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Abstract. Given the prevalence of worldwide pandemics, the need of
adhering to appropriate mask use becomes more paramount. Therefore,
the importance of developing a human face mask detection model that is
both efficient and accurate cannot be overstated. Nevertheless, there is a
need for additional enhancement in the accuracy and efficiency of mask
detection algorithms, particularly in dealing with increasingly complex
scenarios. In this paper, we make a valuable contribution to the cur-
rent literature by utilizing Swin Transformer model to address mask
detection challenges. The Swin Transformer, an innovative deep learn-
ing architecture, has shown remarkable effectiveness in computer vision
applications. The main aim of our research work is to assess the efficacy
of the Swin Transformer in improving precision and efficiency of mask
detection. Our methodology includes the careful selection of datasets,
design of model architecture, and implementation of experimental set-
tings. The test results show that our suggested model, Swin+YOLOVS,
surpassed the baseline models in terms of accuracy and mean average
precision (mAP). The research outcomes of this paper will facilitate the
advancement of general object detection and make a valuable contribu-
tion to the improvement of public health and safety.
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1 Introduction

In current worldwide pandemic, the use of masks has become imperative in pub-
lic settings, serving a crucial function in safeguarding people’s well-being. The
development of accurate and efficient mask detection is a significant problem,
particularly in diverse contexts such as surveillance recordings in crowded public
areas, individual or group photographs, and social media platforms. Given the
context, the primary objective of this paper is to construct a proficient mask
detection model using deep learning [25].

Currently, there exists a number of conventional machine learning methods
as well as deep learning approaches for the purpose of mask detection [5]. These
include feature-based methods, convolutional neural networks (CNN) [9], and
recurrent neural networks (RNN) [1]. Nevertheless, there is a need for enhancing



2 X. Gao et al.

the accuracy and efficiency of mask detection algorithms. Recently, there has
been a notable surge in the interest of academics towards Transformer models,
particularly Swin Transformer [13], owing to its exceptional efficacy in a diversity
of computer vision applications. The advent of Swin Transformer presents a novel
approach to address visual problems, including image classification and object
recognition. In contrast to conventional convolutional neural networks, it exhibits
notable benefits in resolving long-range problems.

The primary contribution of this paper is in the use of Swin Transformer
model for the purpose of conducting mask detection, leveraging its window par-
titioning and self-attention mechanism. The objective of this paper is to assess
the effectiveness of the model in enhancing the accuracy and efficiency of mask
detection. Additionally, this research project aims to provide a novel solution
for the practical application of mask recognition. The outcomes of our study
will facilitate the progress of mask detection technology and make a valuable
contribution to enhancing public health safety.

The following sections provide a comprehensive account of our study method-
ologies and the detailed findings obtained from our experiments. In this paper, we
will commence by conducting a comprehensive examination of pertinent studies
on mask detection and the fundamental principles underlying the Swin Trans-
former. Subsequently, we will present our approach, encompassing the selection
of datasets, model architecture, and experimental configurations. Following this,
we will meticulously discuss our experimental findings, including a detailed com-
parison and analysis of model performance. Ultimately, we will summarise our
contributions and deliberate on potential avenues for future research.

2 Related work

Deep learning algorithms [26] have been the dominant approaches in contem-
porary mask recognition challenges. There are two often adopted deep learning
methods [6]. The two-stage target detection paradigm encompasses two distinct
stages: feature extraction and feature classification, effectively partitioning the
target detection process, such as Faster R-CNN [14]. Another approach is a
single-stage object detection model. This model has the capability to immedi-
ately derive classification outcomes using the regression approach, hence enabling
real-time detection, such as You Only Look Once (YOLO) [3].

Ren et al. reviewed the identification of mask-wearing using the YOLOv3
algorithm [16]. The work proposed an enhanced Face_Mask Net identification
approach based on a convolutional neural network (CNN) to address the labor-
intensive task of manually finding masks. In the work, enhancements were made
to the non-maximum Suppression (NMS) module of YOLOv3 [10]. The Distance-
IoU (DIoU) metric is proposed as a replacement for the popular Intersection over
Union (IoU) metric in Non-Maximum Suppression (NMS) algorithms. The use
of the K-Means algorithm aims to optimize anchor boxes and enhance the accu-
racy of object identification. The training and testing procedures are conducted
by using the self-collected Face_Mask dataset. The experimental findings of the
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Face_Mask Net model demonstrate its efficacy in detecting the presence of masks
on individuals, with a great level of accuracy compared to the pre-trained net-
works.

