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Preface

This book has been drafted based on my lectures and seminars from recent years for
postgraduate students at Auckland University of Technology (AUT), New Zealand.
We have integrated materials on deep learning, machine learning, and computa-
tional mathematics, refining the contents to publish this book. Our aim is to provide
a resource that benefits postgraduate students, particularly those working on their
theses, by sharing our research outputs and teaching work to enhance their projects.

In this book, we organize our material and present the story of deep learning in a
progression from easy to difficult concepts in mathematics. We have structured the
content with a focus on knowledge transfer from the perspective of machine intel-
ligence. We begin by explaining artificial neural networks, including neuron design
and activation functions. We then delve into the mechanics of deep learning us-
ing advanced mathematical concepts. At the end of each chapter, we emphasize the
practical implementation of deep learning algorithms using Python-based platforms
and the latest MATLAB toolboxes. Additionally, we provide a list of questions for
reflection and discussion.

Before reading this book, we strongly encourage our readers to have a solid foun-
dation in postgraduate mathematics, including subjects such as basic algebra, func-
tional analysis, graphical models, and other fundamental topics like mathematical
analysis, linear algebra, probability theory, mathematical statistics, optimization the-
ory, computational methods, differential geometry, manifold, and information the-
ory. Developing computational knowledge will not only help readers understand this
book but also enable them to engage with relevant journal articles and conference
papers in the field of deep learning.

This book is written for research students, engineers, computer scientists, and
anyone interested in computational methods of deep learning for both theoretical
analysis and practical applications. Additionally, it is relevant for researchers in
fields such as machine intelligence, pattern analysis, computer vision, natural lan-
guage processing (NLP), computational linguistics, robotics, and control theory.

Auckland New Zealand Wei Qi Yan
June 2023
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Chapter 1
Introduction

This chapter covers the fundamentals of deep learning, therefore, we present rele-
vant knowledge in chronological order so as to fully introduce the history of deep
learning development; meanwhile, we review how to use MATLAB, TensorFlow,
software R and WEKA from New Zealand, etc. as typical platforms for developing
deep learning applications. In this chapter, we expect our readers could understand
the definitions and concepts well, grasp the knowledge points of deep learning im-
plementations. Specifically, we will provide an overview of the core ideas, demon-
strate our advanced understandings of the state-of-the-art theory and practice of deep
learning and machine intelligence.
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4 1 Introduction

1.1 Deep Learning as a Prominent Component of AI

Artificial Intelligence (AI) is a synonym for Machine Intelligence or Computational
Intelligence which relies on computable algorithms in computational mathematics
and applied mathematics for decision making, following the methodology having
the components such as mathematical definitions, concepts, equations, computa-
tional algorithms, Boolean logic, coding and functions, evaluations and compar-
isons, especially in evolutionary learning and optimization. Deep learning, inspired
by bioinformatics in computer science, has been thought as the jewel in the AI crown
which attained remarkable results comparable to or surpassing human expert perfor-
mance. Nowadays, deep learning has been successfully employed to robotics, au-
tonomous vehicles, speech recognition, computational linguistics, natural language
processing, biometrics, and medical image analysis, etc.

Deep learning turns up after a number of years of evolution of information tech-
nology such as sensor networks, big data, world wide web(WWW), mobile tech-
nology, supercomputing, etc. Sensor networks capture and provide tremendous data
for us to fully touch and understand the cyberspace, cloud computing accommodates
storage space for tremendous data. The big data could be visualized and analysed
by using various methods related to data volume, velocity, and variety, while mobile
phones prone to viewing or operating the data processing using our thumbs. After
knowledge accumulation and computational evolution in past decades, deep learn-
ing emerges and becomes an iconic landmark of this digital era. Deep learning is
thought as the historical necessity of modern computing technology.

Deep learning is a redhot technology at present, which is thought as a core part
in artificial neural networks (ANNs) and artificial intelligence (AI). Deep learning
is also named as deep neural networks (DNNs), which is the core content of AI. The
latest development of AI has been reflected in the surge of deep learning.

We eyewitnessed that ACM 2018 Turing Award has been conferred to a trio of
computer scientists: Yoshua Bengio, Geoffrey Hinton, and Yann LeCun for their
conceptual and engineering breakthroughs that have made deep neural networks
as a critical component of computing in 2019. Turing Award, named after Alan
Turing (1912 — 1954), which usually is thought as the Nobel Prize of Computing,
is an annual prize given by the Association for Computing Machinery (ACM) to the
persons selected for contributions of lasting and major technical importance to the
computer field.

The articles published by this group of computer science scientists in the journals
Nature [64] and Science [43] have shown their distinctive contributions to the field
of deep learning. The publications have been regarded as the classical work of this
area. The book entitled Deep Learning published by the MIT Press [35] inspired
tremendous number of young scientists, students, engineers, and enthusiasts.

As stated in the book Deep Learning, pertaining to deep neural networks, usu-
ally the input data is imported and the outputs from those activation functions for
simulating the stimuli of neurons are calculated, the activation functions [52] in-
clude ridge activation functions like ReLU function, sigmoid function, logistic func-
tion; radial activation functions like Gaussian function, multiquadratics, and poly-
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harmonic splines, etc. Activation functions are usually nonlinear, continuous, and
differentiable.

Transfer function comes from the name transformation which is employed for the
purposes of transferring human brain signals, i.e., from input nodes to the output.
On the other hand, activation function checks the output of neurons whether it meets
a threshold and outputs between zero and one. As the result, the difference between
imported data and exported data of a neural network should be minimized. In 2011,
ReLU activation function

y = x+ = max(x,0) 2R, (1.1)

where, x,y2R, x2 (�•,+•) was found much better than Tanh activation function
or hyperbolic tangent function

y = tanh(x) 2R, (1.2)

where x,y 2R, x 2 (�•,+•) in resolving the vanishing gradient problem, which
paves the way for further development of deeper neural networks [33]. The shapes
of these two activation functions are shown in Fig.1.1.

Fig. 1.1: ReLU function and Tanh function

Usually, we are use of backpropagation including forward pass and backward
pass to adjust the weights of convolutional neural works. The algorithms of deep
neural networks from machine learning have been grouped into supervised learn-
ing and unsupervised learning. Supervised learning is related to labelled data or
ground truth. Public websites such as NIST (i.e., National Institute of Standards and
Technology) also provide verified dataset MNIST (i.e., Modified NIST database)
for training and testing deep learning models [62]. The MNIST database con-
tains 60,000 training images and 10,000 testing images. MNIST dataset is a large
database of handwritten digits. The black and white images from NIST were nor-
malized to fit into a 28⇥28 pixel bounding box and anti-aliased as shown in Fig.1.2
(http://yann.lecun.com/exdb/mnist/).
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On the contrary, unsupervised learning [121] is subject to similarity functions,
for instance, clustering is a typical unsupervised learning. In deep learning, the
unsupervised learning methods include principal component analysis (PCA), au-
toencoder [158], manifold learning [129], etc. The unsupervised learning has been
applied to dimensionality reduction or data embedding. Dimensionality reduction,
or dimension reduction [43], is the transformation of data from a high-dimensional
space into a low-dimensional space so that the low-dimensional representation re-
tains principle properties of the original data, ideally close to its intrinsic dimension.

Fig. 1.2: An example of dataset MNIST

The famous playground software Tinker has been applied to understand artificial
neural networks for beginners as shown in Figure 1.3 which renders how the deep
neural networks work, the relevant parameters and outcomes are explicitly linked to
one web page. Four types of exemplar datasets are provided for demonstrations. Any
adjustments of the input parameters will reflect the changes of visualized results of
classification and regression. The network architecture can be manually adjusted,
the nodes of the network could be freely added or removed by a network designer.
L1 and L2 regularizations have been provided for optimization. The other options
include four activation functions, learning rates, and epoch numbers.

In the course of backpropagation, we need to calculate the stochastic gradient
based on optimization, usually SGD (i.e., Stochastic Gradient Descent) will be
adopted. SGD [69] is an iterative method for optimizing an objective function
with suitable smoothness properties (e.g., differentiable or subdifferentiable). Thus,
the chain rule for function differentials is required. Meanwhile, minibatch has been
taken into account for various parametric optimization. In pseudocode, stochastic
gradient descent can be presented as Algorithm 1.

In deep learning, the hottest research topics now are distributed in the fields of
manifold learning [129], reinforcement learning [125], generative adversarial net-
work(GAN) [34], Transformer [95], graph neural network (GNN) [117], etc. These
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Fig. 1.3: The playground software Tink for understanding neural networks

Data: Initial weight: w, Learning rate: h
Result: Optimized weight: w
Choose an initial vector of parameters w and learning rate h ;
Repeat until an approximate minimum is obtained by using the gradient —F(w);

Randomly shuffle samples in the training set;
For i = 1,2,3, · · · ,n do:

w := w�h—F(w);
Algorithm 1: Stochastic gradient descent (SGD) algorithm

typical approaches have been applied to automation or automatic control, robotics,
machine vision, natural language processing, computational linguistics, intelligent
surveillance, recommender or recommendation system, etc. In remaining part of this
book, we will emphasise on these computational methods one by one.

Deep learning is being updated rather rapidly. The site Github.com provides rele-
vant source codes and datasets for various projects. From technological perspective,
there are two very popular software platforms: MATLAB and Python-based Ten-
sorFlow which could be applied to implement deep learning projects intuitively.
Software R [110] is expected to be a free environment for statistical computing and
computer graphics if other software is not available.

1.2 Theory and foundations of Deep Learning

Deep learning is also called deep neural networks which is originated from modeling
biological vision and brain-inspired information processing. Deep learning is one
part of machine learning or machine intelligence. AlexNet was the first model of
deep learning, which has been applied to handwriting recognition with the famous
MNIST datase, i.e., AlexNet was designed by Alex Krizhevsky and published with
Ilya Sutskever and Geoffrey Hinton. AlexNet was competed in the ImageNet [115]
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Large Scale Visual Recognition Challenge (ILSVRC) on September 2012 [57]. The
network achieved a top 5 error rate 15.30%, lower than that of the runner up [59, 58].

ImageNet is an image database which was designed for use in visual object
recognition and organised according to the WordNet hierarchy from the Princeton
University (US), each node of the hierarchy is depicted by hundreds and thousands
of images. More than 14 million images have been annotated, corresponding bound-
ing boxes are also provided. ImageNet contains more than 20,000 object classes.
Since 2010, the ImageNet project runs an annual software contest, which is called
ILSVRC. where software programs compete to correctly classify and detect objects
and scenes. The challenge uses a ”trimmed” list of one thousand non-overlapping
classes.

Deep learning is closely related to mathematics, especially optimization, graph
theory, numerical analysis, functional analysis, probability theory and mathematical
statistics, information theory, etc. These subjects provide the analysis for neural net-
work models. Usually, when we measure a neural network or evaluate an algorithm,
we take into consideration of its error analysis as well as robustness, stability, and
convergence in numerical analysis [124]. This ensures the algorithms to have few
errors in practical applications.

In deep learning, we take advantage of gradient descent to update the parameters
of deep learning models [12]. Gradient descent is the first-order iterative optimiza-
tion algorithm for finding the local minimum of a function. For example, gradient
descent is harnessed to solve a system of linear equations as a quadratic minimi-
sation problem, e.g., using linear least squares. The solution of linear system in
eq.(1.3)

Ax�b = 0 (1.3)

is defined as minimising the function as eq.(1.4)

F(x) = kAx�bk2
2 . (1.4)

In linear least squares for real matrix A and vector b, Euclidean distance is ap-
plied as eq.(1.5)

—F(x) = 2A>(Ax�b). (1.5)

With this observation in mind, one starts with a guess x0 for a local minimum of
F , and considers the sequence x0,x1,x2, . . ., described as eq.(1.6)

xn+1 = xn� g—F(xn),n� 0, (1.6)

where —F(·) is the gradient, g 2 R+ is small enough |g| < 1, the step size g is
allowed to be adjusted at each iteration.

If we have a loss or cost function F(w) that needs to be minimised, the gradient
descent tells us to update the weights in the direction of the steepest descent in F(w),
the weight decay equation is shown as eq.(1.7)
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wn+1 = wn� g—F(wn), n� 0, (1.7)

where g is learning rate, wn represents weights of deep neural networks. In numer-
ical analysis [124], the termination conditions for the iterations in eq.(1.7) are a
preset number of loops or running time as well as a given resultant estimation and
the errors between two adjacent loops. The termination condition is an expression
or a mathematical equation that consists of variables, constants, or operators that
define movement.

In deep learning, our focus is still on the optimization problems such as solution
existence, error analysis, stability, robustness, and convergence for weight decay like
most of existing ones in computational methods. These two prominent problems
in deep learning are related to the vanishing gradient problem and the exploding
gradient problem.

At present, vanishing gradient problem and exploding gradient problem in SGD
could be resolved by taking use of multilevel hierarchy of networks, restricted Boltz-
mann machine, generative model, long short-term memory (LSTM), residual net-
works (ResNets) while exploding gradient problems [16] could be eschewed by
using redesigned networks, ReLU activation functions, LSTM in RNN, gradient
clipping, weight regularization, etc.

Regularization is applied to avoid exploding gradient problem and vanishing gra-
dient problem [134, 35]. Regularization is defined as a modification to deep learning
algorithms that is to reduce its generalisation errors. Regularization assists us to re-
duce overfitting and drive the weights to lower errors. The regularized objective
function is shown as eq.(1.8)

Ĵ(q ;X,y) = J(q ;X,y)+a ·W(q), (1.8)

where a 2 [0,•) is a hyperparameter or regularization rate; q denotes all of the la-
tent parameters, W(·) is the latent function. The optimized parameter q ⇤ is obtained
by using eq.(1.9)

q ⇤ = argmin
q

—q Ĵ(q ;X,y). (1.9)

The typical regularizations [134] include Tikhonov regularization, sparse regu-
larization, Lagrangian regularization, etc. Tikhonov regularization or L2 regulariza-
tion is shown as eq.(1.10).

W(q) = 1
2
kwk2

2. (1.10)

Therefore,

Ĵ(w;X,y) = J(w;X,y)+ a
2

w>w. (1.11)

The gradient is shown as eq.(1.12),

—wĴ(w;X,y) = —wJ(w;X,y)+a ·w. (1.12)
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To update the weights as shown as eq.(1.13),

w w� e ·—wĴ(w;X,y),e 2 (0,1). (1.13)

Sparse regularization or L1 regularization refers to eq.(1.14)

W(q) = kwk1 = Â
i
|wi|. (1.14)

L1 regularization is shown as eq.(1.15)

Ĵ(w;X,y) = akwk1 + J(w;X,y). (1.15)

With regard to the gradients in eq.(1.16) and eq.(1.17),

—w Ĵ(w;X,y) = a ·Sign(w)+—w J(w;X,y), (1.16)

and
w w� e ·—wĴ(w;X,y),e 2 (0,1). (1.17)

Lagrangian regularization means a generalised Lagrange function (or multiplier)
and a constant k satisfies eq.(1.18)

L (q ,a;X ,y) = J(q ;X ,y)+a · (W(q)� k). (1.18)

The solution is shown as eq.(1.19),

q ⇤ = argmin
q

L (q ,a). (1.19)

If we have a fixed a⇤ as shown as eq.(1.20), then

q ⇤ = argmin
q

L (q ,a⇤) = argmin
q

J(q ;X ,y)+a⇤ · argmin
q

(W(q)� k). (1.20)

While we seek the maximum in weight decay, we cannot guarantee all the
weights exist that could be found directly. But after the regularization, we are able to
better obtain the peak point and solve the tough problems if we are use of stochastic
gradient descent (SGD).

The mathematical regularization has a plenty of merits, by using increased bias
for reduced variance, regularization can reduce overfitting and drive the weights to
lower values. The regularization has shown the performance as effective as dropout.

1.3 The Chronicle of Deep Learning

Deep learning has shown its effectiveness and superiority for resolving practical
problems. It has been particularly successful in surpassing human visual system in
visual object detection and recognition, image segmentation, speech recognition,
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natural language processing, and robot control if the technology related to big data
is employed. We summarize the timeline of deep learning progress in Table 1.1.

Table 1.1: The timeline of deep learning progress

Years Acronyms Descriptions
2023 YOLOv8 You Only Look Once
2022 ChatGPT OpenAI Generative Pre-Trained Transformer
2022 YOLOv7 You Only Look Once
2022 YOLOv6 You Only Look Once
2021 ViT Vision Transformer
2020 YOLOv5 You Only Look Once
2020 YOLOv4 You Only Look Once
2020 GPT-3 OpenAI text-generating language model
2020 DERTR Object Detection Transformers
2019 ACM Turing Award
2018 YOLOv3 You Only Look Once
2018 GPT OpenAI text-generating language model
2017 YOLO9000 You Only Look Once
2017 YOLOv2 You Only Look Once
2018 Transformer
2016 YOLO You Only Look Once
2015 SSD Single Shot MultiBox Detector
2015 Faster R-CNN Region-Based CNN
2015 Fast R-CNN Region-Based CNN
2014 GAN Generative Adversarial Networks
2013 R-CNN Region-Based CNN
2012 AlexNet A CNN architecture designed by Krizhevsky, et al.
2009 GNN Graph Neural Network
2006 DBN Deep Belief Networks
2001 RF Random Forests
1995 CNN Convolutional Neural Networks

In 1995, CNN (i.e., convolutional neural network, or ConvNet) as a typical neu-
ral work has been employed for postcode recognition[60, 127, 61] on an envelope
or handwriting recognition on a bank check. CNNs assist us to find ROI (i.e., re-
gion of interest) and salient regions, which are based on emulating the mechanism
of our human neural system. The end-to-end structure and fine-tuning merits inspire
us recognizing tiny objects with details at pixel level [65]. Typically, GoogLeNet,
a pioneering 7-level convolutional neural network created by LeCun Yann, et al. in
1998 [62] that classifies digits, was applied by numerous banks to recognize hand-
written numbers on checks digitized and normalized in 32⇥32 images.

In 1997, AdaBoost algorithm was proposed for boosting a strong classifier from
a weak learner [23, 105]. This makes ensemble learning as one of most important
parts in machine learning [4] or deep learning [35]. Ensemble learning methods, like
Bayes optimal classifier, Bayesian model averaging, Bayesian model combination,
etc. have been employed for enhancing the weak learners to stronger.
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Random forest is an ensemble learning method for classification and regression
by constructing a multitude of decision trees at training time and outputting the class
that is the mode of classification with the regression of individual trees. Random
forest [56] is based on decision trees. A random forest [56] as shown in Figure 1.4
is formed if multiple trees are ensembled together [36]. Decision trees usually are
employed for decision making [4].

Fig. 1.4: A random forest

Since 1995, SVM(i.e., support vector machine)[154] has become a very popular
machine learning algorithm for pattern classification based on specific features as
well as hyperplane and hyperparameters [4]. Different from SVM [154] in machine
learning, deep learning algorithms take multiple classes into account, the class with
the highest probability is thought as the output of a neural network [157]. Deep
learning [35] is based on the end-to-end framework of neural networks, which is
a well-designed subject not only in programming and data collection, but also in
mathematical theories and network structures.

Deep belief network (DBN) is a directed network [42, 116], where the edges and
nodes have different weights; on the other hand, deep Markov random field [14] is
an undirected network, where all the cliques are connected and all edges are bidi-
rectional. A deep Boltzmann machine (DBM) is a type of binary pairwise Markov
random fields (i.e., undirected probabilistic graphical models) with multiple layers
of hidden random variables. It is a network of symmetrically coupled stochastic
binary units [24, 2]. DBM has been successfully applied to pattern classification,
regression, and time series analysis.

AlexNet is an early simple neural network [59]. AlexNet contains eight layers,
the first five ones are convolutional layers, followed by max pooling layers, the
last three ones are fully connected layers. As a milestone of machine learning and
machine intelligence, AlexNet won the ImageNet challenge 2012. In its further im-
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proved version, deep learning surpasses our human visual system in the test pertain-
ing to computer vision.

AlexNet was implemented by using MATLAB in its early deep learning toolbox
and has been further developed as an example for transfer learning [106]. In MAT-
LAB, AlexNet is trained based on more than a million of images from the ImageNet
dataset. The network is eight layers depth that can classify images into 1,000 classes
of visual classes, including keyboards, mouses, pencils, and animals. The network
needs input images with the resolution 227⇥227.

R-CNN is the region-based CNN. Based on traditional CNNs, the region propos-
als have been added into the structure of neural networks. The proposed region of
interest (ROI) has been recommended to reduce the processing time.

Fast R-CNN [31, 30, 32] and Faster R-CNN [112, 41, 41] are region-based CNN
(R-CNN) which was originated from CNN (i.e., ConvNet), but R-CNN has been
applied to quickly find visual objects based on region segmentation and ROI [112].
If the region could be given much earlier, that will speed up the computations of
visual object location and classification.

The problem of R-CNN is that its training time is very long because it needs
to get 1,000 ⇠ 2,000 proposals at first and save them; these proposals need to be
calculated in all the former layers. In addition, the fully connected layer is expected
that all the vectors will have the same size, all the proposals need to be resized by
using cropping or wrapping operations, both strategies are not suitable because the
cropping operations may cause that the proposals are not fully extracted and the
wrapping operation may change scales of the visual objects.

Fast R-CNN was proposed in 2015 which overcomes the problems of R-CNN.
What Fast R-CNN has completed is to replace ROI pooling layer, softmax is applied
to the classification. The softmax is one extension of logistic regression function to
the multiclassification problem.

After Fast R-CNN, Faster R-CNN was proposed to improve the training speed of
Fast R-CNN. From R-CNN to Faster R-CNN, four steps of visual object detection
are finally unified into one network. Faster R-CNN does not use selective search to
get region proposals. Instead, it takes use of a region proposal to carry out the same
task. There is not repetition and all the calculations are possible to be performed by
using Graphics Processing Unit(GPU) [112, 41].

In recent years, YOLO [111] (Darknet) has become a very popular deep net.
Darknet is an open source framework. It is fast, easy to be installed, which sup-
ports CPU and GPU computations. YOLOv3 is the third version of YOLO fam-
ily(https://pjreddie.com/darknet/). Before YOLOv3, YOLO and YOLOv2 already
have been developed for visual object detection in deep learning, especially for
pedestrian detection [102].

YOLO is one of the fast object detectors, which creates grid cells, each cell pre-
dicts the bounding box and the confidence score of this box. For evaluating YOLO
models, a 7⇥ 7 bounding box and 20 labelled classes are employed. Generally,
YOLO is faster than R-CNN model.

YOLO takes use of the whole image instead of a region proposal which has a
lower rate of background errors. Compared with another real-time system based on
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PASCAL VOC 2007, YOLO has an overwhelming advantage. Fast R-CNN takes
around 2 seconds for each image to generate region proposals of a bounding box.
Faster R-CNN as the most accurate model reaches 7 f ps while a smaller model,
which has lower mAP 62.1%, achieves 18 f ps. But YOLO could reach 45 f ps,
which is twice faster than R-CNN and even has a higher mAP 63.4%. The limitation
of YOLO is that each cell could predict bounding boxes, which makes small objects
hardly to be detected.

In 2020, YOLOv4 and YOLOv5 have been proposed for optimal speed and ac-
curacy of visual object detection, especially small object detection has been well-
resolved. In 2022, YOLOv6 was developed as the next-generation object detec-
tion from the Chinese company Meituan or MT-YOLOv6 which provides a better
mean Average Precision (mAP) than all the previous versions of YOLOv5, with
approximately two times faster inference time based on COCO val2017 dataset.
YOLOv7 [169] makes YOLO great again by using transformers and multi-tasks
training. YOLOv7 achieves mAP 43 and exceeds Mask R-CNN, it’s more accurate
and even more lighter. Now, YOLOv8 has been online for further study.

Fig. 1.5: SSD for visual object recognition

SSD (i.e., single shot multibox detector) [79, 104] is famous for balancing the
resolution and speed as shown in Figure 1.5. Meanwhile, YOLO [111] and YOLOv2
are excellent in achieving the fast speed to detect visual objects based on operations
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by using 7⇥ 7 blocks. Now, YOLOv3 has been thought to overcome the shortcom-
ings and become a very excellent method for visual object detection.

Deep residual network (ResNet) [39][40] was designed for avoiding the problems
of vanishing gradients and exploding gradients, reusing activation functions from
a previous layer until the adjacent layer obtains its weights. ResNets utilize skip
connections, or shortcuts to jump over a few of layers.

In deep learning, there exists the degradation problem, namely, with the network
depth increasing, accuracy gets saturated. However, ResNets easily enjoy accuracy
gained from the increased depth.

y = F (x,{Wi})+x, (1.21)

where x and y are the input and output vectors of the layers, F (·) is the residual
mapping.

GAN as a contrastive net [13] refers to generative adversarial network [34, 121]
that is applied to identify the differences between a fake object and the real one.
GAN is a type of deep learning networks that can generate data with similar charac-
teristics as the input training data. A GAN consists of two networks that are trained
together: Generator and discriminator. In order to train a GAN, it needs to train
the generator that generates data which fools the discriminator, the discriminator is
applied to distinguish real data and generated data. The objective of a generator is
to generate data that the discriminator classifies as the real one. The objective of a
discriminator is not to be fooled by the generator. These strategies result in the gen-
erator that generates convincingly realistic data and a discriminator that has learned
strong feature representations.

In GANs [27], the generative network and the discriminative network are playing
a game following the min-max decision rule and utilize mathematical expectation
as the loss output. The function is also called min-max loss function as shown as
eq. (1.22), where function D(I,Md) represents the discriminator network, Md is a
randomly generated image, G(I,Mi) refers to the generative network, I is the input
image.

LGAN = min
G

max
D

E[logD(I,Md)+ log(1�D(G(I,Mi),Mi))] (1.22)

The joint loss is further subdivided into discriminator loss and generator loss,
which is determined by the structure of GAN as shown as eq.(1.23). The generator
makes this function as small as possible, while the discriminator boosts the value
as great as possible. It is worth noting that this function is not used alone in this
experiment which is only one part of the total loss function. The total loss is based
on a combination of MSE loss LMSE(·) and GAN loss LGAN(·) so as to obtain
better training results, where a refers to the weight of nets.

LJoint = min
G

max
D

E[Lmse + logD(I,Md)+a log(1�D(G(I,Mi),Mi))] (1.23)
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Autoencoder as another contrastive net [13] is trained to minimise reconstruction
errors as the loss

L (x,x0) = kx�x0k2 = kx�s 0(W0(s(Wx+b))+b0)k2, (1.24)

where x is usually averaged over the input training set. Mathematically, this loss
function is a square loss function. A family of loss functions also include 0⇠1 loss
function, absolute loss function, average loss function, etc.

Autoencoders are assisted by using the output as its input iteratively, which leads
to the famous fixed-point theorem. If the fixed point could be found or converged,
that means we can use autoencoders for noise removal and dimension reduction re-
garding the given data. Autoencoders have been successfully applied to image arte-
facts removal such as inpainting and image denoising [150]. Autoencoders belong to
unsupervised learning which generally have a strong ability for data dimensionality
reduction.

Reinforcement learning is different from supervised learning and unsupervised
learning. Reinforcement learning [101, 74] is suitable for pendulum, dynamic con-
trol, and intelligent navigation. An environment and relevant states as well as re-
wards are established for an agent to control the system. Once the agent takes a step,
we need to calculate the rewards and assess the feedback so as to decide whether
the action is with positive or negative reward [4].

In Markov decision processes, a Bellman equation is a recursion for expected
rewards in control theory by using dynamic programming [50],

V p(s) = R(s,p(s))+ g Â
s0

P(s0|s,p(s))V p(s0), (1.25)

where s is a state and the policy is p , V (·) is the value function, R(·) is the reward
function. The Bellman optimality equation is

V p⇤(s) = max
a

{R(s,a)+ g Â
s0

P(s0|s,a)V p⇤(s0)}, (1.26)

where p⇤ is the optimal policy and V p⇤ refers to the value function of the optimal
policy.

In recent years, Q-learning algorithm is proposed for solving the problem given
by Bellman equation. The goal of Q-learning algorithm [130] is to learn a policy,
which tells an AI agent what action will be taken under which circumstance.

An autoencoder is employed to explore knowledge from efficient data coding
in an unsupervised manner [17]. The aim of an autoencoder is to learn a represen-
tation (encoding) for a set of data, typically for dimensionality reduction and data
embedding, by training the network to ignore signal noises [158].

Given one hidden layer, the encoder of an autoencoder takes the input x 2Rd =
X and maps it to h 2R p = F,

h = s(Wx+b), (1.27)
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where h usually is latent variable, s(·) is an activation function, W is a weight
matrix, and b is a bias vector.

Transfer learning [156] is to apply the well-trained weights of an existing neural
network to a new model. We modify the weights or parameters and make minor
corrections. It saves training time, however, does not affect the average precision of
pattern classification [44] too much.

Transfer learning applies stored parameters or knowledge to a different but rel-
evant problem. From practical standpoint, reusing or transferring information from
previously trained nets for new tasks has the potential to significantly improve the
training and testing efficiency in deep learning.

In the new version of MATLAB, there is a toolbox especially for implementing
transfer learning [57]. In transfer learning, a deep learning approach, in which a
model has been trained for one task, is used as a starting point to train a model for
similar tasks. Fine tuning for a deep neural network with transfer learning is usually
much faster and easier than training a network from the scratch. Transfer learning is
usually offered for visual object detection and recognition, speech recognition, and
other applications.

As an instance, ChatGPT, which means a generative pre-trained Transformer,
was fine-tuned by using supervised learning as well as reinforcement learning. Chat-
GPT was developed by OpenAI and launched in November 2022. In reinforcement
learning, human trainers firstly ranked responses that the model had created in a pre-
vious conversation. These rankings were employed to create “reward models” that
the model was further fine-tuned on using several iterations of Proximal Policy Op-
timization (PPO). ChatGPT has successfully been applied to the conversions related
to mathematical equations, chemical reaction formula, and VBA programming, etc.
The interface of ChatGPT’s comments on the book: Computational Methods on
Deep Learning is shown in Fig.1.6

Fig. 1.6: The interface of ChatGPT on February 2023

Markov random field (MRF) [68], Markov network or undirected graphical
model is a set of random variables having a Markov property described by an undi-
rected graph. MRF satisfies Markov properties, the Markov random process [55]
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only has relationship with the state of the next time. A class of Markov random
fields are those that can be factorized according to the cliques of the graph.

In graphical models [55], MRF and DBN are two typical networks. Dynamic
Bayesian networks, such as influence diagrams [21], are thought as the directed
network, the probability of each node is completely dependent on its neighbours.
Therefore, conditional probability and joint probability are especially required.

SqueezeNet [145] and compressed network(CompressedNets) are employed for
mobile phones or portable devices. If we trim a network or compress the network,
we can use it for the small devices which has not extremely big memory or needs
GPUs to support the computations though most of tablets and mobiles now have
facilitated with this powerful hardware.

Ensemble methods take use of multiple learning algorithms to obtain better pre-
dictive performance than that could be obtained from any of the constituent learn-
ing algorithms alone. Ensemble learning[38, 133] integrates all learners together.
By using ensemble learning, we boost a weak classifier to a strong one. The typical
ones are AdaBoost and Bagging algorithms. We have employed this algorithm in
OpenCV for visual object detection.

Entropy is a measure of the unpredictability of the state, or equivalently, of its
average information. The measure of information entropy associated with each pos-
sible data value is the negative logarithm of the probability mass function for the
value

S =�Â
i

Pi logPi =�EP(logP), (1.28)

where EP(X) = Âi PiXi is mathematical expectation defined by the probability P.
After normalization, the normalized entropy will be fallen in the interval [0,1] [37].

Function EP[X ] has the properties:

• EP(c) = c, c is a constant;
• EP(cX) = cEP(X), c is a constant;
• EP[EP(X)] = EP(X);
• EP(X ± Y ) = EP(X)±EP(Y );
• EP(aX ± b) = aEP(X)± b, a,b 2 R;
• If X and Y are independent, EP(XY ) = EP(X)EP(Y ).

Entropy [20, 22] is a fundamental concept in information theory [18]. All kinds
of entropy, such as joint entropy, conditional entropy, mutual information (i.e., KL
divergence) construct the main framework of information theory. Information the-
ory [18] has been applied to information retrieval [11, 96] previously, now it has
been employed to deep learning [35].

Mathematics usually refers to calculus [97] and algebra [46] at undergraduate
level. Calculus denotes courses of elementary mathematical analysis, which are
mainly devoted to the study of functions and limits. Calculus is related to numerical
analysis; linear algebra and tensor algebra are employed in deep learning. Linear
algebra deals with vectors and matrices, more generally, with vector spaces and
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linear transformations. Tensor algebra [46] is needed for better understanding Ten-
sorFlow [1] from DeepMind of Google Inc. In mathematics, a tensor is an algebraic
object that describes a multilinear relationship between sets of algebraic objects
related to a vector space. Tensor algebra is a powerful tool with applications in ma-
chine learning, data science, engineering, and computer sciences.

