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ABSTRACT 
 
Visual object detection is a foundation in the field of computer vision. Since the size of visual 
objects in an images is various, the speed and accuracy of object detection are the focus of current 
research projects in computer vision. In this book chapter, our datasets consist of fruit images 
with various maturity. Different types of fruit are divided into the classes "ripe" and "overripe" 
according to the degree of skin folds. Then the object detection model is employed to automatically 
classify different ripeness of fruits. A family of YOLO models are representative algorithms for 
visual object detection. We make use of ConvNeXt and YOLOv7, which belong to the CNN 
network, to locate and detect fruits, respectively. YOLOv7 employs the bag-of-freebies training 
method to achieve its objectives, which reduces training costs and enhances detection accuracy. 
An extended E-ELAN module, based on the original ELAN, is proposed within YOLOv7 to increase 
group convolution and improve visual feature extraction. In contrast, ConvNeXt makes use of a 
standard neural network architecture, with ResNet-50 serving as the baseline. We compare the 
proposed models, which result in an optimal classification model with best precision of 98.9%. 
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INTRODUCTION 

In the field of computer vision  (Gowdra, 2021), digital cameras are utilized to emulate biological 
vision, enabling computers to process the contents of images or videos in a manner akin to human 
perception (Pan, & Yan, 2020). The object detection (Qi, Nguyen, & Yan, 2022) task (Zhang, 
Wang, Liu, & Xiong 2022). in computer vision primarily focuses on identifying visual objects 
within entire images, which includes detecting both the object and its location (Zhao, & Yan, 
2021). In the realm of visual object detection (Shi, Li, & Yamaguchi 2020)., models such as CNN 
(Liu, Yan,&Yang, 2018), R-CNN, Fast R-CNN, Faster R-CNN(Al-Sarayreh,et. al., 2019), and the 
YOLO (Zhijun, et. al., 2021) series have successfully located and classified (Liu, Nouaze, Touko 
Mbouembe, & Kim 2020) fruit images (Gowdra, et. al., 2021). Building upon this foundation, the 
YOLOv7 (Liu, & Yan, 2023) model has improved the speed and accuracy of visual object 
detection (Yao et. al., 2021). 
 
In recent years, artificial intelligence has been widely employed in various fields (Wang, & Yan, 
2021). In view of the lack of labor in fruit picking and subsequent fruit quality classification (Xia, 
Nguyen, & Yan, 2022) that requires a lot of human labors (Xia, Nguyen, & Yan, 2023). In this 
book chapter, we propose an automatic fruit recognition algorithm based on YOLOv7 and 
ConvNext (Tian, 2022) models. The application of the above is mainly to build a deep learning 
model that can distinguish different fruit categories (Bazame, 2021 (apples and pears) for the same 
kind of fruit to distinguish the category level according to the degree of skin folds (Kang, & Chen, 
2020). The high-precision fruit (apple, pear) detection and recognition (Wang, &Yan, 2021)  
system based on deep learning can be harnessed in daily life or in the wild to detect and locate fruit 
targets (Fu, Nguyen, & Yan, 2022). Using deep learning algorithms, it can realize fruit target 
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detection and recognition in the form of pictures, videos, cameras, etc. In addition, it supports 
results visualization and export of image or video inspection results (Bhargava, & Bansal, 2021). 
 
Visual object detection is characterized by using location and classification (Liu, Sun, Gu, & Deng, 
2022). In a two-dimensional image, target detection can locate the position of an apple in the 
picture, and distinguish the current apple type as “ripe apple”. Firstly, we preprocess the dataset, 
then input the backbone network to extract features, and take use of ELAN attention. The module 
acts on the corresponding channel of the feature map to obtain effective features for fruit 
recognition; then the model performs feature fusion to obtain semantic information and locate the 
feature map of the information. Finally, accurate detection results are obtained through 
classification and prediction frame regression calculations (Gokhale,  Chavan, & Sonawane, 
2023). 
 