Ye et al. discussed a mask-wearing detection algorithm based on an improved
YOLOv4 network [27]. The improved algorithm integrates the CBAM attention
mechanism and depthwise over-parameterized convolution (DO-Conv) to en-
hance accuracy and reduce the number of parameters. The experimental results
using a dataset of approximately 4000 images show that the improved algorithm
achieves significantly higher recognition accuracy than the original algorithm
and algorithm outperforms current mainstream algorithms in terms of recogni-
tion accuracy.

Yu et al. utilized YOLOv4 model to accurately identify and classify face
masks, as well as determine if they are being worn correctly according to es-
tablished guidelines [29]. The study focuses on the challenges posed by intricate
surroundings, including poor precision, real-time performance, and resilience.
The experimental findings indicate that the algorithm attains a mean average
accuracy (mAP) of 98.3% and exhibits a notable frame rate of 54.57 FPS.

The YOLOv5+CBD method was built on an enhanced iteration of the YOLOvH
model [8]. This approach aims to tackle several issues encountered in computer
vision, including occlusion, dense targets, and small-scale objects. The proposed
approach integrates many techniques to enhance the accuracy of object recog-
nition. These techniques include the use of the Coordinate Attention mecha-
nism, the incorporation of a weighted bidirectional feature pyramid network,
and the implementation of Distance Intersection over Union with Non-Maximum
Suppression. The experimental findings demonstrated that the YOLOv5+CBD
model attains a detection accuracy of 96.7%, exhibiting a notable enhancement
of 2.1% in comparison to the baseline model.

Wang et al. proposed a face mask-wearing detection model based on a loss
function and attention mechanism [21]. An attention mechanism was integrated
in the feature fusion process to improve feature utilization and explore different
attention mechanisms to enhance deep network models. The impact of different
bounding box loss functions was investigated on mask-wearing recognition. The
model achieved a mean average precision (mAP) of 90.96% on a dataset of mask-
wearing images, outperforming traditional deep learning methods.

Wang et al. introduced a new mask-wearing detection model called YOLOvT-
CPCSDSA [20]. This model combined YOLOv7 base model with the CPC struc-
ture, SD structure, and SA mechanism. The CPC structure reduces computa-
tional redundancy and improves memory access, while the SD structure enhances
the detection of small targets. The SA mechanism focuses on important local
information, further improving accuracy. Comparative and ablation experiments
using a mask dataset validate the effectiveness of the YOLOv7-CPCSDSA model.
The results show that the model achieves higher mean average precision com-
pared to YOLOvV7 and meets real-time detection requirements [22].

Deng et al. proposed an enhanced mask-wearing inspection algorithm based
on the single shot multibox detector (SSD) algorithm [2]. The algorithm incor-
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porated with inverse convolution, feature fusion, and attention mechanisms to
improve the accuracy of mask-wearing detection. A dataset with 3,656 manually
labeled images was created for training the network. The experimental results
demonstrate that the algorithm has good accuracy for mask-wearing inspection,
with an average accuracy of 91.7%.

Jests et al. examined the identification of improper face mask use via the
utilization of convolutional neural networks (CNNs) with transfer learning. The
machine learning methods, namely convolutional neural networks [17] were em-
ployed. A comprehensive analysis of the difficulties encountered in construct-
ing a training dataset for the given task was conducted, while also providing
a thorough examination of the existing literature pertaining to artificial intel-
ligence (AI) technological approaches. A comprehensive overview of initiatives
that have devised Al-enabled systems for the purpose of mask identification was
taken, exhibiting diverse degrees of precision and efficacy.

Xue et al. presented an intelligent detection and recognition system for mask-
wearing based on an improved RetinaFace algorithm [24]. It consists of a face
mask detection algorithm, a mask standard wearing detection algorithm, and a
face recognition algorithm. The system utilizes the improved RetinaFace algo-
rithm for real-time detection of mask-wearing and identification of proper mask
usage. It also incorporates a voice prompt module to assist in the functionality
of the system. The system has been tested and proven effective in achieving its
purpose of face mask detection and recognition.