In deep learning, it is really true that we need to study probability theory and
mathematical statistics at undergraduate level, we also should know functional anal-
ysis [103] and abstract algebra [47] at postgraduate level for fully understanding the
algorithms and mechanism of the loss functions in a normed space and polynomial
rings. Finite fields [73] are especially recommended if polynomial theory is needed
in computations.

Since we have known deep learning was not fallen from the sky, it accumu-
lates human computing experience in the past decades from sensor networks, big
data, cloud computing, image processing, computer vision, pattern classification,
and machine learning, etc.

We strongly suggest that a beginner should start deep learning study from a well-
written journal article [64, 63, 118] or a good book [35], download the relevant
source codes for implementation and experience the differences of distinguished
deep learning and conventional machine learning methods. Based on the first-hand
experience, further deep learning study or research work is encouraged. Mathemati-
cal knowledge and network structure are especially recommended as the fundamen-
tal knowledge.

1.4 Sample Projects for Deep Learning

In recent years, a myriad of projects have been developed based on deep learn-
ing [53, 84, 85, 113, 135, 160, 149, 8, 6, 9, 123, 93, 25, 163, 159, 155, 87, 143, 71].
The features of these developed projects are different from conventional machine
learning or pattern classification. We would like to list a few of them as follows.

A project has been developed for human face detection and recognition from
distance [19, 135, 139, 136]. Face recognition is an important biometric in video
surveillance. In this project, we took a spate of human face photos from multiple
views and train the Inception network [126] by using data augmentation. In the
distances, the influence from the camera to a face and the size of the face in the
images is diverse. The results indicate that deep learning method is able to recognize
human faces with partial occlusions and various distances. If a face could not be
detected, we will quickly switch to human gait recognition.

In human age estimation based on face recognition [122], we propose an im-
proved end-to-end learning algorithm to address the aggregation of multiclass clas-
sification and regression for age estimation by using CNNs. Our contribution is to
work for an updated algorithm regarding age estimation by adopting the attention
and normalization mechanisms for balancing the efficiency and accuracy of the pro-
posed model. In addition, our model suits to be deployed on mobile phones owing
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to its compact size and superior performance. In future, we will explore this mech-
anism for other applications related to facial information.

One of our projects is related to human facial expressions of emotion [3], we
investigate the reliability of facial emotion recognition (FER) based on the seven
classes of human facial expressions of emotion: Neutral, scared, angry, disgusted,
sad, happy, and surprised. We classify human facial emotions from digital images.
Convolutional Neural Network (CNN), Xception, Vision Transformer (ViT), Simple
Deep Neural Network (SDNN), and Graph Convolutional Neural Network (GCN)
have been taken into consideration with two types of methods: Non-facial land-
marking and facial landmarking. With the popularity of deep learning algorithms,
our SDNN model was employed as a baseline to test the proposed method. With this
model, we are able to achieve 96.0% accuracy in our real-time testing experiments.

In the throes of the COVID-19 pandemic, people are asked to wear masks in
public. The current face recognition method is well established and quite straight-
forward. However, if people wear face masks, it will reduce the accuracy of face
recognition. In our project [70, 78], we propose a masked face recognition method
and solve the problem that many of models cannot be applied to portable devices or
mobile terminals.

Human action recognition from digital videos is a hot topic in the field of com-
puter vision [155]. Deep learning methods have gained great attainments in this
field. The goal of human action recognition is to classify patterns so as to under-
stand human actions from visual data and export corresponding tags. In addition
to spatial correlation existing in 2D images, human actions in a video are explored
based on the correlation in temporal domain. Based on CNN, Two-Stream CNN,
CNN+LSTM, and 3D-CNN are harnessed to identify human actions. HMDB-51
dataset is employed to test these algorithms and gain the best results.

Human behaviour such as running, jumping, skipping, etc. could be detected us-
ing deep learning [86]. Based on this work, we quickly detect pedestrians, especially
abnormal behaviours for anomaly detection [9, 10]. The differences from previous
work based on Local Binary Patterns (LBP) and Histogram of Oriented Gradients
(HOG) are that we applied a big training dataset with YOLOv3 as the classifier.

Furthermore, we investigate the state-of-the-art deep learning methods for sign
language recognition. Capsule Network (CapsNet) and Selective Kernel Network
(SKNet) with attention mechanism are applied to extract spatial features. Sign lan-
guage recognition is one of the fundamental ways to assist deaf people to commu-
nicate with others. Sign language as an important means of communications, the
problems of recognizing sign language from digital videos in real time have be-
come the new challenge of this research field [83]. Recently, Vision Transformer
and other Transformers have shown apparent advantages in object recognition com-
pared to traditional computer vision models such as Faster R-CNN, YOLO, SSD,
and other deep learning models. We are use of a Vision Transformer-based sign lan-
guage recognition method called DETR (Detection Transformer) to improve the cur-
rent state-of-the-art sign language recognition accuracy. The DETR method is able
to recognize sign language from digital videos with high accuracy using the model:
ResNet152 + FPN (i.e., Feature Pyramid Network), which is based on Detection
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Transformer. ResNet152+FPN is able to enhance the detection accuracy based on
the test dataset of sign language compared to the standard Detection Transformer
models.

A model of dynamic skeletons called spatial temporal graph convolutional net-
works (STGCN) was proposed by automatically seeking both the spatial and tem-
poral patterns from visual data to achieve the human behaviour recognition [76].
It performs pose estimation based on videos and constructs spatiotemporal graph
of skeleton sequences. Multiple layers of spatiotemporal graph network gradually
generate high-level feature maps from the videos. It is classified by applying the
standard softmax classifier to obtain the corresponding pattern class.

Human gait recognition is one of the most promising biometric technologies,
especially for unobtrusive video surveillance and human identification from a dis-
tance [139, 138, 140, 142, 75, 141]. Aiming at improving gait recognition rate, we
conduct gait recognition by using deep learning methods and proposed a framework
based on multichannel convolutional neural networks(MCNN) and convolutional
long short-term memory (ConvLSTM), and manifold learning known as GaitMani-
fold.

Human finger motion was detected for Morse code enter [67, 162]. In a circum-
stance, if we are not allowed to speak loudly, we can use gesture or Morse codes to
contact others. Writing Morse codes on a table surface could not attract much at-
tention. Computer vision by using human gesture recognition could work in mutual
silent communications in mute mode.

Our motivation for image colorization is inspired by deep learning, especially
video analogies [153] and transfer learning in the domain of deep learning [143].
In this project, we experimented with deep learning networks for colorizing the CT
lung images. For hybrid colorization, we select appropriate reference images so as to
colorize the target CT lung grayscale images. Pertaining to the results, we consider
numerous methods such as human visual analysis, PSNR, and SSIM to evaluate the
proposed deep neural networks. The results of rendering the CT lung images by
using deep learning are significantly prominent.

In recent years, deep neural networks (DNNs) have achieved a remarkable pro-
gression for resolving complicated problems. DNNs are suitable for dealing with
the problems related to time series analysis, such as speech recognition and natural
language processing. Video dynamics detection, as an instance, is time dependent.
Apparently, video dynamics detection needs to utilize the present, previous and next
frames of a given video. If a frame change occurs, it triggers whether a video event
happens or not. We are able to achieve high-precision and real-time video dynamics
detection by using RNN and GRU as well as apply CNN to reduce the video size
and extract critical information. We integrate CNN and RNN together to make a
significant reduction in the size of video data and the training time [165].

Visual object detection in blindspots [119] of moving vehicles has been devel-
oped as a research project in unmanned vehicles. The frequently look-back actions
of a driver could be reduced, a monitoring system could automatically and timely
count moving objects in the blindspots and report potential hazards to the driver in
all time. We also developed a project for predicting the distance between current car
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and the front car, or current car and the behind car, the three-second distance is kept
for monitoring the safe distance between vehicles [99].

Flame detection [149, 120] is a series of projects we have developed for a number
of years in intelligent surveillance; the flames from burning fires of a torch and
combustible materials in a fireplace could be recognized. In this project, we detect
the fire flare region with fine-tuning operations from deep learning. The features of
natural fire have been identified to discriminate the correct frames from the wrong
ones.

Currency and coin detection, recognition, and forensics are still very valu-
able [160, 161, 93, 94, 146] in our banking business. So far, we can quickly find
the currency from the aspect of visual object detection. We are mainly use of sin-
gle shot multibox detector (SSD) based on deep learning as the framework, employ
CNN to extract visual features of paper currency, so that we are able to accurately
recognize the denomination of currency and coin, both front and back faces. More-
over, YOLOv5 was implemented to detect paper banknote. These methods not only
slash human labour but also promote the precision of currency recognition. By com-
paring multiple versions of YOLOv5 in terms of YOLOv5s, YOLOv5m, YOLOv5l
and their variants, we find that more network layers propel higher precision and a
better GIoU loss with the sacrifice of training speed [128].

Deep learning methods have been offered for removing noises from an im-
age [84]. After trained a neural network model, we obtained the parameters to make
any picture smooth including the picture after JPEG lossy compression. Deep learn-
ing has the capability to remove artifacts and reconstruct an image including image
inpainting [27].

In general, face image inpainting is composed of generators and discriminators
in GANs [27, 28]. In this project, we have designed and implemented a new model
for face image inpainting. We take advantage of CNNs in deep learning as the basis
net, the weighted mean squared error (MSE) loss and the GAN loss functions are
combined to improve the stability of model training, the complete network of the
entire structure of convolutional nets is employed for the image inpainting. In addi-
tion, global and local discriminator nets are also put forward to improve the quality
of image inpainting.

Alzheimer’s disease (AD) is a neurodegenerative disorder which leads to mem-
ory and behaviour impairment [48, 49, 123]. Early diagnosis and therapy can
delay the progress of this disease. Deep learning methods have been applied to
Alzheimer’s disease diagnosis. Selective kernel network with attention(SKANet)
for early diagnosis of AD using magnetic resonance imaging (MRI) is proposed.
Attention mechanisms have become an integral part of compelling sequence mod-
elling and transduction models in various tasks, allow to model the dependencies
with regard to the distance in the input or output sequences. The attention mecha-
nism was added to the bottom of the block to emphasize on important features and
suppress unnecessary ones for accurate representation of the network [131].

Deep learning aids fruit recognition and allows a computer to detect a fruit and
find its freshness and ripeness automatically [25, 26]. A number of algorithms have
been reviewed, including YOLOv5 for detecting region of interest with consid-
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erations of digital images, ResNet, VGG, GoogLeNet, and AlexNet as the base
networks for fruit freshness grading. Fruit decaying occurs in a gradual manner,
this characteristic is included for freshness grading by interpreting chronologically-
related fruit decaying information [25].

Apple ripeness identification is such a type of patter classification. In this project,
the ripeness of apples was detected with deep learning [147]. We make use of a
set of various apple and pear datasets to train, test and evaluate the performance
of different transformer models. The Transformer model is essentially a process
of encoding and decoding. Encoder is to stack the encoder block, like a regular
CNN. Vision Transformer (ViT) and Swin Transformer are considered. We carefully
compare and examine the advantages of these two models for accurate fruit ripeness
analysis. We find out that Swin Transformer achieves significantly better results than
Vision Transformer for both pears and apples [148].

We deploy a model based on CenterNet for visual object detection to resolve the
problem of fruit detection. By comparing those models with different backbones, the
deep learning-based model with DLA-34 was chosen as the final model to detect
fruits from an image. Meanwhile, our dataset with four classes and 1,690 images
were collected. By evaluating the performance of the models, we eventually design a
CenterNet based on DLA-34 to detect multiclass fruits from the given images [163,
164]. Furthermore, deep learning could be applied to food safety assessment, we
have employed deep learning to meat quality analysis [5, 6, 8, 7].

In traffic sign recognition, we propose a deep learning algorithm based on Faster
R-CNN and YOLOv5. Firstly, we conduct image preprocessing by using guided
image filtering for the input image to remove noises. The processed images are im-
ported into the neural networks for training and testing. The outcomes of traffic sign
recognition are promising. The improved YOLOv5 model was applied to Google
satellite images for accurately detecting road signs on ground [151] as shown in
Fig. 1.7.

Fig. 1.7: Traffic signs from Google satellite view
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In the sailboat and kayak detection [92], we search for a set of best parameters
for YOLOv5 model. We find out the best structure for the kayak detection using
our training dataset. We verify our model and compare it with a well-trained model
by using ensemble learning. We construct a realistic sailboat detection dataset [90],
which allows us to evaluate the robustness of our model in real-world applications.
Facing with the diversity of data samples collected by using various devices, we cre-
ate the model by automating the search and design which makes the model much ro-
bust. Our model combines and improves the YOLO family with the attention mech-
anisms which is validated based on real datasets [91].

The pose estimation of swimmers is a basic problem to be solved in the tasks
of relevant computer vision. In this project [15], we implemented a method for the
pose estimation of swimmers based on deep learning, which fits scenarios contain-
ing multiple swimmers. We combined the HRNet with YOLOv5 to implement our
model. Our method achieved ideal accuracy, the model is easy to be trained and
deployed. In addition, a dataset is annotated with key points for swimmers and a
slew of datasets are explored for swimmer detection. Our dataset is composed of the
underwater view of swimmers. Compared with the side view, the torso of swimmers
collected by the underwater view is much suitable for a broad spectrum of deep
learning applications.

In order to describe a journey, storytelling could be automatically generated from
a group of digital photographs. Most of the existing methods focus on descriptions
of specific content of a single image, such as image captioning, which lack of corre-
lation between the images and the spatiotemporal relationships. In this project, we
make use of visual object detection from digital images. Combining the changes in
spatiotemporal domain and filling in the predetermined template, we automatically
generate a text-based travel diary. Compared with conventional image captioning,
our methods are to effectively connect correlation between digital images and back-
ground information [167].

Speech recognition is an important field in natural language processing. In this
project, we implemented a hybrid model of CTC and attention (CTC+Attention)
model for multilanguage speech recognition. In order to compare the methods, we
designed and created three datasets: Chinese, English, and Code-Switch. Through-
out our experiments, we find that the hybrid CTC+Attention model based on end-to-
end framework achieves better performance compared with the HMM-DNN model
in a single language and Code-Switch speaking environment. The CER(i.e., Charac-
ter Error Rate) of the proposed hybrid CTC+Attention model based on the Chinese
dataset defeated the traditional model [71, 72].

In order to achieve automatically litter detection in residential area, machine vi-
sion has been applied to monitor environment of surveillance. Based on our observa-
tions and comparative analysis of the current algorithms, we proposed an improved
object detection method based on Faster R-CNN algorithm and achieve more than
98% accuracy of litter detection in surveillance [77]. ConvNeXt was also selected
as a model for waste classification from digital images. We took use of ConvNeXt
as the backbone to obtain an efficient waste classification model [107].



1.5 The Databases for Deep Learning Projects 25

While current visual object detection algorithms focus on the exploration of
larger objects, the development of small object detection is being expanded rela-
tively slowly due to the inability to acquire more visual information. We proposed a
method combining contextual information and multiscale learning to improve small
object detection performance in waste classification. Furthermore, based on the ad-
vantages of parallel computing in Transformers, we utilize DETR model to explore
our method [108]. The experimental results show that our method achieves high
accuracy in the detection of a small object in waste.

1.5 The Databases for Deep Learning Projects

In machine learning and deep learning [92], PASCAL VOC is a benchmark dataset
for pattern classification and visual object detection. By starting with only four
classes in 2005, the dataset has grown into 20 classes. Since 2009, the number of
photos has increased year after year, but all previous images have been retained to be
able to compare the test results. ILSVRC [115] is a derivative of ImageNet, which
extends the standard algorithm of visual object recognition as well as evaluations.
ImageNet1000, a subset of ImageNet images with 1,000 object classes and a total of
1.2 million images, has been modified to provide a standard test for the ILSVRC ob-
ject classification. MS COCO database contains complex scenes with visual objects
in natural situations. All of these datasets use bounding boxes as output or object
instances as the segmented output.

In vehicle-related scene understanding [80, 81], the first step is to label data or
obtain labeled data, it is imperative to collect images of the relevant environment ex-
tensively. In this project, we are use of an in-vehicle camera to obtain video files of
traffic scenes. We define pixel-level labels for project object classification, includ-
ing “sky”, “building”, “buslane”, “road”, “lane”, “tree”, “trafficsign”, “turnsign”,
“vehicle”, “pedestrian”, and “traffic light”. This dataset guarantees the sharpness of
images, which contains visual objects taken from various angles and locations. The
same object has different distances from the camera, the same objects in different
images have different sizes.

In scene segmentation [81], the labels as the ground truth were manually an-
notated including “vehicle”, “sky”, “tree”, “building”, “road”, and “traffic sign”,
leading to six classes. We split the dataset into a training set and a test set in a ratio
3:1. In addition, we also perform intensity pre-processing on the dataset. In order to
make the pixels of each image within interval [-1.0, 1.0], we resized the input image.
We conducted image enhancement based on the dataset with transformations (e.g.,
translation, scaling, rotation, elastic deformation, etc.) and intensity (e.g., transla-
tion, scaling, equalization, etc.) to avert overfitting.

The self-driving dataset KITTI is a benchmark for performance comparison
among models [98]. KITTI dataset provides right and left view cameras for ac-
quiring colour images, LiDAR’s 360-degree point clouds and GPS coordinates, all
are synchronized. Scenes have been recorded from well-structured highways, com-
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plex urban areas, and narrow countryside roads. The dataset contains 15,000 frames:
7,500 labelled and 7,500 unlabeled. The various sensors and labelling information
are provided for each frame, along with the orientation. Meanwhile, Waymo dataset
has resolution 1980⇥ 1280 with continuous labelled frames. Waymo dataset pro-
vided an enormous amount of data in the form of 900 segments, with each segment
of around 1GB size. It was found to contain the night, rainy as well as foggy scenes
with car objects in the downloaded data segments.

In traffic sign recognition, we recorded the realistic traffic sign images [109]. The
resolution is 1080⇥1440. Our dataset consists of 3,436 images and 3,545 instances
in total, labelled as “Stop” (236 instances), “Keep left” (536 instances), “Road di-
verges” (505 instances), “Road bump” (619 instances), “Crosswalk ahead” (636 in-
stances), “Give way at roundabout” (533 instances) and “Roundabout ahead” (480
instances). We utilized data augmentation to expand our dataset, the basic manipu-
lations for data augmentation include flipping, rotation, shearing, and adding noise
as well as blurring images. In this case, we merely applied two augmentation oper-
ations, including adding noises and blurring images, because these methods could
not deal with the distorted objects that may impact the quality of our dataset and
even degrade the accuracy of our training models.

In another project [168], we collected traffic sign images. Our dataset is com-
posed of 2,182 traffic sign images which are labelled as “No U-turn” (271 images)”,
“Road bump” (329 images), “Road works” (294 images), “Watch for children” (176
images), “Crosswalk ahead” (313 images), “Give way” (317 images), “Stop” (286
images), and “No entry” (196 images). We resized the images whilst keeping the
same aspect ratio between width and height. Thus, we normalized all images in our
dataset to be 1128⇥2016 and 1536⇥2048.

In the traffic sign recognition with image defogging by using guided image fil-
tering [151, 152], our dataset consists of 3,105 images and 5,536 instances in to-
tal. First of all, a dataset includes 12 traffic signs. The resolution of the images is
1920⇥1080. We have added three datasets: FROSI, FRIDA, and FRIDA2. The fogs
in the FROSI dataset are grouped according to the visibility from 50 meters to 400
meters, the traffic signs in the dataset are similar to real ones. These three datasets
assist us to improve the accuracy of these two deep learning methods for traffic sign
recognition on foggy days.

In the project for tree leaf recognition [137], the dataset includes five classes of
tree leaves: (1) Magnolia grandiflora, (2) Boehmeria nivea, (3) Clausena lansium,
(4) Euphoria longan, (5) Hibiscus. We took use of the software LabelMe to label the
acquired images. The method of labeling is to label each class by manually selecting
a rectangle box as the region of interest. In the process of labeling, multiple classes
of leaf abbreviations are represented by combining different numbers and initials
of leaf names. The data augmentation includes specific operations such as flipping,
zooming in, zooming out, clipping, and combining. The number of images was ex-
panded to 1,676. The data is split into training set and verification set according to
the ratio 8:2. The final training set has 1,340 images.

The dataset in the project related to sailboat recognition [90, 91, 92] includes 600
images of kayaks and 400 images of sailboats. The labels of each picture are tagged
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manually, the coordinates of each sailboat and kayak location are marked, the visual
objects are indexed. Each photo contains at least one index, there are total more than
2,700 indexed images of sailboats and kayaks. The training set has 80% of the data
from the dataset, the other 20% of the data for testing, validation set takes 20% of
the set.

There are a plenty of public datasets for human behavior recognition, such as
Weizmann dataset, KTH dataset, UCF dataset, CAVIAR dataset, CASIA dataset,
and BEHAVE dataset [87]. Weizmann dataset encapsulates 10 classes, each of the
classes has nine videos which were acquired by using a static camera with individual
behaviors, the resolution of the image samples is 180⇥144. KTH dataset includes
a total of 2,391 videos with six classes (i.e., “walking”, “running”, “boxing”, “hand
clapping”, “jogging”, and “hand waving”) of human actions from 25 participants in
four scenarios: Indoor, outdoor, outdoor with amplification, and outdoor with differ-
ent clothing. The videos in this dataset enclose scaling changes, clothing changes,
and lighting changes which were captured by using static cameras. The resolution
of this dataset is 160⇥120 with the 5,667 video frames [86, 89].

UCF101 [76] is a collection of real-time action videos from YouTube that are
grouped into 101 action classes. It has the most diverse collection of 13,320 videos
by 101 action classes, as well as a broad range of camera movements, object appear-
ance, poses, cluttered backgrounds, lighting conditions, and more. In the same group
of videos, backgrounds and perspectives are the same. A class of actions include hu-
man interactions, body movements, playing musical instruments, and movement.

HMDB51 [76] contains 6,849 samples, which was grouped into 51 classes, each
class contains at least 101 samples, with a resolution 320⇥240. The actions mainly
include: (1) General human facial actions: Smiling, laughing, chewing, talking. 2)
Human facial actions with objects: Smoking, eating, drinking. 3) General human
body actions: Cartwheeling, clapping, climbing, climbing stairs, jumping, landing
on the floor, backhand flip, handstand, jumping, pulling, pushing, running, sitting
down, sitting up, heeling, standing up, turning, walking, wave. 4) Human actions
interacting with objects. 5) Human actions.

Our dataset for swimmer detection [15] was collected by using video footages of
swimming events. The dataset includes 2,500 images with 3,615 annotated swim-
mers having the swimming styles such as breaststroke, freestyle, butterfly, and back-
stroke. In data augmentation, we added 20% noisy images, including water reflec-
tion, bubbles, dim light, occlusion, and other factors. In addition, we also added
empty swimming lanes as negative samples.

In the project related to human facial expressions of emotion [3], the dataset for
our experiments is FER2013, which contains approximately 30,000 greyscale facial
images with seven classes of facial expressions of emotion having the resolution
48⇥48. In this project, we make use of 20% samples for training. This dataset con-
tains 35,887 images, all of them are greyscale images. Human facial expressions of
emotion are from Class ‘0’ to Class ‘6’ to represent the seven classes of emotions:
Angry (Class ‘0’), disgust (Class ‘1’), fear (Class ‘2’), happy (Class ‘3’), sad (Class
‘4’), surprise (Class ‘5’), neutral (Class ‘6’). Regarding the images of human facial
expressions of emotion, we returned the number as a label that each image is clas-
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sified as the emotions with the use of ‘0’ and ‘1’, ‘1’ represents the image that is
classified as a facial expression of emotion.

In the research project related to human facial image inpainting [27, 28], we took
use of the CelebA dataset with 202,599 face images. CelebA is a large-scale dataset
dedicated to human face-related experiments. The image size in the CelebA dataset
is 178⇥218. To make the experiments easier, we resize all image size to 128⇥128.
During model training, we randomly add a masked image with the size ranging from
24⇥24 to 48⇥48 to generate the training dataset.

The dataset for Braille text recognition comprises four types of characters [66],
including 1,404 images of braille characters, there are 27 classes of braille char-
acters corresponding to 26 English alphabets and special symbol. The sizes of the
images are various from 91⇥96 to 509⇥598. The characters are printed having var-
ious colors, brightness of backgrounds, added noises. For preprocessing, we have
completed data augmentation for enhancing the robustness of the model, rotating
each image in random angle within the range [�45deg,45deg], combining the ro-
tated images with original dataset, the final dataset contains 2,808 images, resized
into 52⇥ 52, then normalized the pixels between 0 and 1.0 (i.e., pixel intensity is
divided by 255). The processed data will be randomly shuffled and separated into
training set, test set, and validation set.

Since there is no existing fruit freshness dataset available, this project encom-
passes the work for data collection [25, 26]. The collected dataset consists of six
classes of fruits: “Apple”, “banana”, “dragon fruit”, “orange”, “pear”, and “ki-
wifruit”, derived from a variety of locations with different ambient noises, irrele-
vant adjacent objects, and light conditions. In total, there are (approximate) 4,000
images collected with each class of fruit images up to 700. The dataset was split
into training and validation sets at the ratio 1: 9 (90% for training and 10% for val-
idation). The freshness grading is scaled from 0.0 to 10.0 with 0.0 indicating total
corruption and 10.0 for total freshness. The image augmentation includes scaling,
rotation, cropping, and adding random noises. All images were added with random
noises consisting of random changes of brightness, contrast, saturation, and erosion
of 10 image regions. The added random noises follow the sequential order: Random
brightness adjustment, random contrast, and random erosion of 10 image regions.

There are various types of domestic wastes [107] [108], which are classified into
four main classes according to the waste classification criteria, namely, “dry waste”,
“wet waste”, “hazardous waste”, and “recyclable waste”. Within each class, there is
a consortium of subcategories. For example, recyclable waste includes “cardboard”,
“glass”, and “plastic bottles”. The hazardous waste includes “batteries”, “nail polish
bottles”, and “medicine bottles”. In our experiment, we collected a total of 1,660
images. For each class, the number of samples is around 400. Besides, during the
training process, our dataset consists of training, validation, and test sets with sample
sizes of 1,328, 166, and 166, respectively.

In speech recognition [71, 72], THCHS-30 is an open-source Chinese corpus
released by the Tsinghua University China. THCHS-30 contains over 30 hours of
Mandarin speech footages recorded by a single carbon microphone at a silent office
with a sampling rate of 1.6 kHz and a sample size of 16 bits. The training dataset
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of THCHS-30 contains 29.23-hour 10,893 utterances from 8 male speakers and 22
female speakers. The test dataset of THCHS-30 contains 6.24-hour 2,496 utterances
from 1 male speaker and 9 female speakers.

Meanwhile, LibriSpeech corpus is a large English corpus containing 1,000 hours
of speech sampled at 16 kHz based on the LibriVox project. LibriSpeech is split
into data subsets based on recording quality. Furthermore, TAL-CSASR corpus is
the audio in English class teaching environment. This dataset contains 587 hours of
audio clips from over 200 teachers, sampled at 16KHz and 16 bit. Considered the
teachers teach bilingually in both Chinese and English, TAL-CSASR corpus is used
in the Code-Switch environment. In the TAL-CSASR corpus, there is a transcript
file called label. Each row of the transcript file consists of a unique ID and a mixed
Mandarin-English sentence including Chinese characters and Capitalized English
words.

1.6 Awarded Papers on Deep Learning

In this section, we list the awarded work published in IEEE CVPR (International
Conference on Computer Vision and Pattern Recognition) and IEEE ICCV (Inter-
national Conference on Computer Vision). IEEE ICCV (1987-present) has the best
paper award — Marr prize. The prize is regarded as one of the top honours for
computer vision scientists.

A good paper is reflected in many aspects such as its idea, writing, algorithms and
results, references, equations, tables, and figures, etc. The core is how the paper idea
attracts readers and what the impact is generated from this work. In recent years, a
great deal of deep learning papers have been awarded in IEEE CVPR conferences.

In 2015, the award was conferred to the paper “Deep neural decision forests”
[56] from Microsoft Research Cambridge (U.K.) which is an approach that unifies
classification trees with the representation learning functionality known from deep
convolutional networks, by training them in an end-to-end manner. Conventional
approaches for decision tree training typically operate in a greedy and local manner.
To overcome the shortcoming, stochastic routing for decision trees, enabling split
node parameter learning via backpropagation, the ways to populate leaf nodes with
their optimal predictors are introduced. The decision forest model was successfully
validated based on ImageNet without any form of dataset augmentation.

In 2017, the paper “Mask R-CNN” from Facebook AI Research (FAIR) has been
selected. Mask R-CNN extends Faster R-CNN by adding a branch for predicting an
object mask in parallel with the existing branch for bounding box regression. Mask
R-CNN is simple to be trained [41]. Mask R-CNN allows to estimate human poses
in the same framework and outperforms in instance segmentation, bounding-box
object detection, and person keypoint detection.

In 2019, the paper “SinGAN: Learning a generative model from a single natural
image” has been selected and awarded in ICCV’19. SinGAN has the capability to
generate diverse realistic samples for natural complex images. SinGAN contains a



30 1 Introduction

pyramid of fully convolutional GANs, which allows generating the samples having
arbitrary size and aspect ratio, that maintain both the global structure and the fine
textures of the training image. This approach is not limited to texture images.

Swin Transformer [27] refers to a hierarchical Transformer [11] whose repre-
sentation is computed with shifted windows. The shifted windows bridge the win-
dows of the preceding layer, providing connections among them that significantly
enhance modeling power. Swin Transformer constructs hierarchical feature maps .
With these hierarchical feature maps, Swin Transformer can generate dense predic-
tion such as feature pyramid networks (FPN) [26] or U-Net [52, 38]. The hierar-
chical architecture has linear computational complexity with respect to image size
while the previous ones have quadratic complexity [11]. The paper was awarded as
the best paper award in IEEE ICCV 2021.

IEEE CVPR (1985–present) conference is regarded as the biggest academic con-
ference of this world, which is highly selective with generally less 30% acceptance
rates for all papers and less 5% for oral presentations. The conference is usually
held in June and rotates around the U.S. generally West, Central, and East.

In 2016, the paper “Deep residual learning for image recognition” from Mi-
crosoft Research has been awarded. ResNet [133] was thought as a prominent con-
tribution in deep learning. The ResNets are easy to be optimized and acquire accu-
racy gains from greatly increased depth.

DenseNet (i.e., Dense convolutional network) [45] was awarded as one of the
best works in IEEE CVPR 2017, which connects each layer to every other layer
in a feedforward fashion. DenseNets naturally integrate the properties of identity
mappings, deep supervision, and diversified depth. The specific design takes advan-
tage of the merits: Alleviating the vanishing-gradient problem, strengthening fea-
ture propagation, encouraging feature reuse, and substantially reducing the number
of parameters.

In IEEE CVPR 2017, another awarded work was SimGAN [121]. SimGAN re-
fines the output of a simulator with a refiner neural network and minimizes the
combination of a local adversarial loss and self regularization. The discriminator
network classifies an image as real or refined. The refiner network and the discrim-
inator network are updated alternately. Using synthetic images without any labeled
real data is the promient merit of this published work.

In IEEE ICCV 2017, Mask R-CNN [41] has been awarded, which was extended
from Faster R-CNN by adding a branch for predicting segmentation masks on each
Region of Interest (ROI). Because of masks, i.e., binary images, Mask R-CNN is
easilt generalized to instance segmentation, bounding box object detection, and per-
son keypoint detection.

In 2018, the best paper of CVPR was “Taskonomy: Disentangling task transfer
learning” [156]. The work presented a method for modeling the space of visual tasks
by using transfer learning to reduce the needs for supervision.Taskonomy [156] is
a fully computational approach for modeling the structure of visual tasks. The out-
come is a computational taxonomic map for task transfer learning. The outputs are
stable with no change in the top of taxonomy list. This remarkable work has been
awarded as the paper of IEEE CVPR 2018.
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1.7 Deep Learning Papers Published with Nature and Science

In this section, we will detail the work published in the famous journals: Nature and
Science. Nature is a British weekly scientific journal based in UK, which features
peer-reviewed research from a variety of academic disciplines, mainly in science
and technology (ISSN: 0028-0836, impact factor: 69.504, 2021). Science is a peer-
reviewed academic journal of the American Association for the Advancement of
Science (AAAS). The major focus of the journal is publishing important original
scientific research and research reviews (ISSN: 0036-8075, impact factor: 63.714,
2021).