In this book chapter, we employ anchor boxes to label fruits and their maturity levels (Xiao, 
Nguyen, Yan, 2023). We leverage ConvNeXt (Qi, Nguyen, & Yan, 2022) and YOLOv7 models 
to obtain an optimal model for fruit ripeness classification. ConvNeXt (Hassanien, Singh, Puig, & 
Abdel-Nasser, 2022) optimizes the technology and parameters of the original CNN to achieve 
state-of-the-art performance. A characteristic of ConvNeXt is that it does not consider the visual 
features; it simply inputs the image as a patch and sends it to the deep learning network model for 
training and testing (Feng, Tan, Li, & Xie, 2022). Conversely, YOLOv7 focuses on optimizing 
modules and methods without increasing training costs. YOLOv7 serializes or parallelizes network 
layers into a convolutional group to reduce computations and enhance training speed (Junos, Mohd 
Khairuddin, Thannirmalai, & Dahari, 2022). 
 
Agricultural harvesting is a labor-intensive process. Utilizing a visual object detection model to 
classify fruits is the motivation of this book chapter. The visual object detection pipeline is 
illustrated in Figure 1. The dataset is input into the model for training, and a predicted bounding 
box is subsequently output. As demonstrated in Figure 1, YOLO model (KIVRAK, & GÜRBÜZ, 
2022) is use of the entire image as input, employs a CNN network for end-to-end design, and 
effectively returns the position and class label of the bounding box at the output layer (Zhang et 
al., 2022). In our experiments, the YOLOv7 model accurately detects and classifies fruits. 
 
This study demonstrates the use of YOLOv7 model (Kuznetsova, Maleva, & Soloviev, 2021), 
ConvNeXt, and their transfer learning to detect fruits, which can accurately classify fruit types and 
their maturity levels (Lee & Kim, 2020). Simultaneously, we also created our own datasets using 
mobile phones to increase the influence of the environment on experimental results. 
 
The contribution of this book chapter is that we created our own dataset. We take advantage of 
YOLOv7, ConvNext, and improved models to locate and classify fruits. The model can realize the 
fruit detection task and achieve high precision. 
 
In the second section of this book chapter, we will discuss the development of the proposed 
YOLOv7 model. The third section will include the experimental details and outcomes. In the 
fourth section, we will showcase the training results of the YOLOv7 model and summarize the 
advantages and disadvantages of the proposed model. In this book chapter, following the section 
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on related work, the proposed methods will be elaborated upon. The result analysis will be 
explained, leading to the final conclusion of this book chapter. 
 

 

Figure 1.  The pipeline of YOLO model in visual object detection. 
 

RELATED WORK 

A model with YOLOv4-based convolution block was proposed to add an attention mechanism, 
which judges the maturity of apples by distinguishing colors. For the actual situation in the orchard, 
the size of fruit trees in the orchard, the influence of branches and leaves on fruits, actual size and 
color of the apples (Gongal, Karkee, & Amatya, 2018) are all issues that need to be considered in 
the real object detection (Pan, Liu, & Yan, Zhou, 2021). The YOLOv4 model proposed by Lu et. 
al. achieved an accuracy 86.2% for a number of fruits, which is about 3% higher than the original 
YOLOv4 model (Lu et. al., 2022). 
 
Ou et. al. proposed an improved FSOne-YOLOv7 model for the detection of passion fruit (Ou et. 
al., 2023). ShuffleOne as a new backbone network and slim-neck as an improved YOLOv7 
network of the neck network are employed for passion fruit detection in complex natural 
environments. The FSOne-YOLOv7 model takes advantage of gradient weighted class activation 
mapping to enhance the feature extraction and fusion capabilities. Ou et. al. achieved an average 
accuracy 94.5%. The improved model can better extract features, thereby improving detection 
speed. 
 
Zhou, et al. also studied how visual inspection can replace manual picking of dragon fruits  (Zhou, 
Zhang, Wang, 2023). Zhou et. al. proposed a PSP-Ellipse method based on YOLOv7 to implement 
classification. The PSP-Ellipse method detects the endpoints of dragon fruit in the picture by 
segmenting the detection target and using an ellipse fitting algorithm, and then takes use of ResNet 
to implement the classification task. In the PSP-Ellipse endpoint detection task, the model achieved 
an accuracy of 92% for dragon fruit. 
 
