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Abstract. Semi-supervised learning offers a solution to the high cost and limited 
availability of manually labeled samples in supervised learning. In semi-
supervised visual object detection, the use of unlabeled data can significantly 
enhance the performance of deep learning models. In this study, we introduce an 
end-to-end framework, named CISO (Co-iteration Semi-Supervised Learning for 
Object Detection), that integrates a knowledge distillation approach and a 
collaborative, iterative semi-supervised learning strategy. To maximize the 
utilization of pseudo-label data and address the scarcity of pseudo-label data due 
to high threshold settings, we propose a mean iteration approach where all 
unlabeled data is applied in each training iteration. Pseudo-label data with high 
confidence is extracted based on an ever-changing threshold (average 
intersection over union of all pseudo-labeled data). This strategy not only ensures 
the accuracy of the pseudo-label but also optimizes the use of unlabeled data. 
Subsequently, we apply a weak-strong data augmentation strategy to update the 
model. Lastly, we evaluate CISO using the Swin Transformer model and conduct 
comprehensive experiments on MS-COCO. Our framework delivers impressive 
results, outperforming state-of-the-art methods by 2.16 mAP and 1.54 mAP with 
10% and 5% labeled data, respectively. 
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1   Introduction 

 
Deep learning [2, 20, 55, 58] has achieved remarkable results in computer vision, 
natural language processing, and speech recognition [46, 57]. Visual object detection, 
a fundamental task in the field of computer vision, has seen the emergence of deep 
neural network-based algorithms. To enhance algorithmic performance accuracy and 
prevent overfitting in large models, training on a large-scale dataset is crucial. 
However, manually annotating such data poses a significant challenge. Therefore, 
semi-supervised learning [4, 6, 31], which labels only a small fraction of large-scale 
data and effectively utilizes a large amount of unlabeled data to improve model 
performance, has received increasing attention. 

Currently, popular semi-supervised learning strategies include consistent 
regularization [4, 21, 22, 27, 35, 36, 43, 49, 51, 53]. This approach's basic idea is to 
separate different data points in low-density regions, and ensure similar data points 



 
 
 
 
 
 
 
 

2 

yield similar outputs. This consistency means the network's prediction remains the 
same as the original if the unlabeled input data is perturbed. Consistency regularization 
compares the model outputs in terms of their spatial distribution, independent of the 
labels, making it suitable for semi-supervised learning. Additionally, advances in semi-
supervised learning have been associated with effective data augmentation 
development [17, 39, 48]. Data augmentation not only increases the data amount for 
training, improving the model's generalization but also adds noisy data to enhance the 
network's robustness [19, 38]. Presently, several data augmentation strategies have been 
effectively employed to improve semi-supervised learning models' training 
performance [4, 41, 49]. 

In recent years, most object detection research has primarily focused on developing 
robust detectors [9, 26, 47]. Significant progress has also been made in semi-supervised 
object detection [3, 15, 22, 25, 40, 42, 52]. The recently proposed STAC [40] has paved 
the way for semi-supervised learning applications for visual object detection. The 
instant-teaching method [60] further improves on STAC, achieving significant results 
in the field of SSOD and providing valuable insights for subsequent SSOD research. 
The instant-teaching improvement has two aspects; one is the use of an instant pseudo-
label generation model, the other is the proposed co-rectify scheme to address 
confirmation bias due to pseudo-label. However, pseudo-label ineffectiveness stems 
from two main issues: (1) An increase in incorrect pseudo-labels leads to excessive 
noise and misdirects model learning. (2) Overconfident pseudo-labels are not updated 
and tend to cause model overfitting. 

Therefore, in this paper, we propose a new SSOD framework, CISO, to address these 
problems. We maintain all the unlabeled data during each training iteration, that is, the 
pseudo-label data obtained from the first training is not discarded but reintroduced into 
the unlabeled data. This allows all the unlabeled data to be fully utilized in several 
iterations to correct each other and reduce the number of incorrect pseudo-labels. 
Considering that such a setup may lead to the repeated acquisition of high confidence 
pseudo-labels and the need to alleviate overfitting, we propose Mean Iteration. This 
approach involves training the models using pseudo-labels with IoU values greater than 
the average value and labeled data.  