Meanwhile, the famous academic journals Nature and Science have published
multiple papers related to deep learning [64, 74, 114, 144, 166, 100] and artificial
intelligence [29, 43, 51]. The articles related to deep learning, especially reinforce-
ment learning [74] and manifold learning [48], have been turned up in these top-
stream journals. These publications ramp up and lead the deep learning research
work to much deeper. Deep convolutional nets have brought breakthroughs [64],
which has turned out to be very good at discovering intricate structures in high-
dimensional data by using the backpropagation algorithm. Deep learning is still
promising because it can easily take advantage of available computations and a large
amount of data.

Reinforcement learning concerns with the experience gained through interacting
with real world and evaluative feedback to make behavioural decisions [74]. The
feedback provides the learners with an assessment of the effectiveness of the deci-
sions. The central problem of reinforcement learning is the challenge of interactions,
evaluations, and awards.

Reinforcement learning is one of three basic machine learning paradigms, along-
side supervised learning and unsupervised learning. In reinforcement learning, the
information which is available from training data is intermediate between super-
vised and unsupervised learning. The training data in reinforcement learning are
assumed to provide only an indication whether an action is correct or not; if an
action is incorrect, there remains the problem of finding the correct action.

Reinforcement learning generally makes use of ideas that are familiar from con-
trol theory [30], such as policy iteration, value iteration, rollouts, and variance re-
duction, with innovations arising to address the specific needs of machine learning.

Our human brains are use of distributional reinforcement learning to select appro-
priate actions [9]. Distributional reinforcement learning is a computational frame-
work, which is based on the principle of asymmetric regression. In conventional re-
inforcement learning [74, 29], the reward prediction is represented as a single quan-
tity: The average over all potential reward outcomes, weighted by their respective
probabilities. By contrast, distributional reinforcement learning uses a multiplicity
of predictions. These predictions vary in the degree of optimism about upcoming re-
ward. Compared with traditional procedures, distributional reinforcement learning
can increase performance in deep learning systems, yield a performance advantage
greater than double Q-learning (DQN) and standard Q-learning.
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In the game of StarCraft II (AlphaStar) [43], a multi-agent reinforcement learn-
ing algorithm takes use of data from both human and agent games within a diverse
league of continually adapting strategies and counter-strategies. The reinforcement
learning was applied to improve the performance of AlphaStar based on agent-
versus-agent games.

Reinforcement learning has been applied to train a glider autonomously [36]. Us-
ing the reinforcement learning framework, the behaviour of a glider is described as
an agent traversing different states by taking actions while receiving a local reward.
Thes flight policy was estiblished through experiments, numerical simulations and
estimates of the noise in measurements. Measurements from multiple instruments
are combined by an extended Kalman filter [12, 46] (EKF) to give an estimate of rel-
evant quantities. The navigational component of the glider is modelled as a Markov
decision process [4].

Reinforcement learning asconcerned with experience gained through interact-
ing with the world and evaluative feedback to improve a system ability to make
behavioural decisions, which includes generalization, observation, planning, ex-
ploration and empirical methodology [74]. Reinforcement learning has contended
with all three forms of feedback simultaneously: Sampled, evaluative and sequential
feedback.

A deep Q-network (DQN) can learn policies directly from high-dimensional sen-
sory inputs using end-to-end reinforcement learning which is able to combine re-
inforcement learning with a class of deep neural networks [101]. Reinforcement
learning takes use of reward to continuously shape representations within the con-
volutional network towards salient features of the environment that facilitate value
estimation. The integration of reinforcement learning with deep network architec-
tures is dependent on the incorporation of a replay algorithm on the storage and
representation of experience. The Q-learning algorithm updates the weights after
every time step, replaces the expectations by using single samples.

Image reconstruction is treated as a data-driven supervised learning task that al-
lows a mapping between the sensor and the image domain to emerge from an ap-
propriate corpus of training data [48]. Manifold learning results in sparse represen-
tations of domain transforms along low-dimensional data manifolds, and observe
superior immunity to noise and a reduction compared with conventional image re-
construction methods.

Deep learning [25] was thought that it could be applied to computer vision [54],
natural language processing[8], robot control, and other applications [51]. The su-
pervised learning methods include decision trees/forests [13], logistic regression [2],
deep neural networks, Bayesian classifiers [31], Boosting [42], etc.

Deep neural networks are multilayer networks with threshold units. Deep learn-
ing makes use of gradient-based optimization algorithms to adjust parameters
throughout a multilayer neural network based on errors at its output. The internal
layers of deep networks can be viewed as providing learned representations of the
input data.

The aim of deep neural networks [39] is to find a set of weights that ensure
for each input vector the output vector produced by the network is as same as the
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desired output vector. If there is a fixed and finite set of input-output cases, the total
error of the network with a particular set of weights can be computed by comparing
the actual and desired output vectors for every case. For a given case, the partial
derivatives of the error with respect to each weight are computed in two passes:
Forward pass and backward pass which propagates derivatives from the top layer
back to the bottom one.

Unsupervised learning is mainly applied to solve the problems such as data clus-
tering and dimensionality reduction, these mathematical approaches include PCA
(i.e., a linear dimensionality reduction method), manifold learning [5] (i.e., a non-
linear dimension reduction method), autoencoders [32, 17], etc.

In order to circumvent the limited amount of observation data, transfer learning is
applied to train a convolutional neural network (CNN) based on CMIP5 dataset and
multi-year ENSO (i.e., El Nin̈o/Southern Oscillation) forecasts [17]. Using transfer
learning and heat map analysis for predicting is able to understand a climate phe-
nomenon. A heat map analysis indicates that the CNN model predicts ENSO events
using physically reasonable precursors. The CNN model is powerful for both the
prediction of ENSO events and for the analysis of their associated complex mecha-
nisms.

The key problems in geosciences include pattern classification, anomaly detec-
tion, regression, space- or time-dependent state prediction. Deep learning approach
is able to extract spatio-temporal features automatically and gain further process
understanding of geoscience problems, through improving the predictive ability of
seasonal forecasting and modelling of long-range spatial connections across multi-
ple timescale [37].

Deep learning requires extremely large datasets that are well annotated so that
the algorithms can learn to distinguish features and categorize patterns. After an
algorithm has been well trained, it can apply that trained model to analyse other
data [44]. In biology, deep learning algorithms extract features that others cannot
catch. Transfer learning has the ability to apply classification prowess acquired from
one data type to another. The algorithms make both accurate and explainable pre-
dictions, but remain black boxes.

CAPTCHA is regarded as decipher letters that may be distorted, partially ob-
scured, or shown against a busy background. CAPTCHAs add clutter and crowd
letters together to create a problem for algorithmic classifiers. It is tricky from
the viewpoint of computer vision, but our humans do not. Recursive cortical net-
work (RCN) is a probabilistic generative model for object recognition, segmenta-
tion, tracking and reasoning in a unified manner. The model demonstrates excellent
generalization and occlusion-reasoning capabilities.

A recommendation system [45] is based on the data that indicates the links be-
tween a set of users (e.g., people) and a set of items (e.g., products). The prob-
lem [51] is to suggest a solution to a given user based on the data across all users.
Human data was employed to aid in exploration and to preserve strategic diversity.
Machine learning, i.e., supervised larning, unsupervised learning, and reinforcement
learning, has been employed for solving this problem.
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High-dimensional data can be converted to low-dimensional codes [19]. Gradient
descent can be used for fine-tuning the weights by using autoencoder. The autoen-
coder consists of an encoder and a symmetric decoder. Deep autoencoders would be
very effective for nonlinear dimensionality reduction, provided that computers were
fast enough, datasets were big enough, and the initial weights were close enough to
a solution.

A probabilistic generative model — Recursive Cortical Network (RCN) for com-
puter vision is able to handle visual object recognition, segmentation and reasoning
in a unified way [29]. RCN outperforms deep neural networks, however, unlike neu-
ral networks, RCN algorithms need clean training data.

A powerful framework [166] for image reconstruction was implemented with
a deep neural network that learns an optimal reconstruction function. This recon-
struction is based upon low-dimensional manifolds defined by real-world data. The
framework with a feedforward architecture composed of fully-connected layers fol-
lowed by a sparse convolutional autoencoder. The fully-connected layers approxi-
mate the between-manifold projection from the sensor domain to the image domain.

Deep learning takes features from an extremely large and annotated dataset, clas-
sifies patterns buried inside [144]. Deep learning is able to see structure in too com-
plex data which is hard for human brains. Humans can’t detect features that are
impossible to catch. The deep learning algorithms make both accurate and explain-
able predictions, but remain as black boxes in explanations.

In the work related to dimensionality reduction of data with deep neural net-
works [43], deep autoencoder networks as nonlinear models work much better and
effective than principal components analysis (PCA) (linear model) to reduce the
dimensionality by transforming the high-dimensional data into a low-dimensional
one. Based on the MNIST handwritten digit recognition task, the best reported error
rates are 1.6% for randomly initialized backpropagation. After using the steepest
descent and a small learning rate, it achieves 1.2%.

1.8 Organization of This Book

At the end of this chapter, we would like to offer the organization of this book. In
Chapter 1, we outline the development history of deep learning, we also depict our
research work and relevant projects as well as the datasets we have collected.

In Chapter 2, we detail deep learning platforms, which include MathWorks®

MATLAB system and TensorFlow system for Python-based programming and
project development. We also provide the description of programming language
R in this chapter for further exploration. We illustrate on data labelling and argu-
mentation as the main outcome of this chapter. This chapter provides the first hand
information for a newcomer to embark on their research projects in deep learning.

In Chapter 3, we review the fundamentals of deep learning, namely, Convolu-
tional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). The state-
of-the-art models such as YOLOv7 and YOLOv8 models and Transformer models
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are stressed. The Generative Pre-Trained Transformer (GPT) models from OpenAI
Laboratory is narrated as the hot-spot subject.

In Chapter 4, we examine Generative Adversarial Network (GAN) and Siamese
network as well as Autoencoder as the contrastive neural networks. We emphasize
on the fixed point theory as the base of computational iterations in deep learning.

In Chapter 5, we start from reinforcement learning and detail optimization theory
as the main part of our control theory, we also expound other approaches such as
dynamic programming for robotic control.

In Chapter 6, we explicate manifold learning and Graph Neural Network(GNN).
The general way for dealing with graph problems has been listed. Furthermore,
GNNs have been unfolded after manifold learning is delivered.

In Chapter 7, transfer learning is elucidated and ensemble learning has been jus-
tified. As a typical method in machine learning, we expect to obtain a strong learner
from many of weak learners after reading this book.

Along all chapters, a great number of computational methods and algorithms in
deep learning are spelled out from mathematical viewpoint. We anticipate the unique
characteristic of mathematical language could provide the best way to convey our
ideas and commutable solutions of the research problems in deep learning.

Exercises

Question 1.1. Where does deep learning come from?
Question 1.2. Why deep learning is so important in AI study?
Question 1.3. What are gradient vanishing problem and gradient exploding problem
in deep learning? How to avoid them?
Question 1.4. What are the difference between deep learning methods and conven-
tional machine learning methods such as SVM (support vector machine)?
Question 1.5. Why does deep learning affect computer vision, image and video
technology, natural language processing (NLP) so much?
Question 1.6. Which work is the most important one in deep learning history?
Question 1.7. Where will deep learning go?
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Chapter 2
Deep Learning Platforms

There are a plethora of deep learning platforms available at present. The famous
one is MATLAB deep learning toolbox developed by MathWorks which simplifies
deep learning computations and reduces the workload of debugging in program-
ming. Other platforms include Python-based platforms such as Google colaboratory
“Colab” and TensorFlow. The platforms such as software R and software WEKA
also could be applied to the deep learning computations. In this chapter, we will
introduce these platforms one by one.
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2.1 Introduction

There are a pretty assortment of deep learning platforms available such as Caffe,
TensorFlow, MXNet, Torch, and Theano. The platform Caffe (i.e., Convolutional
Architecture for Fast Feature Embedding) is a deep learning framework, which orig-
inally was developed at the University of California, Berkeley. As shown in Fig. 2.1,
Caffe supports visual object detection and classification as well as image segmen-
tation through using CNN, R-CNN, LSTM, and fully connected neural networks
(FCNN). GPU-based and CPU-based acceleration have been taken into consider-
ation in the original version. The platform Caffe2 includes new features such as
recurrent neural networks (RNN). At the end of March 2018, Caffe2 was merged
into software PyTorch.

Fig. 2.1: Visual object classification by using the platform Caffe

MXNet was adopted by Amazon Web Services which supports a number of
programming languages, such as C++, Python, R, etc. MXNet is a flexible and
ultra-scalable deep learning framework that contains the state-of-the-art methods
in deep learning, including convolutional neural networks (CNNs) and long short-
term memory networks (LSTMs). MXNet also was applied to both imperative and
symbolic programming.

Usually Python includes the libraries such as numPy (i.e., N-dimensional array
package), SciPy (i.e., fundamental library for scientific computing), Matplotlib (i.e.,
comprehensive 2D plotting), and Scikit-learn (i.e., machine learning library), etc.

The numPy is the fundamental package for scientific computing with Python.
Besides its obvious scientific usages, numPy is also utilized as an efficient multidi-
mensional container of generic data. Arbitrary data types are defined. This allows
numPy to seamlessly and speedily integrate with a wide variety of databases for big
data processing. An example of Python source code with numPy and OpenCV is
shown in Fig. 2.2.
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Fig. 2.2: An example of numPy with OpenCV and Python source code

Matplotlib is a plotting library for Python programming and its mathematical ex-
tension, which is a platform for data visualization. The platform is a comprehensive
library for creating static, animated, and interactive visualizations in Python. Mat-
plotlib is designed to be as usable as MATLAB, with the ability to use Python, but
it is free and open-source as shown in Fig. 2.3.

Fig. 2.3: Various plots of Matplotlib

Scikit-learn (i.e., scikits.learn or sklearn) is a free machine learning library for
Python programming which features various classification, regression, and cluster-
ing algorithms including SVM, random forests, gradient boosting, k-means, etc. It
also provides various tools for data fitting, preprocessing, model selection and eval-
uation, which was designed to interoperate with NumPy, SciPy, and Matplotlib, etc.

All these Python libraries could be installed and updated by using the command
line window of an operating systems (OS) such as Microsoft Windows, Apple Mac
Operating System (macOS), Linux, etc.

Flask is a micro web framework written in Python. The microframework does
not require particular tools or libraries, which builds a web application quickly by
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using only a single Python file. The Python-based web framework provides useful
features that make creating web applications in Python easier.

Theano is a Python-based optimizing compiler for mathematical expressions, es-
pecially matrix-valued one, which was developed by a Montreal Institute for Learn-
ing Algorithms (MILA). Theano is one of the most stable libraries, which allows
automatic function gradient computations with its Python interface.

PyTorch is an open source machine learning library for the applications such as
computer vision and natural language processing (NLP). It was primarily developed
by Facebook’s AI Research Lab (FAIR). The platform PyTorch defines a class called
Tensor to store and operates on homogeneous multidimensional rectangular arrays
of numbers.

Transformers are the current state-of-the-art type of model for dealing with se-
quences, e.g., in text processing, machine translation, etc. Transformers were intro-
duced in 2017 by Google Brain for NLP problems, replacing RNN models (LSTM).
Python Transformers is a library dedicated to supporting Transformer-based archi-
tectures and facilitating the distribution of pretrained models. Transformers was de-
signed to be extensible and simple for practitioners, and fast and robust in industrial
deployments. The Transformers is domain-specific which allows the system to pro-
vide automatic support for model analysis, usage, deployment, benchmarking, and
easy replicability.

2.2 MATLAB for Deep Learning

MATLAB is a multi-paradigm numerical computing environment and proprietary
programming language developed by MathWorks®. MATLAB allows matrix ma-
nipulations, plotting functions and data, implementation of algorithms, creation of
user interfaces, and interfacing with programs written in other languages.

MathWorks® logo is a surface plot of a variant of an eigen function of the L-
shaped membrane. If t 2 (0,•) is time, x � 0 and y � 0 are spatial coordinates
with the units chosen so that the wave propagation speed is equal to one, then the
amplitude of a wave satisfies the partial differential equation as shown in eq. (2.1)

∂ 2u
∂ t2 =

∂ 2u
∂x2 +

∂ 2u
∂y2 . (2.1)

Periodic time behaviour gives solutions of the form

u(t,x,y) = sin(y
p

t))v(x,y), (2.2)

where
∂ 2v
∂x2 +

∂ 2v
∂y2 +lv = 0, (2.3)

where l is the eigenvalue and the corresponding function v(x,y), x,y 2 R is the
eigen function.
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In MATLAB, the membrane function as shown in Figure 2.4 is applied to gener-
ate the MATLAB logo. L = membrane(k), k = 1,2, · · · ,12 is the k-th eigenfunction
of the L-shaped membrane.

Fig. 2.4: The MATLAB membrane function with the parameter k=3.

MATLAB utilizes toolboxes and the command line window to run programs.
Especially, deep learning toolbox has been added into MATLAB in 2017. In 2019,
MATLAB introduced generative adversarial network (GANs), Siamese networks,
variational autoencoders, and attention networks. MATLAB deep learning tool-
boxes also combine CNN and LSTM layers of neural networks that include 3D
CNN layers [132].

MATLAB has its online version as shown in Figure 2.5. The interfaces of MAT-
LAB online version and offline version are almost the same. If the license is autho-
rized and available, it is very convenient to access the software system and generate
results. MATLAB provides demonstrations, documentations, and source codes for
further development [132].

MATLAB provides ANN (i.e., artificial neural network) toolbox in the early days
which told us how to deal with real applications, usually including function fitting
(e.g., nftool), pattern classification (e.g., nprtool), clustering (e.g., nctool), time se-
ries prediction and modelling (e.g., ntstool), etc.
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Fig. 2.5: The interface of MATLAB Online

In the methodology, generally, we need to collect training data as the first step,
configure a network, initialize weights and train the network. We need to minimize
the differences, validate the classification. The confusion matrix is used to evaluate
the results. ROC (i.e., receiver operating characteristic curve) and AUC (i.e., area
under the curve) are calculated based on the classification. The ROC curve is plotted
with TPR against FPR where TPR is on y-axis and FPR is on x-axis, which depicts
relative trade-offs between benefits (i.e., true positive) and costs(i.e., false positive).

T PR =
T P

T P+FN
, (2.4)

where T P is true positive (i.e., hit), FN is false negative (i.e., correct rejection).

FPR =
FP

T N +FP
, (2.5)

where FP is false positive (i.e., false alarm), T N is true negative (i.e., miss).
An excellent model has AUC near to 1.0 which means it has good measure of

separability. A poor model has AUC near to 0.0 which means it has the worst mea-
sure of separability.

Deep learning toolbox provides a framework for designing and implementing
deep neural networks, pretrained models, and APPs. MATLAB has the toolbox since
2017 that includes transfer learning, LSTM network for time series analysis, etc.
The latest version encapsulates AlexNet, GoogLeNet, VGG-16/VGG-19, ResNet-
101, Inception v2, Generative Adversarial Network (GAN), reinforcement learn-
ing, YOLOv4, etc. MATLAB has the applications associated with multiple GPUs,
parallel computing, cluster computing, cloud computing, etc. for accelerating deep
learning process.

Deep learning has been applied to time series analysis and forecast. Time series
analysis comprises the methods for analysing time series data in order to extract
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meaningful statistics and other characteristics of the data. Time series forecasting is
the use of a model to predict future values based on previously observed data. Typi-
cal methods for time series analysis include spectral analysis, wavelet analysis, auto-
correlation, and cross-correlation analysis. MATLAB provides autoregressive(AR)
and autoregressive integrated moving average models (ARIMA), and state-space
models. In MATLAB deep learning toolbox, LSTM network as a kind of RNNs
(i.e., Recurrent neural networks) has been applied to time series analysis and natu-
ral language processing (NLP) as well as text analytics, which benefits us to write a
good essay or correct our writings.

We can generate new letters or words using deep learning algorithms such as
LSTM. MATLAB LSTM network is able to generate text word-by-word. The first
word of the text is generated by sampling a word from a probability distribution
according to the first words of the text in the training data. The remaining words are
produced by using the trained LSTM network to predict the next time step with the
current sequence of generated text. We keep generating words one-by-one until the
network predicts the end.

MATLAB provides the function of transfer learning. That means, a network,
e.g., AlexNet, has been well trained, we are able to utilize the well-trained param-
eters and apply them to a new network. We need to load the pretrained network,
replace the final layers, train the network again. After this transfer, if we train the
new network again, we are able to get a better result. This will reduce the comput-
ing time. MATLAB also could make a neural network running faster after the model
optimization.

MATLAB has embedded Fast R-CNN and Faster R-CNN algorithms (i.e., re-
gions with convolutional neural networks) already, an example for stop sign detec-
tion has been provided, the famous 11 lines source code in Fig 2.6. The simplest
deep learning network is able to accomplish the specified task effectively and effi-
ciently [112, 41].

Fig. 2.6: The famous 1l lines source code of MATLAB
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MATLAB at present is able to run most of deep learning algorithms by using
both desktop version and online version as shown in Figure 2.5. If an account is reg-
istered, it is easily to login. MATLAB users are able to develop their own toolboxes.
MATLAB provides GUI for users to easy interactions. MATLAB shows experi-
mental results or outcomes visually. We may use the GUI interface to develop our
applications.

MATLAB provides computer vision toolbox, especially for autonomous vehi-
cles, visual object detection, semantic segmentation, digital image processing, etc.
MATLAB deep learning is employed for biometrics, e.g., detection and recognition
of human face [53, 2, 12, 135], fingerprint, voice, aging, gait [75, 86], etc. The rea-
son is that deep learning is able to find the latent patterns behind the given datasets.

MATLAB provides cloud computing and parallel computing. This support is em-
ployed for face detection, visual object detection, vehicle detection, lane detection,
and pedestrian detection, etc.

In the latest version, MATLAB supports artificial intelligence, event-based mod-
elling, etc. In the latest version of deep learning toolbox, MATLAB users are now
able to create generative adversarial networks (GANs), Siamese networks, rein-
forcement learning, variational autoencoders, and attention networks.

MATLAB deep learning examples can implement the feature: What you see is
what you get, which does not need complicated system configuration and debug-
ging, it is very convenient for source code transplanting from one computer to an-
other computer, especially through MATLAB Online, a cloud-based system. MAT-
LAB deep learning examples could be applied to teaching and education as well as
simulations in scientific computations, the framework greatly reduces our working
time and uplifts our working efficiency.

2.3 TensorFlow for Deep Learning

TensorFlow (https://www.tensorflow.org/) is a platform developed by the Google
Brain team and has been applied to deep learning. TensorFlow is run on a desktop
(Microsoft Windows, macOS, Linux, etc.) or online Colaboratory (Colab) as shown
in Figure 2.7.

Google Colab allows anybody to write and execute arbitrary python code through
the browser, and is especially well suited to machine learning, data analysis, and
education. Colab is a cloud-based software and greatly reduces the debugging prob-
lems in software development, successfully provides GPU services online and runs
entirely in the cloud. Through Colab, we write and execute codes, save and share
our experience, develop web, and access powerful computing resources all through
web browsers, without complicated configuration and software version matching
problems from the open source developers.

Tensor is a generalization of vectors and matrices to potentially higher dimen-
sions. Generally speaking, in a tensor, the elements of a vector or matrix are still
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Fig. 2.7: Google Colaboratory

scalars, vectors, or matrices. TensorFlow is a framework to define and run compu-
tations involving tensors and vectors.

TensorFlow was especially developed for big data processing and visualization
with TensorBoard [1] using graphs, numerical methods are found from TensorFlow.
TensorFlow presents tensors as n-dimensional arrays using base data types. These
types reveal the relationships between different datasets.

TensorFlow not only has the normal data types, but also includes special types,
such as shape, variable, constant, placeholder, etc. The concept rank refers to math-
ematical entity such as scalar, vector, matrix, etc.

The installation of TensorFlow is based on macOS / Unix, Microsoft Windows,
Ubuntu / Linux, etc. After Python 3.0, pip3 is used to install Python-based applica-
tions. The command is:

C:> pip3 install - - upgrade tensorflow
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TensorFlow needs a session to show the output, usually working along with the
print command together to show the output of variables, for example, the famous
“Hello, TensorFlow!” program is shown in Figure 2.8.

Fig. 2.8: Hello, TensorFlow!

A TensorFlow session encapsulates the state of runtime and operations. A session
represents a connection between the client program, which accesses to hardware
devices from local machine and remote devices using the distributed TensorFlow
run-time library.

We have the exemplar source code to show the instance “add”, “multiply”, “dot
product”, “zero”, etc. The “optimizer” assists us to quickly find a proper gradient
using weights or variables from SGD (i.e., Stochastic Gradient Descent) algorithms.
For example, if z(x,y) = x2 + xy, x,y,z 2R, then the gradients are

(
∂ z(x,y)

∂x = 2x+ y
∂ z(x,y)

∂y = x.
(2.6)

In order to minimize the function z(x,y), a standard gradient descent method
would perform the following iterations or batches

(
x0 = x�h · ∂ z(x,y)

∂x
y0 = y�h · ∂ z(x,y)

∂y
(2.7)

where h is a step size or the learning rate in machine learning. Provided h = 0.1, we
randomly select x = 5.0, y = 3.0, using equation (2.7), then x0 = 3.7 and y0 = 2.5.
We repeat this procedure, let (x,y) (x0,y0), since h < 1.0, (x,y) will be converged
and approximate to the local extrema point, namely,

(
xn+1 = xn�h · ∂ z

∂xn

yn+1 = yn�h · ∂ z
∂yn

, (2.8)
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where n= 1,2, · · · , limn!•(xn+1�xn)= 0, limn!•(yn+1�yn)= 0, limn!•(xn,yn)=
(xp,yp), P(xp,yp) is the local extrem point, n, p 2Z +.

TensorFlow graph is to show the computational network construction. The nodes
(operations) and edges (tensors) indicate how individual operations are composed
together. TensorFlow collections are stored by using metadata.

TensorBoard provides the visualization and tooling needed for machine learning.
TensorBoard is to render a computational graph through browsers like Microsoft IE
or Edge, Google Chrome, Apple Safari, etc. TensorBoard can visualize the model
graph, display images, text, and audio data, etc. TensorBoard is launched by using
the following command line:

c:> tensorboard – logdir=“· · ·\tensorflow\graph”

Before that, we need to save the computational graph to a summary file using
the function “tf.summary.FileWriter(·)”. TensorBoard visualizes the structure of a
graph in a browser under the support of a http server. The visualized result could be
downloaded from the website:

http://localhost:6006/]graphs.

We show the graph of a neural network structure of a TensorFlow application as
Fig. 2.9, the training accuracy of the TensorFlow application is shown in Fig. 2.10.
We list two figures from TensorBoard as shown in Fig. 2.11 which reveal the dataset
visualization using TensorFlow and TensorBoard.

Fig. 2.9: A TensorFlow graph of a network structure
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Fig. 2.10: Accuracy graph of a TensorFlow training

Fig. 2.11: TensorFlow graph rendering (a) data samples rendering (b) data labels
rendering

The MNIST database is a large database of handwritten digits that is used for
training various image processing systems. The MNIST database contains 60,000
training images and 10,000 test images. An extended dataset similar to MNIST
called EMNIST has been published in 2017, which contains 240,000 training im-
ages, and 40,000 test images of handwritten digits and characters.

For example, the steps of CNN estimator for MNIST (modified NIST) dataset
are listed as:
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• Step 1. Load training and validation data.
• Step 2. Create the estimator / call the CNN model function.
• Step 3. CNN model function: Convolutional layers, pooling layers, and full con-

nected layers.
• Step 4. Set up logging for predictions.
• Step 5. Train the model.
• Step 6. Evaluate the model and print results.

The steps of RNN routine using the MNIST dataset are listed as:

• Step 1. Set hyperparameters.
• Step 2. TensorFlow graph input.
• Step 3. Define weights.
• Step 4. Run RNN model function.
• Step 5. Hidden layer for output as the final results.

2.4 Data Augmentation and Labelling

Image augmentation is a set of processing operations of digital images, such as
image cropping, resizing, rotating, shearing, flipping, and reflection as well as the
artefacts such as lens distortions, adding noises and blurs [54, 55].

In our projects, two distinct forms of data augmentation have been applied to hu-
man face detection so as to generate image translations and horizontal reflections,
alter the intensities of the RGB channels in training images [135]. In the project
currency recognition [6, 113, 160, 161, 93] and flame detection [29, 120, 149], im-
age processing operations were taken into account such as scaling to the uniform
size, clipping or expanding, cropping, randomly rotating, and color adjusting. In
the project of banknotes serial number recognition [93], the image augmentation
approaches include image rotating, translating, color jittering, and adding Gaussian
noises.

The color jitter enables us to alter the colors of an image by applying a random
color variation. For example, we specify the range of hue, saturation, and gain value
(HSV) for the random colors. We also calculate principal components by using PCA
algorithm of each color matrix of an image and generate new varations by adding
offset to the principal components. An example of color jittering is shown in Fig-
ure 2.12.

The method of data augmentation [135] is to enhance the training data by using
mathematical transformations such as Affine transformation, in order to achieve the
purpose of improving the accuracy of object recognition. The two data augmenta-
tions respectively are to generate image translations and horizontal reflections and
to alter the intensities of the RGB channels in training images. Both methods are
able to convey multiple images from the original one with very few computations.

In the project anomalies detection and object tracking [9, 10], the data augmenta-
tion includes geometric transformation, Affine transformation, noise injection, ran-
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Fig. 2.12: A result of color jittering using PCA algorithm, (a) original image (b)
image after color jittering

dom erasing, so on. In the project vehicle-related scene understanding [80, 82, 81],
offline augmentation and online augmentation are regarded as the two categories
of data enrichment. The online augmentation includes rotations, translations, flip-
ping, etc., the offline augmentation is typically explored for small datasets, which
increases the size of the dataset by using a factor which equals to the number of
conversions performed. In most of cases, multiple transformation methods are amal-
gamated together to achieve much comprehensive expansion.

In the project traffic sign recognition [49], an algorithm based on dark channel
prior, namely, a guided image filtering algorithm was proposed for image defogging.
By using visual features of the guided image filtering, haze image preprocessing
for traffic signs achieved the results of image denoising, image smoothing, and fog
removal. Furthermore, there are generally two types of image defogging algorithms,
one is histogram equalization, which simply enhances the contrast of the image.
The other is an image restoration-based defogging algorithm [56], which takes use
of original images to compare with the foggy images so as to reconstruct the new
image [50].

In the project fruit freshness grading [25, 15], the image augmentation includes
image scaling, rotating, cropping, and adding random noises based on observations.
For adding random noises, the sequential order is random brightness adjustment,
random contrast, and random erosion for digital images.

In the project related to virus identification from digital images [159, 54], there
are 6,000 electron microscopy images evenly (approximately) for the four classes:
SARS, MESR, HIV, and COVID-19. The data preprocessing methods are based on
electron microscopy image augmentation as well as image quality enhancement.
The image augmentation includes image rotation, image random region removal,
image Jaccard Index Crop, and image resizing. The data augmentation aims to im-
prove the predictive capability of a model by adding disturbances to the raw visual
features presented in source images.

In the project related to special symbol recognition [66] using deep learning,
three types of image augmentations have been employed to the input images, includ-
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ing Mosaic data augmentation, self-adaptive anchor calculation, and self-adaptive
image re-scaling. The mosaic augmentation takes four images and combines them
into one image.

In the project for character-based braille classification [31], data augmentation
for enhancing the robustness of the model includes rotating each image in random
angle, combining the rotated images with original dataset. OpenCV was applied to
import the images, and resize them into 52⇥52, then normalize the pixel intensity
between [0, 1.0]. The processed data will be randomly shuffled and separated into
training set, test set, and validation set.

In the project related to pose estimation of swimmers from digital images using
deep learning [15], the amount of data in the dataset was increased through data aug-
mentation, including three ways: Randomly rotating the images, randomly scaling
the image, and flipping the image horizontally randomly. The methods substantially
improves object detection speed.

In the project related to tree leaf recognition using deep learning [137], data
augmentation operations include flipping, zooming in, zooming out, clipping, and
combining. The final test was conducted by using augmented samples against a
wood floor background.

MATLAB provides image augmentations by using the image processing toolbox:
Random image warping transformations, cropping transformations, color transfor-
mations, synthetic noise, synthetic blur. The details could be found from the website:
https://au.mathworks.com/help/deeplearning/ug/preprocess-data-for-domain-specific-
applications.html.

An image data augmenter has been designed for a set of preprocessing options
of image augmentation, such as resizing, rotating, and reflecting. All of these op-
erations could be written in mathematical way. For an example, after the rotat-
ing and scaling of an image I(x,y), we will obtain image I0(x0,y0), where (x,y) 2
W = [1,W ]⇥ [1,H], W and H are the width and height of image I, respectively.
(x0,y0) 2 W 0 = [1,W 0]⇥ [1,H 0], W 0 and H 0 are the width and height of image I0,
respectively.


x0
y0

�
=


sx · cos(a) �sin(a)

sin(a) sy · cos(a)

�
x
y

�
, (2.9)

where a 2 [0,360�) is the rotation angle, (sx,sy), sx,sy 2R are scale factors along
x-axis and y-axis, respectively.

