection over Union (IOU), a ground truth box cannot be matched to pre-
dictions across all three prediction layers simultaneously. However, this matching 
strategy does not take into account for cases where one ground truth bounding box 
corresponds to multiple anchors, nor does it consider the appropriateness of anchor 
settings. Consequently, if a ground truth bounding box is associated with multiple 
anchors, it may slow down the overall model convergence. In this paper, the appro-
ach of augmenting the number of positive sample anchors is employed to expedite 
convergence. This is the key reason why YOLO models achieved rapid convergence 
in practical applications.  

In contrast to the max IOU matching rule in previous versions, YOLO models 
abandon this approach for any output layers. Instead, it directly utilizes the shape 
rule for matching, wherein the bounding box and the anchor of the current layer are 
employed to calculate the aspect ratio.If the aspect ratio exceeds the predefined 
threshold, the object feature is revealed. Pertaining to the remaining bounding boxes, 
YOLO models identify the nearest two grids that encompass the box based on which 
grid it falls into. By applying the rounding rule, these three grids are collectively 
deemed responsible for predicting the box. By employing this approach, the number 
of positive samples is roughly estimated to have increased by at least three times 
compared to the previous YOLO series. 

To further enhance the performance of the model, we have incorporated the at-
tention mechanism module and Transformer with YOLO model. The attention mec-
hanism simulates the internal process of biological observation behavior, where it 
aligns internal experience with external senses, thereby enhancing the precision of 
observation in specific areas. For instance, during the processing of an image, hu-
man vision promptly scans the global image to identify a target area for concentrated 
focus, referred to as the focus of attention. Subsequently, a greater allocation of at-
tentional resources is directed towards this region to acquire more comprehensive 
information regarding the attended target and, simultaneously, to suppress irrelevant 
information from other regions. 

In summary, the attention mechanism assigns distinct weighting parameters to 
individual elements of the input, thereby intensifying focus on elements that bear 
similarity to the input and concurrently suppressing superfluous information. Its 
principal advantage lies in its capacity to simultaneously account for global and local 
connections in a single step, facilitating parallel computation, a crucial attribute es-
pecially pertinent to big data scenarios. 

In this paper, our primary research objective is to enhance the performance of the 
original YOLO network by incorporating the Convolutional Block Attention Mo-
dule (CBAM) in conjunction with Swin Transformer [20, 36]. The integration of 
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CBAM facilitates the network in determining what and where to focus when analy-
zing intricate traffic environments by leveraging both spatial and channel feature 
connections. The neck of this network is responsible for reprocessing crucial envi-
ronmental features extracted from the backbone, transmitting them to the head, and 
subsequently producing prediction outcomes. To achieve this, we strategically insert 
the CBAM module after each Concatenation operation and refine the information of 
the channel and spatial feature fusion layer. This refinement assists the model in 
allocating greater attention to key information within the complex traffic environ-
ment. The experiment aims to ascertain whether the inclusion of CBAM can lead to 
improved performance compared to the original YOLO model. 

The architecture of CBAM attention mechanism module consists of two main 
components: Spatial attention and channel attention. Upon receiving the feature map 
as input, it undergoes the channel attention process. Global Average Pooling and 
Global Max Pooling operations are performed based on the width and height of the 
feature map. Subsequently, the channel attention weight is obtained through Multi-
layer Perceptron (MLP), and further is normalized using the Sigmoid function. Fi-
nally, the original input feature map is recalibrated channel by channel through ele-
ment-wise multiplication, through completing the channel attention-based feature 
recalibration 

In pursuit of attention features in spatial dimension, the feature map derived from 
channel attention undergoes both global maximum pooling and global average po-
oling operations, which results in a transformation of the feature dimension from 
H×W to 1×1. Afterward, the dimension of feature map is reduced via convolution 
with a 7×7 kernel, followed by the application of the ReLU activation function. 
Subsequently, the feature map is restored to its original dimension through another 
convolutional operation in the completion of the feature map's recalibration process. 