Since the pseudo-label is generated differently each time, the average value of the 
IoU after each iteration also changes, achieving the purpose of updating the pseudo-
label. The advantage of CISO is that it maximizes pseudo-label usage and continuously 
improves the quality of the pseudo-label. Moreover, we inherit the end-to-end concept 
from instant-teaching and the weak-strong data augmentation approach from STAC. 
However, we integrate knowledge distillation with semi-supervised learning to achieve 
an end-to-end framework. For weak-strong data augmentation, we also adopt cropping, 
rotating, flipping, translating, and the new Cutmix.  
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We choose the MS-COCO dataset [23] to test our CISO framework. The 
performance is evaluated using the same experimental protocol as the STAC [40] and 
instant-teaching methods [60], that is, we select 1%, 5%, and 10% of the amount of 
labeled data for performance evaluation. It is worth noting that our proposed CISO 
framework outperforms most SSOD methods, achieving superior performance. The 
contributions of this paper are as follows: 
(1) We propose CISO, a collaborative, iterative SSOD framework that extensively 
leverages unlabeled data. Besides, knowledge distillation and weak-strong data 
augmentation are also applied to our framework for the purpose of improving model 
accuracy and efficiency. 
(2) To reduce the number of incorrect pseudo-label and avoid the overfitting problem 
caused by using the inability to update pseudo-label, we propose Mean Iteration 
method, a scheme for pseudo-label selection based on the IoU average value. 
(3) We test CISO using the MS-COCO dataset and conduct extensive experiments. The 
sresults show that our proposed method achieved advanced performance. We also 
performed ablation experiments to conduct the analytics of our method. 
  In the rest of the paper, we present related work in Section 2. Our methodology is 
discussed in Section 3. Section 4 presents the analysis of the experimental results. 
Finally, our conclusions are drawn in Section 5. 
 
2   Related Works 
 
2.1   Visual Object Detection 
 
Visual object detection is a popular research direction in computer vision, and it is 
widely employed in various industries, which can reduce the consumption of labor costs 
and has important social significance [14, 16, 28, 37, 47]. At present, visual object 
detection algorithms can be grouped into two categories, one is an end-to-end and one-
stage network [24, 32, 44] which dominates in training efficiency, such as YOLO 
family [32, 45], the other is a two-stage network [9, 10, 33] which requires the use of 
region proposal CNN for feature extraction and classification, such as ResNet and 
Faster R-CNN [33]. 

Until recently, Transformers with a self-attention mechanism has also been 
employed in various tasks, including visual object detection, image classification, 
image segmentation, and video detection. Transformer models have not only received 
increasing attention but also have achieved good results [26], such as DETR for visual 
object detection [5]. However, the very majority of these methods require training based 
on large amounts of labeled data, which is very labor-intensive and time-consuming. 
Therefore improving the performance of object detection models through semi-
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supervised learning has gradually been required and needs us to pay attention to it. We 
adopt Swin Transformer [26] in this article to develop the framework. 

 
2.2   Semi-supervised Learning 
 
Semi-supervised learning [59] aims to generate pseudo-label for unlabeled data 
samples by training a small number of labeled data samples, typically with much larger 
amount of unlabeled data than labelled data. The methods [1, 2, 13] apply semi-
supervised learning to visual object detection. The core idea of Semi-Supervised Object 
Detection (SSOD) is to make full use of unlabeled data to improve the performance of 
the model. Currently, consistency-based learning and pseudo-label-based learning are 
the two main research directions of SSOD. The former can be referred to as a soft 
pseudo label, while the latter is a hard pseudo label. Early SSOD methods include CSD 
[15], which is based on consistent learning and proposes background elimination. 

While STAC [40] proposes a SSOD method based on the hard pseudo label and also 
used consistency learning. After that, instant-teaching [60] improved on STAC by 
implementing instant pseudo-label training. The unbiased teacher [25] approach 
addressed the class imbalance problem. Moreover, data augmentation is effective in 
improving SSOD [22, 25, 60], such as Mixup [60] and Cutout [22]. Based on these 
approaches, we focus on the efficient use of unlabeled data as a means to improve 
model performance. 
 