Ullah et al. described a novel algorithm for mask detection and recognizing
human actions during the COVID-19 pandemic [18]. The proposed method for
detecting face masks uses the Mask R-CNN ROI wrapping with the Resnet-
152 algorithm and evaluates the model using Apache MXNet. The article also
emphasizes the need for developing Al, IoT, big data, and machine learning
technologies.

Swin Transformer was introduced as a general-purpose backbone for com-
puter vision in 2021 [13], which addresses the challenges of adapting the Trans-
former from language to vision by proposing a hierarchical Transformer with
Shifted windows. The Swin Transformer outperforms previous state-of-the-art
models in ImageNet 1K image classification, visual object detection, and seman-
tic segmentation tasks. Due to the superiority of Swin transformer in the field
of vision, more and more researchers apply Swin transformer to vision tasks.
Ye et al proposed to solve the difficulty of simultaneously completing masked
face detection [19] and recognition tasks by enhancing the performance of Swin
Transformer in the field of face feature extraction [28].

Zeng et al. successfully proposed a novel framework called Swin+CasUNet
based on Swin Transformer for the restoration of masked faces [31]. Previous
studies have acknowledged pain expression recognition by considering the whole
face, and Yuan et al. used the Swin Transformer model to recognize pain intensity
by recognizing the whole face [30]. It is becoming more and more common to
use Swin Transformer for vision tasks.
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3 Methodology

In this paper, we present a novel deep learning model for human face mask de-
tection, which is built on the integration of YOLOvS8 [23] and Swin Transformer.
The objective of our paper is to identify facial features in photographs and as-
certain the presence or absence of masks on individuals. The model structure of
the Swin Transformer [15] is adopted in our approach. The recognition step use
the detection module of YOLOvS. The network architecture in our paper has
two main components: A backbone network responsible for extracting features,
and a head network dedicated to making predictions.

3.1 Backbone

The backbone component is employed for the purpose of feature extraction. It
is comprised of many PatchEmbed, SwinStage, and PatchMerging modules [13].
The first step is the use of the PatchEmbed module to partition the input picture
into patches with dimensions of 4 x 4. Subsequently, these patches are encoded.
Subsequently, the SwinStage module proceeds to extract the characteristics of
these compact units by using the self-attention process. The PatchMerging mod-
ule is responsible for the consolidation of neighbouring tiny blocks, therefore re-
ducing the computational complexity of future computations and enhancing the
model’s capacity to accurately identify bigger items. As shown in Figure 1, the
aforementioned procedure undergoes numerous iterations inside the SwinStage
and PatchMerging modules.

3.2 Head

The primary function of the head network is to convert the extracted character-
istics obtained from the backbone network into the ultimate prediction outcome.
Initially, by using a sequence of upsampling and connecting procedures, we inte-
grate characteristics of varying sizes. The integration of these fusion operations
allows our model to effectively process objects of varying sizes concurrently. Next,
the Conv module is applied to do a convolution operation in order to extract
more features. Ultimately, by use of the Detect module, the model generates the
predicted outcomes for each category, along with the matching bounding box.
The comprehensive network architecture is shown in Figure 1.

The YOLOv8 model was included in our methodology for the purpose of
mask detection. Initially, the input picture undergoes a preprocessing stage. The
input picture is transformed into a PyTorch tensor and the pixel values are
normalised from the range of 0 ~ 255 to the range of 0.0~ 1.0. Subsequently,
the YOLO model is proffered to provide predictions on the preprocessed images.
The outcome of the prediction is a collection of object candidate boxes, with
each box carrying the associated category and a measure of confidence.

Following the acquisition of the predicted outcomes, postprocessing was con-
ducted based on the obtained findings. The Non-Maximum Suppression (NMS)
method is propounded to eliminate object candidate boxes that overlap and to
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Fig. 1. Structure of Swin+YOLO model

maintain the box with the greatest confidence [7]. Subsequently, the coordinates
of the remaining object recommendations are converted from the scale of the
input picture to the scale of the original image.

