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Abstract. In this paper, we propose an improved YOLOv8-based Kiwifruit de-
tection method using Swin Transformer, aiming to address challenges posed by 
significant scale variation and inaccuracies in multiscale object detection. Spe-
cifically, our approach embeds the encoder from Swin Transformer, based on its 
sliding-window design, into the YOLOv8 architecture to capture contextual in-
formation and global dependencies of the detected objects at multiple scales, fa-
cilitating the learning of semantic features. Through comparative experiments 
with the state-of-the-art object detection algorithms on our collected dataset, our 
proposed method demonstrates efficient detection of objects at different scales, 
significantly reducing false negatives while im-proving precision. Moreover, the 
method proves to be versatile in detecting objects of various sizes in different 
environmental settings, fulfilling the real-time requirements in complex and un-
known Kiwifruit cultivation scenarios. The results highlight the potential practi-
cal applications of the pro-posed approach in Kiwifruit industry, showcasing its 
suitability for addressing real-world challenges and complexities. 

Keywords: Object detection × Transformer × Multiscale object detection × 
YOLOv8. 

1 Introduction 

The detection of visual objects from digital images is a fundamental and challenging 
problem in computer vision, with numerous applications ranging from autonomous 
driving to precision agriculture [18]. In particular, accurate and efficient detection of 
Kiwifruits from multiscale images is of utmost value for Kiwifruit industry, enabling 
better monitoring, assessment, and management of Kiwifruit cultivation processes [15]. 
However, this task poses salient challenges, including significant scale variation, oc-
clusion, and the presence of complex backgrounds, which can lead to inaccuracies and 
increased computational requirements in traditional object detection methods [3, 27]. 

To overcome these challenges, in this paper we propose an advanced Kiwifruit de-
tection method that combines the strengths of Swin Transformer and YOLOv8 frame-
works together. Swin Transformer has demonstrated the state-of-the-art performance 
in various computer vision tasks, particularly in capturing long-range dependencies and 
contextual information within given images [12]. Meanwhile, YOLOv8, an evolution 
of the popular YOLO (You Only Look Once) architecture, is renowned for its capabil-
ities and versatility of visual object detection in real time [19]. By integrating Swin 
Transformer into YOLOv8, we aim to enhance the model ability to accurately and 
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efficiently detect Kiwifruits across a variety of scales and complex environments. The 
main contributions of this research are: 

• Enhanced multiscale detection. Swin Transformer augmented YOLOv8 effectively 
handles the challenge of multiscale Kiwifruit detection. By leveraging the hierar-
chical transformer architecture, the model efficiently captures context and depend-
encies across various image scales, enabling it to detect Kiwifruits accurately regard-
less of their size. 

• Improved precision and recall. The proposed method reduces false negatives and 
false positives, achieving a more balanced precision-recall trade-off. The integration 
of Swin Transformer enhances the model's understanding of complex scenes, lead-
ing to more reliable and precise Kiwifruit detection results. 

• Versatility in real world settings. Our approach demonstrates strong adaptability to 
diverse environmental conditions, making it well-suited for real-time Kiwifruit de-
tection in complex and unknown cultivation scenarios. This feature is crucial for 
practical applications in Kiwifruit industry, where unpredictable conditions are prev-
alent. 

To evaluate the effectiveness of our proposed method, we have collected a compre-
hensive dataset of multiscale Kiwifruit images from geographical locations and culti-
vation setups. We conduct extensive experiments and compare the performance of our 
approach against the state-of-the-art object detection methods, including traditional 
YOLOv8 and other transformer-based models. 

The rest of this paper is organized as follows: We provide a detailed review of related 
work in object detection, transformer-based models, and their applications in agricul-
tural contexts in Section 2. In Section 3, we present the methodology, explaining the 
integration of Swin Transformer and YOLOv8 for multiscale Kiwifruit detection. In 
Section 4, we describe experimental setup, dataset, and evaluation metrics to assess the 
proposed method and the results of the experimental outcomes, demonstrating the su-
periority of our approach over existing methods. Finally, in Section 5, we conclude the 
paper and discuss the contributions, limitations, and future directions for research in 
this area. 