Within the spatial attention module, spatial attention features are obtained using 
global average pooling and maximum pooling techniques. The establishment of spa-
tial feature correlations is achieved through two convolutional operations, which 
ensures that the input and output dimensions remain unchanged. The utilization of 
a 7×7 convolutional kernel significantly reduces the parameters and computational 
complexity through facilitating the establishment of high-dimensional spatial fea-
ture correlations. Followed the application of CBAM, the new feature map acquires 
attention weights in both the channel and spatial dimensions. This improvement sig-
nificantly enhances the interconnection between each feature in the channel and 
space, thereby promots the extraction of effective target features. 
    Regarding comparison with CBAM, we explore the Squeeze-and-Excitation (SE) 
attention mechanism [10]. The SE attention mechanism was introduced to address 
the issue arising from the varying significance of different channels within a feature 
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map during the convolutional pooling process. In convolutional pooling, each chan-
nel of a feature map is inherently considered equally important. However, in practi-
cal scenarios, the significance of different channels varies. 

The SE attention enhancement model focuses on the object in two steps: Squeeze 
and excitation. The squeeze is based on global average pooling of channel informa-
tion for the input feature map, conditional on input x, the squeeze step for the c-th 
channel can be expressed as, 

Z; =
@

A∗C
∑ ∑ x;(i, j)C

DE@
A
*E@                            (9) 

where 𝑍2  represents output of the c-th channel. The input x originates from a 
convolutional layer with a predetermined kernel size, and the squeeze operation 
enables the model to gather global information. 

The information after squeeze is multiplied onto the input feature map by two 
fully connection layers, the activation function and then normalized. The aim of this 
excitation is to completely capture the dependencies between channels: 

Y = X ∗ σ(ZR)                                             (10) 
ZR = T((ReLU)(T@(Z))                                (11) 

where 𝑇@  and 𝑇(  are two linear transforms that capture the importance of each 
channel through learning. 

SE is incorporated into YOLO model by using two approaches: Attention is added 
to the final layer of the backbone; All occurrences of C3 in the backbone are replaced.  
The Coordinate Attention (CA) is the second attention mechanism. CA disassembles 
channel attention into two one-dimensional feature encoding processes, each 
designed to gather features along two distinct spatial orientations. As a result, this 
configuration enables the capturing of long-range dependencies along one spatial 
direction while preserving precise positioning information along the other spatial 
direction. The generated feature maps are encoded as a pair of direction-aware and 
location-sensitive attention maps, which can be combined with the input feature 
maps to enhance the representation of the target object [9]. 

The incorporation of CA attention mechanism involves two steps: The embedding 
of the coordinate message and the generation of the coordinate attention. Given an 
input X, each channel undergoes encoding along the horizontal and vertical 
coordinates through pooling kernels of size (H, 1) or (1, W), respectively. 
Consequently, the output of channel c with height l is represented as, 

Z;)(ℎ) =
@
F
∑ x;(ℎ, 𝑖)GH*HC                                 (12) 

The output of channel c with width W is expressed as 
Z;'(𝑤) =

@
I
∑ x;(𝑤, 𝑖)GH*HA .                               (13) 

After undergoing the information embedding transformation, this section 
performs a concatenation operation on the aforementioned transformations. 
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Subsequently, the concatenated output is further processed using 1 × 1 
convolutional transformation function, 

𝑓 = δ0F@([Z), Z'])1                                    (14) 
where [×] denotes the concatenate operation along the spatial dimension, 𝛿(×) 
represents the non-linear activation function, and f denotes the intermediate feature 
mapping that encodes spatial information in both horizontal and vertical directions. 
Furthermore, other two 1´1 convolutional transformation functions F@, 𝑓$ and 𝑓# 
are employed to transform into tensors with the same number of channels as the 
input X, respectively: 

g) = σ(F)(f)))                                        (15) 
g' = σ(F'(f'))                                      (16) 

The output Y is, 
y;(i, j) = x;(i, j) ∗ g;)(i) ∗ g;'(j)                       (17) 

Due to the ability of Transformer to capture global information, it exhibits supe-
rior performance in comprehending dense and occluded objects within intricate traf-
fic environments. Consequently, we integrate Swin Transformer  encoder into the 
head of YOLO model, effectively combine the two networks. 

The primary breakthrough in the Swin Transformer lies in its adoption of locali-
zation and shifted windows. By employing non-overlapping windows for self-atten-
tion computation, localized self-attention is computed within each scale feature 
map's window. However, the computation between different scales leads to a defi-
ciency in information interaction between windows. To overcome this limitation, 
the Swin Transformer incorporates shifted windows at varying levels, encompasses 
both W_MSA (Window Multi-head Self-Attention) and SW_MSA (Shifted Win-
dow Multi-head Self-Attention) [20]. 