Another experiment that has great significance is studied. (Wu, et. al., 2022). Previous agricultural-
related detections were based on fruit color and shape classification. However, traditional 
agricultural detection is prone to false detection in complex natural environments, and the model 
lacks robustness. Wu et. al. studied target detection based on complex environments, made use of 
the module characteristics of YOLOv7 data enhancement, and established an improved DA-
YOLOv7 model. The DA-YOLOv7 model strengthens the generalization ability of the model in 
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complex environments, which is adopted for the detection of Camellia oleifera under the 
interference of side light, backlight, slight occlusion and heavy occlusion. 
 
A visual object detection method was proposed to solve fruit counting problem. SSD was 
employed with MobileNet and Faster R-CNN with Inception V2 for multi-fruit object tracking 
based on Gaussian estimation. Vasconez et. al. achieved 90% accuracy using SSD model and 93% 
accuracy using Faster R-CNN (Vasconez et. al., 2020). 
 
A nighttime dataset was collected which demonstrated that YOLOv4 model achieved F1 score 
0.968 and average precision 0.983 with images from various orchards, varieties and lighting 
conditions for real-time mango detection (Koirala et al., 2019). 
 
YOLOv2 was designed for visual object location prediction (Sozzi, et. al, 2022). YOLOv3 
continues the idea of YOLOv2. The FPN structure is adopted in YOLOv3 to improve the accuracy 
of corresponding multi-scale target detection (Liu, et. al., 2022). YOLOv5 (Wang et. al., 2022) 
was basically modified based on the structure of YOLOv3(Wang, Jin, Wang, & Xu, 2022). 
YOLOv5 was use of CSPDarknet (Cross Stage Partial Networks) as the backbone to extract visual 
features from the input image (Wang, & He, 2021).  
 
The difficulty of multi-target tracking in model training lies in the fact that real-life targets are 
occluded, blurred and deformed. In this project, fruit recognition from digital images is also 
affected by the natural environment, such as lighting, overlapping, scales change and other factors 
that affect the final results (Yang et. al., 2022). The E-ELAN module of YOLOv7 can enhance the 
ability of network and guide different modules. E-ELAN can enhance the net ability without 
changing the gradient. 
 
Hussain et al. also proposed YOLOv7 for visual object detection (Hussain et. al., 2022). YOLOv7 
NAS can implement iterative search by mining the optimal scale factor according to the resolution, 
width, and depth, as well as the number of feature pyramids. Reparameterization can assist the 
gradient propagation path to reintegrate the parameters of the model, so that the head module can 
be applied to fruit detection.  
 
Swin Transformer (Ruiz, et. al., 2022) takes advantage of hierarchical feature maps which are 
similar to convolutional neural networks (Gowdra, 2021). After the image is downsampled by 4 
times, 8 times, or 16 times in the size of the feature map, the backbone builds tasks such as target 
detection and instance segmentation on this basis. The concept of Windows Multi-Head Self-
Attention (W-MSA) was employed in Swin Transformer. For example, in the 4 times 
downsampling or 8 times downsampling, the feature map is segmented into multiple disjoint 
regions, and each self-attention is only performed within each window. Transformer can 
effectively reduce the amount of calculations if the shallow feature map is large. ConvNeXt is 
based on ResNet, the process of transforming ResNet into ConvNet is similar to the construction 
process of Transformer. ConvNeXt maintains the simplicity of CNN neural networks (An, &Yan, 
2021) while following the structure of Swin Transformer model. 

METHODOLOGY 
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YOLO series models are a one-stage network structure. There is only one neural network in the 
whole process, which is able to achieve end-to-end structure. After an image is input into YOLO 
model, the image is segmented into s×s grids, each grid can be processed to obtain bounding boxes 
and the confidence score of each box. In Figure 2, the blue, yellow, and red boxes are the bounding 
boxes. Each grid predicts the conditional class probabilities, the confidence of each bounding box 
is multiplied by using probability. The result contains class information and accuracy of the 
bounding box prediction. Finally, we set the threshold, filter out the low scores, and cast the rest 
to non-maximum suppression, and then get the prediction box.  
 

 

Figure 2. Prediction of bounding boxes. 
 