2 Literature Review 

Fruit detection is a crucial task in precision agriculture and automated harvesting sys-
tems [22, 23]. Accurate and efficient fruit detection is essential for yield estimation, 
crop monitoring, and fruit quality assessment. In recent years, with the advent of deep 
learning, a number of approaches have been proposed for fruit detection using Convo-
lutional Neural Networks (CNNs), YOLO model, and transformer-based models [11, 
24, 25]. Fruit detection using deep learning methods has shown promising results. 
CNNs have been widely employed for visual object detection tasks, including fruit de-
tection. The YOLO model, known for its real-time object detection capabilities, has 
been adapted for fruit detection tasks. YOLO models have been extended to improve 
its accuracy and handle multiscale fruit detection. Transformer-based models, 



originally developed for natural language processing, have also been explored for fruit 
detection [4]. 

2.1 Traditional CNN Models 

Traditional CNN models have served as the backbone for a slew of deep learning-based 
object detection tasks, including fruit detection [11, 13]. AlexNet, VGG, and ResNet 
are among the most influential CNN architectures that have significantly contributed to 
advancements in computer vision [4, 5]. 

AlexNet was one of the pioneering CNN architectures that achieved a breakthrough 
in the ImageNet competition. It comprises multiple convolutional and pooling layers, 
followed by fully connected layers. AlexNet's success motivated the widespread adop-
tion of CNNs in various vision tasks, including fruit detection [8]. 

VGG employs a deep network with small (3´3) convolutional filters. The use of 
smaller filters enables a deeper exploration of spatial information, leading to improve 
feature representation. VGG has been broadly applied to fruit detection tasks, achieved 
high accuracy in identifying various fruit categories. 

ResNet introduced the concept of residual connections to address the vanishing gra-
dient problem in very deep networks [7]. By introducing skip connections that enable 
the direct flow of gradients, ResNet allowed training significantly deeper networks. In 
fruit detection applications, ResNet as a feature extractor has achieved competitive per-
formance. 

2.2 YOLO Model 

The initial version of YOLO models, YOLOv1, provided real-time object detection but 
faced limitations in detecting small objects, such as tiny fruits, due to its single scale 
approach. Subsequent versions (YOLOv2 and YOLOv3) addressed these limitations 
by introducing improvements such as anchor boxes, multiscale detection, and feature 
extraction across different network layers [19]. Since then, a series of versions of 
YOLO have been proposed, including YOLOv2, YOLOv5, YOLOX, YOLOv7 and 
YOLOv8, through the modifications in network architecture and the addition of data 
augmentation modules. Currently, YOLO has been successfully applied to fruit detec-
tion tasks, achieved real-time and accurate fruit detection results in various agricultural 
settings [27]. The versatility and real-time capabilities of YOLO models in handling 
multiscale objects have made it a popular choice for fruit detection in automated agri-
cultural systems [16, 20]. 

2.3 Transformer-Based Models 

The overall framework of Transformer-based image detection consists of three main 
components. Firstly, the input image undergoes visual feature extraction using a CNN 
backbone network, such as VGG, ResNet, or others. Subsequently, visual features are 
encoded and decoded by using Transformer architecture, which includes multi-head 
self-attention and encoder-decoder attention mechanisms. Finally, the object classes 
and bounding boxes are predicted using a feed-forward network [1]. 

DEtection Transformer (DETR) is a pioneering object detection method that adopts 
the Transformer architecture. It incorporates a CNN backbone network, Transformer 
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encoder-decoder structure, and a feedforward network (FFN). The CNN backbone ex-
tracts image features, which are then transformed into one-dimensional feature maps 
and processed by Transformer encoder. However, DETR has limitations in terms of 
slow training convergence, high computational complexity, and relatively poor perfor-
mance in detecting small objects. In response, Deformable DETR was proposed by uti-
lizing the deformable attention module to improve small object detection and training 
efficiency [21]. 

YOLOS is another series of widely applied object detection models based on Vision 
Transformer (ViT) architecture [2]. YOLO replaces the image classifier in ViT with a 
bipartite matching loss, enabling it to handle arbitrary-sized object detection tasks with-
out requiring precise spatial or geometric structures [10]. YOLO stands for its adapta-
bility to different Transformer structures, offering flexibility in object detection tasks. 