2.3   Knowledge Distillation 
 
Knowledge distillation, which is essentially model compression [12, 54], is proposed 
to be applied to classification tasks in a simple way. Unlike quantization and pruning 
methods, knowledge distillation proposes a teacher-student network, where the output 
of teacher network is knowledge, and the student network learns to transfer knowledge 
for distillation. The performance and accuracy of the teacher network are higher, and 
the network structure is more complex than that of student network. There are two 
methods of knowledge acquisition in knowledge distillation; one is to use one-stage 
features [29, 30, 34], the other is to transfer knowledge through multi-stage information 
[11, 18, 51]. Knowledge distillation can lead to better model performance, reduce 
model latency, and compress network parameters [12]. Therefore, in this article, we 
consider adding a knowledge distillation method to our framework to improve the 
model performance. 
 
3   Our Method 
 
3.1   The Structure of Our Framework 
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Fig. 1 illustrates our CISO framework. We split the whole training process into three 
stages. In the first stage, small batches of randomly selected labeled data are trained in 
the Student model, while pseudo-label is generated for the unlabeled data by using the 
Teacher model, reliable data and unreliable data were selected according to the 
threshold τ ≥	Mean (IoU). In the second stage, the labeled data and the reliable data 
are fed into the student learning model for training at the same time. At this point, the 
unreliable data generated in the first stage is released back into the unlabeled data, the 
pseudo-label is generated in the full unlabeled data. Finally, the reliable data selection 
process is repeated. Note that our Mean Iteration iterates four times and performs weak-
strong data augmentation based on the data in each iteration. In the third stage, all the 
reliable data, unreliable data, and labeled data are fed into the model for training, the 
final detection model is obtained. 
 

 
Fig. 1 The proposed semi-supervised object detection framework CISO. We are use of the 
Teacher model in knowledge distillation to generate pseudo-label for the unlabeled data and train 
iterations with the Student model. We only select pseudo-label with ! greater than or equal to 
the mean of ! . During the training period, the number of Mean Iteration was 4. We also 
conducted weak-strong data augmentation based on the given data 
 
3.2   CISO: Co-iteration SSL for Object Detection 
 
Pseudo labeling. A plethora of experiments have demonstrated that the efficient use of 
pseudo-label data can improve the accuracy of algorithms [3, 22, 25], leading to 
considerations of leveraging pseudo-label data to enhance model performance by 
proposing co-iteration semi-supervised learning based on knowledge distillation [61]. 
This differs from both classical STAC [40] and Instant-teaching [57]. STAC pioneered 
the application of SSL to object detection tasks by conducting self-training with 
pseudo-label and augmenting the data with consistent regularization. This method 
requires training the teacher model in advance and then training the student model. In 



 
 
 
 
 
 
 
 

6 

contrast, our CISO achieves end-to-end transfer of parameter data between models by 
using knowledge distillation to complete semi-supervised learning. Moreover, while 
Instant-Teaching is also end-to-end and our CISO inherits its self-training method, 
CISO retains all the unlabeled data instead of removing the unlabeled data (i.e., pseudo-
label data with high confidence). Furthermore, we propose Mean Iteration, in which the 
threshold τ is continuously updated with our proposed method to enhance pseudo-label 
utilization and model performance. 

To describe CISO in detail, we initially train each iteration by simultaneously 
generating a pseudo-label for the unlabeled data, using both pseudo-label data and a 
small amount of labeled data. Specifically, in each data batch, the labeled and unlabeled 
data are randomly sampled according to a set ratio, usually 1:10. Following that, we 
employ two models during the training process, namely, the teacher model and the 
student model for knowledge distillation. The teacher model is responsible for 
generating a pseudo-label for the unlabeled data, while the student model is responsible 
for conducting the training. Notably, the teacher model is the student model updated 
with the Exponential Moving Average (EMA). This end-to-end approach eliminates 
the need for complex multi-stage training schemes. 