MATLAB also has a software Image Labeler for training data that could reduce
our human labour. The Image Labeler and Video Labeler provide an easy way to
mark rectangular region of interest (ROI) labels, polyline ROI labels, pixel ROI la-
bels, and scene labels in a video or image sequence. The video labeler automatically
labels across image frames using an automation algorithm, e.g., the Kanade-Lucas-
Tomasi (KLT) algorithm based on point tracking [54] as shown in Figure 2.13. Fol-
lowing the steps (loading images, ROIs, labelling, data augmentation, exporting re-
sults, etc.), we annotate all sampled images. ROI (region of interest) will be marked
and output for model training and object classification. This will be applied to train
computer algorithms what the visual objects look like in a visual scene [80, 82, 81].
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Fig. 2.13: MATLAB Video Labeler

Correspondingly, Python has a graphical image annotation tool Labelme as
shown in Fig.2.14, which exports .json file format for image segmentation. The
standard command ”pip install labelme” or ”pip3 install labelme” can install the
software in a command line window. In Fig.2.14, we label the regions of hair, hat,
face and shoulder of the standard test image Lenna using polygons. The manually
annotated polygons and the labels could be applied for visual object detection, pat-
tern classification, and segmentation.

Fig. 2.14: Python image labeler: LabelMe
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2.5 R for Deep Learning

R is a programming language and free software environment for statistical comput-
ing and graphics supported by the R foundation for statistical computing [37, 4, 10].
R was named partly after the first names of the first two ‘R’ authors. The R language
is widely used among statisticians and data miners for developing statistical soft-
ware and data analysis. R and its libraries are implemented with various statistical
and graphical methods, including linear and nonlinear modeling, classical statistical
tests, spatial and time-series analysis, classification, clustering, and others. R is an
interpreted language; R users typically access it through a command-line interpreter.
R is available as free software with general public license. R compiles source code
and runs them on a wide variety of UNIX platforms as well as Microsoft Windows,
macOS, and others.

In 1991, Ross Ihaka and Robert Gentleman at the University of Auckland, New
Zealand, began an alternative implementation of the basic S language. R is an inter-
preted language. R supports matrix arithmetic. R’s data structures include vectors,
matrices, arrays, data frames (similar to tables in a relational database) and lists.

R is a well developed, simple and effective programming language which in-
cludes conditionals, loops, user defined recursive functions, input and output facili-
ties.

R is case sensitive as most UNIX-based packages. Elementary commands consist
of either expressions or assignments. The commands are separated by a semi-colon
(‘;’) or a newline. Elementary commands can be grouped together into one com-
pound expression by using braces (‘{’ and ‘}’). The comments can be put almost
anywhere, starting with a hashmark (‘#’). If a command is not complete at the end
of a line, R will give a different prompt, by default ‘+’. Command lines entered at
the console are limited to about 4,095 bytes.

An external command file may be executed at any time in an R session with the
command:

> source(“commands.R”)

.
The elementary arithmetic operators are the usual: ‘+’,‘-’,‘*’,‘/’,‘ ˆ ’. Two statis-

tical functions are mean(·) and var(·). sort(x) returns a vector of the same size as
x 2R with the elements arranged in increasing order. max(·) and min(·) select the
largest and smallest values in the arguments. seq(·) for generating sequences. rep(·)
is used for replicating an object in various way. is.na(x) gives a logical vector of the
same size as x with value ‘TRUE’ IFF the corresponding element in x is ‘NA’(not
available). We now list more functions as follows:

• paste(·) takes a number of arguments and concatenates them into character
strings.

• matrix(·) and array(·) are simpler and natural looking assignments.
• outer(·) generates outer product array whose data vector is got by forming all

possible products of elements of the data vector.
• aperm(a, perm) is used to permute an array a.
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• nrow(A) and ncol(A) give the number of rows and columns in the matrix A.
• crossprod(X ,y) is the same as t(X)%⇤%y.
• diag(M) gives the vector of main diagonal entries of M.
• solve(A,b) solves the system Ax = b, returning x.
• eigen(Sm) calculates the eigenvalues and eigenvectors of a symmetric matrix Sm.
• svd(M) calculates the singular value decomposition of M.
• ls f it(·) returns a list giving results of a least squares fitting procedure.
• lm(·) for regression modelling.
• cbind(·) forms matrices by binding together matrices horizontally, or column-

wise, and rbind(·) vertically, or row-wise.

R function is defined by an assignment of the form:

name <� f unction(arg 1,arg 2, · · ·){expression}.

A call to R function usually takes the form: name(expr 1,expr 2, · · ·). The basic
function for fitting ordinary multiple models is lm(·) is

f itted.model <�lm( f ormula,data = data. f rame).

The R function to fit a generalized linear model is glm(·):

f itted.model <�glm( f ormula, f amily = f amily.generator,data = data. f rame).

High-level plotting functions create a new plot on the graphics device, possibly
with axes, labels, titles and so on. Low-level plotting functions add more informa-
tion to an existing plot, such as extra points, lines and labels. Interactive graphics
functions allow to interactively add information, or extract information from, an ex-
isting plot, using a pointing device such as a mouse. An example of R plotting is
shown in Fig. 2.15.

All R functions and datasets are stored in packages. R users connected to the
Internet are able to utilize the install.packages() and update.packages(). In order
to see which packages are currently loaded, function search() takes this role. With
regard to a list of all available help topics in an installed package, please refer to
hel p.start().

2.6 Fundamental Mathematics

MATLAB was designed primarily for numerical analysis, especially all variables in
MATLAB are arrays or vectors. TensorFlow derives from the operations on multi-
dimensional data arrays, which are referred to tensors. For better understanding the
implementations of deep learning algorithms in MATLAB, we introduce the funda-
mental knowledge of mathematics related to MATLAB.

For any real numbers x,y,z 2R, we have the rules such as associative and com-
mutative relationships with regard to operations ‘+’,‘-’,‘·’, and ‘÷’, i.e., (x+y)+z=



2.6 Fundamental Mathematics 61

Fig. 2.15: An example of R plotting

x+(y+z), x+y= y+x. In real analysis, we have infinity (i.e., positive infinity: +•,
negative infinity: �•), we also define the operations: •±•, •

• , etc.
In real analysis, we talk about the concept set. Based on the sets of real numbers,

we construct function mapping from one set onto another. A function f (x), x2 [a,b]
is continuous over an interval [a,b], a,b,x 2R, namely, f (x) 2 C[a,b],

lim
x!x0

f (x) = f (x0) = lim
x!x+0

f (x) = f (x+0 ) = lim
x!x�0

f (x) = f (x�0 ), (2.10)

where x,x0,x+0 ,x
�
0 2 [a,b], f (x) 2C[a,b]. If f (x), g(x) 2C[a,b], then f (x)±g(x) 2

C[a,b], f (x) ·g(x) 2 C[a,b], f (x)
g(x) 2 C[a,b], g(x) 6= 0.

The differentiable means

f 0(x0)= lim
x!x0

f (x)� f (x0)

x� x0
= lim

x!x+0

f (x)� f (x+0 )
x� x+0

= f 0(x+0 )= lim
x!x�0

f (x)� f (x�0 )
x� x�0

= f 0(x�0 ).

(2.11)
If f 0(x) and g0(x) 2 C[a,b], then f 0(x)± g0(x) 2 C[a,b], f 0(x) · g0(x) 2 C[a,b],

f 0(x)
g0(x) 2 C[a,b], g0(x) 6= 0.

In chain rule, if f (x) = g(y), y = h(x), then f (x) = g(h(x)),
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∂ f (x)
∂x

=
∂g(y)

∂y
· ∂y

∂x
=

∂g(y)
∂y

· ∂h(x)
∂x

. (2.12)

Regarding Tylor expansion, given f (x) 2 C[a,b], we have

f (x) = f (x0)+ f 0(x0)(x� x0)+
1
2!

f (2)(x� x0)
2 + · · ·+ 1

k!
f (k)(x� x0)

k +Rn(x ),
(2.13)

where Rn(x ) is remainder of Tylor expansion or Taylor remainder

Rn(x ) =
1
n!

f (n)(x � x0)
n,x 2 [a,b]. (2.14)

Tylor expansion shows us all continuous functions defined over [a,b] are con-
verted to polynomials. Typically, limx!0

sinx
x = 1, sinx⇡ x.

We interpolate a curve by using the given support points. The typical polynomi-
als are quadratic curves, cubic polynomials, Bezier functions, B-spline functions,
etc. [13].

Pertaining to Lagrange interpolation functions, we have a polynomial with the
degree n,

f (x) =
n

Â
i=0

n

’
i=0;i6= j

(x� xi)

(x j� xi)
· yi (2.15)

where (xi,yi), yi = f (xi), i = 0,1, · · · ,n.
A vector space is a set x,y 2 V satisfying the following axioms:

• x+y = y+x (addition is commutative)
• (x+y)+ z = x+(y+ z) (addition is associative)
• 9 a unique vector zero 0, such that 0+x = x, 8x 2 V.
• 8x 2 V,9 a unique vector �x such that x+(�x) = 0.

Regarding every pair a,b 2 R (real number) and x 2 R |V| (vector), there 9 a
vector ax, called scalar product of a and x, such that:

• a(bx) = (ab )x (multiplication by scalars is associative)
• 1x = x
• a(x+y) = ax+ay (distributive with respect to vector addition)
• (a + b )x = ax+ bx, a,b 2 R and x 2 V (distributive with respect to scalar

addition)

A vector space has the properties:

• A basis in a vector space V is a set G = {g1,g2, · · · ,gn}⇢V of linearly indepen-
dent vectors such that every vector in V is a linear combination of elements of
G.

• A vector space V is finite-dimensional |V| < • if it has a finite basis G =
{g1,g2, · · · ,gn},n < •.
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• The dimension of a finite-dimensional vector space V is the number of elements
in a basis {g1,g2, · · · ,gn} of V, namely, |V|= n.

• Let G = {g1,g2, · · · ,gn} be a basis of an n-dimensional vector space V. Then,
x = Ân

i=1 xigi is Einstein’s summation convention, x 2 V.

The scalar (inner) product is a real-valued function x ·y of two vectors x and y in a
vector space V.

• x ·y = y ·x (commutative rule)
• x · (y+ z) = x ·y+x · z (distributive rule)
• a(x ·y) = (ax) ·y = x · (ay), 8a 2R,8x,y,z 2 V (associative rule for the mul-

tiplication by a scalar)
• x ·x� 0, 8x 2 V, x ·x = 0 if and only if x = 0.
• Euclidean length (also called norm) of a vector x, kxk2 =

p
x ·x

• Two non-zero vectors x and y are called orthogonal x? y, if x ·y = 0.
• A basis E = {e1,e2, · · · ,en} of an n-dimensional Euclidean space E n is orthonor-

mal if ei · e j = di j, i, j = 1,2, · · ·n.

di j = d i j = d i
j = d j

i =

⇢
1 x = y
0 x 6= y (Kronecker delta)

• e1 =
x1
kx1k ,· · · , en =

e0n
ke0nk

is the Gram-Schmidt process, where e0n = xn�(xn,en�1)en�1 · · ·�
(xn,e1)e1.

Let G = {g1,g2, · · · ,gn} be a basis in n-dimensional Euclidean space E n, a basis
G0= {g01,g02, · · · ,g0n} is dual to basis G if gi ·g0j = di j, i, j = 1,2, · · · ,n. gi are linearly
independent, if Âaigi = 0, then ai = 0.

The length of vector x thus is written by

kxk=
q

xigi ·x0jg0i =
q

xi ·x0j ·di j =
q

xi ·x0j. (2.16)

For example,

G = {e1,e2,e3}= {e2⇥ e3,e3⇥ e1,e1⇥ e2}. (2.17)

In complex analysis, also known as the theory of functions of a complex variable,
for any complex function, the values z 2 C from the domain and their images f (z)
in the range may be separated into real and imaginary parts:

z = a+bi, i =
p
�1,a,b 2R, (2.18)

and
f (z) = f (x+ iy) = u(x,y)+ iv(x,y), (2.19)

where x and y are real variables, u(x,y) and v(x,y) are all real-valued functions.
In the complex analysis, the continuous function f (z) at z0, z 2 C is defined as

f (z0) = lim
z!z0

f (z) = lim
z!z+0

f (z) = f (z+0 ) = f (z�0 ) = lim
z!z�0

f (z). (2.20)
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In the complex analysis, the derivative of holomorphic function f (z) at z0, z 2 C
is defined as

f 0(z0) = lim
z!z0

f (z)� f (z0)

z� z0
= f 0(z+0 ) = f 0(z�0 ). (2.21)

For vector space in complex analysis, if < x,y >= x+ iy, i =
p
�1, then

< a + ib >< x,y >=< ax�by)(b x+ay >, (2.22)

where x,y 2 E n, z = x+ iy 2 C n,

A(x+ iy) = Ax+ i(Ay), (2.23)

where A 2T n.
For a tensor space, let Ln be a set of all linear mappings of one vector into another

within E n, y = Ax, x,y 2 E n, A 2T n:

• Tensor linearity: A(x+y) = Ax+Ay, 8x,y 2 E n, 8A 2T n

• A(ax) = a(Ax), 8x 2 E n, 8a 2R, 8A 2T n

• Product of a tensor by a scalar number: (aA)x = a(Ax) = A(ax), 8x 2 E n

• Sum of tensors: (A+B)x = Ax+Bx
• Negative tensor: �A = (�1)A
• Zero tensor: 0x = 0, 8x 2 E n.
• Addition commutative: A+B = B+A
• Addition associative: A+(B+C) = (A+B)+C
• Element 0: 0+A = A, A+(-A) = 0
• Multiplication by scalars is associative: a(bA) = (ab )A
• Element 1: 1A = A
• Multiplication by scalars is distributive with respect to tensor addition: a(A+

B) = aA+aB
• Multiplication by scalars is distributive with respect to scalar addition: (a +

b )A = aA+bA, a,b 2R, A,B 2L n

• Vector product in E 3, i.e., z = x⇥y, x,y,z 2 E 3

• Rotation tensor: R(a), a 2 E3 and R 2L 3

For tensor functions, we have:

• Function continuity:
lim
t!t0

x(t) = x(t0), (2.24)

and
lim
t!t0

A(t) = A(t0). (2.25)

• Differentiable:
dx(t)

dt
= lim

s!0

x(t + s)�x(t)
s

, (2.26)

and
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dA(t)
dt

= lim
s!0

A(t + s)�A(t)
s

. (2.27)

• The product of a scalar function with a vector- or tensor-valued function:

d
dt
[u(t)x(t)] = du

dt
x(t)+ dx

dt
u(t), (2.28)

and
d
dt
[u(t)A(t)] =

du
dt

A(t)+
dA
dt

u(t). (2.29)

• The scalar product of two vector- or tensor-valued functions:

d
dt
[x(t) ·y(t)] = dx

dt
·y(t)+x(t) · dy

dt
, (2.30)

and
d
dt
[A(t) : B(t)] = dA

dt
: B(t)+A(t) :

dB
dt

. (2.31)

• The composition of two tensor-valued functions

d
dt
[A(t)B(t)] = dA

dt
B(t)+A(t)

dB
dt

. (2.32)

• Aa = l a,a 6= 0, bA = lb,b 6= 0, a,b 2 C n, l 2 C and A 2L n. l is an eigen-
value of tensor A, g(A) = Âm

k=0 akAk, then

g(l ) =
m

Â
k=0

akl k. (2.33)

• Chain rule:
d
dt

x[u(t)] = dx
du

du
dt

, (2.34)

d
dt

A[u(t)] =
dA
du

du
dt

. (2.35)

• The chain rule for functions with multiple arguments:

d
dt

x[u(t),v(t)] = dx
du

du
dt

+
dx
dv

dv
dt

, (2.36)

d
dt

A[u(t),v(t)] =
dA
du

du
dt

+
dA
dv

dv
dt

, (2.37)

d
dt
[A(t)B(t)] = dA

dt
B(t)+ dB

dt
A(t). (2.38)

• Directional derivatives:

r = (q1, · · · ,qn),qi 2R. (2.39)
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For scalar field:

d
ds

F(r+ sa) = gradF ·a,8a 2 E n,s 2R (2.40)

For vector field, we have

d
ds

x(r+ sa) = gradx ·a,8a 2 E n,s 2R. (2.41)

For tensor field, we have

d
ds

A(r+ sa) = gradA ·a,8a 2 E n,s 2R. (2.42)

Exercises

Question 2.1. Please list the advantages and disadvantages of MATLAB labelers
and Python labeler.
Question 2.2. What are general methods for data augmentation?
Question 2.3. How to utilize the source codes and datasets from the GitHub web-
site?
Question 2.4. What’s the relationship between deep learning and machine learning?
What are the differences between supervised learning and unsupervised learning?
Question 2.5. How to choose an algorithm effectively for visual object detection
and recognition as well as pattern classification?
Question 2.6. What is the relationship between AI and deep learning?
Question 2.7. Why mathematics, especially computational mathematics is so im-
portant in deep learning and AI?
Question 2.8. What are the general methods for data analysis and data visualiza-
tion?
Question 2.9. Please list popular software for deep learning study.
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Chapter 3
Convolutional Neural Networks and Recurrent
Neural Networks

In this chapter, we will introduce the typical deep neural networks from the view-
point of Convolutional Neural Network (CNN or ConvNet) family, especially
region-based CNN(R-CNN), Single Shot MultiBox Detector (SSD), and You Only
Look Once (YOLO). Capsule Neural Network (CapsNet) has taken topological
structure of a scene into consideration. The output will be a vector to reflect this
geometric relationship. Meanwhile, from the viewpoint of time series analysis, we
depict Recurrent Neural Network (RNN) family, namely, Long Short-term mem-
ory (LSTM), Gated Recurrent Unit (GRU), etc. In a nutshell, we expect to intro-
duce deep learning thoroughly from spatial and temporal aspects, deeply learn the
knowledge of the state-of-the-art research methods.

71
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3.1 Multilayer Perceptron

A multilayer perceptron (MLP) is a class of feedforward artificial neural networks
(ANNs). An MLP consists of at least three layers of nodes: An input layer, a hid-
den layer, and an output layer. Except for the input nodes, each node is a neuron
that is use of a nonlinear activation function. MLP utilizes a supervised learning
method called backpropagation for ANN model training. MLP can distinguish or
discriminate data that is not linearly separable.

Feedforward networks often have one or more hidden layers of neurons followed
by the output layer. Multiple neural layers with nonlinear transfer functions allow
the network to learn nonlinear relationships between input and output vectors. The
linear output layer is most often employed for function fitting (or nonlinear regres-
sion) problems. This neural network can approximate any functions with a finite
number of discontinuities arbitrarily well, given sufficient neurons in the hidden
layer. Neurons can use any differentiable transfer functions to generate their output.

While training multilayer neural networks, the data is split into training, vali-
dation and test datasets: The training set is used for computing the gradient and
updating the network weights and biases. When the network begins to overfit the
data, the error on the validation set typically begins to rise. If the error on the test set
reaches a minimum at a significantly different iteration number than the validation
set error, this might indicate a poor division of the data set. The division function
is accessed automatically whenever the network is trained, and is used to divide the
data into training, validation, and testing subsets.

The multilayer feedforward network can be trained for function approximation
(nonlinear regression) or pattern recognition. The process of training a neural net-
work involves tuning the parameters such as values of the weights and biases of the
network to optimize network performance. In incremental mode of network train-
ing, the gradient is computed and the weights are updated after each input is applied
to the network. In batch mode, all the inputs in the training set are applied to the
network before the weights are updated. The optimization methods use either the
gradient of the network performance with respect to the network weights, or the
Jacobian of the network errors with respect to the weights.

The backpropagation algorithm involves performing computations backward
through the neural network. Gradient descent updates the network weights and
biases in the direction in which the performance function decreases most rapidly.
Backpropagation refers specifically to the gradient descent algorithm, when applied
to neural network training. In a backpropagation algorithm,

xk+1 = xk�a ·gk,k = 1,2, · · · (3.1)

where xk is a vector of current weights, gk is the current gradient, and a is learning
rate.

After the network is trained and validated, the neural network can be used to
calculate the response to any input. Each time when a neural network is trained,
it can result in a different solution due to initial weight/bias and divisions of data
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into training, validation, and test sets. Different neural networks trained on the same
problem can give different outputs for the same input, thus, we need check the net-
work performance and determine whether any changes need to be made to the train-
ing process, the network architecture, or the data sets. If the training were perfect,
the network outputs and the targets would be exactly equal.

Multilayer neural networks are capable of performing any linear or nonlinear
computations. Neural networks are also sensitive to the number of neurons in their
hidden layers. Too few neurons can lead to underfitting; Too many neurons can
contribute to overfitting, in which all training points are well fitted, but the fitting
curve oscillates wildly between these points.
Horner Algorithm: f (x) = Ân

i=0 ai · xi is written as:

f (x) = (((an · x+an�1) · x+an�2) · x)+ · · ·+a0,an 6= 0,an,x 2 R, i,n 2 Z+ (3.2)

Kolmogorov Theorem A MLP has the ability to represent any continuous function
g(x),x = (x1,x2, · · · ,xd) 2 [0,1]d = [0,1]⇥ · · ·⇥ [0,1]| {z }

d

, d � 2 for properly chosen

functions x j(·) and yi j(·),

f (x) =
2n+1

Â
j=1

x j(
d

Â
i=0

yi j(xi)). (3.3)

Multilayer neural networks are be trained by simple stochastic gradient descent.
Gradients can be computed by using the backpropagation procedure. The backprop-
agation can be applied repeatedly to propagate gradients through all modules. In
practice, the procedure of Stochastic Gradient Descent (SGD) consists of:

• Input vector for a few of samples
• Outputs and errors
• Average gradient for those samples
• Adjustable weights
• The process is repeated until the average of the objective function stops decreas-

ing.

The loss function of SGD is J(q) = L( fq (xi),yi), (xi,yi), i = 1, · · · ,m are sam-
ples, where ∂J(q)

∂q = 0. Here, we list typical loss functions and activation functions:

• 0-1 loss function:

L(Y, f (X)) =

⇢
1 Y 6= f (X)
0 Y = f (X)

X ,Y 2 R (3.4)

• Square loss function:

L(Y, f (X)) = (Y � f (X))2,X ,Y 2 R (3.5)

• Absolute loss function:
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L(Y, f (X)) = |Y � f (X)|,X ,Y 2 R (3.6)

• Logarithm loss function:

L(Y, p(Y |X)) =� log p(Y |X),X ,Y 2 R (3.7)

• Average loss function:

L =
1
m

m

Â
i=1

L(xi,yi) (3.8)

where the set T = {(xi,yi)}(i = 1,2, · · · ,m),xi,yi 2 R is the training set.
• · · · · · ·

• ReLU: Rectified linear unit,

f (x) = max(0,x),x 2 R. (3.9)

• Tanh: Hyperbolic tangent function,

f (x) = tanh(x) =
ex� e�x

ex + e�x ,x 2 R. (3.10)

• Sigmoid: Logistic function,

f (x) =
1

1+ e�x ,x 2 R. (3.11)

• ReLU: Rectified linear unit

f (x) = max(0,x) = x+ =

⇢
0 x 0
x x > 0 ,x 2 R (3.12)

f 0(x) =
⇢

0 x 0
1 x > 0 ,x 2 R (3.13)

• Tanh: Hyperbolic tangent function,

f (x) = tanh(x) =
ex� e�x

ex + e�x ; f 0(x) = 1� f (x)2,x 2 R (3.14)

• Sigmoid: Logistic function,

f (x) =
1

1+ e�x ; f 0(x) = f (x)(1� f (x)),x 2 R (3.15)

• · · · · · ·



3.2 Convolutional Neural Network and YOLO Models 75

3.2 Convolutional Neural Network and YOLO Models

Since 2015, the focus of all researchers has been moved to deep learning, i.e., deep
neural networks, especially after AlexNet [59] received an award in a contest of
visual object detection and recognition using ImageNet [57, 38, 115]. In 2015, the
world top journal Nature also published a survey paper related to deep learning [64].
Before that, most of people were interested in using SVM (support vector machine)
for pattern classification [47, 157].

Classical CNN (i.e., convolutional neural network or ConvNet) has been em-
ployed to digital image processing since 1995 [61]. The convolutional kernels usu-
ally are the masks with the size of 3⇥ 3, 5⇥ 5, 7⇥ 7, 9⇥ 9, etc. The convolution
operations generate receptive fields which compose the feature map of convolutional
neural networks [1, 40, 115, 43]. The receptive field corresponds to a region of the
given input image [27].

In mathematics, convolution is a mathematical operation on two functions that
produces a third function expressing how the shape of one of them is modified or
filtered by the other. Given H = (h(k)i, j )m⇥m at level k, a(k),b(k),c(k),d(k) 2R, g(·) is
a nonlinear function, a convolution operation is,

h(k+1)
i, j = g(a(k) ·h(k)i, j +b(k) ·h(k)i+1, j + c(k) ·h(k)i, j+1 +d(k) ·h(k)i+1, j+1). (3.16)

Average pooling includes calculating the average for each patch of the feature map.
For an average pooling [65] with downsampling,

h̄(k+1) =
1
4
(a(k) ·h(k)i, j +b(k) ·h(k)i+1, j + c(k) ·h(k)i, j+1 +d(k) ·h(k)i+1, j+1). (3.17)

For a max pooling [20] with downsampling,

h(k+1)
max = max(a(k) ·h(k)i, j ,b

(k) ·h(k)i+1, j,c
(k) ·h(k)i, j+1,d

(k) ·h(k)i+1, j+1), (3.18)

where the max pooling is carried out by applying a max filter max(·) to non-
overlapping subregions of the initial representation. In deep learning, convolution
operation ‘?’ is denoted as,

s(t) = (x?w)(t) =
•

Â
a=�•

x(a)w(t�a), (3.19)

where the function x(a) is input and w(t) stands for kernel, the output s(t) represents
feature map. For an image I(i, j), i = 1,2, · · · ,W , j = 1,2, · · · ,H, W is the image
width, H is the image height. The convolution operation is,

S(i, j) = (I ?K)(i, j) = Â
m

Â
n

I(m,n)K(i�m, j�n), (3.20)
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where K(·) is kernel function. Typically, Gaussian kernel in n 2 Z + dimensions
is Gn(X,s) = 1

(s
p

2p)n exp(�kXk
2

2s2 ), where X = (x1,x2, · · · ,xn), s is variance. For

example, if n = 1, G1(x,s) = 1
s
p

2p exp(� x2

2s2 ).
In convolution operation, padding is to fill up the region of an image boundary,

which is to fill in the margin region with zero, this will make sure all convolution
operations could be carried out at the edge region of images [65]. Meanwhile, the
concept stride is the step length of convolution operations.

Convolution operation is to simulate our human visual system. Like most mam-
mals such as cats or dogs, our human visual system (HVS) could be simulated by
using the famous Gabor function. Gabor function has been applied to describe the
co-occurrence of texture in texture analysis [24].

g(x,y;l ,q ,y,s ,g) = exp
✓
�x02 + g2y02

2s2

◆
exp
✓

i
✓

2p x0

l
+y

◆◆
, (3.21)

where i =
p
�1, a , bx, by, f , f , x0, y0, t 2R are parameters, x0 = xcosq + ysinq

and y0 = �xsinq + ycosq . l represents the wavelength of the sinusoidal factor, q
shows the orientation of the normal to the parallel stripes of a Gabor function, y is
the phase offset, s is the sigma/standard deviation of the Gaussian envelope, and g
is the spatial aspect ratio.

ConvNets (i.e., CNN) also include local connections, shared weights, pool-
ing [12, 65], and multilayer neural network (MLP) [34, 45]. The fine-tuning and
pooling operations [65] feature deep neural networks.

3.2.1 Region-Based Convolutional Neural Network

The next is region-based CNN (R-CNN). At first, we need to understand the concept:
Intersection Over Union (IOU) for visual object detection in an image, which is
calculated through

IOU =
A (A

T
B)

A (A
S

B)
, (3.22)

where A and B are image regions of bounding boxes, A (·) refers to area of a re-
gion, anchor box refers to the bounding box of visual objects with multiresolution,
multiscale, and multiaspectratio, etc.

R-CNN [11, 31] is able to quickly find the object bounding box at where the
features are extracted from ROI (region of interest), the classifier is still SVM (i.e.,
support vector machine), the regression is employed for classifying region proposals
iteratively. Warp refers to anisotropically scale each object proposal to the CNN in-
put size. R-CNN is slow because it performs a ConvNet forward pass for each object
proposal without sharing computations [32]. The training is a multistage pipeline;
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that means, we need work one step after another; therefore, it is expensive and time
consuming.

In MATLAB, R-CNN detector firstly generates region proposals. The proposal
regions are cropped out of the image and resized. CNN classifies the cropped and
resized regions. Finally, the region proposal bounding boxes are refined by using
CNN features.

The training of Fast R-CNN [30, 21] is single stage through using a multitask
loss. Regression has been employed for bounding box training [30, 34, 42]. The
training can update all parameters of network layers. The pooling layer takes use of
max pooling to convert the features inside any valid ROI into a small feature map
with a fixed spatial extent of 7⇥7 region.

In MATLAB, Fast R-CNN deals with the entire image and pools CNN features
corresponding to each region proposal. Generally speaking, Fast R-CNN is more
efficient than R-CNN, which is the design purpose of this deep learning model.

Faster R-CNN [112, 41] merged Region Proposal Network (RPN) and Fast R-
CNN into a single network by sharing their convolutional features. A RPN is a
fully convolutional network that predicts object boundary and objectiveness scores
at each position simultaneously.

The softmax function [22] as shown in eq.(3.23) is applied to visual object de-
tection by using Faster R-CNN [112]. The corresponding curve generated by using
Google Colaboratory (“Colab”, a Jupyter Notebook) is shown in Fig. 3.1.

f (x) =
exi

Âi exi
,x 2 (�•,•). (3.23)

Fig. 3.1: The curve of softmax function

In MATLAB, Faster R-CNN adds a RPN to generate region proposals directly in
the network. The RPN is use of anchor boxes for visual object detection. Generating
region proposals in the network is faster.

In our project, a deep learning method was proposed for early diagnosis and
screening Alzheimer’s disease (AD) [43, 14, 49]. We take use of an object detection
network Faster R-CNN to detect the atrophy of the hippocampus region of human
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brain to implement the diagnosis. The net is modified and optimized based on VGG-
16 as the basic network of Faster R-CNN to extract feature maps and obtain high-
precision detection of AD samples.

In our projet [51], Faster R-CNN has been employed for apple ripeness analysis
from digital images. The ripeness of apples in digital images will be classified by
using Faster R-CNN, YOLOv3, and YOLOv4. The classifiers are able to achieve
the best result, i.e., the ripeness class of an apple from a given digital image is able
to be precisely predicted.

3.2.2 Mask R-CNN

Mask R-CNN is an intuitive extension of Faster R-CNN, which constructs the mask
branch properly for generating ideal results [41, 44].

Mask R-CNN extends Faster R-CNN by adding a branch for predicting segmen-
tation masks on each ROI, in parallel with the existing branch for classification and
bounding box regression.

The mask branch is a small fully convolutional network (FCN) applied to each
ROI, predicting a segmentation mask in a pixel-to-pixel manner. Mask R-CNN is
simple to be implemented and trained, given the Faster R-CNN framework, which
facilitates a range of flexible architectures.

Mask R-CNN has been awarded as the best work in deep learning for its simple,
flexible, and general framework for object segmentation. Mask R-CNN [41] from
Facebook AI Research team led by Dr. Kaiming He have won the Best Paper Award
(Marr Prize) at the 16th International Conference on Computer vision (ICCV) 2017,
held in Italy.

Instead of only performing classification and bounding-box regression, Mask R-
CNN also outputs a binary mask for each ROI, the general loss in total is given
as

L = Lcls +Lbox +Lmask, (3.24)

where Lcls, Lbox, and Lmask represent the classification loss, bounding box loss and
the average binary cross-entropy loss, respectively. Mask R-CNN combines the
tasks of visual object detection and semantic segmentation together.

In our project, Faster R-CNN and Mask R-CNN have been utilized to implement
facial expression recognition, which consists of a fully convolutional network and
detector over a region of interest. Mask R-CNN is an extension of Faster R-CNN
algorithm that carries out image segmentation. Faster R-CNN and Mask R-CNN
have been employed for object detection and recognition, but for facial expression
classification before [42].
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3.2.3 YOLO Models

YOLO [111] (i.e., You Only Loook Once) is single pass neural network, directly
optimized the neural network; given an image, immediately only 7⇥7 segmentation
is employed for image segmentation. Thus, YOLO is very fast.