In Figure 2, "! , "" , "# , and bh show the value of the predicted bounding box, $! and $" represent 
the distance from the upper left corner of the current grid to the upper left corner of the image. %# 
and %$ are the width and height of anchor box, respectively; σ is the sigmoid function. &! , &" , &# , &$, 
and t0 are the parameters which are employed to calculate the bounding box and confidence. The 
centre of the predicted box is the point inside the yellow box as shown in Figure 2, then a group 
of equations for calculating is listed as follows: 

"! = ((&!) + $!                                           (1) 
"" = (,&"- + $"                                           (2) 
"! = %#.&

!
                                                  (3) 

"! = %$.&"                                                  (4) 
The confidence and maximum suppression values are: 
 

$/0123.04.	64/7. = %(8"9.4&) × :/;&'(&$_*'+,                 (5) 
$<=66 − 6?.42124	4/0123.04.	64/7.6 = $/0123.04. × %($<=66|8"9.4&) (6) 

 
Neck in YOLO is mainly applied to generate feature pyramids. The feature pyramid will enhance 
the object detection at hierarchical scales, the same object having different sizes and scales will be 
recognized.  CSPNet backbone solves the gradient duplication problem of network optimization 
in the backbone, large-scale convolutional neural network frameworks integrate the gradient 
changes into the feature map from beginning to end, thus reduce the parameter amount and FLOPS 
value of the model, and ensure the inference speed and accuracy, and decrease the size of the 
proposed model. Head is mainly employed to the final part which applies anchor boxes to the 
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feature map and generate the final output vector with class probabilities, object scores and 
bounding boxes.  
 
In YOLOv7, a decoupled training-time and inference-time architecture was proposed for training 
a multi-branch model, converting it into a single-channel model and deploying it. In this way, the 
high performance of the multi-branch architecture and the fast inference advantage of the single-
branch model are realized. 
 
In Figure 3, YOLOv7 merges all Conv and BN layers, and converts the fused Conv layer into a 
3×3 Conv layer. A 1×1 Conv layer is converted into a 3×3 Conv layer by using the center weight 
that equals to the 1×1 Conv layer which merges the branch 3×3 Conv layer. Finally, the weights 
and bias of the convolution kernels of all branches are added to form a new 3×3 Conv layer. 
YOLOv7 finally constitutes an identity mapping branch, that is, a RepVGG block. The mapping 
network of YOLOv7 is similar to the residual network of ResNet, that is, adding a branch at a 
specific layer. 
 

 

Figure 3. Reparameterization process of RepVGG 
 
The parameter fusion process is: 

A-,∶,:,:
0 =	

1#
2#
A-,:,:,:                                               (7) 

"-
0 = −

3#1#
2#
+ B-                                                (8) 

where C-, (-, D-, B-are the mean, variance, scale factor and offset factor of BN, respectively, A- is 
the original convolution weight. Eq.(9) for each calculation in Conv is,  
 

$/0E(F) = A × G                                            (9) 
HI(F) = D-(

!43#
52#$67

)                                         (10) 

where J is equal to the minimum. The fused result of Conv and BN is, 
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K
8×!43#
52#$67

L + B- =
1#

52#$67
A-G −

3#1#
52#$67

+ B-                     (11) 

Ignored the minimum value J, the new convolution is,  
$/0E(F) = 	A0F + B0                              (12) 

Compared with the calculations after fusion, it is essentially a linear operation of convolution. 
 
In Figure 4, scale has always been one of the characteristics of the YOLO model. YOLOv7 adopts 
the composite model scaling method, modifies the depth factor and calculates the proportion of 
the corresponding change in the transfer layer. The optimal state of the model can be maintained 
by scaling the model and the width corresponding to the depth scaling factor [20, 38]. 
 

 

Figure 4. Stitch-based model scaling 

 
YOLOv7 model scales the stack in the Neck module, which is use of a composite scaling method 
to scale the depth and width of the entire model to obtain the weight YOLOv7-X. E-ELAN is 
applied to the weights YOLOv7-E6. The weights of YOLOv7, YOLOv7-X and YOLOv7-E6 are 
use of SiLu as the activation function,   
 

M2NO(F) = F × 62PQ/23(F)	                        (13) 
 
The SiLU function is the abbreviation of sigmoid weighted linear unit, which is adopted as the 
activation function. Unlike other activation functions (e.g., sigmoid, tanh), the activation function 
SiLU is not monotonically increasing. The SiLU function is self-stabilizing and acting as an 
implicit regulariser on the weights at the global minimum with zero derivative, inhibiting the 
learning of a large number of weights. The weight YOLOv7-tiny is an edge GPU-oriented 
architecture. Leaky tunes the zero-gradient problem for negative values by giving the negative 
input x a tiny linear component. 
 