CISO also implements Mean Iteration, which facilitates mutual reinforcement 
between the pseudo-label and detection training process, rendering the training results 
increasingly effective. The details of Mean Iteration will be described later. Finally, all 
data, both labeled and unlabeled, are combined in the network to train the model and 
obtain the final detection model. Furthermore, for comparison purposes with STAC and 
Instant-Teaching, we perform weak-strong data augmentation based on the unlabeled 
data. In this approach, the weakly augmented data are inferred in the initial model to 
obtain the corresponding prediction scores. The pseudo-label of the corresponding data 
is obtained according to a threshold τ, while the strongly augmented data is then passed 
through the model to obtain the prediction scores and calculate the loss with the pseudo-
label. 

Overall, we train the model with the same loss function used in STAC [40] and 
Instant-teaching [57], which are the consistency regularization loss and the cross-
entropy loss. The supervised loss consists of a classification loss function L_ce and a 
bounding box regression loss function L_1, as shown in Eq. 1. 
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where s is the index of the labeled image, i is the index of the anchor in the image, n is 
the total number of generated bounding boxes, +(,$) is the predicted probability of 
anchor i becoming an object in image X, and 3(,$) is the label of anchor i. Then, 
+(6$)	is the predicted generated bounding boxes coordinates, and 3(6$) is the actual 
labeled coordinates. 

As for the unsupervised loss part, the predicted probability distribution and frame 
coordinates of the model obtained by a small batch of weakly augmented unlabeled 
data are firstly calculated by using Eq. (2), and the pseudo-label is converted into hard 
labels as the finally obtained labels by Eq. (3). 
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Thus, the unsupervised loss function is written as Eq. 4, which is shown as  
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where u is the index of the unlabeled image, 3;(,$&) and 3(6$&) are the pseudo-label 
generated by the model itself, M(,$&) denotes the maximum prediction value, and F 
is the confidence level. 

Combined Eq. 1 and Eq. 4, the final loss function can be written as Eq. 5, where 5& 
is the unsupervised loss weight. 
 
									 																																											$'(')* = 5&$&	+	$!																																																						(5)  
 
Mean Iteration. CISO makes use of a portion of the labeled data to train the student 
model, while the teacher model generates a pseudo-label for the unlabeled data. In this 
step, we calculate the Intersection over Union (IoU) of all the pseudo-labeled data, and 
then determine the average of these IoU values to set the threshold for generating 
pseudo-labels. Furthermore, taking the mean value of IoU as the threshold τ, two types 
of pseudo-label data are generated, i.e., pseudo-labels with high confidence and pseudo-
labels with low confidence. We consider the pseudo-labels with τ greater than the mean 
τ to be reliable labels, and the remaining pseudo-labels to be unreliable labels. 
Afterwards, the student model is trained a second time using both the labeled data and 
the reliable label data. After training, the teacher model is applied to predict the 
unlabeled data and generate both reliable and unreliable label data again. It is worth 
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noting that the pseudo-labeled data are generated randomly each time, so the reliable 
and unreliable labeled data are different with each iteration. To achieve iterative 
training, we retain all the unlabeled data in each training cycle of the Student model, 
without removing any of the classified unlabeled data from the pseudo-label data. 

The proposed approach allows the threshold τ to be continuously updated from one 
iteration to the next. Since previous semi-supervised learning methods are prone to 
adopting pseudo-label data with a high threshold τ (e.g., τ = 0.9), this leads to data 
imbalance. Therefore, our CISO makes the best use of the pseudo-label data and 
ensures the accuracy of the pseudo-label data due to collaborative iterations. We 
conducted only four iterations of the experiment. Upon conducting a fifth iteration, 
there were no additional variations in what the model learned, which we will describe 
in detail in the ablation study. The results show that our method leads to improved 
model performance. 
Weak-strong data augmentation. The SSL method using consistent regularization is 
closely related to data augmentation, which enables the model to gain much information 
in pseudo-label data playing a positive impact. Regarding soft augmentation, we 
conducted cropping, rotating, flipping, and translation to improve the quality of the 
labeled data in the pre-training period if the quality of the pseudo-labeled data was low. 
While for substantial augmentation, we harnessed Cutmix [56] for consistent learning 
on unlabeled data. Cutmix was chosen because it can apply both hard and soft fusion 
to two images, allowing the information from the entire image to be utilized without 
the dataset changing after image mixing. Furthermore, Cutmix does not loose the region 
information as Cutout does, which affects the training efficiency, nor does it introduce 
some of the pseudo-pixel information as Mixup does. By utilizing both weak and strong 
data augmentation, we increase the amount of data and noises, improve the robustness 
and generalization ability of the model and avoid overfitting. Fig. 2 illustrates the 
strategies for different classes of strong and weak data augmentation strategies. 