NMS is a populat post-processing approach in the field of object detection.
The primary objective of NMS is to address the problem of redundant detec-
tion boxes that arise from the prediction of numerous bounding boxes for the
same item, frequently exhibiting substantial overlap. If left unattended, there is
a possibility that the same item might be identified many times, which would
subsequently lead to a decline in the quality of the detection results. There-
fore, it is essential to develop a methodology that can effectively remove these
intersecting candidate boxes, while preserving just the most ideal one.

The use of NMS offers a viable resolution to this issue. The system functions
by arranging the candidate bounding boxes in accordance with their respective
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confidence ratings. The bounding box exhibiting the largest confidence score is
selected and any other bounding boxes with substantial overlap are removed.
Confidence scores are determined from Intersection over Union (IoU) metrics
that exceed a certain threshold. The aforementioned procedure is iterated until
all candidate boxes have been processed. The calculation of the IoU between two
bounding boxes, denoted as A and B, is listed as follows.

|AN B
— 1 1
AU B S

where |AN B| denotes the area of overlap between A and B, and |AU B| denotes
the area encompassed by A and B. As a consequence of this procedure, a singu-
lar bounding box is preserved for each item, namely the one with the greatest
confidence score out of all potential options. This greatly improves the accuracy
and reliability of the detection outcomes.

In summary, we instantiate a Results object that encompasses the original
picture, image URL, category name, and information about the object contender
box. In general, our approach utilises the robust detection capabilities of the
YOLO model and incorporates preprocessing and postprocessing techniques,
facilitating the direct application of the model to mask detection problems.

IoU(A, B)

3.3 Model Training

In this paper, the mask detection dataset was harnessed, including 853 images
encompassing a collective count of 4072 faces [11]. The dataset contains facial
images that have been labelled with one of three distinct labels: “with_mask”,
“without_mask”, or “mask_weared_incorrect”. The dataset presented below offers
an extensive collection of instances suitable for training our models, including
a wide range of scenarios that depict the many ways in which masks are either
worn or not worn.

The face mask detection dataset was partitioned into training, validation,
and test sets by using a random splitting method. The training set comprises
80% of the whole dataset, while the validation set is 5% and the test set repre-
sents 15%. During the training process, it is essential to continuously check the
loss and accuracy metrics on the validation set in order to mitigate the risk of
overfitting. Overfitting is a phenomenon that arises when a model exhibits high
performance on the training dataset, but fails to generalise well to unknown data.
This discrepancy suggests that the model has excessively focused on memorising
the training data, rather than acquiring the ability to generalise from it.

During the course of the studies, the models are trained, validated, and tested
on Google Colab using Tesla T4 GPU. The model under consideration has been
trained for a total of 100 epochs using the dataset specifically designed for mask
detection. The training process was conducted using a batch size of 8. An epoch
signifies a whole iteration throughout the entirety of the dataset. Every epoch
is comprised of a forwards pass and a backwards pass. After the training was
completed, we evaluated the model’s performance on a separate test set that the
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model had not seen during training. This allowed us to assess the model’s ability
to generalize to unseen data, which is crucial for its practical application.

During the process of training the model, the cross-entropy loss function
was created. The cross-entropy loss function is widely employed as a means
of measuring the predictive performance of classification issues [4]. The metric
quantifies the disparity between the probability distribution projected by the
model and the observed probability distribution. The mathematical formulation
for classification issues may be expressed as follows.

N
Losscpr = —% ; yilog(pi) + (1 — y;) log(1 — p;) (2)
where N represents the total number of samples, y; is the actual label of the 4
sample (either 0 or 1), and p; represents the probability assigned by the model
to the ¢ sample belonging to the positive class.

The cross-entropy loss function is adopted in our mask detection job to opti-
mise the predictive performance of the model. The model provides a probability
value for each picture, indicating the likelihood of the individual in the image
wearing a mask. The projected probability value is compared to the actual label,
which indicates whether the individual is wearing a mask, in order to compute
the cross-entropy loss. During the training phase, the objective is to minimise
the aforementioned loss.