We assume that the feature map passed into the Swin Transformer Block is 𝑍J0@ 
which passes through LayerNorm and MSA and then adds with 𝑍J0@ and adds to get 
𝑍b J. After passing through a LayerNorm and MLP, 𝑍b J is directly connected to 𝑍b J and 
added to obtain 𝑍J: 

Zc K = W−MSA(LN(ZK0@)) + ZK0@,                              (18) 
ZK = MLP(LN(Zc K)) + Zc K,                                              (19) 
Zc KL@ = SW−MSA(LN(ZK)) + ZK,                                (20) 
ZKL@ = MLP(LN(Zc KL@)) + Zc KL@,                                   (21) 

The regression modified SiamRPN, integrated with YOLO+CBAM+Transformer, 
assumes the role of target tracking. Within this model, the region proposal network 
(RPN) comprises two branches, each is responsible for foreground and background 
classification, as well as proposal regression, respectively. 
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Siamese-RPN employs a fully connected CNN without padding. The network 
consists of two branches: The template branch takes the target patch from the histo-
rical frame as input; the detection branch uses the target patch from the current frame 
as input [39]. To ensure compatibility with subsequent tasks, both branches share 
the same parameters in the CNN. We denote the feature maps of these two branches 
as φ(x) and φ(z), respectively [21]. 

Similar to the RPN network in Faster R-CNN, if there are k (k > 0) anchors, the 
network is required to produce a channel map with dimensions 2k for object classi-
fication and a 4k channel map for anchor regression. Consequently, φ(z) is initially 
split into two branches, [𝜑(𝑧)];KM and [𝜑(𝑧)]NOP, through two separate convolution 
operations, corresponding to 2k and 4k channels, respectively. Similarly, 𝜑(𝑥) is 
also divided into two branches, [φ(𝑥)];KM and [φ(𝑥)]NOP. The channels in φ(𝑥) re-
main unchanged, while a specialized convolution operation is applied using 
[φ(𝑧)];KM	 and [φ(𝑧)]NOP as the convolution kernels. Convolution operations are per-
formed on the feature maps [φ(𝑥)];KM and [φ(𝑥)]NOP, respectively. Finally, the out-
puts after the convolution consist of 17´17´2k and 17´17´4k channels. 

A'×)×(R;KM = [φ(x)];KM ⋆ [φ(z)];KM																																								(22) 
A'×)×<R
NOP = [φ(x)]NOP ⋆ [φ(z)]NOP                                 (23) 

where ‘⋆’ represents the convolution operation. The final classification branch out-
puts a feature map with 2k channels, k is the number of anchors. This feature map 
will be grouped into pairs and split into k groups, each group has a score map with 
two channels that represents the scores of the foreground and the background, res-
pectively. In a similar way, for the regression branch, the final output of 4k channel 
feature maps, each has a group with 4 channels that represents the center position 
and size of the anchor, which is also divided into k groups. 
    Visual object tracking is a one-shot detection, where z represents the template part 
and x denotes the detection part, the Siamese feature extraction subnet is composed 
by the function 𝜑(×), and the RPN subnet is denoted by function ζ(×). The one-shot 
detection can be expressed as, 

min
C

@
S
∑ ℒ(ζ0φ(x*;W);φ(z*;W)1, ℓ*)S
*E@                   (24) 

Regarding proposal selection, SiamRPN utilizes the window and scale change 
penalty to reorganize the proposal scores, ultimately obtaining the optimal proposal. 
While following the elimination of outliers, a window is applied to mitigate large 
displacements, while a penalty is incorporated to suppress substantial changes in 
size and ratio. 

    Penalty = eR∗TU%V
%
%&
,%
&
% W∗TU%	(

'
'&
,'&' )                        (25) 



13 

where k denotes a hyperparameter, r represents the aspect ratio of the proposal, r' 
shows the height to width ratio of the last frame, s and s' respectively signify the 
overall scale of the proposal and the last frame [15, 29]. 

Data association is a critical process in multitarget tracking, primarily focusing 
on matching multiple targets between frames.  In this paper, we adopt the classic 
Hungarian matching algorithm to accomplish the task of multi-target vehicle trac-
king.  