Specifically, as shown in the Cutmix image section in Fig. 2, two images were 
randomly selected for the combination to generate a new training sample; given 
unlabeled data	I$, two images I% = (/+! , J+!) and I, = (/+" , J+"), the new sample 
is K = (/-, J-). We completed a regional dropout from the I%sample by combining 
the corresponding regions in the I, sample where the I%	sample is dropped as:  

 
																																		/ = L⊙/+% + (N −L)⊙/+,																																					 (6) 

 
																																																					J = λJ+% + (N − λ)J+,																																																							(7) 

 
where X is the image sample and Y is the image label. The λ is employed as the ratio 
of the combined regions of image I% and !,, and as with Cutmix, we set the λ to be 
in the range (0, 1), where M is the binary mask indicating where images !% and !, 
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were extracted. Besides, 1 indicates that the value of the mask matrix element is set to 
1. Finally, element-wise multiplication ⊙ is used in Eq. (7). 

 
																													%.	~	Unif	(0,.), %/ = .√1 − λ	,																											 	(8)
																												%0	~	Unif	(0, 5),												%1 = 5√1 − λ																													

 

 
Afterwards, Eq. (8) show how the extracted mask region is calculated. We use the 

same random method as Cutmix and define the coordinates of the mask region 6 =
	(%.,%0, %/, %1), where W is the width of the image 	!$, H is the length of the image 	!$, 
and %3 and %4	are selected in the ranges (0, W) and (0, H), respectively. 
 

 
Fig. 2 Visualization of weak data augmentation and strong data augmentation strategies together. 
The first two are the original image and the strong data augmentation Cutmix. The remaining 
ones are the weak data augmentation, from top to bottom: Flipping, rotating, translating/shifting, 
and cropping 
 
4   Experiments 
 
4.1   Datasets 
 
We propose the semi-supervised visual object detection framework CISO and conduct 
performance evaluation on the large-scale dataset MS-COCO [23] and PASCAL VOC 
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[8]. MS-COCO is a dataset for visual object detection, segmentation, and other 
scenarios. It has a total of 330K images, of which over 200K images were labeled, and 
it also has 80 object classes and 91 stuff categories. We adopt the same experimental 
protocol as STAC [40] and Instant-Teaching [60], that is, we randomly select 1%, 5%, 
and 10% of the labeled data for testing, and the rest of image samples are employed as 
unlabeled data. Our mAP is presented based on 80 object classes. Then, we applied 
VOC07 and VOC12 from the PASCAL VOC dataset as labeled and unlabeled sets, 
respectively. In the PASCAL VOC dataset. 
 
4.2 Implementation Details 
 
We applied the CISO framework to Swin Transformer. In this article, we are use of 7, 
8&, and λ. The three hyperparameters 8& and λ are set to 1.0 and 1.0 respectively, 
while 7 is dynamic, i.e., τ ≥ Mean (IoU). The initialization of our network weights 
is all performed by the ImageNet pre-training model. We selected 1%, 5%, and 10% 
MS-COCO protocols, the experiments were performed by using a quick learning 
schedule. 

Furthermore, our training parameters were kept consistent with STAC and Instant-
Teaching, as detailed in Table 1. 

 
Table 1 Training parameters of our framework 

 
Classes Parameters 
Initial learning rate 
Momentum 
Weight decay 
Training step 
Learning rate decays (120K, 165K) 

0.01 
0.90 
1e-4 
180K 
10 

 
Although we adopted Swin Transformer as the feature extractor, we took use of 

Faster R-CNN as the detector to make a fair comparison with the experimental results 
of other models. Besides, we also conducted an experiment using the same backbone 
network ResNet-50 as the other model to verify the validity of our model. 
 