In Figure 5, YOLOv7 separates the auxiliary and dominant heads, and performs label assignment 
with the respective predictions and ground truths. Deep supervision information is employed for 
adding additional supervision information to the model so as to improve the performance of the 
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model. The leading head represents the feature map responsible for the final output, and the 
auxiliary head represents the additional training branch added for auxiliary training.  
 

 
Figure 5: Auxiliary head and leading head perform label assignment process using prediction 
results and ground-truth values.  

ELAN is an efficient long-range attention network that takes use of convolutions to extract image 
local structure information in complex cases, which is use of a grouped multi-scale self-attention 
(GMSA) module to compute on non-overlapping feature sets at different window sizes, and speed 
up the operation of this module through a shared attention mechanism. The E-ELAN designed by 
YOLOv7 based on ELAN has the ability to expand, shuffle, and merge cardinality to achieve the 
ability and continuously enhance the network learning ability without destroying the original 
gradient path. 
 
All ConvNeXt models are the existing structures and methods, the transformation process is 
similar to Transformer's construction process. The starting point of ConvNeXt is ResNet, which 
takes use of enhanced training methods to improve the performance of the ResNet-50 model. The 
ConvNeXt network structure is composed of macro design, ResNeXt, inverted bottleneck, large 
kernel size, and various micro designs with layers as the smallest granularity. 
 
The ConvNeXt network adjusts the stacking times of each stage of ResNet from (3, 4, 6, 3) to (3, 
3, 9, 3), which increases the accuracy with the cost of increasing calculation scales. The stem layer 
in Swin Transformer network is a convolutional layer with a convolution kernel size of 4 and a 
stride of 4. The stem layer of ResNet50 consists of a convolutional layer with a kernel size of 7 
and a stride of 2 plus a maximum pooling layer with a kernel size of 3 and a stride of 2. As a 
combination of Transformer networks and ResNet models, ConvNeXt replaces the stem layer with 
the same convolution layer as the Swin Transformer network with a convolution kernel size of 4 
and a step size of 4, and its accuracy has a small improvement. 
 
Compared with classical ResNet network, the ResNeXt network has achieved a balance between 
FLOPs and accuracy. ResNeXt takes use of group-wise convolution in the middle of the 
convolution block to make the convolution block form a parallel structure, while the volume of 
the ResNet network increases, the block is similar to the structure of bottleneck “thick at both ends 
and thin in the middle”. In Figure 6, compared with ResNeX and ResNet, the ConvNeXt network 
makes use of depth-wise convolution to form a convolution block, which greatly reduces the 
parameter scale of the network while sacrificing a part of the accuracy. 
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Figure 6: ResNet and ResNeXt blocks. 

 
The number of output feature channels of the stem layer in the Swin Transformer network is 96, 
while the output of the stem layer of the ResNet network is only 64 dimensions. In order to be 
consistent with the Swin Transformer network, the ConvNeXt network increases the number of 
output dimensions to make it the same as the Swin-T network, which greatly improves the accuracy 
of the network, but at the same time inevitably increases the parameter scale of the model. 
 
The ConvNeXt network was designed with a similar inverted bottleneck structure, which can 
partially reduce the parameter size of the model and improve the overall performance of the model 
while slightly improving the accuracy. 
 
In the ConvNeXt network, the convolution kernel size of depthwise conv is changed from 3´3 to 
7´7 like Swin Transformer, which saturates the accuracy. The current mainstream convolutional 
neural network has a 3×3 window size. However, a 3×3 window will result in a smaller receptive 
field, and ConvNeXt can increase the receptive field by using a large convolution kernel, and to a 
certain extent, more information can be obtained. 
 