Swin Transformer is a novel approach that leverages the Transformer architecture 
for computer vision tasks. It has gained attention in image segmentation and visual 
object detection domains. Swin Transformer takes use of shifted window-based self-
attention effectively reduces computational complexity while maintaining desirable 
performance and making it advantageous for dense prediction tasks downstream. How-
ever, further enhance of the object detection is due to the occluded objects. 

3 Methodology 

Swin Transformer model exhibits the capability to interact between local and global 
information across different network layers, thereby extracting hierarchical features. 
However, this model comes with a drawback of having a large number of parameters 
and high sensitivity, leading to high computational demands and training complexity. 
On the other hand, YOLOv8 model offers the advantage of having a smaller number of 
model parameters, resulting in faster training speed. However, its feature extraction 
ability is relatively weaker compared to Swin Transformer model. 

In light of these considerations, we propose a novel approach that combines the fea-
ture extraction strengths of Swin Transformer with the practicality of YOLOv8, aiming 
to enhance the feature extraction capability of YOLOv8 and improve the accuracy and 
speed of multiscale object detection. By leveraging the advantages of both models, we 
aim to address the challenges posed by real-world scenarios involving multiscale tar-
gets, particularly in the context of Kiwifruit detection. This model is tailored to meet 
the demands of diverse target scales encountered in real-world settings, striking a bal-
ance between feature extraction efficiency and detection performance. 

3.1 Swin Transformer 

In Swin Transformer, Microsoft proposes Transformer as a versatile backbone for com-
puter vision tasks, attracting significant attention in various domains such as image 
segmentation and object detection. The overall structure of Swin Transformer is de-
picted in Fig. 1 [13]. Similar to the hierarchical structure of the feature pyramid, Swin-
Transformer model [21] is a multiscale fusion-based Transformer model that extracts 
features at different scales using a design with non-overlapping movable windows, 



enabling cross-window connections for information interaction between local and 
global features. As shown in Fig. 1(a), Swin-Transformer encoder comprises a patch 
partition module and four consecutive stages. Each stage includes two types of attention 
modules: Window Multi-Head Self-Attention (W-MSA) module and Shifted Window 
Multi-Head Self-Attention (SW-MSA) module. The W-MSA module divides the fea-
ture map into non-overlapping windows and employs multi-head self-attention mecha-
nism (MSA) to compute attention scores for each individual window.  

 
(a)                                                                       (b) 

Fig. 1. The architecture of Swin Transformer 

However, the W-MSA module lacks global correlation among windows. To address 
this, the SW-MSA module modifies the window partitioning by cyclically shifting win-
dows through Shift Window, thus fusing features from multiple windows while pre-
serving the relative positional relationship using a Mask mechanism to incorporate con-
text information at different scales. In Fig. 1(b), alternating use of W-MSA and SW-
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MSA modules in each stage combines hierarchical local attention with global self-at-
tention mechanism, resulting in features at different levels. Stage 1 contains a Linear 
Embedding layer that linearly transforms the channel dimension of each pixel, mapping 
it to C dimensions. The remaining stages utilize the patch merging layer for downsam-
pling and merging information from multiple windows. As a result, Swin Transformer 
exhibits excellent scalability, making it well-suited for handling objects of different 
scales and dense targets. 

 
Fig. 2. The architecture of YOLOv8 model 

 



 
Fig. 3. The architecture of enhanced Kiwifruit detection model 

3.2 YOLOv8 

YOLOv8 architecture is composed of four main components, as illustrated in Fig. 1, 
including Input, Backbone, Neck, and Detection Head [20]. The input images undergo 
a series of data augmentation processes such as cropping, adaptive scaling, and Mosaic, 
before being fed into the Backbone. The Backbone is responsible for extracting features 
from the preprocessed images and generates three sets of feature maps at different 
scales, which are then forwarded to the Neck for further processing. In contrast to 
YOLOv5, the Neck of YOLOv8 replaces the CSP module with the C2f module and 
directly incorporates the feature outputs from different stages of the Backbone through 
upsampling operations. The prediction section decouples the tasks of object classifica-
tion and bounding box regression, conducting separate predictions. The three detection 
heads are designed to handle objects of different sizes, thus accelerating model conver-
gence speed and improving detection accuracy.  