4.3 Results 
 
In the last two years, semi-supervised visual object detection methods have gradually 
gained attention. We compare our method with other state-of-the-art semi-supervised 
object detection methods and report the mAP and AP values for each protocol, the results 
of the comparison are shown in Table 2 and Table 3. Based on the experimental 
protocols, we find out that our proposed CISO outperformed all other SSOD methods to 
achieve the state-of-the-art outcome, which is evident that collaborative iteration and 
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mean thresholding strategy significantly improved the performance of semi-supervised 
visual object detection. 

Specifically, in the Table 2, under the 1% protocol, our CISO’s mAP value reached 
22.00, an improvement up to 1.54 mAP; under the 5% protocol, our CISO increased the 
mAP value from Soft Teacher [50] method from 30.74 to 30.90, resulting in an 
improvement of 0.16 mAP values; under 10% protocol, our CISO improved the mAP 
value from Soft Teacher’s result from 34.04 to 36.20, which improves the mAP value 
by 2.16. Finally, compared with the new semi-supervised learning baseline, LabelMatch 
[7], our mAPs is 0.71 higher under 10% of the protocol. Even for our experiments using 
ResNet-50 as the backbone network, CISO still outperforms other models, with mAPs 
of 21.04, 29.50, and 34.20 for 1%, 5%, and 10% protocols, respectively. The adoption 
of Swin Transformer indicates that our method is also applicable to the Transformer 
model with a self-attention mechanism. As depicted in Table 3, when we used VOC07 
and VOC12 dataset as labeled and unlabeled data respectively, our CISO* increased the 
AP50:95 from 50.00 to 51.77 compared to the Instant Teaching. Afterwards, we added 20 
categories of MS-COCO dataset to the unlabeled data. When there is more unlabeled 
data, we also found that the AP50:95 of CISO* is 3.03 higher than that of the Instant 
Teaching. In addition, for the application of Swin Transformer, our method's AP50:95 is 
also higher than other methods, verifying the effectiveness of our model. 
 
Table 2 Comparisons of mAP results of different semi-supervised object detection methods using 
MS-COCO dataset. Ours (CISO)* indicate that we are use of ResNet-50 as the backbone network 
for the implementation, Ours (CISO) shows Swin Transformer was selected as the backbone 
network for the implementation 
 
Method 1% 5% 10% 

Anchor based 

Supervised 9.05±0.16 18.47±0.22 23.86±0.81 
CSD [15] 10.20±0.15 18.90±0.10 24.50±0.15 
STAC [40] 13.97±0.35 24.38±0.12 28.64±0.21 
DETReg [5] 14.58±0.30 24.80±0.20 29.12±0.20 
Instant Teaching [60] 18.05±0.15 26.75±0.05 30.40±0.05 
ISMT [51] 18.88±0.38 26.37±0.24 30.53±0.52 
Unbiased Teacher [25] 20.75±0.12 28.27±0.11 31.50±0.10 
Soft Teacher [50] 20.46±0.39 30.74±0.08 34.04±0.14 
LabelMatch [7] 25.81±0.28 32.70±0.18 35.49±0.17 

Anchor free 
HT [43] 16.96±0.36 27.70±0.15 31.61±0.28 
Ours (CISO)* 21.04±0.18 29.50±0.21 34.20±0.12 
Ours (CISO) 22.00±0.17 30.90±0.15 36.20±0.26 

 
We observed that the improvement in mAP value became more prominent as the 

amount of labeled data increased, from an improvement 1.54 mAP in the 1% protocol 
to an improvement 2.16 mAP in the 10% protocol. We find that this problem is related 
to the fact that we released the pseudo-labeled data back into the unlabeled data. This 
might be due to the release of the pseudo-labeled data, which leads to a higher probability 
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of extracting duplicate pseudo-labeled data again in the next iteration. We leave this 
consideration for later investigation. Moreover, Fig. 3 shows the prediction results. 
 