In order to enhance the performance of the model, we take use of the Adam
optimizer, which is a kind of adaptive learning rate optimisation technique specif-
ically developed to mitigate the issues of gradient sparsity and noise that may
arise during the training phase. Furthermore, we implemented an early stopping
technique, whereby the training process is halted when the loss on the valida-
tion dataset fails to exhibit a drop across a consecutive number of epochs. Upon
the completion of the training process, we proceeded to save the model that
exhibited the highest performance on the validation set.

By using this approach, our model demonstrates proficiency in accurately
detecting the presence of individuals in the picture and determining if they are
wearing facial masks. The performance of our model on the test set demonstrates
its superiority over other current mask detection methods.

4 Experimental Results and Analysis

4.1 Evaluation Index

Mean Average Precision Mean Average Precision (mAP) [12] is a metric to
determine the performance of an object detection algorithm. mAP is the average
of multiple class average precision (AP), where the AP for each class is calculated
from the detection results of that class. The specific formula is as follows,

N
1
AP = — AP;
m C; (3)
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where C represents the total number of classes. where mAP is one of the most
popular indicators in object detection, and it is usually utilized to evaluate the
accuracy and reliability of object detection algorithms. In order to better eval-
uate the performance, we use mAP50 and mAP50-95 for evaluation. mAP50
indicates the mAP value when IoU is 0.5. mAP50 — 95 indicates the mAP value
when IoU is 0.5~ 0.95.

Precision-Recall Curve The precision-recall curve (PR-cure) is the curve of
the model for the confidence score threshold element. The horizontal axis is the
recall rate, indicating the proportion of detected positive samples to all positive
samples. The recall formula is,

Precisi TruePositives (@)
recision =
TruePositives + FalsePositives

The vertical axis is precision, which represents the proportion of the true
correct number of detected positive samples to the total number of detected
samples. The exact formula is,

Recall TruePositives (5)
ecall =
TruePositives + FalseNegatives

In visual object detection, mAP is precisely determined by calculating the
area under the precision-recall curve. That is to say, the larger the area under
PR-cure, the larger the m AP value, and the better the performance of the model.

4.2 Experimental results and analysis

Experimental results To accurately assess the variation in detection speed
across various models, we conducted a comparative analysis by subjecting two
baseline models, namely YOLOv7 and YOLOVS, to identical data set conditions
for detection purposes. The results are shown in Table 1.

Table 1. Comparison of detection speed between YOLOv7 and YOLOv8

Model Total time|Average time|Number of detected images|GPU
YOLOv8n|464.2ms |42.2ms 11 Tesla T4
YOLOv7 |12060ms |1096ms 11 Tesla T4

Based on the facts shown in Table 1, it is evident that the experimental con-
ditions and inference dataset remain consistent. The YOLOv8n model exhibits
much quicker reasoning speed compared to the YOLOv7 model. The inference
speed of YOLOvS8n is 11596ms greater than that of YOLOv7. On average, there
is a speed improvement of 1053 milliseconds per image.

While it has been shown that the model using YOLOvV7 is comparatively
less efficient than the model employing YOLOVS, for the purpose of enhancing
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the reliability of the experimental findings, we have opted to choose a model
based on YOLOv7 for the comparative experiment. To enhance the assessment
of the model’s performance, we conducted sequential training on the dataset
using YOLOv7+CBAM, YOLOV8n, YOLOV8n+DCNv2, and Swin+YOLOVS.
Table 2 displays the parameters pertaining to the four sets of models.

Table 2. Comparison of four models

Model Layers|Parameters| FLOPs|Gradients
YOLOv7+CBAM |415 |37207344 |105.1 (37207344
YOLOv8n 225 3011433 8.2 3011417

YOLOV8n+DCNv2|225  |3167863 7.7 3167847
Swin+YOLOvS8 348 51382394 |455.5 [51382378

Based on the data presented in Table 2, it is evident that there are significant
variations in several parameters across different models. In terms of the network
layer count, YOLOvV8 exhibits a smaller number of network layers compared to
YOLOv7. The YOLOv8 model using SwinTransformer exhibits a greater number
of layers compared to the YOLOv8 model without SwinTransformer. From a
parameterization standpoint, it can be seen that the SwinTransformer model
has a greater overall parameter count compared to other models. Based on the
number of parameters, it can be initially deduced that the training duration of
the SwinTransformer model is expected to be the longest.