YOLO network has 24 convolutional layers followed by two fully connected
layers, which takes advantage of alternating 1⇥1 convolutional layers to reduce the
feature space between layers. The convolutional layers are pretrained for classifica-
tion by using the ImageNet dataset. YOLO adopts leaky rectified linear unit (ReLU)
function f(x) 2 C0(�•,•), x 2R,

f(x) =
⇢

x, x > 0
0.1x, others (3.25)

The Python code and the curve of ReLU function are shown in Fig.3.2

Fig. 3.2: The Python code and the corresponding curve of the ReLU function

YOLOv2 predicts the location and class label using logistic activation function
(a.k.a. sigmoid function) s(·). Namely,

f (x) = s(x) =
1

1+ e�x ,x 2 C•(0,1). (3.26)

The derivative of this monotonic function w.r.t. x 2R is,

f 0(x) = f (x)(1� f (x)),x 2 C•(0,1). (3.27)

The curve of logistic function rendered by R online software is shown in Fig. 3.3
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Fig. 3.3: The curve of logisitic function rendered by R online software

YOLOv2 also takes use of 448⇥ 448 images for fine-tuning the classification
network based on ImageNet. Batch normalization (BN) is based on all convolutional
layers in YOLOv2. Darknet-19 has 19 layers depth which can be trained based on
more than a million images from the ImageNet database. The pretrained network
can classify images into 1,000 object categories. Darknet-19 is often used as the
foundation network for YOLO workflows.

YOLOv2 utilizes k-means clustering which leads to better IOU scores. Mathe-
matically, k-means clustering partitions n observations into k n sets S= {S1,S2, · · · ,Sk}
so as to minimize the within-cluster sum of squares (WCSS). Namely,

SK = argmin
S

k

Â
i=1

Â
x2Si

kx�µik2, (3.28)

where µi is the mean of points in Si.
In MATLAB, YOLOv2 object detector takes use of a single stage object detec-

tion network and anchor boxes to detect classes of visual objects in an image. For
each anchor box, YOLOv2 provides the information such as IOU, anchor box off-
sets, and class probability. YOLO9000 is able to detect over 9,000 visual object
classes using WordTree in real time [39]. WordTree has a hierarchical tree to link
the classes and subclasses together. YOLO9000 provides a way to combine Microsft
COCO and ImageNet together.

YOLOv3 is based on the Darknet, which has 53 layer network trained on Im-
ageNet. YOLOv3 makes prediction at three scales, which are precisely given by
downsampling the dimensions of the input image by 32, 16 and 8 respectively.
YOLOv3 takes advantage of nine anchor boxes in total.

YOLOv4 is faster and more accurate than other real-time neural networks based
on Microsoft COCO dataset. Microsoft COCO dataset includes three parts: Training
set (120,000 images), validation set ( 5,000 images), test set (41,000 images). By us-
ing Darknet framework, YOLOv4 is able to cope with 62 frames with the resolution
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608⇥ 608 per second and achieve 43.5% AP accuracy. The activation function of
YOLOv4 is

f (x) = x tanh(x (x)),x 2R. (3.29)

This function is called Mish function, a novel self regularized non-monotonic
function,

x (x) = ln(1+ ex) (3.30)

where x 2R is a softmax function, the derivative is

f 0(x) =
(ex(4e2x + e3x +4(1+ x)+ ex(6+4x)))

(2+2ex + e2x)2 ,x 2 [�0.308,•). (3.31)

Correspondingly, the curve of Mish function is shown in Fig. 3.4.

Fig. 3.4: The curve of mish function

YOLOv4 is optimal and suitable for real-time object detection. For the resolu-
tion to detect multiple objects with various sizes and the exact location, a higher
receptive field is required to keep more details of the visual objects.

As the latest net model of the YOLO family, YOLOv5 is broadly employed to
various fields. YOLOv5 based on multiple datasets is highly customizable. YOLOv5
is use of GIOU as the loss of the bounding box. YOLOv5 takes use of binary cross
entropy and logits loss function to calculate the loss of class probability and score.

Pertaining to small visual objects, the conventional detection loss rate is very
high, especially small objects are easily overlooked. An algorithm based on the im-
proved YOLOv5 is offered to solve the problem of high loss rate of small objects
and weak classifier. Firstly, the small datasets are applied to optimize the deep learn-
ing network, increase the algorithm speed to prevent the network gradient vanishing
and improve the detection result to prevent overfitting. YOLOv5 model is better
than YOLOv4 model which has 1.78% missed detection rate.

In our project, YOLO and Regression CNNs are employed for fruit object locat-
ing, classification, and freshness grading [7, 8]. Fruit as visual object, its image is
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fed into YOLO model for segmentation and regression, then for freshness grading.
The project outcome reveals that the proposed approach outperforms linear model.

In our project [47], for the purpose of comparisons, two deep learning models,
namely, Faster R-CNN and YOLOv5 are employed to conduct tree leaves detec-
tion. YOLOv5, as the representative of one-stage algorithm, is obviously better than
Faster R-CNN, a standard two-stage algorithm, especially, its advantage in speed
makes sure it has a bright prospect in deep learning applications.

In our project [34], traffic-sign recognition (TSR) is able to assist drivers in
avoiding a vast number of potential hazards and improve the experience of driv-
ing. However, the TSR is a realistic task that is full of constraints, such as visual
environment, physical damages, and partial occasions, etc. In order to determine
which deep learning models are the most suitable one for the TSR, we choose two
models to conduct deep learning computations: Faster R-CNN and YOLOv5. We
evaluate the performance of a one-stage model (YOLOv5) and a two-stage model
(Faster R-CNN with VGG-16). YOLOv5 is more sufficient and important, there is
a slightly degrade of accuracy compared to the Faster R-CNN.

YOLOv7 structure is similar to YOLOv5 [22, 50], the main improvement is the
replacement of internal components of the network structure. YOLOv7 consists of
three components: Input, backbone, and head. YOLOv7 firstly resizes the input im-
age to 640⇥ 640 and inputs it into the backbone network, then outputs a feature
map with three layers of different sizes through the head layer network, and out-
puts the prediction results through the REP module and the conv module. YOLOv7
provides Roboflow tool, which can label the images and automatically export the
custom dataset.

YOLOv8 is a state-of-the-art object detection algorithm which is an improvement
over the previous version YOLOv7 and other object detection algorithms. One of
the key innovations of YOLOv8 is the use of a “scale-aware training”, which allows
the model to better handle visual objects having different sizes in an image. This is
achieved by training the model on a diverse set of images, including images with
objects of different scales by using a “mosaic data augmentation”, which combines
multiple images to form a single training image. In addition, YOLOv8 takes use of
an efficient implementation of the architecture which allows it to process images at a
higher frame rate and make it suitable for real-time applications. YOLOv8 allows to
detect visual objects with more accuracy and generalization, and more classes. The
loss function includes four main components: Objectness loss, classification loss,
localization loss, and confidence loss. YOLOv8 takes use of VFL (Varifocal Loss)
function to calculate the loss of classification and confidence loss of the object and
uses DFL (Distribution Focal Loss) + CIOU as the loss of bounding box regression.

3.2.4 Single Shot Multibox Detector

SSD [79, 5] is single shot multibox detector(SSD). The single shot refers to the
tasks of visual object localization and classification which are carried out in a single
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forward pass of the network. MultiBox is the term of bounding box regression. The
network is a visual object detector that also classifies those visual objects.

The architecture of SSD is based on the VGG-16 architecture, but discards the
fully connected layers. A set of auxiliary convolutional layers were added and em-
ployed to extract visual features at multiple scales, which progressively decrease the
size of the input to each subsequent layer. SSD takes use of the default aspect ratio
and could be applied to visual object tracking in real time [22, 28].

MATLAB VGG-16 is a specially designed CNN net which is trained based on
ImageNet by the Visual Geometry Group at the University of Oxford. The model
has 16 layers and is able to classify images into 1,000 object classes (e.g., keyboard,
mouse, coffee mug, pencil, animals, etc).

There are a few other applications of SSD which are available online, including
the original Caffe code. TensorFlow-based SSD code could be downloaded from
GitHub.

In our projects related to real-time human face detection and recognition [46], a
simplified SSD net was proposed which is an end-to-end model based on SSD archi-
tecture. The net includes six convolution layers, two fully connected layers. For two
fully connected layers, one of the fully connected layers carries out the prediction of
location of bounding box; another fully connected layer executes the classified pre-
diction. This model is simpler than Inception V2, we adopted the dropout method
at the end of convolutional layers to optimize the output results in fully-connected
layers.

In the project related to virus identification using deep learning [59, 60], we firstly
proposed a loss function which targets to reflect the viruses on the given electron mi-
crograph. We take into account of the attention mechanism for virus image classifi-
cation and localization. We test five deep learning networks: R-CNN, Fast R-CNN,
Faster R-CNN, YOLO, and SSD. SSD and Faster R-CNN outperform others in the
virus detection from digital images.

In the project related to currency recognition using deep learning [61, 62, 63],
SSD model was taken into account based on deep learning, which was employed to
extract visual features of digital images of paper currency, we accurately recognize
the denomination of the currency, both front and back. When a currency is tilted or
moved, its denomination and front/back side can still be identified.

In the project related to flare or flame detection, we constructed deep neural net-
work models, e.g., SSD and YOLO. We enhanced the capacity of transformation of
CNNs in part of convolution net and pooling operations [120, 149].

3.2.5 DenseNets and ResNets

DenseNets alleviate the vanishing gradient problem, strengthen feature propagation,
encourage feature reuse, and substantially reduce the number of parameters [45].

For each layer, the feature maps of all preceding layers are used as inputs, its own
feature maps are employed as inputs into all subsequent layers.
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DenseNets introduce direct connections between any two layers with the same
feature-map size, which scale naturally to hundreds of layers, while exhibit no op-
timization difficulties. Thus, DenseNets require substantially fewer parameters and
less computation to achieve the state-of-the-art performances. DenseNets allow fea-
ture reuse throughout the networks consequently learn more compact and more ac-
curate models.

In deep learning, there exists the degradation problem; namely, with the network
depth increasing, accuracy gets saturated. However, ResNets easily obtain accuracy
gains from greatly increased depth due to the well-designed structure of this net-
work.

y = F (x,{Wi})+x, (3.32)

where x and y are the input and output vectors of the layers, F (·) is the residual
mapping, e.g., F =W2s (W1x), s is the ReLU function.

In our projects, DenseNet has been applied to character recognition of banknote
serial numbers. DenseNet was proposed as the primary classifier. The CNN net with
residual attention model is utilized for serial number recognition.

In our project, we colorize CT images using ResNet [48]. CT refers to computed
tomography to sense and create detailed images of internal organs, bones, soft tissue,
and blood vessels. We select appropriate reference images so as to combine the style
and content of the representations to colorize the target CT lung greyscale images
for the fully automated approach.

In our project [18, 19], we have implemented character-based braille translator
using ResNet models, there are three versions of ResNets for character-based braille
classifiers, including ResNet-18, ResNet-34, and ResNet-50.

3.2.6 Capsule Network

A dynamic routing mechanism for capsule networks(CapsNets) was introduced by
Hinton and his team in 2017 [39]. A capsule is a set of neurons that was individu-
ally activated for various properties of a visual object. A CapsNet was employed to
better model hierarchical relationships which is able to delineate the “Picasso prob-
lem”, namely, the images that have all the right parts, are not in the correct spatial
relationships. The output of a CapsNet is a vector consisting of the probability of
an observation, i.e., pose ( e.g., position, size, orientation), deformation, velocity,
etc. CapsNets replace the scalar output with vector-output capsules. Because each
capsule is independent, when multiple capsules agree, the probability of correct de-
tection or confidence is much higher.

The output of a capsule is updated by

bi j bi j + û j|i ·v j (3.33)
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where bi j refers to the prior probability that capsule i in layer l should connect to
capsule j in layer l +1.

û j|i = Wi jui (3.34)

where Wi j is a weight matrix. The pose vector ui is rotated and translated by using
Wi j into a vector û j that predicts the output of the parent capsule.

In CapsNets, the squashing function is

v j(s j) =
ks jk2

1+ks jk2
s j

ks jk
, (3.35)

where v j is the vector output of capsule j. Capsules s j in the next layer are fed
from the sum of predictions from all capsules in the previous layers with a coupling
coefficient ci j,

s j = Â
i

ci jû j|i, (3.36)

and
ci j = so f tmax(bi) =

exp(bi j)

Âk exp(bik)
, (3.37)

where ci j is coupling coefficients, bi j is the log prior probability, initially, bi j := 0.
Eventually, the network is trained by minimizing the loss function

Lk = Tk max(0,m+�kvkk)2 +l (1�Tk)max(0,kvkk�m�)2, (3.38)

where m+ = 0.9, m� = 0.1, and l = 0.5,

Tk =

⇢
1 digit of class k present
0 others. (3.39)

CapsNets have multiple conceptual advantages, which learn topological relation-
ship, the networks are organized in hierarchical way. CapsNets have the attribute
with viewpoint invariance and better generalization to new viewpoints. Moreover,
CapsNets have been applied to image segmentation, which work like SegNets and
U-Nets. The two deep learning networks were designed specifically for image seg-
mentation.

U-Nets[52, 38] were also applied to pixel-wise regression, small-size object de-
tection and recognition. U-Net is a convolutional neural network that consists of
a contracting path and an expansive path. The contracting path follows the typi-
cal architecture of a convolutional network. The network has U-shaped architecture,
consisting of repeated applications of convolution, followed by a rectified linear unit
(ReLU) and a max-pooling operation. The design was based on fully convolutional
network(FCN), its architecture was modified and extended with fewer training im-
ages so as to yield more precise segmentation. U-Net is use of a pixel-wise softmax
cross entropy as the loss function. The softmax function is defined as
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pk(p) =
exp(ak(p))

Âexp(ak(p))
, (3.40)

where pk(p) is the softmax function at pixel p within the feature channel k, k =
1,2, · · · ,K, K is the number of classes; ak(p) is the activation function at the pixel
position p= (x,y)2W = [a,b]⇥ [c,d]⇢R2, x2 [a,b] and y2 [c,d] are the intervals
of the image region in horizontal and vertical directions, respectively. The pixel-wise
softmax cross entropy function is

L(p) = Â
p2W

w(p) log p(al(p)), (3.41)

where al(p) is the softmax function with a channel label l, 0 < l  K at pixel p;
w(p) is a weight map at pixel p, the map with a pixel-wise loss weight forces the
U-Net network to learn from the border pixels. The weight map is computed as

w(p) = wc(p)+w0(p)exp(� (d1(p)+d2(p))2

2s2 ), (3.42)

where wc(p), w0(p) and s 6= 0 are parameters, which are treated as constants. d1(p)
and d2(p) are the first longest distance and the second longest distance from pixel p
to its border pixels, respectively.

Meanwhile, SegNet [1] is use of the pretrained convolutional layer weights from
VGG [41] neural networks as pretrained weights, which were developed by the
University of Cambridge, UK. The encoder network consists of 13 convolutional
layers which correspond to the first 13 convolutional layers in the VGG-16 network.
Each encoder layer has a corresponding decoder layer. The final decoder output is
fed to a multiclass softmax classifier to produce class probabilities for each pixel
independently. The cross-entropy loss was supplied as the objective function for
training SegNet, the loss is summed up over all the pixels in a mini-batch. SegNet
only stores the max-pooling indices of the feature maps and takes use of them in its
decoder network to achieve the ideal performance.

Moreover, SegNet [1] is a deep encoder-decoder architecture for multiclass pixel-
wise segmentation. SegNet is effective for a real-time urban road scene segmenta-
tion as well as indoor scene understanding. The architecture consists of a sequence
of nonlinear processing layers (encoders) and a corresponding set of decoders fol-
lowed by a pixel-wise classifier. Typically, each encoder consists of one or more
convolutional layers with batch normalisation and a ReLU nonlinearity, followed
by nonoverlapping max pooling and subsampling. One key component of the Seg-
Net is to perform upsampling (e.g., bilinear interpolation) in the decoders for low-
resolution feature maps. The entire architecture is trained by using stochastic gradi-
ent descent.

Downsampling is implemented by using pooling operations such as max pooling,
average pooling, etc. Pertaining to upsampling, the nearest neighbor, bilinear, and
bicubic interpolation methods [15] are employed to the operation. For a bilinear
interpolation, we have a region W = [a,b]⇥ [c,d] and a region W 0 = [a0,b0]⇥ [c0,d0]
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in images I and I0, respectively, the parameters s 2 [0,1] and t 2 [0,1] establish the
mapping relationship between region W ⇢ I to W 0 ⇢ I0. That means, given pixel p 2
W ⇢ I, we will get the corresponding pixel p0 2W 0 ⇢ I0 via parameters s0, t0 2 [0,1].
Hence p(s, t) = p0(s, t), 8s, t 2 [0,1], namely,

pA = p(0,0) = p0(0,0) = p0A0 , (3.43)

and
pB = p(1,0) = p0(1,0) = p0B0 , (3.44)

and
pC = p(0,1) = p0(0,1) = p0C0 , (3.45)

and
pD = p(1,1) = p0(1,1) = p0D0 , (3.46)

where pixels at the four corners points pA,pB,pC,pD 2 W correspond to the four
corners points at pA0 ,pB0 ,pC0 ,pD0 2W 0. Thus,

p0(s0, t0)= t0 · [s0 ·p0(0,0)+(1.0�s0) ·p0(1,0)]+(1.0�t0) · [s0 ·p0(1,0)+(1.0�s0) ·p0(1,1)].
(3.47)

In the matrix form,

p0(s0, t0) = (t0,1.0� t0)M0(s0,1� s0)
>, (3.48)

where
M0 =


p0(0,0) p0(1,0)
p0(0,1) p0(1,1)

�
. (3.49)

Meanwhile,

p(s0, t0)= t0 · [s0 ·p(0,0)+(1.0�s0) ·p(1,0)]+(1.0�t0) · [s0 ·p(1,0)+(1.0�s0) ·p(1,1)].
(3.50)

Similarly, in the matrix form,

p(s0, t0) = (t0,1.0� t0)M(s0,1� s0)
>, (3.51)

where
M =


p(0,0) p(1,0)
p(0,1) p(1,1)

�
. (3.52)

In our pojects, CapsNet has been successfully applied to traffic scene under-
standing, traffic-light sign recognition, vehicle-related scene segmentation [80, 82,
81, 52].

In our project for sign language recognition [27], Capsule Network (CapsNet)
is proposed. The CapsNet attains the accuracy of overall recognition up to 98.72%
based on our own dataset.
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3.3 Recurrent Neural Networks and Time Series Analysis

Recurrent neural network (RNN) is one of deep neural networks which is now ap-
plied to a plethora of applications because its unique structure is quite helpful and
beneficial while dealing with sequence data.

RNN structure has the recurrent hidden layer connected to that of the next step.
Compared with other multilayer neural networks, RNN can impact over time. To
explain this in more details, there is a unidirectional flow of information from the
input unit to the hidden unit, whilst there is another unidirectional flow of informa-
tion from the hidden unit to the output one. In addition, the input of the hidden layer
also contains the state of previous hidden layer; the nodes of the hidden layer are
self-connected or interconnected.

An LSTM [25] network is a type of recurrent neural networks (RNN) that learns
long-term dependencies between time steps of sequence data. The core components
of an LSTM network are a sequence input layer and an LSTM layer. The input
layer imports sequence or time series data into the network. LSTM networks can
remember the state of the network.

In MATLAB, LSTM networks support input data with varying sequence lengths.
While passing data through the network, the network pads, truncates, or splits se-
quences so that all the sequences in each mini-batch have the specified length.

If x is the input layer, o is the output layer, t is the number of times, s is the
hidden layer, V , W , and U are all weights, the state of the hidden layer at time t is
calculated as

St = f (U ·xt +W ·St�1), (3.53)

where f (·) is activation function. If there is a sequence of inputs x1,x2, · · · ,xT 2Rn,
the sequence of hidden states is h1,h2, · · · ,hT 2Rm, the sequence of prediction is
y1,y2, · · · ,yT 2Rk, the following equations are employed for the iterations

ti = Wx
hxi +Wh

hxi�1 +bh, (3.54)

hi = e(ti), (3.55)

si = Wh
yhi +by, (3.56)

and
yi = g(si), (3.57)

where Wx
h, Wh

h, and Wh
y are the weight matrices; the sequence of ti represents the

inputs to the hidden units, the sequence of si stands for the inputs to the output units;
bh and by are bias vectors; e(·) and g(·) are the predefined vector-valued functions.

In our projects, CNN+LSTM and 3D-CNN are harnessed to identify human ac-
tions from medics who wear a PPE (i.e., personal protective equipment) in health
and disability care. Our experimental results demonstrate that the CNN+LSTM
method has effectively identified human actions in given videos [52, 53, 54].
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3.3.1 Hidden Markov Model

We usually use FSM (i.e., finite state machine) and HMM (i.e., hidden Markov
model) [36, 23, 8, 46] to detect computable events. HMM is generally employed to
predict what will happen there. A typical example is to predict whether a person is
healthy or fever in a day using probability. It will be helpful for preparing medicine
in a hospital for a season based on weather changes. The stochastic automation is:
(1) Initial probabilities: pi ⌘ p(q1 = Si), ÂN

i=1 pi = 1; P = (p1,p2, · · · ,pN).
(2) Transition matrix: A=(ai j)N⇥N ,ai j ⌘ p(qt+1 = S j|qt = Si)2 [0,1] and ÂN

j=1 ai j =
1

HMM model l = (A,B,P) is related to,

1. State: S = {S1,S2, · · · ,SN}
2. Observation: V = {v1,v2 · · · ,vM}
3. Transition matrix: A = (ai j)N⇥N , ai j ⌘ p(qt+1 = S j|qt = Si)
4. Emission probabilities: B = (b j(m))M , b j(m)⌘ p(Ot = vm|qt = S j)
5. Initial probabilities: P = (pi)N , pi ⌘ p(q1 = Si)
6. Output: O = {O1O2 · · ·OT}
7. Latent variables: Q = {Q1Q2 · · ·QT}

HMM [36, 35] has two very important algorithms: Vertebi algorithm and Baum-
Welch(BM) algorithm. The Viterbi algorithm could assist us to quickly find the best
path which has been applied to information theory [18] for coding.

Given Q = {q1, · · · ,qT} and O = {o1, · · · ,oT},

dt(i) = max p(q1q2 · · ·qt�1,qt = Si,O1 · · ·Ot |l ). (3.58)

Computationally,

1. Initialization: d1(i) = pibi(O1), y1(i) = 0
2. Recursion: dt( j) = max

i
(dt�1(i) ·ai j)b j(Ot), yt( j) = argmax

i
(dt�1(i) ·ai j)

3. Termination: p⇤ = max
i

dT (i), q⇤T = argmax
i

dT (i)

4. Path: q⇤t = yt+1(q⇤t+1), t = T �1,T �2, · · · ,1
BM algorithm is applied to predict the highest probability of parameters by using

EM algorithm. Given l =(A,B,P), Baum-Welch (BW) algorithm is applied to seek
l ⇤ = argmax

l
p(c|l ),

E-step,

gt(i) =
N

Â
j=1

xt(i, j);xt(i, j)⌘ p(qt = Si,qt+1 = S j|O,l ). (3.59)

M-step,
p(c|l ) = P K

k=1 p(Ok|l ), (3.60)

and

âi j =
ÂT�1

t=1 xt(i, j)

ÂT�1
t=1 gt(i, j)

, b̂ j(m) =
ÂT

t=1 gt( j)1(Ot = vm)

ÂT
t=1 gt( j)

. (3.61)
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HMMs take use of transition probability in each step for predicting events what
will be happened. FSM has not probability prediction, which is employed to capture
events during state transition.

HMM is not a neural network, it has not neurons and activation functions.
RNNs [9, 35, 33] are a family of artificial neural networks for processing sequential
data, which is a dynamical system driven by external x(t),

h(t) = f (h(t�1),x(t);q) = g(t)(x(t),x(t�1), · · · ,x(1)), (3.62)

where t = 1,2 · · · ,t , h is the state. This tells us it is possible to use the same tran-
sition function with the same parameters at every time step during unfolding opera-
tions.

For i = 1,2, · · · ,t ,
a(t) = b+Wh(t�1) +Ux(t), (3.63)

where b and c are vectors, U, V and W are weight matrices,

h(t) = tanh(a(t)), (3.64)

o(t) = c+Vh(t), (3.65)

and
ŷ(t) = softmax(o(t)). (3.66)

The loss function L is,

L =
>

Â
t=1

L(t) =
>

Â
t=1

log p(y(t)|{x(1), · · · ,x(t)}). (3.67)

Hence,
∂L

∂L(t) = 0. (3.68)

Thus,

(—o(t)L)i =
∂L

∂o(t)i

,(—h(t)L)i =
∂L

∂h(t)i

. (3.69)

Furthermore,

—cL =
∂L
∂c

,—bL =
∂L
∂b

,—V L =
∂L
∂V

,—W L =
∂L
∂W

,—U L =
∂L
∂U

. (3.70)

In our project [142], we proposed a method for human gait recognition based on
a self-adaptive hidden Markov model (SAHMM). We presented a feature extraction
algorithm based on local gait energy image (LGEI) and constructed an observation
vector set. We optimized parameters of the SAHMM-based method for gait recog-
nition. The proposed method is evaluated extensively based on the CASIA Dataset
B for gait recognition under various conditions such as cross view, human dressing,
or bag carrying, etc.
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In our project [119], we introduced a method to detect and alert a driver if cars
appear in the blind spots by using videos captured from digital cameras installed in
the car. In this project, two algorithms based on histogram were compared to detect
the states of the blind spots. HMM was then employed to obtain the maximum
probability of this state occurring. After the data was acquired, RNN was harnessed
to analyze the results, predict future sequences. The deep learning RNN model was
designed to predict the number of cars that will turn up in the blind spots.

3.3.2 Recurrent Neural Networks

RNN [35, 33, 16, 19, 33] refers to recurrent neural network; most of time, we unfold
the neural network, the procedure is simulated usually by using the fixed-point the-
orem. We calculate the difference through using loss functions. A loss function is a
part of a cost function which is a type of an objective function. Hence, the concepts
loss function, cost function, and objective function have minor differences.

Loss function L(yi, ŷi) refers to a single sample in a dataset, ŷi is the output of a
nerual network model, yi is the real value or ground truth. Cost function J(·) means
the entire training dataset with all samples J = ÂL(yi, ŷi), i = 1,2, · · · ,n, for exam-
ple, mini-batch in gradient descent takes use of all the samples of the training set.
Objective function means a function f (·) will be optimized by using optimization
algorithm which is subject to constraints.

In mathematics, the basic concept of loss function [3] is a distance. The popular
one is Euclidean distance, but entropy e = �Ân

i=1 hi loghi = �E(loghi),hi 2 (0,1]
has been applied to calculate the distance using mathematical expectation of a log-
arithm function. The softmax function f (x) = exi

Âi exi has been applied to the calcula-
tion [22, 32, 53]. The loss functions typically include 0⇠1 loss function, square loss
function, absolute loss function, average loss function, hinge loss function, etc. 0⇠1
loss function is,

L (Y, f (X)) =

⇢
1 Y 6= f (X)
0 Y = f (X)

(3.71)

Squared error cost function or quadratic cost function is shown as

J = kY, f (X)k2 =
n

Â
i=1

(yi� f (xi))
2, (3.72)

where (xi,yi), i = 1,2 · · · ,n is a group of given points, X = (x1,x2, · · · ,xn)>, Y =
(y1,y2, · · · ,yn)>, yi is different from f (xi).

The squared cost function has an important position in linear algebra. For exam-
ple, regarding a straight line y = ax+ b, where parameters a and b are unknown,
if we have n 2D sampling points p(xi,yi), i = 1,2, · · · ,n, we treat q = (a,b)> as
parameters, which is estimated by using linear regression. Hence,
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J(a,b) =
n

Â
i=1

(axi +b� yi)
2. (3.73)

We rewrite eq. (3.73) as a quadratic polynomial, a quadratic polynomial is a
polynomial of degree 2, a bivariate quadratic polynomial has the form

J(a,b) = A ·a2 +B ·b2 +C ·ab+D ·a+E ·b+F, (3.74)

where A, B, C, D, E, and F are the constants (A 6= 0) which are related to (xi,yi),
n= 1,2, · · · ,n. Bivariate polynomials are fundamental to the study of conic sections,
which are characterized by equating the expression L(a,b) to zero. Thus, we modify
the equation ( 3.74) and obtain

J(a,b) = a2 +
B
A
·b2 +

C
A
·ab+

D
A
·a+ E

A
·b+ F

A
,A 6= 0. (3.75)

Moreover, we simplify the equation (3.75) in the form of matrix

J(a,b) = (a,b,1)M(a,b,1)>, (3.76)

where M = (mi, j)3⇥3, mi, j was derived from the constants A, B, C, D, E,and F . We
see that matrices could be applied to express a quadratic polynomial, linear algebra
could be applied to the square loss function.

Absolute loss function is expressed as

L (Y, f (X)) = |Y � f (X)|. (3.77)

Logarithm loss (i.e., log-loss) function is

L (Y, p(Y |X)) =� log p(Y |X), (3.78)

where p(Y |X) is the conditional probability. The average cost function is:

J̄ =
1
m

m

Â
i=1

L(xi,yi), (3.79)

where the set T= {(xi,yi)}(i= 1,2, · · · ,m) is the training dataset, X=(x1,x2, · · · ,xm)>,
Y = (y1,y2, · · · ,ym)>.

In machine learning, hinge loss function is employed for training classifiers. For
an output t =±1 and a classifier score x 2R, the hinge loss of the prediction L(x)
is defined as

L (x) = max(0,1� t · x), (3.80)

if t =�1 and x� 0, then L(x) = 1+x > 0; if t=-1 and x < 0, then L(x) = max(0,1�
|x|); if t = +1, x � 0, L(x) = max(0,1� |x|); if t = +1, x < 0, L(x) = 1+ x > 0.
Hence, sgn(x) · sgn(t) =�1, L(x) = 1+x > 0, where sgn(·) is the sign function and
returns +1 or �1. Namely, sgn(x) = +1 if x > 0; sgn(x) =�1 if x < 0.
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For sgn(x) · sgn(t) = +1, L(x) = max(0,1� |x|). If |x|> 1, 1� |x|< 0, L(x) = 0;
if |x|< 1, 1� |x|> 0, L(x) = 1� |x|> 0. That means, 0 x < 1, L(x) = 1� x > 0;
if �1 < x 0, L(x) = 1+ x > 0.

In summary, if sgn(x) ·sgn(t)=�1, then L(x)= 1+x> 0; if sgn(x) ·sgn(t)=+1,
|x| < 1, then L(x) = 1+ x > 0; if sgn(x) · sgn(t) = +1, |x| > 1, 1� |x| < 0, then
L(x) = 0.