8 

    The classification loss adopts the VFL Loss, characterized by asymmetric positive-
negative sample weighting to emphasize on positive samples as primary instances, ef-
fectively addressing the issue of class imbalance. For regression loss, the DFL module 
is introduced to enable the network to quickly focus on the distribution of positions 
close to the target locations. Notably, YOLOv8 demonstrates exceptional performance 
in terms of speed and accuracy, surpassing current state-of-the-art object detectors. The 
ability of this model achieved a balance between computational efficiency and detec-
tion precision positions as a promising solution for various practical applications in the 
field of object detection. 

3.3 Enhanced Kiwifruit Detection Model 

As illustrated in Fig. 3, to address the issue of imprecise multiscale object detection 
caused by the semantic information of Convolutional Neural Networks (CNNs) in real-
world Kiwifruit images, we have integrated Swin Transformer model into the YOLOv8 
backbone network, specifically replacing the top-level C2f module with the Swin-
Transformer module. This modification allows us to perform global pixel-level opera-
tions on the low-resolution feature maps extracted by C2f. Thus, we can leverage the 
advantages of the self-attention mechanism while effectively reducing computational 
complexity and conserving memory space [22]. 

Furthermore, we have incorporated Swin Transformer module into the Neck struc-
ture to capture correlations and importance across different regions. This enhancement 
contributes to improve the adaptability of this model to various object sizes, enhance 
visual object detection accuracy, and achieve a better balance between speed and pre-
cision under parallel computation. The backbone network of this improved Kiwifruit 
detection model demonstrates robust modeling capabilities for capturing context infor-
mation related to target backgrounds, edge shapes, and other contextual factors. These 
capabilities effectively guide downstream tasks of classification and localization based 
on semantic information. Moreover, the enhanced model exhibits superior scalability 
and practical applicability. 

By adopting Swin Transformer model and integrating it into the YOLOv8 backbone 
network, our enhanced Kiwifruit detection model achieves much precise and efficient 
multiscale object detection [14]. The effective combination of self-attention mecha-
nisms and computational optimizations results in a robust and efficient detection frame-
work. The ability of this model to leverage semantic information for downstream tasks 
makes it well-suited for real-world Kiwifruit detection scenarios. The integration of 
Swin Transformer into YOLOv8 framework represents a novel and promising approach 
for achieving better detection performance and maintaining a balance between speed 
and accuracy, thus advancing the state-of-the-art in Kiwifruit detection [6]. 

4 Results 

4.1 Dataset and Evaluation Metrics 

We collected a comprehensive dataset of Kiwifruit images to conduct our experiments. 
The dataset was obtained by downloading Kiwifruit orchard videos from the internet 



and segmenting them into individual frames. Additionally, we sourced Kiwifruit im-
ages from various online platforms to enhance the dataset's robustness. The dataset 
comprises of 3,000 original Kiwifruit images, gathered from diverse sources, including 
videos from different orchards, images at different ripeness stages, and images with 
varying sizes due to different camera distances. Our aim was to cover a wide range of 
Kiwifruit object scales to meet the requirements of multiscale Kiwifruit detection in 
real-world scenarios. To ensure data quality and consistency, the dataset underwent 
rigorous data cleaning procedures. We employed the Roboflow tool for efficient data 
labeling and ensure accurate object detection annotations for each image. Augmenta-
tion techniques, including mirror flipping and horizontal/vertical axis flipping, were 
applied to augment the dataset and enhance the generalization capability of this model. 
The final dataset consisted of 3,700 training images, 1,057 testing images, and 530 val-
idation images. The diversity of this training set enabled the model to learn robust fea-
tures across various scenarios, while the testing and validation sets served as critical 
benchmarks to evaluate the generalization performance on previously unseen data ef-
fectively. 

 
Fig. 4. Dataset of Kiwifruit images at multiple scales 

In this paper, the evaluation criterion of this model is the mean Average Precision 
(mAP). For a specific class of objects, its detection accuracy can be obtained from the 
Precision-Recall (PR) curve, where Precision (P) represents the probability of a positive 
prediction being correct, and Recall (R) shows the probability of correctly identifying 
positive samples [17]. The calculations are defined as follows: 
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where TP denotes the number of true positives (actual positive samples correctly pre-
dicted as positive), FP shows the number of false positives (actual negative samples 
incorrectly predicted as positive), and FN indicates the number of false negatives (ac-
tual positive samples incorrectly predicted as negative). 