Based on the obtained training outcomes, the mask detection accuracy achieved
using the YOLOv7+CBAM model is 92%. The recall rate, which measures the
proportion of true positive instances correctly identified, is 0.84. The mean av-
erage precision at a threshold of 50% (mAP50) is 0.90, while the mean average
precision throughout a range of thresholds from 50% to 95% (mAP50-95) is
0.609. The total duration of the training process amounts to 2.260 hours. The
mask detection accuracy achieved by using the YOLOv8n model is 91.7% in
terms of precision. The recall rate is measured at 0.823, while the mean Average
Precision at mAP50 stands at 0.903. Furthermore, the mean Average Precision
throughout the range of mAP50-95 is calculated to be 0.663. Lastly, the train-
ing process for this model requires 2.341 hours. The YOLOV8n+DCNv2 model
achieves a precision of 94.4% in detecting masks. The recall rate is 0.843, in-
dicating the model’s ability to accurately identify positive instances. The mean
Average Precision at mAP50 is 0.909, reflecting the model’s performance in ob-
ject identification. The mAP50-95, which measures the average accuracy across
different overlap thresholds, is 0.668. The training process for this model is 2.478
hours. The Swin+YOLOv8 model achieved a mask detection accuracy of 96.1%.
The recall rate is measured at 0.906, while the mAP50 and mAP50-95 scores are
reported as 0.962 and 0.727, respectively. The training process for this model
takes around 3.999 hours. Table 3 is derived from the training outcomes of each
model.
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Table 3. The training results for YOLOv8n, YOLOV8n+DCNv2, YOLOv8s, DSOTAs

Model Name Precision|Recall| mAP50{mAP50-95| Training Time (Hour)
YOLOv7+CBAM [0.920 0.840 10.903 |0.609 2.260
YOLOV8n 0.917 0.823 |0.903 |0.663 2.341

YOLOV8n+DCNv2(0.944 0.824 |0.909 |0.668 2.478
Swin+YOLOv8 0.961 0.906 |0.962 |0.727 3.999

The disparity in accuracy often elicits an intuitive perception of the variance
in model performance. The data illustrates that the training speed of the three
models using YOLOv8n is comparatively slower in comparison to YOLOvT. Nev-
ertheless, the detection accuracy of the three models using YOLOvVS is consis-
tently high. In particular, the YOLOV8n+DCNv2 model demonstrates a 2.4%
increase in accuracy compared to the YOLOv7+CBAM model. The precision
of Swin+YOLOv8 surpassed that of YOLOv7+CBAM by 4.1%. Moreover, it
has been seen that models using Swin+YOLOv8 or YOLOV8n+DCNv2 exhibit
superior performance compared to models that do not use the Transformer ar-
chitecture. The model’s accuracy, while using YOLOV8n+DCNv2, achieves a
level of 94.4%. The Swin+YOLOv8 model achieves a model accuracy of 96.1%,
surpassing the other three models and attaining the greatest accuracy.

The duration required for training a model using a Swin Transformer ar-
chitecture exceeds that of a model without Swin Transformer. However, the
performance of this model in terms of accuracy is superior when utilizing a
Transformer. The training duration of YOLOvS8n is 1.5 hours shorter compared
to Swin+YOLOvVS. The precision of YOLOv&n is observed to be 1.7% inferior
in comparison to Swin+YOLOvS8. The model using Transformer exhibits higher
accuracy compared to YOLOv8n. The mean Average Precision (mAP) value of
Swin+YOLOvS is seen to be greater compared to the model that does not in-
clude other models. Frequently, a higher mAP number is indicative of a more
pronounced impact of the model. In contrast to the model without Swin Trans-
former, Swin+YOLOv8 has the highest mAP value of 0.961.

Error Analysis Our model produces erroneous results on real mask detection.
For example, in the detection results of Figure 2, the person at the top of the
image wears the mask correctly. But the reality is that the person at the top
of the image is wearing a mask incorrectly. We found multiple similar errors in
our detection results. Through the analysis of the error results, it is found that
errors are prone to occur when detecting people wearing masks on the side face.
Inspection of the dataset shows that the dataset has only a small number of
images of people wearing masks in profile. We will collect more profiles of people
wearing masks in future work.
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Fig. 2. One instance of a human face mask image that has been erroneously categorised.