ConvNeX replaces the regular activation function ReLU with GELU with fewer activation 
functions. In a convolutional neural network, an activation function is generally connected after 
each convolutional layer or full connection. It is not every module in ConvNeXt which is followed 
by an activation function. At the same time, ConvNeXt is use of less Normalization. The 
normalization layer in the ConvNeXt block only retains the normalization layer after the depthwise 
convolution. Batch Normalization (BN) can speed up the convergence of network and reduce 
overfitting in the convolutional neural network. The downsampling operation of ResNet is 
completed at the beginning of each stage using a 3×3 convolution with a step size of 2 and a 1×1 
convolution with a direct step size of 2. ConvNext performs independent downsampling between 
different stages, using 2 × 2 convolution with a step size of 2 for spatial downsampling. This 
change will lead to unstable training, so a layer-based normalization is added before the 
downsampling operation, after the Stem operation and the global pooling layer to stabilize the 
training. 
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RESULTS 

Visual object detection is characterized by location and classification. In a two-dimensional image, 
target detection can locate the position of the apple in the given image, and distinguish the current 
apple type as “ripe apple”. Firstly, we preprocess the dataset, then input the backbone network to 
extract features by using ELAN attention. The module acts on the corresponding channel of the 
feature map to obtain effective features for fruit recognition; then the model performs feature 
fusion to obtain semantic information and locate the feature map of the information. Finally, 
accurate detection results are obtained through category classification and prediction frame 
regression calculations. 
 
In this chapter, we are use of the object detection model with training dataset and the Pytorch 
library to build the page display. The functions supported by this chapter include the import and 
initialization of the fruit training model; the adjustment of confidence score and IOU threshold, 
image uploading, object detection, visual result display, result export and end detection, etc.  
 
YOLOv7 attention mechanism automatically learns the importance of each feature channel, and 
then strengthens the features useful for fruit recognition task and suppresses the useless features 
according to the importance. Aiming at the problem that GIOU cannot accurately express the 
overlap relationship between fruit recognition frames when the prediction frame overlaps with the 
target frame. In this book chapter, the original frame regression loss function GIOU is replaced 
with CIOU, taking into account the height-to-width ratio and the center point of the target frame 
and prediction frame. relationship, thereby making the fruit prediction frame closer to the real 
frame and improving the prediction accuracy. Therefore, mean average precision (mAP) is shown 
as an indicator to evaluate the model. 
 
The IOU threshold is the degree of overlap between the predicted frame and the ground-truth 
frame. mAP@.5 means that if IoU is set to 0.5, the AP of all pictures in each category is calculated 
and averaged. mAP@.5:.95 indicates different IoU thresholds, from 0.5 to 0.95, with a step length 
0.05. The larger the IOU, the smaller the number of preselected boxes, which leads to a 
corresponding increase in the ratio. We observed Table 1~ Table 5 that mAP@.5 results are better 
than mAP@.5:.95. We set the IOU higher to filter out boxes with low confidence scores. 
Therefore, the identified frame is basically around the target and counted as a positive sample. The 
object detection is to select the closest positive sample based on a group of positive samples in 
Figure 7. 
 
In this book chapter, fruit images taken by mobile phones are employed for fruit detection.  We 
took use of LabelMe to annotate the dataset, the dataset has four classes: “Ripe apple”, “overripe 
apple”, “ripe pear”, “overripe pear”, with the bounding boxes. Given the IOU threshold 0.7, we 
calculate the average precision as the evaluation. We adjusted the weights of YOLOv7 model. 
Under the same weights, the number of iterations is taken into account on with the accuracy. We 
trained the model with batch size 64, Adam optimization with an initial learning rate 0.0002. Our 
dataset has a total of two thousand fruits and their maturity labels. 
 
We chose four weights YOLOv7, YOLOv7-X, YOLOv7-E6 and YOLOv7-tiny for our 
experiments, and compared the model performance. We loaded the pretrained weights, compared 
the backbone network with the network parameters including the pretrained weights, and see how 
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many layers are the same. The training process will only load the same number of layers, we 
observe how the model is trained by adjusting the number of iterations. At the same time, we are 
use of the ConvNeXt model for training, and take advantage of  ConvNeXt pre-training model for 
transfer learning. 
 