Table 3 Comparisons of AP results of different semi-supervised object detection methods using 

PASCAL VOC dataset. 
labeled Unlabeled Methods AP50 AP50:95 

VOC07 None Supervised 72.75 42.04 

VOC07 VOC12 CSD[15] 74.70 - 
STAC[40] 77.45 44.64 
Instant Teaching [60] 79.20 50.00 
Ours (CISO)* 80.39 51.77 
Ours (CISO) 81.44 52.98 

VOC07 VOC12 +  
COCO (20 classes) 

CSD[15] 75.10 - 
STAC[40] 79.08 46.01 
Instant Teaching [60] 79.90 50.80 
Ours (CISO)* 83.03 53.83 
Ours (CISO) 84.48 55.30 

 

 
Fig. 3 The prediction results of our framework 

 
5 Ablation Study  
 
5.1   Implementation Details Analysis of the number of Mean Iterations 
 
In Fig. 1, we detailed that the mean iteration part in the green dashed box is required to 
iterate for a number of 4 iterations, so we analyze the impact of the number of Mean 
Iteration in this section. We tested the model under the protocol of 10% MS-COCO, 
with the remaining 90% being unlabeled data. The experimental results are shown in 
Table 4, where we see that six experiments were conducted with the number of 
iterations set to 1, 2, 3, 4, 5, and 6, respectively. As the number of iterations varies from 
1 to 6, we conclude that the performance of the model is getting progressively better. 
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However, starting from iteration number 5, the performance of the model tends to level 
off. By 6-th iteration, the mAP has been improved only 0.06. Therefore, the 
performance and efficiency of the model will remain optimal when the number of 
iterations reaches number 4. 
 

Table 4 Comparisons of mAP with different Mean iterations 
 

The number of Mean iterations mAP 
1 
2 
3 
4 
5 

27.40 
29.80 
33.60 
36.20 
36.40 

6 36.46 
 

5.2   Strong Data Augmentation 
 
Since data augmentation strategies affect model performance in semi-supervised visual 
object detection models, we are use of weak-strong data augmentation strategies in 
CISO. However, the impact of solid data augmentation on model performance is more 
significant. For a fair comparison, we took advantage of the Cutmix strategy while 
retaining the Color+Cutout strategy. 
  In Table 5, we summarize the mAP values using the different robust data 
augmentation strategies. If we use only the Color+Cutout and Geometric strategies, the 
mAP value of our method does not improve much, only 1.26. Furthermore, the model 
performance is improved by using the Cutmix strategy, with an mAP value 
improvement of 0.50 compared to using Mixup and Mosaic. This validates our 
conjecture that the Cutmix strategy improves pseudo-label quality by not adding 
pseudo-pixel information to the data. CISO obtained the highest mAP value of 29.70 
using the Cutmix data augmentation method. The analysis suggests that we are able to 
improve the performance of SSOD using Cutmix. The tests in this section are based on 
a 5% MS-COCO protocol. 
 
Table 5 Comparisons of mAP values of CISO with different strong data augmentation. For fair 

comparison, we keep the Color+Cutout strategy 
 

Methods 
Strong data augmentations 

mAP 
Color+Cutout Geometric Mixup Mosaic Cutmix 

STAC √ √    23.14 
Instant Teaching √  √ √  25.60 

CISO 
√ √    24.40 
√  √ √  29.20 
√    √ 29.70 

 
5.3   Analysis of : 
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The confidence threshold 7  is a significant coefficient in semi-supervised target 
detection, and its setting directly affects the performance of the model. As other SSOD 
methods have taken a constant 7, we set 7 to be dynamically changing, and obtain 
pseudo-label according to the criterion that 7 is greater than or equal to the mean 
value. Since the reliable data and unreliable data generated after each iteration is 
different, the average value 7  taken each time is dynamic 7  (by using 10% MS-
COCO protocol). 
  We see from Table 6 that the highest model performance is achieved if 7 is averaged, 
with a mAP 36.20. Moreover, the mAP of the model continues decreasing as τ 
decreases. This confirms our hypothesis that the quality of the pseudo-label improves 
when 7 is dynamic. Finally, whether there is a more suitable dynamic τ other than 
the mean value that can be applied to SSOD is the subject of our future research work. 
 

Table 6 Comparisons of mAP values with various values of confidence threshold ! 
 