5 Conclusion

In this paper, we introduce a fresh use of Swin Transformer model in the context
of mask detection challenges. The proposed model, referred to as Swin+YOLOvVS,
combines Swin Transformer with the detection module YOLOvS8. This integra-
tion showcases the enhanced performance compared to the existing mask detec-
tion models. The findings indicated that Swin+YOLOv8 model exhibited a mask
detection accuracy 96.1% and a mean average precision (mAP) of 0.962, therefore
exceeding the performance of traditional models. The use of Swin Transformer
inside our model enabled the management of complicated situations and com-
plex data, demonstrated its efficacy in augmenting the precision and efficiency
of mask identification jobs.

Nevertheless, the research outcomes also revealed that the Swin+YOLOv8
model required a lengthier training period compared to the other models. This
observation underscores the possibility of a compromise between the perfor-
mance of the model and its computing efficiency. Subsequent investigations may
prioritise the refinement of the training procedure for Swin Transformer-based
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models, with the aim of achieving an optimal equilibrium between computational
expenditure and performance outcomes.

In conclusion, this research work makes a valuable contribution to the ex-
isting body of knowledge on mask recognition technology by showcasing the
considerable potential of the Swin Transformer in effectively identifying masks.
The Swin+YOLOvVS8 has the potential in practical scenarios to augment public
health security, particularly in times of pandemics.

References

1. Addagarla, S.K., Chakravarthi, G.K., Anitha, P.: Real time multi-scale facial mask
detection and classification using deep transfer learning techniques. International
Journal 9(4), 4402-4408 (2020)

2. Deng, H., Zhang, J., Chen, L., Cai, M.: Improved mask wearing detection algo-
rithm for SSD. In: Journal of Physics: Conference Series. vol. 1757, p. 012140. IOP
Publishing (2021)

3. Diwan, T., Anirudh, G., Tembhurne, J.V.: Object detection using YOLO: Chal-
lenges, architectural successors, datasets and applications. Multimedia Tools and
Applications 82(6), 9243-9275 (2023)

4. Du, Z., Su, J., Ding, J., Liu, Z.: Research on YOLO-v3 road target detection based
on the combination of K-means++ algorithm and cross-entropy loss function. In:
International Conference on Electronic Information Technology (EIT 2022). vol.
12254, pp. 756-760. SPIE (2022)

5. Gao, X., Nguyen, M., Yan, W.Q.: Face image inpainting based on generative ad-
versarial network. In: International Conference on Image and Vision Computing
New Zealand (IVCNZ). pp. 1-6. IEEE (2021)

6. Gao, X., Nguyen, M., Yan, W.Q.: A method for face image inpainting based on
autoencoder and generative adversarial network. In: Pacific-Rim Symposium on
Image and Video Technology. pp. 24-36. Springer (2022)

7. Gong, M., Wang, D., Zhao, X., Guo, H., Luo, D., Song, M.: A review of non-
maximum suppression algorithms for deep learning target detection. In: The Sym-
posium on Novel Photoelectronic Detection Technology and Applications. vol.
11763, pp. 821-828. SPIE (2021)

8. Guo, S., Li, L., Guo, T., Cao, Y., Li, Y.: Research on mask-wearing detection
algorithm based on improved YOLOv5. Sensors 22(13), 4933 (2022)

9. Kattenborn, T., Leitloff, J., Schiefer, F., Hinz, S.: Review on convolutional neural
networks (CNN) in vegetation remote sensing. ISPRS Journal of Photogrammetry
and Remote Sensing 173, 24-49 (2021)

10. Le, H., Nguyen, M., Yan, W.Q., Nguyen, H.: Augmented reality and machine
learning incorporation using YOLOv3 and ARKit. Applied Sciences 11(13), 6006
(2021)

11. Li, X., Wang, W., Wu, L., Chen, S., Hu, X., Li, J., Tang, J., Yang, J.: Mask dataset,
https://makeml.app/datasets/mask