The bag-of-freebies in YOLOv7 model improved the accuracy of fruit detection. The scaling 
method of YOLOv7 model reduces the loss of visual information. Adaptive image scaling can 
deepen the model with visual features, ensure that the overall image transformation is consistent, 
the information of receptive field can be effectively utilized. The replacement of the 
reparametrized module and the assignment of dynamic label assignments compute the prediction 
results and ground truth values, which enable the dominant leader to have strong learning ability 
through the optimization process.  
In order to improve the recognition accuracy of fruits with only different local features and similar 
global features, the ELAN module of YOLOv7 aims at the problem of poor model performance in 
model scaling. YOLO v7 borrows from ResNeXt, takes use of 1×1 conv for dimensionality 
reduction, then convolutes separately, and finally adds YOLOv7 re-parameterization method in 
residual structure and the problem of dynamic label assignment in multiple output layers. 
 
In Tables 1, 2 and 3, YOLOv7 can achieve better fruit positioning. Figure 7(a) shows that though 
the model cannot accurately determine the category of the fruit, which can still precisely locate the 
location of the fruit. After the model has learned enough features, Figure 9(b) shows the detection 
results of the model. 
 

(a)   (b) 
Figure 6: (a) and (b) are the images including fruits and the predicted boxes. 

Table 1. The precisions after trained YOLOv7 model 

Model Weights Epoch Class 
Synchronous  

AP@.5 AP@.5:.95 

YOLO
v7  

yolov7 10 Ripe apple 0.468 0.427 
Over apple 0.885 0.764 
Ripe pear 0.169 0.115 
Overripe pear 0.209 0.151 

20 Ripe apple 0.427 0.419 
Over apple 0.995 0.932 
Ripe pear 0.673 0.622 
Overripe pear 0.967 0.944 

30 Ripe apple 0.993 0.974 
Over apple 0.996 0.948 
Ripe pear 0.542 0.534 

mailto:AP@0.5
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Overripe pear 0.995 0.932 
50 Ripe apple 0.996 0.992 

Over apple 0.996 0.979 
Ripe pear 0.996 0.981 
Overripe pear 0.996 0.991 

100 Ripe apple 0.996 0.992 
Over apple 0.996 0.988 
Ripe pear 0.996 0.995 
Over apple 0.996 0.990 

Table 2. The precisions after trainied YOLOv7-tiny model. 

Model Weights Epoch Class AP@.5 AP@.5:.95 
YOLO
v7  

yolov7-
tiny 

10 Ripe apple 0.660 0.259 
Over apple 0.144 0.041 
Ripe pear 0.075 0.031 
Overripe pear 0.056 0.018 

20 Ripe apple 0.470 0.336 
Over apple 0.730 0.526 
Ripe pear 0.859 0.697 
Overripe pear 0.165 0.113 

30 Ripe apple 0.665 0.608 
Over apple 0.651 0.593 
Ripe pear 0.778 0.691 
Overripe pear 0.492 0.370 

50 Ripe apple 0.995 0.935 
Over apple 0.995 0.905 
Ripe pear 0.995 0.898 
Overripe pear 0.880 0.757 

100 Ripe apple 0.995 0.958 
Over apple 0.995 0.963 
Ripe pear 0.995 0.930 
Over apple 0.995 0.953 

 

Table 3. The precisions after trained YOLOv7-X model. 

Model Weights Epoch Class AP@.5 AP@.5:.95 
YOLO
v7 

yolov7-
X 

10 Ripe apple 0.439 0.393 
Over apple 0.843 0.718 
Ripe pear 0.344 0.224 
Overripe pear 0.436 0.396 

20 Ripe apple 0.918 0.906 
Over apple 0.996 0.949 
Ripe pear 0.390 0.352 
Overripe pear 0.517 0.470 

mailto:AP@0.5
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30 Ripe apple 0.996 0.978 
Over apple 0.996 0.960 
Ripe pear 0.996 0.919 
Overripe pear 0.996 0.959 

50 Ripe apple 0.996 0.991 
Over apple 0.997 0.983 
Ripe pear 0.996 0.994 
Overripe pear 0.996 0.989 

100 Ripe apple 0.996 0.992 
Over apple 0.996 0.989 
Ripe pear 0.996 0.996 
Over apple 0.996 0.993 

 
In Table 4, we observed that E-ELAN module with YOLO-E6 weights enables the deep network 
to converge efficiently by controlling the shortest and longest gradient paths with the same number 
of iterations. The weight YOLO-tiny takes use of LeakyReLU function to resolve the problem that 
the parameters cannot be updated after the neural network accepts the input of the outlier range. 
During the backpropagation process, a large gradient will be generated because the derivatives are 
multiplied continuously, so the parameters cannot be updated. This leads to the vanishing gradient 
problem. For the input of LeakyReLU less than 0, the value is negative, so there is a small gradient, 
which avoids the problem of aliasing in the gradient direction.  As the number of epochs increases 
in Table 5, the number of iterations for weight updating increases, the curve goes from the initial 
unfitting state to the optimal fitting state.  