Vehicle proposals are gathered from the current frame and the preceding frame. 
Subsequently, a cost matrix is computed based on the similarity measures between 
each vehicle proposal and the existing tracks. This cost matrix is designed such that 
each element (i, j) signifies the cost linked with assigning the ith vehicle proposal to 
the j-th track. The calculation of this cost takes into account metrics such as distance, 
appearance similarity, motion prediction, or a composite of these factors. The pri-
mary goal of Hungarian algorithm is to minimize the overall assignment cost while 
simultaneously ensuring that each proposal is allocated to a single track, and con-
versely, each track is associated with just one proposal. This objective is accomplis-
hed by identifying the optimal assignment that results in the lowest cumulative cost. 
The algorithm takes the cost matrix as input and computes the assignment pattern 
that generates the minimum cost. Once the Hungarian algorithm produces the opti-
mal assignments, these assignments can be matched with the respective tracks and 
proposals. Each assignment pair (i, j) signifies that the i-th vehicle proposal is linked 
to the j-th track.  

Hereinafter, we provide a step-by-step explanation of Hungarian matching algo-
rithm: 
Step 1. Determine the smallest element in each row of the matrix and subtract the 
corresponding smallest element from each element in that row.  
Step 2. Check if the objective of this algorithm has been achieved. If not, proceed 
to the next step; otherwise, terminate.  
Step 3. Determine the smallest element in each column of the modified matrix and 
subtract the corresponding smallest element from each element in that column.  
Step 4. Cover all the 0s using the fewest possible vertical and horizontal lines.  
Step 5. Check if the number of covered rows equals the order of the matrix. If so, 
the optimal matching solution is obtained. Otherwise, proceed to step 6.  
Step 6. Find the minimum value in the uncovered portion. Subtract this value from 
each element in the uncovered rows and add it to each element in the covered co-
lumns. Return to step 4. 
 
    This algorithm is applied to the multitarget tracking problem and find the optimal 
matching solution for multiple targets in two frames [13]. 
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4. Results 
 
We collected a substantial amount of visual data from traffic scenes using a driving 
recorder and created a dataset focusing on vehicles as the target objects. From this 
dataset, we selected 3,000 high-quality images for processing and labeling, dividing 
them into a training set and a test set with a 3:1 ratio. Additionally, we applied data 
augmentation such as rotation, flipping, and translation to enhance the diversity of 
our dataset. 

Through the experimental results of vehicle detection, we observe that the model 
accurately detects both larger vehicles nearby and smaller ones in the distance. 
Moreover, there is no noticeable shift in the position of the bounding box, even for 
smaller vehicles in the distance. The effectiveness of this vehicle detection task pro-
vides crucial support for subsequent vehicle tracking, as illustrated in Fig. 3. The 
scales of tracking box in the vehicle tracking task are highly adaptive according to 
the varying distances between vehicles. Our model assigns the same ID to the same 
target, allowing for effective detection and tracking of vehicles even in the presence 
of occlusions. 
    The proposed model employs three loss functions to evaluate its performance in 
multiple aspects: Bounding box attribute, object confidence, and class probability 
score, as depicted in Fig. 4. The bounding box loss assesses how accurately the 
model predicts the position of the bounding box through regression. The object con-
fidence loss evaluates the model confidence in detecting visual objects and how ac-
curate its predictions are for the box containing an object. The classification loss 
measures the model ability to distinguish between objects and backgrounds. In ad-
dition, we are use of precision and recall as metrics to assess the quality of our results. 
Precision indicates the proportion of true positive predictions among all positive 
predictions made by the model, while recall measures the proportion of true positive 
predictions among all actual positive instances in the dataset.   
    During the training process, the curve trends of bounding box loss, objective loss, 
and classification loss, as depicted in Fig. 4, follow a pattern. In the initial 50 epochs, 
all three loss curves experience a rapid decline, indicating the rapid learning and 
adjustment of this model. Subsequently, from 50 epochs to 150 epochs, the three 
loss curves gradually stabilize, suggesting that the model starts to converge and fit 
the data. 

Simultaneously, the precision and recall curves show a tendency to plateau at 
around the 75th epoch and 50th epoch, respectively. To comprehensively evaluate 
the performance, we trained the model using various Intersection over Union (IOU) 
thresholds, ranging from 0.50 to 0.95. The final average precision for the detection 
of 2214 vehicles is 0.995, as shown in Fig. 5, which indicates the accuracy and ro-
bustness of the network in detecting vehicles. 
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    During the evaluation of vehicle tracking performance, we vary the thresholds of 
location error during the training process to compute precision values for each 
threshold and assess the performance of models based on the area under the curve. 
Additionally, we calculate the ratio of frames successfully tracked in the sequence 
to the total number of frames at different overlap rate thresholds. In both Fig. 6 and 
Fig. 7, the plotted points on the curves are positioned above the diagonal lines, in-
dicating that the performance is satisfactory. These results signify that the model is 
capable of accurately tracking vehicles, with the achieved performance surpassing 
the expected baseline. 
 