In a loss function y = f (x), we usually need to calculate the derivative y0 = d f (x)
dx ,

the chain rule is therefore applied if x = s(t), then,

y0 =
d f (x)

dx
=

d f (x)
dx

· dx(t)
dt

. (3.81)

In most of time, we ensure the continuity of a function, but we cannot guaran-
tee that the derivative exists. LSTM [14, 17, 18, 19, 48, 51] has been utilized to
avoid this vanishing gradient or exploding problems. LSTM (i.e., long short-term
memory) is a typical RNN net,

ft = sg(W f ·xt +U f ·ht�1 +b f ), (3.82)

it = sg(Wi ·xt +Ui ·ht�1 +bi), (3.83)

ot = sg(Wo ·xt +Uo ·ht�1 +bo), (3.84)

ct = ft · ct�1 + it �sc(Wc ·xt +Uc ·ht�1 +bc), (3.85)

ht = ot �sh(ct), (3.86)

where xt and ht are input and output vectors; c0 = 0, h0 = 0; ft , it and ot are activa-
tion vectors of forget, input and output gates; W, U, b are weight matrices and bias
vector; ct is the cell state vector; ‘�’ is Hadamard product, i.e.,

Am⇥n ·Bm⇥n = (ai j)m⇥n · (bi j)m⇥n = (ai j ·bi j)m⇥n, (3.87)

where sg(·), sc(·) and sh(·) are activation functions.
ConvLSTM (i.e., convolutional LSTM) [51] took use of the spatiotemporal rela-

tionship,
ft = sg(W f ?xt +U f ?ht�1 +V f � ct�1 +b f ), (3.88)

it = sg(Wi ?xt +Ui ?ht�1 +Vi � ct�1 +bi), (3.89)

ot = sg(Wo ?xt +Uo ?ht�1 +Vo � ct�1 +bo), (3.90)

ct = ft · ct�1 + it �sc(Wc ?xt +Uc ?ht�1 +bc), (3.91)

ht = ot �sh(ct), (3.92)

where xt and ht are input and output vectors,c0 = 0, h0 = 0; ft , it and ot are activation
vectors of forget, input and output gates; W, U, V, b are weight matrices and bias
vector; ct is the cell state vector; ‘�’ is Hadamard product, ‘?’ is the convolution
operator. sg(·), sc(·) and sh(·) are activation functions. Furthermore, we have the
peephole LSTM,
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ft = sg(W f ·xt +U f · ct�1 +b f ), (3.93)

it = sg(Wi ·xt +Ui · ct�1 +bi), (3.94)

ot = sg(Wo ·xt +Uo · ct�1 +bo), (3.95)

ct = ft · ct�1 + it �sc(Wc ·xt +Uc ·ht�1 +bc), (3.96)

ht = ot �sh(ct), (3.97)

where xt and ht are input and output vectors, c0 = 0, h0 = 0; ft , it and ot are ac-
tivation vectors of forget, input and output gates; W, U and b are weight matrices
and bias vector; ct is the cell state vector; ‘�’ is Hadamard product; sg(·), sc(·) and
sh(·) are activation functions. Meanwhile, we have fully gated unit(FRU), which
has the following steps:

Initially, t = 0, h0 = 0, regarding update gate,

zt = sg(Wz ·xt +Uz ·ht�1 +bz) (3.98)

With regard to reset gate,

rt = sg(Wr ·xt +Ur ·ht�1 +br) (3.99)

Pertaining to the new memory,

h̃t = sh(Wh · xt +Uh(rt �ht�1)+bh) (3.100)

In relevant to the hidden state,

ht = (1� zt)�ht�1 + zt � h̃t (3.101)

where xt and ht are input and output vectors, W, U and b are weight matrices and
vector; ‘�’ is the Hadamard product. sg(·) and sh(·) are sigmoid function and tanh
function, respectively. For simplifying the problem, the minimal gated unit (MGU)
has the following steps:

Initially, t = 0, h0 = 0,

ft = sg(W f ·xt +U f ·ht�1 +b f ), (3.102)

ht = ft �ht�1 +(1� ft)�sh(Wh · xt +Uh(ft �ht�1)+bh), (3.103)

where xt and ht are input and output vectors, ft is forget vector; W, U and b are
weight matrices and bias vector; ‘�’ is Hadamard product. sg(·) and sh(·) are sig-
moid functions, tanh(·) is an activation function.

In our project regarding human gait recognition[140], we implemented the gait
recognition using deep learning and proposed a method based on convolutional
Long Short-Term Memory (Conv-LSTM). Firstly, we present a variation of gait
energy images (GEI), i.e., frame-by-frame GEI (ff-GEI), to expand the volume of
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available GEI data and relax the constraints of gait cycle segmentation required by
using gait recognition methods. Secondly, we demonstrate the effectiveness of ff-
GEI by analyzing the cross-covariance of one person’s gait data. Then, making use
of the temporality of our human gait, we design a gait recognition model by us-
ing Conv-LSTM. The proposed ff-GEI model using Conv-LSTM, coupled with the
new gait representation, can effectively solve the problems related to cross-view gait
recognition.

In our project regarding video dynamics detection [165], video dynamics detec-
tion needs to utilize the present, preceding, and next frames of a given video. In
the work, video dynamics detection based on deep learning is implemented and our
contributions are to effectively improve the accuracy of video dynamics detection.
By combining CNNs and RNNs together, the training time is greatly reduced.

3.3.3 Transformer Models

Most natural language processing (NLP) systems relied on gated RNNs, such as
LSTMs and gated recurrent units (GRUs), with added attention mechanisms. Atten-
tion mechanisms [49] are in conjunction with RNN nets. RNNs (LSTM, GRU, etc)
have been firmly established approaches in sequence modelling and transduction
problems such as language modelling and machine translation [20, 21]. RNN mod-
els typically factor computation along the symbol positions of the input and output
sequences. This nature of RNNs precludes parallelisation within training examples.

Transformers are the state-of-the-art (SOTA) model for dealing with sequences,
e.g., in text processing, machine translation, computational linguistics, computer vi-
sion, etc. Transformer [3] is regarded as deep learning model that adopts the mech-
anism of attention, deferentially weighing the significance of each part of the input
data. Transformers were from Google Brain for NLP problems by replacing RNN
models (LSTM). Like RNNs, Transformers were designed to handle sequential in-
put data, such as natural languages, for tasks such as translation and text summari-
sation. Unlike RNNs, Transformers do not necessarily process the data in order. The
attention mechanism provides context for any position in the input sequence.

The attention mechanism provides context for any position in the input sequence.
This feature allows Transformers for more parallelisation than RNNs and therefore
reduces training times. The additional training parallelisation allows model training
based on larger datasets. Transformer models can be fine-tuned for specific tasks.

Transformer utilizes an encoder-decoder architecture. The encoder consists of
encoding layers that cope with the input iteratively one layer after another, while
the decoder consists of decoding layers that work as the same as the encoder. Trans-
formers are use of attention mechanism and calculate attention weights between
them in successive layers.

Each encoder consists of two major components: A self-attention mechanism and
a feedforward neural network (FFNN). Each decoder has three major components:
A self-attention mechanism, an attention mechanism over the encodings, and a feed-
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forward neural network. Both the encoder and decoder have a feedforward neural
network for additional processing of the outputs including residual connections and
layer normalization.

Fig. 3.5: Google Bard system

Transformers training is based on larger datasets. This has led to the develop-
ment of pre-trained systems such as BERT model (i.e., Bidirectional encoder repre-
sentations from Transformers) [4, 65] and GPT models (i.e., Generative pre-trained
Transformer).

BERT is a family of language models from Google in 2018. The datasets for
BERT models training are SQuAD (i.e., Stanford Question Answering Dataset) and
SWAG (i.e., Situations With Adversarial Generations). After pre-training, BERT can
be fine-tuned with fewer resources on smaller datasets to optimize its performance
on specific tasks such as language inference, text classification, question-answering,
conversational response generation, etc.

GPT was trained on large datasets and famous for its version 3 and the system
ChatGPT from OpenAI Laboratory. The differences between ChatGPT system and
Google Bard system (bart.google.com) are shown in Fig. 3.5, which were generated
by using the Bart system.

Transformer is the first sequence transduction model based on attention. Trans-
former can be trained significantly fast which is expected to solve problems involv-
ing input and output modalities.

Transformer has rapidly become the dominant architecture for natural language
processing, surpassing alternative neural models. Transformer architecture scales
with training data and model size, facilitates efficient parallel training, and captures
long-range sequence features.

The attention mechanisms are expected to efficiently handle large inputs and out-
puts such as images, audio, and video. Self-attention is the corner stone for Trans-
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Algorithm 2: Transformer algorithm
Data: xi for token i, i = 1,2,3, · · · ,n.
Result: Attention A(Q,K,V)
Construct matrices: WQ,WK ,WV ;
qi xiWQ;
ki xiWK ;
vi xiWV ;
Q = (q1,q2, · · · ,qn)>;
K = (k1,k2, · · · ,kn)>;
V = (v1,v2, · · · ,vn)>;

A(Q,K,V) so f tmax( QK>p
|ki|

) = so f tmax(QK>p
dk
);

dk is the dimension of the key vectors.

former models. Image Transformer [33, 16] is a model based on a self-attention
mechanism which attains the state-of-the-art modeling images from the standard
dataset ImageNet, as measured by using log-likelihood and stacks of self-attention
and position-wise feedforward layers. The typical applications of the Image Trans-
former are image super-resolution and new image generating.

Image Transformer is a model based entirely on a self-attention mechanism. Im-
age Transformer uses stacks of self-attention and position-wise feedforward layers.
The dropout, merged in residual connections and layer normalization is carried out
after each application of self-attention and the position-wise feedforward networks.
Image Transformer is a sequence modeling formulation of image generation with
a tractable likelihood. Image Transformer significantly improves over the state-of-
the-art in unconditional, probabilistic image modeling of comparatively complex
images from ImageNet.

Vision Transformer (ViT) [5] is a pure Transformer which was applied directly
to the sequences of image patches for pattern classification. ViT attains excellent
results compared to CNN while requiring substantially fewer computational re-
sources. ViT attains excellent results when pre-trained at sufficient scale and trans-
ferred to tasks with fewer data samples. ViT splits an image into fixed-size patches,
linearly embeds each of them, adds position embeddings, and feeds the sequence
of vectors to a standard Transformer encoder. Vision Transformer can handle arbi-
trary sequence lengths (up to memory constraints). The first layer of the ViT linearly
projects the flattened patches into a lower-dimensional space. After the projection, a
learned position embedding is added to the patch representations. Self-attention al-
lows ViT to integrate information across the entire image even in the lowest layers.

Video Transformer(VidTr) [64] was proposed with separable-attention for video
classification, which is able to aggregate spatiotemporal information via stacked
attentions for human action recognition.

Moreover, a proposed framework is called DEtection TRansformer (DETR) [3,
24]. Given a fixed small set of learned object queries, DETR reasons the relation-
ships of the visual objects and the global image context to directly output the final
set of predictions in parallel.
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Swin Transformer builds hierarchical feature maps by merging image patches in
deeper layers which has linear computational complexity to input image size due
to the computations of self-attention only within each local window. A key design
element of Swin Transformer is its shift of window partition between consecutive
self-attention layers.

Swin Transformer constructs a hierarchical representation by starting from small-
sized patches and gradually merging neighboring patches in deeper Transformer lay-
ers. This hierarchical architecture has the flexibility to model at various scales and
has linear computational complexity with respect to image size. With these hierar-
chical feature maps, Swin Transformer model can conveniently leverage advanced
techniques for dense prediction. Swin Transformer architecture is able to achieve
the best speed accuracy trade-off among these methods on image classification.

Swin Transformer V2 model is a large dense vision model that makes it capable
of training with images of up to 1,536⇥1,536 resolution. Swin Transformer, a local
vision Transformer architecture, the window size can be either fixed or changed dur-
ing fine-tuning. A log-spaced continuous position bias approach (Log-CPB) weights
at low resolution to deal with higher resolution windows. The Log-CPB approach
is inspired by these efforts while solving a different problem of transferring relative
position biases in vision Transformers.

Log-CPB approach adopts a small meta network on the relative coordinates,

B(Dx,Dy) = G (Dx,Dy) (3.104)

where G (·) is a small network, which generates bias values for arbitrary relative
coordinates. Dx and Dy are the linear-scaled coordinates. Meanwhile, the log-spaced
coordinates are:

⇢
Dx0 = sign(x) · log(1+Dx)
Dy0 = sign(y) · log(1+Dy). (3.105)

In our project with regard to early diagnosis of Alzheimer’s diseases based on se-
lective kernel network, spatial attention mechanism is added to the bottom of blocks
to emphasize on important features and suppress unnecessary ones for more accu-
rate representation of the network [49].

In the project about sailboat detection, deep learning models based on attention
mechanisms are able to further improve the ability to detect the regions of inter-
est (ROI), we proposed an automated design scheme based on neural architecture
search (NAS) to migrate the attention mechanism for visual object detection and
obtain better results of sailboat detection by using both public datasets and our own
collected datasets. We verify the effectiveness of our proffered method and evaluate
the performance compared with other algorithms [28, 29].

Sign language recognition is one of the fundamental ways to assist deaf people to
communicate with others. An accurate visual-based sign language recognition sys-
tem using deep learning is a long-term research goal. In the project sign language
recognition [23, 24], Vision Transformer related to DETR (Detection Transformer)
was proposed to improve the current state-of-the-art sign language recognition ac-
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curacy. The proposed method is able to recognize sign language from digital videos
with high accuracy.

3.3.4 Generative Pre-Trained Transformer Models

3.3.4.1 GTP-1

OpenAI founded in 2015 is an AI research laboratory whose goal is to promote and
develop friendly AI (i.e., Artificial Intelligence) that can benefit humanity. GPT [36]
was realized by generative pre-training of a large language model on a diverse cor-
pus of unlabeled text, followed by discriminative fine-tuning on each specific task.
GPT makes use of task-aware input transformations during fine-tuning to achieve ef-
fective transfer while requiring minimal changes to the model architecture. GPT out-
performs discriminatively trained models that use architectures specifically crafted
for each task, significantly improving upon the state-of-the-art tasks.

The ability to learn effectively from raw text is crucial to alleviate the dependence
on supervised learning in natural language processing (NLP). Learning good repre-
sentations in an unsupervised fashion can provide a significant performance boost,
e.g., extensive use of pre-trained word embeddings. Leveraging more than word-
level information from unlabeled text is challenging, typically, a semi-supervised
approach was explored for language understanding tasks using a combination of
pre-training and fine-tuning operations.

Transformers have shown to perform strongly on various tasks. There are a two-
stage training procedure: (1) The unlabeled data to learn the initial parameters of
a neural network model; (2) The parameters are adapted to a target task using the
corresponding supervised objective. The task-specific input adaptations were de-
rived from traversal-style approaches, which treat structured text input as a single
contiguous sequence of tokens, the adaptations enable us to fine-tune effectively
with minimal changes to the architecture of the pre-trained model. The approach is
evaluated based on four types of language understanding tasks – natural language
inference, question answering, semantic similarity, and text classification. The gen-
eral task-agnostic model outperforms discriminatively trained models that employ
architectures specifically crafted for each task.

In large language models, the training procedure consists of two stages: (1)
Learning a high-capacity language model on a large corpus of text; (2) A fine-
tuning stage to adapt the model to a discriminative task with labeled data. Namely,
pre-training, fine-tuning, and task-specific input transformations. The training pro-
cedure consists of two stages: (1) Training a high-capacity language model based
on a large corpus of text; (2) Fine-tuning to adapt the model to a discriminative task
with labeled data.

A multilayer Transformer decoder was employed for large language models,
which is a variant of the classical Transformers. This model applies a multi-headed
self-attention operation over the input context tokens (i.e., after tokenization in nat-
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ural language processing) followed by position-wise feedforward layers to produce
an output distribution over target tokens:

h0 =UWe +Wp (3.106)

hi = T (hi�1) (3.107)

P(u) = so f tmax(hn ·We) (3.108)

where U = (ui|ui�k, · · · ,ui�1) is the context vector of tokens, n is the number of
layers, We is the token embedding matrix, and Wp is the position embedding ma-
trix. After training the model, we adapt the parameters to the supervised target task.
Each instance consists of a sequence of input tokens, xi, i = 1, · · · ,m with a label y.
The inputs are passed through the pre-trained model to obtain the final Transformer
block’s activation hm

l , hm
l is later fed into an added linear output layer with param-

eter Wy to predict y, P(y|x1, · · · ,xm) = so f tmax(hm
l ·Wy), where so f tmax(·) is the

softmax function. This gives us the objective to maximize,

L2 = logÂP(y|x1, ·,xm). (3.109)

Finally,

L3 = L2 +lL1 (3.110)

where L1 = logP(ui|ui�k, · · · ,u1), U = {ui} is a set of the given tokens.
A traversal-style approach converts structured inputs into an ordered sequence

that the pre-trained model can process. All transformations include adding randomly
initialized start and end tokens, textual entailment, similarity, question answering
and commonsense reasoning:

• In textual entailment, we concatenate the premise p and hypothesis h token se-
quences, with a delimiter token in between.

• In semantic similarity, we modify the input sequence to contain both possible
sentence orderings (with a delimiter in between) and process each independently
to produce two sequence representations hm

l which are added element-wise be-
fore being fed into the linear output layer.

• In question answering and commonsense reasoning, we concatenate the docu-
ment context and question with each possible answer, adding a delimiter token
in between. Each of these sequences is processed independently with our model
and then normalized via a softmax layer to produce an output distribution over
possible answers.

In a framework for achieving natural language understanding with a single task-
agnostic model through generative pre-training and discriminative fine-tuning, by
pre-training on a diverse corpus with long stretches of contiguous text, the model
acquires significant knowledge to process long-range dependencies which are then
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successfully transferred to solve discriminative problems. GPT offers hints as to
what Transformer models and the datasets work best with this approach.

3.3.4.2 GPT-2

Machine learning (ML) models are trained by using a combination of large datasets,
high-capacity models, and supervised learning. The dominant approach to create
machine learning models is to collect a dataset of training samples, train a model
to imitate these behaviors, and test its performance. The current best performance
on language tasks is based on a combination of pre-training and supervised fine-
tuning. The language models can perform downstream tasks in a zero-shot setting –
without any parameters or architecture modifications, hence, zero-shot learning has
zero demonstration.

The training dataset WebText contains the text subset of 45 million links. The
input representation is Byte Pair Encoding (BPE) between byte level and word level.
The model is based on a Transformer from OpenAI GPT having few modifications
(OpenAI GPT-2). The models were evaluated by computing the log-probability of
sample distribution in a dataset through dividing by the number of canonical units.
The experiments were conducted based on:

• Children’s Book Test: GPT-2 achieves the new state-of-the-art results of 93.3%
on common nouns and 89.1% on named.

• Test the Ability of Systems: Using LAmbDA (i.e., Label Ambiguous Domain
Adaptation Dataset), GPT-2 increases the accuracy from 19% to 52.66%

• Winograd Schema Challenge: GPT-2 improves the state-of-the-art accuracy by
7%, achieving 70.70%.

• Reading Comprehension: Using the Conversation Question Answering dataset
(CoQA), GPT-2 achieves 55 F1 on the development set.

• Summarization: Using CNN and Daily Mail dataset, GPT-2’s performance drops
by 6.4 points.

• Translation: Using WMT-14 English-French test dataset, GPT-2 gets 5 BLEU.
• Question Answering: Using Natural Questions dataset, GPT-2 answers 4.1% of

questions correctly.

BLEU (i.e., Bilingual Evaluation Understudy) is an algorithm for evaluating the
quality of text which has been machine-translated from one natural language to
another.

Given a candidate corpus, Ŝ = (ŷ(1), · · · , ŷ(M)), and reference candidate corpus
S = (S1, · · · ,SM), BLEU score with regard to weight w is,

BLEUw(Ŝ,S) = BP(Ŝ,S) · exp

 
•

Â
n=1

wn ln pn(Ŝ,S)

!
, (3.111)

where w = (w1,w2, · · ·), Â•
i=1 wi = 1, 8i 2 {1,2,3, · · ·}, wi 2 [0,1].
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BP(Ŝ,S) = e�(r/c�1)+ (3.112)

where (r/c�1)+ = max(0,r/c�1), c is the length of the candidate corpus, r is the
effective reference corpus length. Furthermore,

pn(Ŝ,S) =
ÂM

i=1 Âs2Gn(ŷ(i)) min(C(s, ŷ(i)),maxy2Si C(s,y))

ÂM
i=1 Âs2Gn(ŷ(i))C(s, ŷ(i))

, (3.113)

where C(·) is the substring count and Gn is a set of unique elements. Given any
two strings s and y, C(s,y) is the number of appearances of s as a substring of y.
Âs2Gn(ŷ)C(s,y) is a number of n-substrings in ŷ that appear in y.

The data overlapping between WebText training data and specific evaluation
datasets provides a small but consistent benefit to report results. The use of n-gram
overlap-based de-duplication as an important verification step and sanity check dur-
ing the creation of training and test splits for new NLP datasets. The performances
based on both the training and test sets of WebText are similar that can be improved
as the model size is increased.

The performance of GPT-2 is competitive with the baselines in a zero-shot set-
ting. GPT-2 outperforms on trivial baselines when it has sufficient capacity. The
zero-shot performance becomes a baseline of the potential performance of GPT-2.

GPT-2 [37] zero-shot was the state-of-the-art (SOTA) performance on 7 out of 8
tested language modeling datasets. The diversity of this model is able to perform in
a zero-shot setting. The high-capacity model was trained to maximize the likelihood
of a sufficiently varied text corpus to learn how to accomplish a surprising amount
of tasks without the need for explicit supervision.

3.3.4.3 GPT-3

GPT-3 [6] is a computational model designed to generate sequences of words, code
or other data, starting from a source input, called “prompt”. The language model was
trained based on an unlabelled dataset that is made up of texts, such as Wikipedia
and many other sites, primarily in English, but also in other languages. GPT-3 gen-
erates automatically and autonomously texts with excellent quality.

GPT-3 works in terms of statistical patterns, e.g., x + 4 = 10, x = 6. GPT-3
answers questions and solves problems better than many people in mathematics,
physics, and chemistry in semantics. People whose jobs still are related to writing
will be supported by GPT-3, increasingly and significantly.

GPT-3 greatly improves task-agnostic and few-shot performance, even reached
the competitiveness with the prior fine-tuning approaches, which is an autoregres-
sive language model with 175 billion parameters, 10⇥ more than any previous non-
sparse language model. GPT-3 achieved strong performance on NLP datasets, in-
cluding translation, question-answering, and cloze tasks, as well as several tasks
that require on-the-fly reasoning or domain adaptation. GPT-3 can generate samples
of news articles which human evaluators have difficulty distinguishing from articles
written by humans. GPT-3 and its in-context learning abilities were evaluated in var-
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ious ways. Here are the differences between few-shot learning, one-shot learning,
and zero-shot learning in GPT-3:

• Few-shot learning, or in-context learning (i.e., meta learning) has as many
demonstrations as it will fit into the model’s context window;

• One-shot learning has only one demonstration;
• Zero-shot learning has no demonstrations, only an instruction in natural language

is given to the model.

Meta learning [17] is a machine learning algorithm based on metadata, the main
goal is to explore how to use metadata to improve the performance of the existing
learning algorithms or to learn (induce) model training algorithm itself, it is also
called learning to learn.

Larger models make increasingly efficient use of in-context (meta) information.
The meta learning means the model develops a broad set of skills and pattern recog-
nition abilities at training time, and then makes use of those abilities at inference
time to rapidly adapt to or recognize the desired task.

3.3.4.4 WebGPT

WebGPT [31] is fine-tuned to answer long-form questions using a text-based web-
browsing environment, which allows the model to search information from web.
WebGPT was designed based on imitation learning, and optimizes answer qual-
ity with human feedback. Imitation learning follows essentially a Markov Decision
Process (MDP). The simplest form of imitation learning is behaviour cloning (BC),
which learns from the expert’s policy. The agent learns the optimal policy by fol-
lowing and imitating the expert’s decisions.

WebGPT was fine-tuned by using behavior cloning, rejection sampling against
a reward model to predict human preferences. Human feedback was employed to
directly optimize answer quality to achieve competitive performance.

WebGPT was evaluated based on ELI5, a dataset of questions asked by Reddit
users. WebGPT collected examples of humans using a browser to answer questions,
which is called as demonstrations. Human demonstrations usually include:

• Fact-checking: Human demonstrators provide answers with references.
• Objectivity: The more detailed instructions enable more interpretable and consis-

tent comparisons.
• Blinding: WebGPT composes answers that are different in style to Reddit an-

swers, making the comparisons less blinded.
• Answer intent: With human demonstrations, it is easier to ensure that the desired

intent and level of effort are used consistently.

WebGPT collected pairs of model-generated answers to the same question, and
asked humans which one they preferred, which is called as comparisons. A vast
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majority of questions were taken from ELI5, a dataset of long-form questions. We-
bGPT also mixed in a small number of questions from other sources, such as Triv-
iaQA [13]. WebGPT designed a similar interface, allowing auxiliary annotations as
well as comparison ratings to be provided, though only the final comparison rat-
ings (i.e., better, worse or equally good overall) were adopted in training. For both
demonstrations and comparisons, the answers should be relevant, coherent, and sup-
ported by trustworthy references.

WebGPT model is evaluated based on the ELI5 dataset in two different ways:
(1) Demonstrators using a web-browsing environment; (2) The reference answers
using the ELI5 dataset. The use of human feedback is essential, since one would not
expect to exceed 50% preference by imitating demonstrations alone. The evaluations
against human demonstrations are much meaningful.

WebGPT was trained primarily to answer questions from ELI5 dataset. The data
was from the demonstrations of humans using the web-browsing environment. The
data was from the comparisons between two model-generated answers to the same
question. The generated answers are evaluated based on factual accuracy, coherence,
and overall usefulness.

WebGPT takes use of a combination of behavior cloning and rejection sampling.
The collected data was applied to four ways: (1) Behavior cloning (i.e., supervised
fine-tuning) using the demonstrations. (2) Reward modeling using comparisons. (3)
Reinforcement learning against reward model. (4) Rejection sampling against re-
ward model.

The WebGPT model training includes: (1) WebGPT is fine-tuned based on
demonstrations using supervised learning, with the commands issued by the hu-
man demonstrators as labels. (2) WebGPT trained a model to take in a question and
an answer with references, and output a scalar reward. (3) WebGPT took the reward
model score at the end of each episode, and added this to a KL penalty from the be-
havior cloning (BC) model at each token to mitigate overoptimization of the reward
model. (4) WebGPT sampled a fixed number of answers from either the BC model
or the reinforcement model and selected the one that was ranked as the highest by
the reward model.

The best model is assessed in three ways: (1) Comparing the generated answers
from WebGPT model to the answers written by human demonstrators on a held-
out set of questions. (2) Comparing WebGPT answers to the highest-voted answer
provided by the ELI5 dataset. (3) Comparing the WebGPT answers based on Truth-
fulQA, an adversarial dataset of short-form questions.

Let Q be the distribution of questions, given a question q, A(q) is the distribution
of answers produced by the model, a is an answer with references, let Rtrain(a|q) be
the original reward model score, let Rval(a|q) be the validation reward model score.
Let n be the number of answers sampled while conducting rejection sampling (i.e.,
n in the best-of-n). To predict Elo score,

Rpred
n = EAi⇠A(q),i=1,··· ,n[Rval(arg max

a2{Ai}
Rtrain(a|q))|q]. (3.114)

The general Elo score is,
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SElo = EQ(Rpred
n (Q)). (3.115)

Elo ratings [44] are comparative only, and are valid only within the rating pool
in which they were calculated, rather than being an absolute measure. The simplest
way to estimate Rpred

n for a given question q is with a Monte Carlo estimator.

EAi⇠A(q),i=1,··· ,n[Rval(arg max
a2{Ai}

Rtrain(a|q))|q]

= 1/Ci
n ·Â[Rval(arg max

a2{Ai}
Rtrain(a|q))|q] = Â Ci�1

n�1
Ci

n
·Rval(Si|q)

= Â Ci�1
n�1
Ci

n
·Rval(Si|q). (3.116)

Rejection sampling [10] outperforms reinforcement learning. In numerical analy-
sis and computational statistics, rejection sampling is to generate observations from
a distribution. It is also called the acceptance-rejection method or accept-reject al-
gorithm.

The rejection sampling method generates sampling values from a target distribu-
tion X with arbitrary probability density function f (x) by using a proposal distribu-
tion Y with probability density g(x). One can generate and accept a sample x from
X by using u < f (x)/(M ·g(x)), u⇠U(0,1), U(0,1) is the uniform distribution over
the unit interval (0,1), if not, the sample x will be reject and the sampling step will
be restarted, repeating the process until a value is accepted, where M is a constant,
the finite bound is based on the likelihood ratio f (x)/g(x), satisfying 1 < M < •
and f (x)M ·g(x), g(x)> 0, f (x)> 0.

With rejection sampling, the model can visit many websites, and then evaluate the
information with the benefit of hindsight. The reward model was trained primarily
on data collected from rejection sampling policies, which may have made it more
robust to overoptimization by rejection sampling.

Reinforcement learning requires hyperparameter tuning, whereas rejection sam-
pling does not. The combination of reinforement learning and rejection sampling
also fails to offer much benefit over rejection sampling alone. Reinforcement learn-
ing reduces the entropy of policy, which hurts exploration.

WebGPT synthesizes information from the existing sources gives it the potential
to reinforce and entrench the existing beliefs and norms. WebGPT usually accepts
the implicit assumptions made by questions. WebGPT is used, both by limiting ac-
cess and by tailoring the design and documentation of applications.

3.3.4.5 InstructGPT

InstructGPT model is a turning point in the development of OpenAI GPT mod-
els. InstructGPT model shows great improvements in truthfulness and reductions in
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output textual generation while having minimal regressions on public datasets. In-
structGPT is an aligning language model with user intent on a wide range of tasks by
fine-tuning with human feedback. InstructGPT collects a dataset of ranking model
outputs, which was employed to further fine-tune this supervised model using rein-
forcement learning from human feedback.

InstructGPT is helpful, honest, and harmless. InstructGPT is use of reinforce-
ment learning from human feedback to fine-tune GPT-3 model to follow a broad
class of instructions. Human preferences were employed as a reward signal. A team
of 40 contractors were employed to label the training data, based on the performance
on a screening test. A dataset of human-written demonstrations of the desired out-
put behavior on (mostly in English) prompts is submitted to OpenAI API-3 model
for the supervised learning baselines. A reward model (RM) was trained based on
this dataset to predict which model outputs the labels. Correspondingly, a reward
function is adopted to fine-tune the supervised learning and maximize this reward
using the proximal policy optimization (PPO) algorithm. Policy gradient methods
compute the policy gradient by using a stochastic gradient ascent (SGA) algorithm.
The gradient estimator is,

g = Et [—q logpq (at |st)At ] (3.117)

where pq is a stochastic policy, At is an estimator of the advantage function at time
step t, Et indicates the empirical average over a finite batch of samples. In imple-
mentations,

L(q) = Et [logpq (at |st)At ]. (3.118)

An objective function or surrogate objective function is maximized which is sub-
ject to a constraint based on the policy update.

max
q

Et [
pq (at |st)

pqold (at |st)
At ] (3.119)

s.t.

Et [KL(pq (·|st)kpqold (·|st)] d (3.120)

where pqold (at |st) is the vector of policy parameters before the update, d > 0. Using
a penalty b ,

L(q) = max
q

Et [
pq (at |st)

pqold (at |st)
At �b [KL(pq (·|st)kpqold (·|st)]. (3.121)

The main objective is,

L(q) = Et [min[rt(q)At ,clip(rt(q),1+ e,1� e)At ]] (3.122)

where rt(q) = pq (at |st )
pqold (at |st )

, clip(·)At modifies the surrogate objective by clipping the
probability ratio.
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InstructGPT models show significant improvements in truthfulness over GPT-3.
InstructGPT demonstrates promising generalization to instructions outside of the
fine-tuning distribution. InstructGPT generalizes to the preferences of “held-out”
human labelers that did not produce any training data.

The cost of increasing model alignment is modest with regard to pre-training.
InstructGPT generalizes instructions to the settings that are not supervised. Instruct-
GPT mitigates most of the performance degradation by using fine-tuning operation.

InstructGPT aligns to demonstrations and preferences provided by using human
labelers. OpenAI API customers are the right source of human preferences. Instruct-
GPT implicitly aligns to what the end-users think is valuable.

InstructGPT aligns to an specific human reference group for a specific applica-
tion. The question is how to design an alignment process that is transparent, peo-
ple’s values are synthesized in a way that achieves broad consensus. The question of
who these models are aligned to is extremely important, and will significantly affect
whether the impact of these models is positive or negative.

3.3.4.6 GPT-3.5

As well known, OpenAI GPT-3.5 is named as ChatGPT. Human labels are employed
to train a model of reward, and then optimize that model. Reward is defined by
human’s judgment, a reward is given by asking human’s questions. Reward learning
for natural language processing is a key to make reinforcement learning practical
and safe for real-world tasks. Reward learning in GPT is successfully employed to
natural language tasks.

GPT-3.5 [56] is to pre-train a large generative model based on a corpus of un-
labelled data, then fine-tune the model for supervised NLP tasks. GPT often sub-
stantially outperforms other models in training based on the labelled datasets from
scratch. A single pre-trained model often can be fine-tuned for the performance
based on a variety of datasets. The generatively trained models show reasonable
performance for NLP tasks with no additional training (zero-shot).

In GPT-3.5, labelled datasets are unavailable or insufficient, where programmatic
reward functions are poor for the true goals. The pre-training in natural language
processing is combined with human preferences. The pre-trained models are fine-
tuned with reinforcement learning rather than supervised learning, using a reward
model trained from human preferences based on text continuations. KL divergence
as a constraint has been harnessed to prevent the fine-tuned model from drifting too
far from the pre-trained model. The learning from human feedback was explored
more generally at a larger computational scale. Started with a vocabulary set, a lan-
guage model is defined from a probability distribution p over a sequence of tokens
via

p(x0, · · · ,xn�1) = ’
0k<n

p(xk|x0, · · · ,xk�1) (3.123)
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A policy p is initialized if the task was defined by a reward function r, reinforce-
ment learning is employed to directly optimize the expected reward,

Ep [r] = Ex2X ,y2Y [r(x,y)] (3.124)

where X and Y are output space and input space, respectively.
The tasks defined by human judgments were accomplished owing to what we

can learn about the rewards by asking humans. Human labels as typical annotations
were employed to train a reward model and further optimize the reward model. The
human labelers were required to pick which value of yi is the best response to a
given input x. A reward model r was fitted by using loss function,

loss(r) = E(x,{yi},b) log[
er(x,yb)

Âer(x,yi)
] (3.125)

where b is the best option.
The policy p was fine-tuned to optimize the reward model r, a penalty was added

with the mathematical expectation, the reinforcement learning was created based on
the modified reward,

R(x,y) = r(x,y)�b log
p(x|y)
r(x|y) (3.126)

where we either choose a constant b or vary it dynamically to achieve a particular
value. Additionally, (1) this plays the role of an entropy bonus; (2) This prevents
the policy from moving too far from the range; (3) This also is an important part of
the task definition; (4) Based on this, the coherence and topicality of reinforcement
learning models are required to be developed further.