Since Precision and Recall are measured on different dimensions, Average Precision 
(AP) is introduced, which represents the average precision values at different recall 
levels. A higher AP indicates fewer detection errors. The mAP is obtained by taking 
the average of AP values across all class categories, providing an overall measure of 
the model's detection performance. 

 
Fig. 5. Visual results of multiscale Kiwifruit detection model 

4.2 Experimental Parameter Configuration 

The experiments in this paper were conducted on a system running Windows 11 Oper-
ating System, equipped with a Geforce RTX 3060 GPU, an AMD R7-5800 CPU, and 
16 GB of RAM. The CUDA version used was 12.0. The experiment was conducted 
using Python 3.8 and PyTorch 2.0, a deep learning framework, to build the model. 

The training process involved setting the number of epochs to 150, indicating the 
number of complete iterations over the entire training dataset. The batch size was con-
figured to 16, defining the number of samples processed in each iteration. The stochas-
tic gradient descent (SGD) optimization algorithm was adopted for weight updates dur-
ing training, with a weight decay of 0.0005 applied to regulate the magnitude of weight 
updates and prevent overfitting. 



4.3 Analysis of Experimental Results 

In Fig. 5, we present visual representation of the prediction results obtained from our 
proposed multiscale Kiwifruit detection model, which was trained on the custom da-
taset specifically created for this study. The displayed images vividly demonstrate the 
robust and accurate detection capabilities of our model, as it successfully identifies Ki-
wifruits having a diversity of colors, sizes, and shapes. The model exhibits a remarkable 
ability to discern Kiwifruits from cluttered backgrounds and handle variations in ap-
pearance, enabling it to effectively adapt to real-world scenarios. The obtained results 
highlight the efficacy of our novel model in addressing the challenges posed by mul-
tiscale Kiwifruit detection, thereby reaffirming the practical relevance of our model for 
applications in automated agricultural systems and other computer vision tasks. 

Table 1. The comparison of various object detection models on our dataset 

Model Epoch Size Precision Recall mAP@0.5 mAP@0.5:0.95 

YOLOv4 150 640 0.861 0.813 0.854 0.513 

YOLOv5 150 640 0.892 0.833 0.873 0.585 

YOLOv6 150 640 0.904 0.876 0.906 0.609 

YOLOv7 150 640 0.917 0.897 0.917 0.649 
YOLOv8 150 640 0.921 0.905 0.921 0.658 

CornerNet 150 640 0.772 0.694 0.764 0.462 

DETR 150 640 0.671 0.625 0.619 0.415 
Swin Transformer 150 640 0.836 0.794 0.809 0.511 

Our proposed 
(SWT+YOLOv8) 

150 640 0.951 0.932 0.947 0.712 

The comparison of visual object detection models on our dataset is presented in Table 
1. We evaluated the state-of-the-art models, including YOLOv4, YOLOv5, YOLOv6, 
YOLOv7, YOLOv8, CornerNet, DETR, and Swin Transformer, along with our pro-
posed model (SWT+YOLOv8) [9]. Among all models, our proposed model demon-
strates the best overall performance, achieving an impressive precision of 0.951, recall 
of 0.932, mAP@0.5 of 0.947, and mAP@[.5:.95] of 0.712. Furthermore, compared 
with the performance of our proposed model with other models, it is evident that fusion 
of Swin Transformer with YOLOv8 results in a substantial enhancement in both preci-
sion and recall. The mAP scores also show a significant boost, indicating the effective-
ness of our proposed approach in handling multiscale object detection tasks. 

To further demonstrate the effectiveness of Swin Transformer in our proposed Ki-
wifruit detection model, we conducted a series of ablation experiments. In these exper-
iments, we investigated the impact of integrating SWT at a scale of components of the 
model: 1) Adding SWT to the backbone; 2) Adding SWT to the neck; 3) Adding SWT 
to both the backbone and neck. We set the YOLOv8 model as the baseline model for 
conducting ablation experiments as shown in Table 2. 
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For the first ablation experiment (1), we incorporated SWT into the backbone of the 
YOLOv8 model. The results show that the addition of SWT to the backbone signifi-
cantly improved the model's performance. Specifically, the precision, recall, 
mAP@0.5, and mAP@[.5:.95] scores all demonstrated notable enhancements, validat-
ing the effectiveness of SWT in enhancing the feature extraction capability at the back-
bone level. 