 

 
Fig. 3 Experimental results of object tracking 
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Fig. 4 Evaluations of vehicle detection with multiple methods 

 
Fig. 5 The mean average precision curve for a detection task 

 
Through comparing the state-of-the-art models, our results are shown in Table 1. 

In the case of a batch size 16, our proposed model is excellent in FPS and mAP. We 
can also know from the comparison between the combination of YOLO andvarious 
attention modules, the results of adding Transformer to them can effectively im-
prove the detection average precision and mean average precision.  

In order to ensure the accuracy and robustness of this model, we also compare the 
performance of our proposed model in Table. 2. Regarding MOTP, the performance 
is the best among the other three models, but it is 0.30% lower than the proposed 
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model. Moreover, from the results, we see that under the premise of combination of 
our proposed model which can receive the best detection result than other models, 
the effect of using modified SiamRPN is better than that of DaSiamRPN in MOTA 
(5.2% higher) while they are not much different on MOTP.     
    The proposed model takes use of a large number of training data samples from 
our traffic scene and provides convenience for future research on traffic signs and 
road conditions. Secondly, this model combines the two our modifications of ad-
vanced deep learning models for the first time to realize the understanding of the 
traffic scenes. The experimental results show that the model is satisfactory in detect-
ing and tracking vehicles with various sizes in the distance within complex vehicle-
related scene, the bounding box has strong adaptability to vehicles of different sizes 
in dynamic traffic scenes. This model applies Hungarian algorithm to achieve multi-
object tracking, the model is able to efficiently detect and track multiple vehicles in 
a complex traffic environment.   
 

 
Fig. 6 The curve related to the thresholds of location errors and precisions 
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Fig. 7 The curve reflected the relationship between the overlapping thresholds and 

success rates 
Table 1 Comparisons of different detection methods 

Methods mAPs_0.5 mAPs_0.5:0.95 FPS 
Batch 
sizes 

SSD 98.10 85.60 39 16 
YOLOv4 97.60 77.90 35 16 
YOLOv5 98.40 87.30 37 16 
YOLOv5-CA 97.80 82.10 36 16 
YOLOv5-CA-
Tramsformer 97.80 82.30 35 16 

YOLOv5-SE 95.90 72.20 37 16 
YOLOv5-SE-
Transformer 96.50 77.80 37 16 

YOLOv5-CBAM 98.90 88.10 36 16 
YOLOv5-CBAM-
Transformer 

99.50 88.70 37 16 

 
 

Table 2 Comparisons of various tracking methods 
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Models 
MOTA 
(%) 

MOTP 
(%) 

MT 
 

ML 
 

FP 
 

FN 
 

FM 
 

YOLOv5-CBAM-Transformer + 
DaSiamRPN 

33.70 74.10 21.2 39.7 307 3998 84 

YOLOv5-CBAM +DaSiamRPN 37.80 75.90 19.4 36.2 311 14427 171 
The proposed 
YOLOv5-CBAM+Modified-
SiamRPN 

37.30 76.40 12.6 45.8 591 12769 198 

The proposed 
YOLOv5-CBAM-
Transformer+Modified-SiamRPN 

38.90 76.70 15.5 32.7 276 15962 247 

 
    In summary, though the detection speed of our proposed  model is not the fastest 
one in FPS, the detection precisions under the same conditions is higher than that of 
other compared models. We found that our model can effectively improve the accu-
racy by 1.1%. Moreover, compared to other Siamese Networks (DaSiamRPN), our 
modification of SiamRPN performs more prominently in vehicle tracking tasks. 
 
5. Conclusion and future directions 

The proposed method for multiple target detection, tracing, and scene understanding 
improves the understanding ability of high level semantic as well as enhencing the 
extraction ability both of globle feature and local feature. Different from other single 
target tracking using SiamRPN, we achieve successful multitarget tracking. From 
the traffic scene, we created and labelled a new benchmark dataset that is available 
for a public use.  

In this project, we are use of a frame-based approach, where video information is 
processed frame by frame. We plan to take account of spiking neural networks and 
dynamic vision sensors (DVS) as further research work to achieve asynchronous 
detection of minute changes in the scene and ensure incremental, online learning 
and a better interpretation of the scene [11, 12, 14, 19, 33, 48]. 
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