ChatGPT [56] gathered data samples and asked humans to pick the best yi, fur-
thermore to initialize r and r using random initialization for the final linear layer.
ChatGTP-3.5 trains p via Proximal Policy Optimization (PPO) algorithm with re-
ward R. In the online data collection, it continues collecting additional data samples,
and periodically retraining the reward model r.

With the pre-trained language model, the reward model was trained by using
Adam optimizer. Adam optimizer is an optimization algorithm for stochastic gradi-
ent descent for training deep learning models. For training the policy p , we make
use of the PPO2 algorithm, namely, version 2 of Proximal Policy Optimization al-
gorithm. The large language model was trained with different seeds and the same
KL divergence as penalty, the model with the best validation loss is chosen. The
human data samples were collected throughout fine-tuning process, while continu-
ously gathering new data by sampling and retraining the reward model. A function
l(n) was selected for describing how many labels we want before beginning the n-th
reinforcement learning episodes. To estimate overall progress, we gather validation
samples.

PPO is a family of model-free reinforcement learning algorithms which have
been developed at OpenAI since 2017. PPO algorithms are policy gradient meth-
ods, which alternate between sampling data through interaction with the environ-
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ment, and optimize an objective function using stochastic gradient ascent (SGA).
The standard policy gradient methods accomplish one gradient update using per
data sample, the new objective function that enables multiple epochs of minibatch
updates. PPO algorithms are simpler to implement, more general, and have better
sample complexity. It is fulfilled by using a different objective function.

Scale API (i.e., Application Programming Interface) from OpenAI Laboratory
was employed to collect data samples and labels. The Scale API accepts requests
of the form and returns the selection, the task is described through a combination
of instructions. The models are incentivised to exploit idiosyncracies of the labeling
process.

Online data collection is hard (e.g., complexities and quality control issues). The
right middle ground between offline and online data collection is batched in data
collection, which is a well-studied setting for active learning. While sharing param-
eters between reward model and policy causes overfitting, ambiguous tasks make
the labeling work hard.

The previous reward learning was extended with pre-trained models and KL-
divergence-based regularization to prevent the policy from diverging too far from
natural languages. The superior results were achieved by using the zero-shot base-
line which is evaluated by humans with very few samples. The interactive communi-
cation between humans and machine learning models is a requirement for scalable
reward learning methods. Using direct human preferences for language tasks is a
necessary step in the direction of scalable reward learning for natural languages,
and further steps are possible.

3.3.4.7 GPT-4

GPT-4 [57] is a large-scale and multimodal model that can accept image and text
inputs and produce text outputs. GPT-4 exhibits human-level performance on var-
ious professional and academic benchmarks. GPT-4 is a Transformer-based model
which waws pre-trained to predict the next token in a document.

GPT-4 is a large multimodal model capable of processing image and text inputs
and producing text outputs. GPT-4 is to improve the ability to understand and gen-
erate natural language text, particularly in more complex and nuanced scenarios.
GPT-4 was evaluated based on a variety of exams originally designed for humans.
GPT-4 surpasses the English-language state-of-the-art in 24 of 26 languages. GPT-4
has a limited context window, which does not learn from experience like others.

GPT-4 is a Transformer-style model pre-trained to predict the next token in a
document using both publicly available data and data licensed from third-party
providers. GPT-4 model was fine-tuned using Reinforcement Learning from Hu-
man Feedback (RLHF). A focus of GPT-4 project was on building a deep learning
stack that scales predictably. The loss of properly-trained large language models
is thought to be well approximated by power laws in the amount of computations
which were used to train the deep learning model.
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In GPT-4, a methodology was developed to predict more interpretable metrics of
capability: (1) The pass rate based on the HumanEval dataset from OpenAI mea-
sures the ability to synthesize Python functions of varying complexity. (2) The met-
ric final loss is based on a dataset derived from the internal codebase.

GPT-4 was tested based on a diversity of benchmarks, including simulating
exams that were originally designed for humans. The exams were sourced from
publicly-available materials. The evaluation was designed based on performance on
a validation set of exams and held-out test exams. Overall, the scores were deter-
mined by combining multiple-choice and free-response question scores using pub-
licly available methodologies for each exam. GPT-4 exhibits human-level under-
standing on the majority of these professional and academic exams. GPT-4 consid-
erably outperforms the existing models, as well as previous systems from OpenAI.

GPT-4 has similar limitations as the earlier GPT models. GPT-4 makes progress
on public benchmarks, which tests the ability to separate the fact from an adversarially-
selected set of incorrect statements. GPT-4 generally lacks knowledge of events that
have occurred after September 2021. GPT-4 can be confidently wrong in its predic-
tions which has various biases in its outputs.

In general, GPT-4 is a large multimodal model with human-level performance
on professional and academic benchmarks. GPT-4 outperforms the existing large
language models based on a collection of NLP tasks and exceeds a vast majority of
the state-of-the-art systems. GPT-4 shows a significant step towards broadly useful
and safely deployed AI systems.

We have a project related to Objective-Oriented Transformer (OOT) for docu-
ment abstractive summarization [58]. In this project, a pre-trained Transformer was
treated as the starting point for a majority of NLP tasks such as document sum-
marization. A Transformer model forms the basis for any type of models in which
it is trained to produce a sequence of text given an input. The produced sequence
emulates the embedded semantics between the input and output sequences in the
training time. Hence, a Transformer can be trained to emulate generic semantics. In
this project, we present a document summarization model to generate three different
outputs. These outputs are then merged to generate the final summary.

3.3.5 Time Series Analysis

With time changes, the states will be altered. Time series analysis [11, 30] is applied
to deal with these state changing issues. For example, time series analysis has been
applied to water quality control or air quality assessment with time changes. We
need to find out the patterns behind time series analysis after our observations [7].

Observation is one of the steps of artificial intelligence (AI) besides learning,
presentation, Planning and inference or reasoning. AI can predict what will happen
from what have already happened, we also call it forecasting or prediction [23, 105].
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There are two main goals of time series analysis: Identifying the nature of phe-
nomenon represented by using sequence of observations; forecasting is to predict
future values of the time series variable.

Most of time series patterns are described in terms of a basic class of components:
Trend analysis (i.e., smoothing, fitting a function, etc.), analysis of seasonality (i.e.,
autocorrelation correlogram, examining correlograms, partial autocorrelations, re-
moving serial dependency, etc.)

In time series analysis, we are use of the concept seasonality, that means the
patterns usually follow the seasons annually. We take use of the changes of data in
time series to analyse the patterns.

In time analysis, for a sequence x(1),x(2), · · · ,x(t), · · · , x(i) 2R, i = 1,2, · · · , we
have:

• Mean
µt = E(X(t)). (3.127)

• Variance
s2 =Var(X(t)). (3.128)

• Autocovariance

g(t1, t2) = E{[X(t1)�µ(t1)][X(t2)�µ(t2)]}. (3.129)

• Autocovariance lag

g(t) = E{[X(t)�µ][X(t + t)�µ]}. (3.130)

• Autocovariance function
r(t) = g(t)/g(0), (3.131)

r(t) = r(�t), |r(t)|< 1. (3.132)

• Random walk
Xt = Xt�1 +Zt . (3.133)

• MA(q) process
Xt = b0Zt +b1Zt�1 + · · ·+bqZt�q. (3.134)

• AR(p) process
Xt = a1Xt�1 + · · ·+apXt�p +Zt . (3.135)

• Mixed autoregressive moving average model (ARMA)

Xt = a1Xt�1 + · · ·+apXt�p +Zt +b0Zt + · · ·+bqZt�q. (3.136)

• Exponential smoothing

S(xt) =
•

Â
j=0

a(1�a) jxt� j. (3.137)
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• Residual
R(xt) = xt �S(xt), (3.138)

a j = a(1�a) j. (3.139)

• Convolution
{ck}= {ar}?{b j}, ck = Â

r
ar ·bk�r, (3.140)

zt = Â
k

ck · xt+k = Â
j

b j · yt+ j. (3.141)

• Additive seasonality
Xt = mt +St + et . (3.142)

• Multiplicative seasonality
Xt = mt ·St + et . (3.143)

In time series analysis, we need to remove the noises from the collected data.
Usually, a kernel for convolution operation is needed [52]. The convolution op-
eration will reduce the noises and make the signals smooth, especially for digital
images [25].

In time analysis, we usually need to use spectrum analysis. Fourier series [52] has
been applied to signal decomposition and multiresolution analysis based on trigono-
metric function function because sine and cosine functions construct an orthogonal
function system.

f (t)⇡ a0

2
+

k

Â
r=1

(ar cosrt +br sinrt), (3.144)

where
a0 =

1
p

Z p

�p
f (t)dt, (3.145)

ar =
1
p

Z p

�p
f (t)cosrtdt, (3.146)

and
br =

1
p

Z p

�p
f (t)sinrtdt. (3.147)

Kalman filter[2, 55, 55] is a linear model for object tracking or signal filtering.
Kalman filter has an updating function and a predicting function. Dynamical up-
dates have been applied to improve the parameters for the purpose of prediction and
correction.

• Prediction equations:
qt|t�1 = Gtqt�1, (3.148)

and
Pt|t�1 = GtPt�1G>t +wt . (3.149)

• Updating equations:
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qt = qt|t�1 +Ktet , (3.150)

and
Pt = Pt|t�1�Kth>t Pt|t�1, (3.151)

where
Kt = Pt|t�1ht/[h>t Pt|t�1ht +s2

n ]. (3.152)

For a nonlinear system in time series analysis, we have

• Nonlinear autoregressive model (NLAR) is

Xt = f (Xt�1,Xt�2, · · · ,Xt�p)+Zt . (3.153)

• Threshold autoregressive model is

Xt =

⇢
a1Xt�1 +Zt if Xt�1 < r
a2Xt�1 +Zt if Xt�1 � r (3.154)

• Artificial neural networks:

y = f0[Â
j

w0jfh(Â
i

wi jxi)+w00], (3.155)

where y is the output, v j = Âi wi jxi, fh is the activation function.

LSTM has been applied to time series analysis for forecasting, especially MAT-
LAB has provided a program for predicting or forecasting; meanwhile, LSTM is
able to provide RMS errors for the prediction. The predictions are much accurate
whilst updating the network state with the observed values instead of the predicted
values.

In order to forecast the values of future time step of a sequence, we train a re-
gression LSTM network, where the responses are the training sequences with values
shifted by one time step. That is, at each time step of the input sequence, the LSTM
network has the ability to predict the state of the next time step.

If we access to the actual values of time steps between predictions, then we can
update the network state with the observed values. For each prediction, we predict
the next time step by using the observed value of the previous time step. We calculate
the root-mean-square error (RMSE). Abnormal detection or anomaly detection is
one of typical applications of time series analysis [9].

3.4 Functional Analysis

In deep learning, we need to calculate the loss function, actually it is a kind of dis-
tances. In this section, we will introduce how to measure the distances in functional
spaces.
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3.4.1 Metric Space

Metric spaces [103] are thought as very basic ones where the ideas of convergence
and continuity exist. Distance or metric is a measure of how close two elements are
to each other [105].

A distance (or metric) on a metric space X is a function: d : X2 ! Y ⇢ R+;
(x,y) 7! d(x,y) = kx� yk, x,y,z 2 X.

• Triangle inequality is d(x,y) d(x,z)+d(z,y).
• Symmetry is d(x,y) = d(y,x).
• Equality is d(x,y) = 0, x = y.

Therefore, we have:

• d(x,y)� |d(x,z)�d(z,y)|.
• x1,x2, · · · ,xn 2 X, d(x1,xn) Ân�1

i=1 d(xi,xi+1).

A sequence (xn) in a metric space X converges to a limit x, denoted as limn!• xn =
x, n 2Z + if 8e > 0, 9N, n� N) xn 2 Be(x).

A function f : X! Y between metric spaces is continuous when it preserves
convergence, xn ! x 2 X) f (xn)! f (x) 2 Y. If a function f is continuous, it is
invertible and its inverse f�1(x) is continuous.

A Cauchy sequence is such one that d(xn,xm)! 0 as n,m!•; namely, 8e > 0,
9N, if n,m� N, then d(xn,xm)< e .

A sequence x1,x2, · · · ,xn, · · · is Cauchy sequence, if and only if, every subse-
quence is asymptotic to this sequence.

A uniformly continuous function maps any Cauchy sequence to a Cauchy se-
quence. A function is Uniformly continuous, which refers to d > 0 is independent
on xi.

A function f : X!Y is a Lipschitz map when 9c> 0, 8x,x0 2X, dY( f (x), f (x0))
c ·dX(x,x0).

A metric space is complete if every Cauchy sequence converges, e.g., the real
space is complete.

A metric space is separable if it contains a countable dense subset, 9A✓ X, A is
countable and Ā = X.

A set B is bounded if the distance between any two points in the set has an upper
bound. i.e., 9r > 0, 8x,y 2 B, d(x,y) r.

The least upper bound is called the diameter of the set: diam B := sup
x,y2B

d(x,y).

A set K is compact given any cover of balls, there is a finite subcollection of
them that still cover the set (a subcover) K ✓

S
i Bei(ai)) K ✓

SN
n=1 Bein (ain).

3.4.2 Vector Space

Distance is a scalar value. Given two n-dimensional vectors x = (x1,x2, · · · ,xn)>

and y = (y1,y2, · · · ,yn)>, Euclidean distance is
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d =

s
n

Â
i=1

(xi� yi)2. (3.156)

Manhattan distance is

d =
n

Â
i=1

(|xi� yi|). (3.157)

Manhattan is a region of New York city, New York, USA. An example of distance
is shown in Fgiure 3.6 for the distance from the Times Square to the United Nations
Headquarter in Manhattan downtown area.

Fig. 3.6: The Google map at Manhattan downtown in New York city. The distance
between United Nations Headquarter and Times Square is roughly same no mater
which way will be taken in the city (red and blue).

Chebyshev distance is
d =

n
max
i=1

(|xi� yi|). (3.158)

Minkowski distance is a metric which is a generalization of both the Euclidean
distance and the Manhattan distance.

d = lim
n!+•

(
n

Â
i=1

(xi� yi)
p)

1
p =

n
max
i=1

(|xi� yi|), (3.159)

and
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d = lim
n!�•

(
n

Â
i=1

(xi� yi)
p)

1
p =

n
min
i=1

(|xi� yi|). (3.160)

Given sets A and B, Jaccard index, also known as Intersection over Union (IOU),
or the Jaccard similarity coefficient is

J(A,B) = A\B
A[B

. (3.161)

Jaccard distance measures dissimilarity between sample sets

Jd(A,B) = 1� J(A,B) = 1� A\B
A[B

. (3.162)

Mahalanobis distance is defined as a dissimilarity measure between two n-
dimensional vectors x = (x1,x2 · · · ,xn)> and y = (y1,y2 · · · ,yn)> of the same distri-
bution with the covariance matrix S

d(x,y) =
q
(x�y)>S�1(x�y) =

s
Ân

i=1(xi� yi)2

s2
i

, (3.163)

where si is the standard deviation of xi and yi over the sample set.
In statistics, Pearson correlation coefficient or the bivariate correlation measures

linear correlation between two n-dimensional variables x = (x1,x2, · · · ,xn) and y =
(y1,y2, · · · ,yn).

d(x,y) = cov(x,y)
sxsy

=
E (x� x̄)(y� ȳ)

sxsy
=

Ân
i=1(xi� x̄)(yi� ȳ)p

Ân
i=1(xi� x̄)2

p
Ân

i=1(yi� ȳ)2
,

(3.164)
where x̄ = Ân

i=1 xi
n and ȳ = Ân

i=1 yi
n are means, cov(x,y) is the covariance sx is the

standard deviation of x, sy is the standard deviation of y, E is the expectation.
A vector space V [103] over a field F is a set on which an operation of vector

addition is defined + : V2 ! V2 satisfying associativity, commutativity, zero and
inverse axioms:

• For every x,y,z 2 V,
x+(y+ z) = (x+ y)+ z, x+ y = y+ x,
0+ x = x, x+(�x) = 0.

• An operation of scalar multiplication F⇥V!V satisfies the respective distribu-
tive laws.

• For every l ,µ 2 F,
l (x+ y) = lx+ly, (l +µ)x = lx+µx,
(l µ)x = l (µx), 1x = x.

Every vector has a base. For an n-dimensional vector V = (v1,v2, · · · ,vn)>, we
have the corresponding p-norm kVkp = (Ân

i=1 vp
i )

1
p , p= 0,1,2, · · · ,•. If p= 1, then

it is 1-norm kVk1 = (|Ân
i=1 vi|); if p = 0, then it is zero norm k · k0 = mini(|vi|); if

p = •, then it is infinity norm or maximum norm k ·k• = maxi(|vi|).
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3.4.3 Normed Space

A norm on a real vector space X is a function: X!R, u 7! kuk:

• 8 u 2 X, kuk � 0.
• 8 u 2 X, a 2 R, kauk= |a|kuk.
• 8 u,v 2 X, ku+vk  kuk+kvk. (Minkowski’s inequality)

A normed space X is a vector space over F = R or C with a function called
the norm k · k : X! R such that for any x,y 2 X, l 2 F, kx+ yk  kxk+ kyk,
klxk= lkxk, kxk= 0, x = 0. Thus,

kx� yk � kxk�kyk, (3.165)

and
kx1 + x2 + · · ·+ xnk  kx1k+kx2k+ · · ·+kxnk. (3.166)

Given

k(an)k2 =

s
•

Â
n=0
kank2, (3.167)

and

k(bn)k2 =

s
•

Â
n=0
kbnk2, (3.168)

Cauchy’s inequality is

|
•

Â
n=0

anbn| k(an)k2k(bn)k2, (3.169)

and s
•

Â
n=0
kan +bnk2  k(an)k2 +k(bn)k2. (3.170)

• Vector addition, scalar multiplication and the norm are continuous.
• If (xn) and (yn) converge, (xn + yn), (lxn) and (k(xn)k) converge, namely,

lim
n!•

(xn + yn) = lim
n!•

xn + lim
n!•

yn, (3.171)

lim
n!•

(lxn) = l lim
n!•

xn, (3.172)

lim
n!•
kxnk= k lim

n!•
xnk. (3.173)
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3.4.4 Hilbert Space

Hilbert spaces are Banach spaces with a norm derived from a scalar product [103].
A scalar product on the (real) vector space X is a function: (u,v) 2 X⇥X! R,
(u,v) 7! (u|v):

• 8u 2 X, (u|u)� 0.
• 8u,v,w 2 X, a,b 2R, (au+bv|w) = a(u|w)+b (v|w). kuk=

p
(u|u).

A Hilbert space is an inner product space which is complete as a metric space.
An inner product on a vector space is a positive-definite sesquilinear form: <,>:
X⇥X :! F. For x,y,z 2 X, l 2 F:

• < x,y+ z >=< x,y >+< x,z >, < x,ly >= l < x,y >,
< x,y >=< y,x >, < x,x >� 0, < x,x >= 0) x = 0.

• Cauchy-Schwarz inequality:

|< x,y > | kxkkyk. (3.174)

• Pythagoras’ theorem:
kx+ yk  kxk+kyk. (3.175)

• The inner product is continuous if

lim
n!•

< xn,yn >=< lim
n!•

xn, lim
n!•

yn > . (3.176)

• A norm is induced from an inner product, if and only if, it satisfies, for all vectors
x, y 2R,

kx+ yk2 +kx� yk2 = 2(kxk2 +kyk2). (3.177)

The orthogonal spaces of subsets A✓ X,

A? := {8x 2 X ,< x,a >= 0,8a 2 A}, (3.178)

satisfies, A\A? ✓ 0, A✓ B, B? ✓A?, A✓A??, A? is a closed subspace of X.
If M is a closed convex subset of a Hilbert space H, then any point in H has a

unique point in M which is closest to it by using the least squares approximation.
An orthonormal basis of a Hilbert space H is a set of orthonormal vectors E

whose span is dense: 8ei,e j 2 E,< ei,e j >= di j.
Parseval’s identity (Fourier Series): If x = Ân

i=1 aiei, y = Âbiei, {ei} is orthonor-
mal, then x,y 2H, < x,y >= Â < x,ei >< ei,y >, Â |< x,ei > |2 = kxk2.

Bessel’s inequality: x = Âaiei, Â |< x,ei > |2  kxk2.
An instance in Hilbert space is Fourier transform, which refers to both the fre-

quency domain representation and the mathematical operation that associates the
frequency domain representation to a function of time [26]. The Fourier transform
is an extension of Fourier series. If we increase the length of the interval in the
Fourier series, then the Fourier coefficients begin to resemble the Fourier trans-
form. The Fourier transform of a function of time is a complex-valued function of
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frequency, whose magnitude (i.e., absolute value) represents the amount of that fre-
quency present in the original function, and whose argument is the phase offset of
the basic sinusoid in that frequency.

Fourier transform of a function f (·) is traditionally denoted f̂ (·), the Fourier
transform of an integrable function f : R! C ,

f̂ (x ) =
Z •

�•
f (x)e�2pixx dx, (3.179)

for any real number x .
If the independent variable x represents time, the transform variable x represents

frequency, f (·) is determined by f̂ (·) via the inverse transform

f (x ) =
Z •

�•
f̂ (x )e2pixx dx , (3.180)

for any real number x.
2D discrete Fourier transform (DFT) maps a scalar image I from spatial domain

into a complex-valued Fourier transform I in frequency domain.

I(u,v) = 1
W ·H

W�1

Â
x=0

H�1

Â
y=0

I(x,y)exp[�i2p(x ·u
W

+
y · v
H

)], (3.181)

where u = 0,1, · · · ,W �1 and v = 0,1, · · · ,H�1, i =
p
�1 as the imaginary unit of

complex numbers, W and H are the width and height of the image, respectively.
The inverse 2D DFT maps a Fourier transform I in frequency domain back into

the spatial domain,

I(x,y) =
W�1

Â
u=0

H�1

Â
v=0

I(u,v)exp[i2p(x ·u
W

+
y · v
H

)]. (3.182)

The discrete Fourier transform (DFT) for an image I satisfies Parseval’s theorem

1
|W | ÂW

|I(x,y)|2 = Â
W
|I(u,v)|2, (3.183)

where W = [1,W ]⇥ [1,H].
An example of 1D Fourier transform is available at:

https://au.mathworks.com/help/matlab/math/fourier-transforms.html?s tid=srchtitle.

An example of 2D Fourier transform is at: https://au.mathworks.com/help/matlab/math/two-
dimensional-fft.html.

The screenshots are shown in Figure 3.7. Figure 3.7(a) displays 1D Fourier trans-
form, Figure 3.7(b) indicates 2D Fourier transform.
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Fig. 3.7: An example of Fourier transform by using MATLAB, (a) 1D, (b) 2D

Exercises

Question 3.1. Please explain the relationships between deep learning concepts:
CNN, R-CNN, Fast R-CNN, Faster R-CNN, YOLO, SSD.
Question 3.2. Can YOLOs cope with small object detection and classification?
Question 3.3. Please explain the relationships between deep learning concepts:
RNN, LSTM, GRU, and FGU.
Question 3.4. How to merge or fuse different deep learning networks such as U-
Net, SSD, and YOLOs?
Question 3.5. What are the differences between CNNs and CapsNets? What can
CapsNets bering to us?
Question 3.6. What is the loss function of CapsNets? What is the squashing func-
tion of CapsNets?
Question 3.7. What are the differences between DenseNets and ResNets?
Question 3.8. In deep learning, how to select a proper algorithm for visual object
detection? What balance should we take into account?
Question 3.9. What is the difference between FSM, HMM and RNN?
Question 3.10. How to select a loss function in deep learning?
Question 3.11. Regarding time series analysis, what are the advantages of deep
learning methods?
Question 3.12. How to understand cost functions of artificial neural networks
(ANN)?
Question 3.13. How to understand various Transformers? what are the differences
between RNN and Transformers?
Question 3.14. What are OpenAI GPT models? why GPT-X models are so amaz-
ing?
Question 3.15. What are the relationships between OpenAI GPT models and rein-
forcement learning?
Question 3.16. How to learn policies in OpenAI GPT models?
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Question 3.17. What is the relationship between norm and regularisation in deep
learning from the viewpoint of functional analysis?
Question 3.18. How to understand the relationship between Fourier transform and
Hilbert space? What machine learning method is closely related to Hilbert space?
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Chapter 4
Generative Adversarial Networks and Siamese
Nets

In this chapter, we will emphasize on computational iterations in GANs (i.e., gener-
ative adversarial networks) [33] and Siamese net [2, 35, 5]. In deep learning, these
models are named as contrastive networks [2]. Additionally, we will deeply learn
deep learning and interpret how information theory has been applied to the imple-
mentations of deep learning models.
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4.1 Generative Adversarial Networks

Contrastive learning [2, 35] provides a way to discover a better model. The idea
is to train a feedforward neural network (FFNN) that produces very similar output
vectors. After measurement and iterations, we expect the input and output vectors
will be much similar and approach to each other.

Generative adversarial network (GAN) produces new data with the same statis-
tics as the given training set [34]. The generative network generates candidates while
the discriminative network evaluates them. The generator is typically a deconvolu-
tional neural network, the discriminator is a convolutional neural network [26, 121].
GAN is applied to digital forensics and find the real one from fake ones.

Mathematically, given data samples {x1,x2, · · · ,xm}⇠Pdata(x),Pdata(x)⇡PG(x,Q),
the maximum likelihood estimation of xi in PG(x,Q) is

L =
m

’
i=1

PG(xi,Q). (4.1)

For the parametric optimization,

Q⇤ = argmax
Q

m

’
i=1

PG(xi,Q). (4.2)

Hence,

Q⇤ = argmax
Q

m

Â
i=1

logPG(xi,Q). (4.3)

Furthermore,
Q⇤ = argmax

Q
KL(Pdata(x)||PG(x,Q)). (4.4)

Mathematically, we define:

• Generator G: Generate x from z.
• Discriminator D: Evaluate the difference between Pdata(x) and PG(x,Q) through

function

V (G,D)
D
= Ex⇠Pdata(logD(x))+Ex⇠PG(log(1�D(x))), (4.5)

and
G⇤ = argmin

G
max

D
V (G,D). (4.6)

Given G, if

D⇤(x) =
Pdata(x)

Pdata(x)+PG(x)
, (4.7)

because of

V (G,D⇤) = maxV (G,D) =�2log2+2JS(Pdata(x)||PG(x)), (4.8)
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Jensen-Shannon (JS) divergence is

JS(P||Q) =
1
2

KL(P||M)+
1
2

KL(Q||M), (4.9)

where M = P+Q
2 and JS(P||Q) = JS(Q||P), however KL(P||Q) 6= KL(Q||P).

Thus,
G⇤ = argmin

G
max

D⇤
V (G,D⇤), (4.10)

and
L(G) = max

D⇤
V (G,D⇤), (4.11)

therefore,
G⇤ = argmin

G
L(G). (4.12)

Hence,

QG := QG�b · ∂L(G)

∂QG
, (4.13)

where b � 0 is the learning rate. We solve this problem by using the method as
follows:

• Given G0,
D1 = argmax

D
V (G0,D) (4.14)

• Given D1,
G1 = argmax

G
V (G,D1). (4.15)

• · · · · · ·
• Gi) Di+1; Di+1) Gi+1.
• · · · · · ·

G⇤ = argmin
G

max
D

V (G,D), (4.16)

where
V = Ex⇠Pdata [logD(x)]+Ex⇠PG [log(1�D(x))]. (4.17)

Discretely,

V =
1
m
·

m

Â
i=1

logD(xi)+
1
m
·

m

Â
i=1

log[1�D(x̂i)], (4.18)

where xi ⇠ Pdata and x̂i ⇠ PG. We thus have

QD := QD�b · ∂V
∂QD

. (4.19)

If zi ⇠ N(0,1), x̂i = G(zi), then,

V =
1
m
·

m

Â
i=1

log[1�D(G(zi))]. (4.20)



128 4 Generative Adversarial Networks and Siamese Nets

Thus, we have

QG := QG�b · ∂V
∂QG

. (4.21)

Therefore, we take use of eq.(4.20) and eq.(4.21) to implement GAN. If we set
image processing as an example, GAN can make a picture clear using existing de-
tails like superresolution, GAN also can remove artefacts of digital images, etc.
MATLAB has an example how to train GAN models.

SimGAN [121] refines the output of the simulator of a neural network. We need
to minimize the image difference between the synthetic one and the refined images,
finally update the discriminator alternately.

SimGAN is use of unlabelled real data to refine the synthetic images, trains a
refined network to add random numbers to synthetic images, further stabilizes GAN
training and prevents the refiner network from producing artefacts as well as gener-
ates the results without human annotation by training deep neural networks on the
refined output images. The overall loss function is

LR(q) = Â
i

Xilreal(q ;xi,L)+l lreg(q ;xi), (4.22)

where
lreal(q ;xi,L) =� log(1�Df (Rq (xi))), (4.23)

and
lreg(q ;xi) = ky(x̃)�xk, (4.24)

where yi 2 y is an unlabelled real image, xi 2 x is a synthetic training image.
The discriminator updates its parameters by minimizing the loss function

LD(f) =�Â
i

log(Df (xi))�Â
j

log(1�Df (xi)), (4.25)

where xi is a synthetic image.
GANs have been applied to our project regarding human face image inpaint-

ing [16, 4, 11, 15, 10, 9]. In general, the method is composed of generators and dis-
criminators. The loss function combines the losses from Mean Square Error (MSE)
and Generative Adversarial Networks (GANs). In the completion net, we added
convolution operations with a 3⇥3 kernel. The global discriminator is designed as
a 5 layers convolutional network, the local discriminator is designed as a 4 layers
convolutional network.

4.2 Siamese Neural Networks

Siamese networks or twin networks [6] are typically employed for the tasks that
involve finding the relationship between two comparable and similar things, such
as signature verification [3], handwritten check, face recognition[30], object track-
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ing [1, 7, 8, 18, 19, 21], and similar document matching, etc. [25, 9] Similarity
measures [28] are utilized based on a pair of twin networks. The objective of the
Siamese network is to output a feature vector for each image so that the feature vec-
tors are similar for similar images and different for dissimilar images [25]. In this
way, the network can discriminate the two input images.

Siamese networks are particularly useful in cases where there are large numbers
of classes with small numbers of observations. Siamese networks are applied to
dimensionality reduction.

A Siamese network is a type of deep learning networks which make use of two or
more identical subnetworks that have the same architecture, share the same parame-
ters and weights. In that vein, two different n-dimensional input vectors xi 2Rn and
x j 2Rn will be computed for comparing output vectors, one of the output vectors is
treated as the baseline, the other will be compared by computing the distance. The
loss function is defined with squared Euclidean distance. The goal of Siamese net-
work is to minimize a distance metric for similar objects and maximize for distinct
ones.

L (xi,x j) =

⇢
min(k f (xi)� f (x j)k2) xi = x j
max(k f (xi)� f (x j)k2) xi 6= x j

(4.26)

For a half-twin network,

L (xi,x j) =

⇢
min(k f (xi)�g(x j)k2) xi = x j
max(k f (xi)�g(x j)k2) xi 6= x j

, (4.27)

where i and j are indexes of two input vectors from the same dataset, f (·) and
g(·) are the scoring functions implemented by using the twin network and half-twin
network, respectively. More generally, the loss function is often approximated as a
Mahalanobis distance for a linear space as

L (xi,x j) = (xi�x j)
> ·M · (xi�x j), (4.28)

where M is a matrix from the Siamese network.
Contrastive loss has been employed in twin networks. The contrastive loss for a

pair is given by

L =
1
2

yd2 +
1
2
(1� y)max(m�d,0), (4.29)

where y is the value of the pair label, y = 1 for similar images; y = 0 for dissimilar
images, d is the Euclidean distance between two feature vectors v1 and v2:

d = kv1�v2k2,v1,v2 2Rn. (4.30)

The margin parameter m is used for constraint: If two images in a pair are dis-
similar, then their distance should be at least as the same as m, or a loss will be
incurred.

The dimension-reduced features allow the network to discriminate images that
are similar and dissimilar. MATLAB provides a Siamese network for a demonstra-
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tion to compare images and an example for dimensionality reduction at:
https://au.mathworks.com/help/deeplearning/ug/train-a-siamese-network-to-compare-images.html
and another demonstration for data dimensionality reduction at:
https://au.mathworks.com/help/deeplearning/ug/train-a-siamese-network-for-dimensionality-reduction.html

The Siamese network reduces the dimension of input images and outputs the dimension-
reduced images with the same label. The network is able to discriminate images that are similar
and dissimilar. Because of two inputs and similarity measurement, Siamese networks have been
applied to visual object tracking in computer vision [9, 10]. By measuring the similarity between
exemplar and each part of the search image, a map of similarity score can be generated by using
the twin network.