! mAP 
0.30 29.4 
0.50 31.60 
0.70 33.60 
0.90 34.80 
Mean (IoU) 36.20 

 
5.4   Analysis of <5 
 
Our study investigates the impact of the balance coefficient 8& on the model's 
performance by incorporating it into the loss function. In this section, we conduct 
testing using the 10% MS-COCO protocol. We set the values of τ to the dynamic mean 
and test the model with different values of 8&, specifically 0.25, 0.50, 1.00, 2.00, 3.00, 
and 4.00. Our results, presented in Table 7, demonstrate that the model performs the 
best when 8&	is set to 1.0. However, if 8&=2.0, though the performance of the model 
decreases, the mAP is 35.80, which is only 0.40 lower than 36.20. Furthermore, 
although the model performance decreases with the change of other values of 8&, the 
mAP value decreases most at 8& =0.25 by 5. We observe that our proposed framework 
is relatively robust to 8&.  
 

Table 7 Comparison of mAP values with various vlues of balance coefficient #! 
 

8& mAP 
0.25 
0.50 
1.00 
2.00 
3.00 
4.00 

30.20 
32.50 
36.20 
35.60 
32.90 
31.40 

 
5.5   Analysis of Mean Iteration 
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In addition to the mean 7, we also propose mean iterations to improve the quality of 
the pseudo-label by using the unlabeled data as much as possible. This is performed 
based on the dynamic mean 7	and focuses on releasing the pseudo-label extracted in 
each iteration into the unlabeled data. As shown in Table 8, the mAP value without 
Mean Iteration is 33.10, which is lower than the value 3.10. Furthermore, Fig. 4 shows 
the visualization of pseudo-labels of the unlabeled data. This result is generated based 
on whether or not the Mean Iteration strategy is used. We see that using the Mean 
Iteration strategy is effective in generating more accurate pseudo-label, which in turn 
improves model performance. In this section, we still test it with the 10% MS-COCO 
protocol. 
 

Table 8 Comparison of mAP values with various vlues of balance coefficient #! 
 

Mean Iteration mAP 
 33.10 

√ 36.20 
 

 
Fig. 4 The predicted pseudo-label. The top two images and the bottom two images were obtained 
from the non-Mean Iteration training and Mean Iteration training, respectively 
 
5.6   Analysis of the Size of Unlabeled Data 
 
Finally, analysis of the size of unlabeled data is also essential. Therefore, we evaluated 
under the 5% and 10% protocols of MS-COCO dataset. The dimensions of unlabeled 
data were set according to 1, 2, 4, and 8 times the labeled data. Table 9 shows the 
comparison results of mAP values with variable scales of unlabeled data. We can see 
that our method outperforms STAC and Instant Teaching, indicating that CISO can 
efficiently utilize pseudo label data. 
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Table 9 Comparison of mAP values with various scales of unlabeled data 
 

Methods Labeled size Unlabeled size 
1× 2× 4× 8× Full 

STAC[40]  
5% COCO 

19.81 20.79 22.09 23.14 24.38 
Instant Teaching [60] 23.60 24.30 25.30 25.60 25.60 
Ours (CISO) * 26.71 27.63 28.28 28.60 28.65 
STAC[40]  

10% COCO 
25.38 26.52 27.33 27.95 28.64 

Instant Teaching [60] 28.80 29.00 29.20 29.50 29.53 
Ours (CISO) * 32.10 32.42 32.67 32.87 32.91 

 
6  Conclusion 
 
Our research presents a novel semi-supervised object detection (SSOD) learning 
strategy, CISO, which employs knowledge distillation and weak-strong data 
augmentation techniques on unlabeled data. In addition, it makes full use of unlabeled 
data for iterative training. To tackle the problem of model overfitting, caused by the 
inability to update pseudo-labels, we introduce a Mean Iteration scheme. Our work 
effectively leverages unlabeled data to enhance model performance. While we evaluate 
CISO on the Swin Transformer with a self-attentive mechanism, our approach can be 
applied to other detectors as well. We conduct extensive experiments on the MS-COCO 
and PASCAL VOC datasets, and our proposed method demonstrates impressive 
performance, surpassing other state-of-the-art methods with higher mAP values. 
Currently, our research does not address the selection of training samples and merely 
selects training data randomly from the dataset. However, in practical applications, 
labeled and unlabeled data may not adhere to the assumption of independent and 
identically distributed data, since unlabeled data may originate from scenarios different 
from those of the labeled data. Therefore, our future work will focus on improving the 
performance of the SSOD model by exploring methods for selecting training samples 
that account for such distribution differences.  
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