12. Li, Y., Li, S., Du, H., Chen, L., Zhang, D., Li, Y.: Yolo-acn: Focusing on small
target and occluded object detection. IEEE Access 8, 227288-227303 (2020)

13. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: IEEE/CVF
International Conference on Computer Vision. pp. 10012-10022 (2021)



14

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

X. Gao et al.

Maity, M., Banerjee, S., Chaudhuri, S.S.: Faster R-CNN and YOLO based vehicle
detection: A survey. In: International Conference on Computing Methodologies
and Communication (ICCMC). pp. 1442-1447. IEEE (2021)

Qi, J., Nguyen, M., Yan, W.Q.: Small visual object detection in smart waste clas-
sification using transformers with deep learning. In: International Conference on
Image and Vision Computing New Zealand. pp. 301-314. Springer (2022)

Ren, X., Liu, X.: Mask wearing detection based on YOLOv3. In: Journal of Physics:
Conference Series. vol. 1678, p. 012089. IOP Publishing (2020)

Tomas, J., Rego, A., Viciano-Tudela, S., Lloret, J.: Incorrect facemask-wearing de-
tection using convolutional neural networks with transfer learning. In: Healthcare.
vol. 9, p. 1050. MDPI (2021)

Ullah, N., Javed, A., Ghazanfar, M.A., Alsufyani, A., Bourouis, S.: A novel deep-
masknet model for face mask detection and masked facial recognition. Journal
of King Saud University-Computer and Information Sciences 34(10), 9905-9914
(2022)

Wang, H., Yan, W.Q.: Face detection and recognition from distance based on deep
learning. In: Aiding Forensic Investigation Through Deep Learning and Machine
Learning Frameworks, pp. 144-160. IGI Global (2022)

Wang, J., Wang, J., Zhang, X., Yu, N.: A mask-wearing detection model in complex
scenarios based on YOLOv7-CPCSDSA. Electronics 12(14), 3128 (2023)

Wang, Z., Sun, W., Zhu, Q., Shi, P.: Face mask-wearing detection model based
on loss function and attention mechanism. Computational Intelligence and Neuro-
science 2022 (2022)

Xia, Y., Nguyen, M., Yan, W.Q.: A real-time kiwifruit detection based on im-
proved YOLOvT7. In: International Conference on Image and Vision Computing
New Zealand. pp. 48-61. Springer (2022)

Xiao, B., Nguyen, M., Yan, W.Q.: Fruit ripeness identification using YOLOv8
model. Multimedia Tools and Applications pp. 1-18 (2023)

Xue, B., Hu, J., Zhang, P.: Intelligent detection and recognition system for mask
wearing based on improved retinaface algorithm. In: International Conference on
Machine Learning, Big Data and Business Intelligence (MLBDBI). pp. 474-479.
IEEE (2020)

Yan, W.Q.: Introduction to Intelligent Surveillance: Surveillance Data Capture,
Transmission, and Analytics. Springer (2019)

Yan, W.Q.: Computational Methods for Deep Learning: Theory, Algorithms, and
Implementations. Springer Nature (2023)

Ye, Q., Zhao, Y.: Mask wearing detection algorithm based on improved yolov4. In:
Journal of Physics: Conference Series. vol. 2258, p. 012013. IOP Publishing (2022)
Ye, Z., Zhang, H., Liu, Q.: Swtface: A multi-branch network for masked face de-
tection and recognition. In: International Conference on Pattern Recognition and
Artificial Intelligence (PRAI). pp. 381-387. IEEE (2022)

Yu, J., Zhang, W.: Face mask wearing detection algorithm based on improved
YOLO-v4. Sensors 21(9), 3263 (2021)

Yuan, X., Zhang, S., Zhao, C., He, X., Ouyang, B., Yang, S.: Pain intensity recogni-
tion from masked facial expressions using swin-transformer. In: IEEE International
Conference on Robotics and Biomimetics (ROBIO). pp. 723-728. IEEE (2022)
Zeng, C., Liu, Y., Song, C.: Swin-CasUNet: Cascaded U-Net with Swin Transformer
for masked face restoration. In: International Conference on Pattern Recognition
(ICPR). pp. 386-392. IEEE (2022)