Table 4. The precisions after trained YOLOv7-E6. 

Model Weights Epoch Class AP@.5 AP@.5:.95 
YOLO
v7 

yolov7-
E6 

10 Ripe apple 0.334 0.277 
Over apple 0.437 0.358 
Ripe pear 0.156 0.088 
Overripe pear 0.714 0.538 

20 Ripe apple 0.377 0.342 
Over apple 0.365 0.319 
Ripe pear 0.234 0.204 
Overripe pear 0.589 0.511 

30 Ripe apple 0.993 0.897 
Over apple 0.995 0.921 
Ripe pear 0.227 0.209 
Overripe pear 0.995 0.971 

50 Ripe apple 0.994 0.988 
Over apple 0.996 0.969 
Ripe pear 0.995 0.930 
Overripe pear 0.995 0.923 

100 Ripe apple 0.995 0.991 
Over apple 0.996 0.986 
Ripe pear 0.995 0.995 
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Over apple 0.995 0.992 

Table 5. The mean average precisions (mAP). 

Model Weights Epoch AP@.5 AP@.5:.95 Average inference 
time(millisecond) 

YOLOv7 YOLOv7 10 0.433 0.364 6 
20 0.766 0.730 6 
30 0.882 0.847 6 
50 0.996 0.986 6 
100 0.996 0.991 6 

YOLOv7-
tiny 

10 0.234 0.087 8 
20 0.556 0.418 8 
30 0.644 0.565 7 
50 0.966 0.874 7 
100 0.995 0.951 6 

YOLOv7-X 10 0.515 0.433 9 
20 0.705 0.669 9 
30 0.996 0.954 9 
50 0.996 0.989 9 
100 0.996 0.993 10 

YOLOv7-
E6 

10 0.410 0.315 13 
20 0.391 0.344 13 
30 0.803 0.749 13 
50 0.995 0.952 13 
100 0.995 0.991 12 

 

 

 

Table 6. The results of ConvNeXt model for fruit detection 

Model Weights Epoch AP@.5 AP@.5:.95 Average inference 
time(millisecond) 
 

ConvNe
Xt 

ConvNext 
+ 
Mask R-
CNN 

10 0.848 0.719 5 
20 0.948 0.678 13 
30 0.926 0.669 37 
50 0.844 0.617 58 

ConvNext 
+ 
Mask R-
CNN 
Transfer 
Learning 

10 0.500 0.701 14 
20 0.487 0.695 4 
30 0.483 0.694 5 
50 0.483 0.695 5 
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As a traditional CNN model, ConvNeXt shows better training results. Under the same training 
parameters, the transfer learning model does not have much advantage. But in Figure 9, transfer 
learning saves much time if pre-training parameters are frozen. The ConvNeXt model cannot fully 
capture fruit features. In Tables 5 and Table 6, the ConvNeXt transfer learning model has a slight 
advantage in detection speed. But in terms of accuracy, the YOLO model is still better. 

CONCLUSION 

In conclusion, our comparative study of ConvNeXt and YOLOv7, which exemplifies CNN and 
YOLO architectures respectively, has demonstrated remarkable performance in the domain of fruit 
detection. The ConvNeXt model builds upon the residual structure of ResNet, thereby significantly 
enhances the speed of detection. Taking into account the primary objective of our research, which 
is the realization of automated fruit harvesting, we conclude that the lightweight YOLOv7 model 
presents a more favorable balance between detection accuracy and computational efficiency. 
 
Fruit detection from digital images still encounters many complex problems, and the impact of the 
environment on image quality can easily cause errors in detection. In our experiments, in order to 
increase the possibility of the detection target, we screened a part of the data that was greatly 
affected by the environment when making the dataset. Our follow-up experiments will make up 
for this shortcoming, and study how to use the deep learning model to realize the target detection 
of fruits in environments such as light and rain. 
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