In ablation experiment, we introduced SWT to the neck component of YOLOv8 
model. Similar to the first experiment, this integration also led to remarkable improve-
ments in the detection results. The precision, recall, mAP@0.5, and mAP@[.5:.95] 
scores all exhibited substantial increases, which affirm the positive impact of SWT in 
refining the feature fusion process at the neck level. 

Lastly, in the third ablation experiment, we simultaneously added SWT to both the 
backbone and neck of the YOLOv8 model. This comprehensive integration of SWT at 
both levels further boosted the model's performance, resulting in the highest precision, 
recall, mAP@0.5, and mAP@0.5:0.95 scores among all the ablation settings. The com-
bined effect of SWT in both Backbone and Neck demonstrated its complementary na-
ture, which led to superior detection results. 

Table 2. The ablation experiments of Kiwifruit detection models based on our dataset 

Model Epoch Size Precision Recall mAP@0.5 mAP@0.5:0.95 

Baseline 150 640 0.921 0.905 0.921 0.658 

(1) 150 640 0.928 0.911 0.924 0.673 

(2) 150 640 0.939 0.916 0.940 0.689 
(3) 150 640 0.951 0.932 0.947 0.712 

From the ablation experiments presented in Table 2, it can be observed that inserting 
Swin Transformer modules at different locations within the YOLOv8 model has vary-
ing degrees of impact on its performance. After Swin-Transformer modules are inserted 
in the Backbone, there is a slight improvement in the performance of our proposed 
model. However, if Swin Transformer modules are inserted in the Neck, the mAP 
shows a significant improvement compared to the baseline. Notably, if Swin Trans-
former modules are inserted at multiple positions, such as in both the Backbone and 
Neck, the model exhibits further improvement in all evaluated metrics. 

4.4 Discussion 

In this paper, we presented a novel approach for multiscale Kiwifruit detection by com-
bining the strengths of Swin Transformer and YOLOv8 models. The integration of 
Swin Transformer and YOLOv8 model is proved to be a powerful strategy for mul-
tiscale object detection. The hierarchical and multiscale feature extraction capabilities 
of Swin Transformer effectively captured contextual information, resulting in robust 
performance in real-world Kiwifruit detection scenarios. Leveraging YOLOv8 as the 
baseline model provided a strong foundation to showcase the advantages of our pro-
posed method. The ablation experiments further confirmed the significance of 



incorporating Swin Transformer modules at different positions within the YOLOv8 ar-
chitecture. Notably, the improvements in model performance were most notable after 
inserting Swin Transformer modules in the Neck, underscoring the importance of uti-
lizing Swin Transformer's capabilities in feature fusion and enhancing the representa-
tion of different scales. The achieved results of our proposed (SWT+YOLOv8) model, 
surpassing the state-of-the-art models in terms of precision, recall, and mAP, highlight 
the effectiveness of our approach in tackling multiscale object detection challenges. 
The substantial gains in detection accuracy demonstrate the potential applicability of 
our method not only in Kiwifruit detection but also in other object detection tasks. 

5 Conclusion 

In this paper, we address limitations of the existing models in achieving accurate multi-
scale Kiwifruit object detection. To overcome these limitations, we propose a novel 
approach that combines the hierarchical and multiscale feature extraction capabilities 
of Swin Transformer with the practicality of YOLOv8, which has demonstrated excel-
lent performance in handling multiscale object detection tasks. By enhancing the fea-
ture extraction capabilities of the model, our approach improves the accuracy of mul-
tiscale object detection. Specifically, our model effectively captures contextual infor-
mation and demonstrates robustness in real-world Kiwifruit detection scenarios. The 
experimental results validate the effectiveness of our proposed method and achieve the 
state-of-the-art performance on our Kiwifruit dataset. Through comprehensive evalua-
tion metrics, we measure the precision, recall, and mAP of the model, confirming its 
superior detection accuracy [5, 26]. 

To sum up, the achievements of this research project is the advancement of Trans-
former-based object detection models and demonstrate the potential in addressing the 
challenges of multiscale object detection in real-world scenarios. The proposed method 
shows promise in various computer vision tasks, further will drive the development of 
research work related to visual object detection.   
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