Siamese network has been applied to anomaly detection and object tracking [9]. We detect and
track anomalies on the sidewalk using deep learning. The proposed network consists of two parts:
The first part is to detect and classify objects, then we get the abnormal targets. The second one is to
find data association of objects. Tracking objects is regarded as learning similarity problems. If the
Siamese network has been chosen as the tracking network [10, 29], the algorithm is only working
for single-object tracking, however it can be combined with other deep learning algorithms such as
fully connected neural network (FCNN), region proposal network (RPN), LSTM, etc. SiamRPN +
LSTM algorithm has the highest MOTA (i.e., multiple object tracking accuracy).

4.3 Autoencoder

Basic autoencoder [150, 24, 31] is a feedforward and non-recurrent neural network which is unsu-
pervised learning. That means, our computers can learn from themselves.

Given a group of training data, how to encode the data and remove noises among them, these
are typical applications of an autoencoder. Our objective of deep autoencoder is to reduce the di-
mensionality of data [43] and minimize the differences between the encoded data and the decoded
data. Thus, autoencoder is a generative network, one of its advantages is to treat the output as input
and reduce the dimensionality of raw data [43].

For x 2Rd , z 2R p,
z = s(W ·x+b), (4.31)

and
x0 = s 0(W0 · z+b0). (4.32)

To minimise the reconstruction errors, we have

L(x,x0) = kx�x0k2 = kx�s 0(W 0 ·s(W ·x+b)+b0)k2. (4.33)

Thus, the global loss function [17] is

JAE(Q) = Â
x

L(x,x0), (4.34)

where Q = (W,b,W0,b0)>. The decay process is

Qi+1 := Qi�a · ∂LAE(Qi)

∂Qi
, (4.35)

where a � 0 is the learning rate.
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4.4 Regularisations

For L2 regularization [134], if l 2R is the parameter of weight decay (wd), then

JAE+wd(Q) = JAE(Q)+l · Â
wi, j2W

w2
i, j. (4.36)

For sparse regularization (sp) [27] using KL divergence [18], if b 2 R is the parameter of
sparse weight, then

JAE+sp(Q) = JAE(Q)+b ·
m

Â
j=1

KL(r||r̂ j), (4.37)

where
KL(r||r̂ j)

D
= r · log

r
r̂ j

+(1�r) · log
1�r
1� r̂ j

, (4.38)

and

r̂ j =
1
N

N

Â
i=1

h j(x(i)) (4.39)

r̂ j = r j, j = 1,2, · · · ,m; x = {x(i)}N
i=1.

From the definition eq.(4.38), we know that KL(r||r̂ j) 6= KL(r̂ j||r). Furthermore,

JAE+wd+sp(Q) = JAE(Q)+l · Â
wi j2W

w2
i j +b ·

m

Â
j=1

KL(r||r̂ j). (4.40)

Thus,

JAE+wd+sp(Q) = JAE+wd(Q)+b ·
m

Â
j=1

KL(r||r̂ j), (4.41)

and
JAE+wd+sp(Q) = JAE+sp(Q)+l · Â

wi j2W
w2

i j. (4.42)

In denoising by using autoencoder [20, 34], data corruption means

x0 = x+ e, (4.43)

where e ⇠ N(µ,d )! N(0,d 2I), N(0,d 2I) is the additive isotropic Gaussian noise.
In contractive autoencoder (CAE),

JCAE(Q) = JAE(Q)+l ·kJf k2, (4.44)

where kJf kF is Frobenius norm,

Jf = (ai j)m⇥n
D
= (

∂hi

x j
)m⇥n, (4.45)

and

kJf k2
F =

m

Â
i=1

n

Â
j=1

(
∂hi

x j
)2, (4.46)

where
hi = s(W ·x+b). (4.47)

Hence,

kJf k2
F =

m

Â
i=1

hi · (1�hi) ·
n

Â
j=1

w2
i j. (4.48)
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For variational autoencoder (VAE) [23, 32], we define Kullback–Leibler (KL) divergence [18]
as

KL(Q||P) D
= Â

x2x
Q(x) · log

Q(x)
P(x)

D
=
Z

x2x
Q(x)

Q(x)
P(x)

dx. (4.49)

Bayes’ Theorem [55] is

P(x|z) = P(z|x) ·P(x)
P(z)

=
P(z|x) ·P(x)

Âx2x P(z|x) ·P(x) , (4.50)

where the probabilities P(x|z), P(z|x), P(x), and P(z) refer to posterior, likelihood, prior, and evi-
dence, respectively. Therefore, we have variational inference [55]. If Q(z) = P(x|z), then

KL(Q(z)||P(z|x)) = KL(Q(z)||P(z))�Â
z2z

Q(z) logP(x|z)+ logP(x). (4.51)

Now, we define variational autoencoder (VAE). If x ⇠ N(µ,d ), z = x+ e = g(x,e), then z ⇠
N(µ + e,d ), N(µ,d ) is the normal or Gaussian distribution, µ is mean, d is variance,

Q(z) = P(x|z) = P(e). (4.52)

Furthermore,
LVAE(Q,P) = KL(Q(z)||P(z|x)), (4.53)

= KL(Q(z)||P(z))� Â
z⇠N(µ+e,d )

Q(z) logP(x|z)+ logP(x), (4.54)

= KL(Q(z)||P(z))�ÂP(e) logP(x|g(x,e))+ logP(x), (4.55)

where g(x,e) is an encoder model, P(x|z) is a decoder model. Hence, the cost function is
min[KL(Q(z)||P(z|x))],

minKL(Q(z)||P(z))
| {z }
Encoder:KL Divergence

�max Â
z⇠N(µ+e,d )

Q(z) logP(x|z)

| {z }
Decoder:MaxLikelihood

, (4.56)

where logP(x) w.r.t. x 2 x is independent on z 2 z [55].
In a nutshell, a VAE consists of an encoder, a decoder, and a loss function. The term “vari-

ational” comes from the close relation between the regularisation and the variational inference
method in statistics. VAE outputs a Gaussian probability distribution with mean and standard de-
viation for every dimension. For a given set of possible encoders and decoders, VAEs look for the
pair that keeps the maximum of information if the encoding has the minimum of reconstruction
error while decoding. VAE is trained by using gradient descent to optimize the loss with respect to
the parameters of the encoder and decoder.

Autoencoders are a type of self-supervised learning models that learn a representation through
input data. An LSTM autoencoder [22] is an implementation of an autoencoder for sequence data
using an encoder-decoder LSTM architecture. LSTM autoencoders learn a representation of se-
quence data. For a given dataset of sequences, an encoder-decoder LSTM is configured to read
the input sequence, encode it, decode it, and recreate it. The performance of LSTM autoencoder is
evaluated based on the model’s ability to recreate the input sequence.

Autoencoders have been applied to remove image noises, such as haze removal; it eventually
is employed to implement image inpainting [14, 15] such as TV logo removal [35, 36] because the
output could be used as the input, iteratively.

In MATLAB, an autoencoder is a neural network which replicates its input as its output. If
the number of neurons in the hidden layer is less than the size of the input, autoencoder learns a
compressed representation of the input. This autoencoder takes use of regularizers to learn a sparse
representation in the first layer. The regularizers are controlled by setting various parameters.
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A MATLAB example for training variational autoencoder (VAE) with regard to generate im-
ages is available from: https://au.mathworks.com/help/deeplearning/ug/train-a-variational-autoencoder-
vae-to-generate-images.html. GANs, Siamese nets, and autoencoders as well as Transformers [26,
33, 45] all are employed for generating new images, but their mechanisms are different, thus the
final results have minor difference.

An example for training an autoencoder to generate text is available from:
https://au.mathworks.com/help/deeplearning/ug/generate-text-using-autoencoders.html.
The encoder utilizes an LSTM operation to map the input text into latent vectors. The decoder is
use of an LSTM operation and the same embedding to reconstruct the text from the latent vectors.

4.5 Information Theory

Text processing is employed to natural language processing. Text information has entropy, the
information capacity is measured by using entropy, even the text short message (SMS) only has
144 letters that could be measured by entropy.

H =�
m

Â
i=1

pi ln pi = E ln
1
pi
, (4.57)

where H is entropy, pi 2 [0,1] is the probability, it may be the histogram of 256 letters (ASCII
code) or pixels with 256 greyscale intensities after the normalization, m is the bin number, i.e., m =
256. ASCII refers to American Standard Code for Information Interchange, which is a character
encoding standard for electronic communication.

Entropy normalization refers to the normalized entropy fallen in the interval [0,1], namely,

h =
H

Hmax
=�

m

Â
i=1

pi
ln pi

lnm
, (4.58)

where m is the number of pi, Hmax = lnm is the maximum entropy.
Probability is usually between 0 and 1, v.i.z., p 2 [0,1]. Entropy could be written in the way

of mathematical expectation E(·); correspondingly, we define joint entropy, conditional entropy,
relative entropy.

We denote conditional probability as p(x|y). Given x, the entropy h(x|y) is not as same as the
entropy given y. Therefore, we define the joint entropy and mutual entropy.

Joint probability is h(x,y). Information capacity is defined as c = max I(x,y). In the Internet,
information theory and entropy have their broad applications.

Relative entropy is also called KL divergence between p and q, which reflects the information
distance between p and q,

KL(p||q) =�
m

Â
i=1

pi ln
pi

qi
. (4.59)

Again, KL(p||q) 6= KL(q||p).
Mutual information is defined based on joint probability. KL divergence has been used in deep

learning for entropy-based loss functions and distance computing.
In graphical models, we take use of relative entropy, joint entropy, and mutual information. The

mutual information has multiple definitions, they equal to each other and could be written in the
product form if the probability of each element is independent.

Joint entropy and mutual entropy are shown in Venn diagram (also called primary diagram, set
diagram or logic diagram), which shows all possible logical relations between a finite collection of
different sets. Regarding these concepts of entropy, we have the chain rule for the case of infinity.
Correspondingly, we take conditional entropy into account.
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According to Bayes’ theorem, we have the relationship between joint entropy, conditional en-
tropy, relative entropy, and mutual information.

Jensen’s inequality tells us what a convex or concave function is. If the points on a curve are
always located at one side of the straight line, we say the curve is convex. Mathematically, a convex
function is shown as eq.(4.60).

f (a · x1 +(1�a)x2) a · f (x1)+(1�a) · f (x2),a 2 [0,1]. (4.60)

If a function is convex, the second derivative could be applied to decide whether it is such a
function. f 0(x)� 0 and f 00(x)� 0, x 2 [a,b], f (x) 2 C(a,b).

Suppose we have p(x) and q(x), for any two functions, we have the relative entropy

H(p||q) =�p ln
p
q
. (4.61)

Another concept is entropy rate

H(p) =�1
n

m

Â
i=1

ln pi. (4.62)

Generally, the entropy H(X) of a discrete random variable X is defined by using

H(X) =�Â
x2X

p(x) log p(x) =�E log p(X) = E log
1

p(X)
. (4.63)

The joint entropy H(X ,Y ) of a pair of discrete random variables (X ,Y ) with a joint distribution
p(x,y) is defined as

H(X ,Y ) =� Â
x2X,y2Y

p(x,y) log p(x,y) = E log
1

p(X ,Y )
. (4.64)

If (X ,Y )⇠ p(x,y), then conditional entropy[18] H(Y |X) is

H(Y |X) = Â
x2X

p(x)H(Y |X = x), (4.65)

and
�Â

x2X
p(x) Â

y2Y
p(y|x) log p(y|x) = Ep(x,y) log

1
p(Y |X)

. (4.66)

Corollary,
H(X |Y ) 6= H(Y |X). (4.67)

Equivalently, we denote
log p(X ,Y ) = log p(X)+ log p(Y |X). (4.68)

For the chain rule of entropy,
H(X ,Y ) = H(X)+H(Y |X), (4.69)

and
H(X ,Y |Z) = H(X |Z)+H(Y |X ,Z). (4.70)

Mutual information [18] I(X ;Y ) is a measure of the dependence between two random variables,
which is symmetric and always nonnegative,

I(X ;Y ) = H(X)�H(X |Y ), (4.71)

and
I(X ;Y ) = H(X)�H(X |Y ) = H(Y )�H(Y |X). (4.72)

For a communication channel with input X and output Y , the capacity C is defined as
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C = max
p(x)

I(X ;Y ). (4.73)

The capacity is the maximum rate at which we send information over the channel and recover
the information at the output with a low probability of error.

Relative entropy (KL Divergence) [18] is a measure of the “distance” between two probability
mass functions p and q.

D(p||q) = Â
x2X

p(x) log
p(x)
q(x)

= Ep(X) log
p(X)

q(X)
, (4.74)

where D(p||q) 6= D(q||p). Mutual information [18] I(X ;Y ) is the relative entropy between the joint
distribution and the product distribution p(x)q(x).

I(X ;Y ) = Â
x2X

Â
y2Y

p(x,y) log
p(x,y)

p(x)p(y)
, (4.75)

and
D(p(x,y)kp(x)p(y)) = Ep(x,y) log

p(X ,Y )
p(X)p(Y )

. (4.76)

Meanwhile,
I(X ;Y ) = H(X)�H(X |Y ) = H(Y )�H(Y |X), (4.77)

and
I(X ;Y ) = H(X)+H(Y )�H(X ,Y ). (4.78)

According to Bayes’ theorem [55],

p(x1,x2) = p(x2)p(x1|x2) = p(x1)p(x2|x1), (4.79)

H(X1,X2) = H(X1)+H(X2|X1), (4.80)

and

H(X1,X2,X3) = H(X1)+H(X2,X3|X1) = H(X1)+H(X2|X1)+H(X3|X2,X1). (4.81)

· · · · · ·
Therefore,

H(X1,X2,X3, · · · ,Xn) =
N

Â
i=1

H(Xi|Xi�1, · · ·X2,X1). (4.82)

Chain rule for relative entropy is,

D(p(x,y)||q(x,y)) = D(p(x)||q(x))+D(p(y|x)||q(y|x)), (4.83)

where
D(p(y|x)||q(y|x)) = Â

x
p(x)Â

y
p(y|x) log

p(y|x)
q(y|x) = E log

p(y|x)
q(y|x) . (4.84)

If f (·) is a convex function and X is a random variable, then

E f (X)� f (E(X)). (4.85)

A function f (x) is convex over an interval (a,b) if for every x1,x2 2 (a,b) and 0 l  1,

f [lx1 +(1�l )x2] l f (x1)+(1�l ) f (x2). (4.86)

If f (·) is a convex function and X is a random variable, then
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E f (X)� f (E(x)). (4.87)

If the function f (·) has a second derivative f
00
(x) � 0 everywhere, then the function is con-

vex (strictly convex). Let p(x), q(x), x 2 X be two probability mass functions, then D(p||q) � 0,
D(p(x|y)||q(x|y))� 0.

For any two random variables X and Y , I(X ;Y ) � 0 and I(X ;Y |Z) � 0, furthermore, because
I(X ;Y ) = H(X)�H(X |Y )� 0, H(X)� H(X |Y ), therefore,

H(X1,X2, · · · ,Xn) =
N

Â
i=1

H(Xi|Xi�1, · · · ,X1)
N

Â
i=1

H(Xi). (4.88)

For ai,bi � 0, i = 1,2, · · · ,n,

N

Â
i=1

ai log
ai

bi
�

N

Â
i=1

ai log ÂN
i=1 ai

ÂN
i=1 bi

, (4.89)

and

D(p||q) =
N

Â
i=1

p(x) log
p(x)
q(x)

�Â p(x) log Â p(x)
Âq(x)

. (4.90)

Hence,

lD(p1||q1)+(1�l )D(p2||q2)� D(l p1 +(1�l )p2||lq1 +(1�l )q2). (4.91)

Therefore, H(X) is a convex function and I(X ;Y ) is a concave function [103]. The entropy rate
of a stochastic process Xi is defined by

H(X) = lim
n!•

1
n

H(X1,X2, · · · ,Xn). (4.92)

A related quantity for entropy rate [18] is

H 0(X) = lim
n!•

1
n

H(Xn|Xn�1, · · · ,X1). (4.93)

For a stationary stochastic process,

H 0(X) = H(X)) (4.94)

lim
n!•

H(Xn|Xn�1, · · · ,X1) = lim
n!•

H(Xn|Xn�1) = H(X2|X1). (4.95)

Let Xi, i = 1,2, · · · be a stationary Markov chain with stationary distribution µ and transition
matrix P = (Pi j). Then, the entropy rate is

H(X) =�Â
i j

µiPi j logPi j. (4.96)

The entropy rate of the two states Markov chain is

H(X) = H(X2|X1) =
a

a +b
·H(b )+ b

a +b
·H(a). (4.97)

Entropy is defined not only in the discrete way, but also in continuous way. Previously, it is
based on sum function, now it is based on integral operation. Previous the entropy is H, now it is
h. If f (·) is continuous function, the entropy function will be continuity. The continuous entropy is

h =�
Z

p(x) ln p(x)dx =�E ln
1

p(x)
. (4.98)
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The continuous conditional entropy is

h =�
Z

p(x|y) ln p(x|y)dx =�E ln
1

p(x|y) . (4.99)

The continuous joint entropy is

h =�
Z

p(x,y) ln p(x,y)dx =�E ln
1

p(x,y)
. (4.100)

The continuous entropy rate is

h =� 1
L

Z
p(x,y) ln p(x,y)dx =� 1

L
E ln

1
p(x,y)

. (4.101)

In our project [12, 13], we proposed an Entropy-Based Convolutional Layer Estimation
(EBCLE) heuristic which is robust, simple, effective in resolving the problem of over-parameterization
with regards to net depth of CNN model. A priori knowledge of the entropic data distribution of in-
put datasets was applied to determine an upper bound for convolutional network depth, and identity
transformations which offer significant contributions for enhancing model performance.

Exercises

Question 4.1. How to measure the performance of the generator and discriminator in GANs?

Question 4.2. What are the relationships between Siamese nets and GANs?

Question 4.3. How does the autoencoder generate digital images which look similar to the original
image? What are the differences if you apply GANs, Transformers, autoencoders to generate a new
image?

Question 4.4. What are the relationships between autoencoders and GANs?

Question 4.5. What’s the chain rule for relative entropy?

Question 4.6. What are the advantages and disadvantages using relative entropy (i.e., KL Diver-
gence) as a measure between two probability mass functions? How to solve this problem?
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Chapter 5
Reinforcement Learning

In this chapter, we introduce fundamental concepts of reinforcement learning [18] such as Bell-
man equation, Q-learning, deep Q-learning, double Q-learning, etc. We detail why reinforcement
learning is thought as a method of deep learning. Mathematically, we narrate mathematical control
theory, dynamic programming, optimization and data fitting, understand how these subjects are
applied to deep learning, especially deep reinforcement learning. The recent publications of the
journal Nature related to reinforcement learning uplift the relevant research work.
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5.1 Introduction

Learning from interaction like OpenAI ChatGPT is a foundational idea underlying nearly all the-
ories of machine learning and artificial intelligence [27]. Reinforcement learning [29] as a third
machine learning approach is to answer the question how to map states to actions. Actions affect
not only the immediate reward, but also the next states and all subsequent rewards. Reinforcement
learning [11] is related to dynamical systems, specifically, optimal control and Markov decision
process (MDP). Reinforcement learning explicitly resolves the problem of a goal-directed agent
interacting with an uncertain environment. Reinforcement learning seeks the trade-off between
exploration and exploitation (EE).

Reinforcement learning systems include a policy, a reward, a value function, and a model of the
environment. A policy defines the rule of agent’s behaviors at a given time. A reward signal defines
the goal in a reinforcement learning problem. A value function specifies what is good in the long
run. A value of state is the total amount of reward that an agent is expected to accumulate over
the time span, starting from that state. Rewards determine the immediate, intrinsic desirability of
environmental states. The final element of reinforcement learning is a model of the environment.

Google street view could navigate us in an outdoor environment, but within a building with-
out GPS information [32, 33], how could Google street view assist us? Reinforcement learn-
ing [74, 101] could provide relative information and navigate us to get out of this environment.
Reinforcement learning is one of the three basic machine learning paradigms, alongside super-
vised learning and unsupervised learning [14]. Assume we have a building map, how could a robot
lead us to leave this building or find a room in this building? Successfully solving this problem will
assist us to find the shortest path in shopping mall, subway, or underground without GPS informa-
tion. In a university, it also could quickly aid students to find their meeting rooms or classrooms,
and rapidly guide a robot to get the destination in an indoor environment. An example of puzzle
garden is shown in Fig 5.1.

Fig. 5.1: An example of puzzle garden based on Hilbert curve

Basic reinforcement is modeled as a Markov decision process (MDP):
• A set of environment and agent states S;
• A set of actions A of the agent;
• Pa(s,s0) = Pr(st+1 = s0 | st = s,at = a) is the probability of transition (at time t) from state s to

state s0 under action a;
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• Ra(s,s0) is the immediate reward after transition from s to s0 with action a.

The basic reinforcement learning agent interacts with its environment [30] using time steps. At
each time t, the agent receives current state st and reward rt . It then chooses an action at from the
set of available actions, which is subsequently sent to the environment. The environment related
to a new state of the agent st+1 and the reward rt+1 associated with the transition (st ,at ,st+1) are
determined. The goal of a reinforcement learning agent is to learn a policy: p : A⇥ S! [0,1],
p(a,s) = Pr(at = a | st = s), which maximizes the expected cumulative reward [20].

Reinforcement learning relies heavily on states and policy, which is a computational approach
to understand and automate goal-directed learning for decision making. Reinforcement learning
takes use of Markov decision process (MDP) [3] to define the interaction between an agent and
its environment in terms of states, actions, and rewards. The actions are the decision made by the
agent; the states are the basis for making the decision. The rewards are the basis for evaluating the
decision. A policy is a stochastic rule by which the agent selects actions as a function of states.
The agent’s objective is to maximize the amount of reward it receives over time. The return is the
function of future rewards that the agent seeks to maximize the expected value.

5.2 Bellman Equation

The research problems in reinforcement learning include the bandit problems [13], finite Markov
decision problem, Bellman equation [16] and value functions. The Bellman equation is special
consistency conditions, from which an optimal policy is determined with relative ease. A Bellman
equation is a necessary condition for optimality associated with the mathematical optimization
method known as dynamic programming. The Bellman equation was firstly applied to engineering
control theory and other topics in applied mathematics, subsequently became an important tool in
economic theory.

In Markov decision process, a Bellman equation is a recursion for the expected rewards. In the
finite Markov decision process, the research methods such as dynamic programming , Monte Carlo
methods [10], and temporal-difference learning methods (i.e., TD methods) are taken into consid-
eration. Monte Carlo is a way of solving reinforcement learning problems based on averaging
sample returned.

We call a software robot as the agent, which has intelligent capability to make decision by
itself, the agent is living in an environment. We need an environment with a policy, actions, related
rewards, and states. States are thought as the input of a policy and actions. The best policy and the
best reward [4] are obtained by using optimization.

Assume we have an agent and environment, we denote the action of an agent a, a reward r, a
policy p , a state s, an action is defined by policy and state, i.e., a D

= p(s). We denote the samples
from our observations as (s1,a1,r1, · · · ,st), t = 1,2, · · · ; therefore, reinforcement learning is to find
max(r), s.t. (s1,a1,r1, · · · ,st)! p .

A finite MDP is the MDP with a finite number of states, actions, and reward sets [6]. The
return is the function of future rewards that the agent seeks to maximize in expected value. Markov
decision process only affects the next time, which does not influence too much of the sequence at
present [55], that means, a state st is Markov if

P(st+1|st) = P(st+1|s1, · · · ,st). (5.1)

The value function is defined as

v(s) D
= E(Gt |st). (5.2)

The return function is defined as
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Gt
D
=

•

Â
k=0

l k · rt+k+1, (5.3)

where l is the discount factor. Because the value function is

v(s) = E(Gt |st) = E(
•

Â
k=0

l k · rt+k+1|st), (5.4)

we have

v(s) = E(rt+1 +l ·Gt+1|st) (5.5)

and
v(s) = E(rt+1 +l · v(st+1)|st). (5.6)

Therefore, the action-value function is

Qp (s,a) D
= Es0 (r+l ·Qp (s0,a0)|s,a). (5.7)

The optimal action-value function therefore is

Q⇤(s,a) = Es0 (r+l ·max
a0

Q⇤(s0,a0)|s,a), (5.8)

where E(·) is probability expectation, we call eq.(5.8) as Bellman equation.
Iteratively, we have the solution of Bellman equation as

Qi+1(s,a) = Es0 (r+l ·max
a0

Qi(s0,a0)|s,a)! Q⇤(i! •). (5.9)

Rewards are decided by actions. Action-value function Q(a,s) is defined by actions and states.
The best Q is dependent on both action a and state s. The process to find the best Q is called Q-
learning algorithm. We are use of Q-learning to find the optimized policy and maximize the reward.
Q-learning is a simplified Bellman equation, if a 2 [0,1],

Q(st ,at) Q(st ,at)+a(rt+1 +l ·max
a

Q(st+1,a)�Q(st ,at)). (5.10)

The best policy, state, and reward are associated with each other. For a deep network w.r.t. Q
and weight w,

Q(s,a,w) = Qp (s,a). (5.11)

Thus, the loss or objective function is,

L(w) = E([r+ g ·max
a0

Q(s0,a0,w)�Q(s,a,w)]2). (5.12)

The gradient is

∂L(w)
∂w

=�E([r+ g ·max
a0

Q(s0,a0,w)�Q(s,a,w)]) · ∂Q(s,a,w)
∂w

. (5.13)

Reinforcement learning is the use of value functions to organize and structure the search for
good policies. Each occurrence of state in an episode is called a visit. The first time visited in an
episode is called as the first visit. The first-visit Monte Carlo (MC) method estimates the average
of the returns following the first visit.

The policy iteration of Monte Carlo methods is natural to alternate between evaluation and im-
provement on an episode-by-episode basis. After each episode, the observed returns are employed
for policy evaluation, the policy is improved at all the states visited in the episode.

qp (s,a)
·
= E[Rt+1 + gvp (St+1)|St = s,At = a] (5.14)
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and

qp (s,a) = Â
s0,r

p(s0,r|s,a)[r+ gvp (s0)], (5.15)

The policy improvement theorem: Let p and p 0 be any pair of deterministic policies such that,
for all s 2S , qp 0 (s,p 0(s))� vp (s), then p 0 is as good as or better than p , namely, vp 0 (s)� vp (s).

p 0(s) ·
= argmax

p
qp (s,a) = argmax

p
Â
s0,r

p(s0,r|s,a)[r+ g · vp (s0)] (5.16)

and

v0p (s) = max
a Â

s0,r
p(s0,r|s,a)[r+ gv0p (s

0)]. (5.17)

In Monte Carlo methods, we take use of first-visit MC methods to estimate the action-value
function for the current policy. With the Monte Carlo methods, one must wait until the end of an
episode, because only till then, the return is known, whereas with temporal-difference (TD) meth-
ods, one need wait only one time step. TD methods can learn directly from raw experience without
a model of the environmental dynamics, which update estimates based on other learned estimates,
without waiting for the final outcome. The simplest TD method makes the update immediately on
transition to St+1 and receives Rt+1.

V (St) V (St)+a[Rt+1 + g ·V (St+1)�V (St)]. (5.18)

TD error measures the difference between the estimated value St and the better estimate dt
·
=

Rt+1 + gV (St+1)�V (St).
In gradient-descent methods [34], w = (w1, · · · ,wd)>,

wt+1 = wt +a[vp (St)� v̂(St ,wt)]—v̂(St ,wt), (5.19)

where a is a positive step-size parameter, —v̂(St ,wt) is the gradient with respect to w. This yields
the following general SGD method for state-value prediction:

wt+1 = wt +a[Ut � v̂(St ,wt)]—v̂(St ,wt). (5.20)

Because the true value of a state is the expected value of the return, the Monte Carlo target is
Ut

·
= Gt .
Linear methods approximate the state-value function by using inner product

v̂(s,w) = w>x(s) =
d

Â
i=1

wixi(s), (5.21)

where v̂(·,w) is a linear function of the weight vector w, x(s) = (x1(s),x2(s), · · · ,xd(s))> is a
real-valued vector, x(s) is called a vector representing state s.

The gradient of the approximate value function [34] is

—v̂(s,w) = x(s). (5.22)

The general SGD update is

wt+1 = wt +a[Ut � v̂(St ,w)]x(st). (5.23)

The gradient of the approximate value function [34] is —v̂(s,w) = x(s). The general SGD up-
date is

wt+1 = wt +a[Ut � v̂(St ,w)]x(st). (5.24)

For example,
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wt+n = wt+n�1 +a[Gt:t+n� v̂(St ,wt+n�1)]—v̂(St ,wt+n�1), (5.25)

Gt:t+n = Rt+1 + g ·Rt+2 + · · ·+ gn�1 ·Rt+n + gn · v̂(St+n,wt+n�1), (5.26)

where 0 t  T �n.
To produce a policy parameterisation, the policy is defined as the normal probability density

over a real-valued scalar action with mean and standard deviation given by parametric function
approximators that depend on the state.

p(a|s,q) = 1
s(s,q)

p
2p

exp(� (a�µ(s,q))2

2s(s,q)2 ) (5.27)

where q = (qµ ,qs )>, µ(s,q) = q>µ xµ (s), s(s,q) = exp(q>s xs (s)), xµ (s) and xs (s) are state fea-
ture vectors.

5.3 Deep Q-Learning

Reinforcement learning is provided to seek the best policy and maximize the total reward. The key
of reinforcement learning is to maximize the rewards, the question is how to get the best action
so as to achieve the best reward. The sequence of actions thus will have the maximum cumulative
reward. For each policy p , there is a reward vp (st), we hope to find the optimal policy

v⇤(st) = max
p

(vp (st)),8st . (5.28)

In a simple case, action is defined as

a(t) D
= p(st), (5.29)

where Q(at) = r(at)> 0. If r(a) is the reward function

Q(at+1) Qt(at)+h · [r(at+1)�Q(at)], (5.30)

where h is learning rate.
On the other hand, in a full reinforcement learning, a policy p defines the action to be taken in

any state
at

D
= p(st). (5.31)

The value of state st satisfies
v(st) = max

at
Q(st ,at), (5.32)

a⇤t = argmax
at

Q(st ,at), (5.33)

and
p⇤(s⇤t ) = a⇤t . (5.34)

The value iteration is
|v(l+1)(s)� v(l)(s)|< d , (5.35)

where d > 0, l = 1,2, · · · and

v(st) v(st)+h · [rt+1 + g · v(st+1)� v(st)]. (5.36)

The policy iteration is
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p 0 = argmax
p

(vp (s0)); (5.37)

and
vp (s) vp (s0). (5.38)

The rewards and actions are

Q(at ,st) = rt+1 + g ·max
at+1

Q(at+1,st+1). (5.39)

This iteration has been employed to approximate the best value. Hence, we develop the iteration
further:

• Episode: 9T , (s1,a1,r2, · · · ,sT )! p
• Monte-Carlo Method: Using empirical mean to replace Bellman equation instead of expected

return, i.e.,

vp (s) =
1
T

T

Â
t=1

(Gt |st = s), (5.40)

where Gt = ÂT�t
k=1 l k�1rt+k. Hence,

p(s) argmax
a

Q(s,a), (5.41)

and
v(st) v(st)�a · (Gt � v(st)). (5.42)

• Temporal Difference (TD):

v(st) v(st)�a · (rt+1 + g · v(st+1)� v(st)), (5.43)

where d = rt+1 + g · v(st+1)� v(st) is the TD error and s = rt+1 + g · v(st+1) is the TD target.

For the best convergence, we adopt Q-learning and double Q- learning for finding the best
policies and actions:

• Episode: 9T , (s1,a1,r2, · · · ,sT )! p .
• SARSA (State-Action-Reward-State-Action) Algorithm :

Q(s,a) Q(s,a)+a · [r+ g ·Q(s0,a0)�Q(s,a)], (5.44)

where s s0 and a a0.
• Q-Learning: An off-policy TD control algorithm:

Q(s,a) Q(s,a)+a · [r+ g ·max
a

Q(s0,a)�Q(s,a)], (5.45)

where s s0.
• Double Q-Learning:

Q1(s,a) Q1(s,a)+a · [r+ g ·Q2(s0,argmax
a

Q1(s0,a))�Q1(s,a)], (5.46)

and
Q2(s,a) Q2(s,a)+a · [r+ g ·Q1(s0,argmax

a
Q2(s0,a))�Q2(s,a)], (5.47)

where s s0.

The control is very similar to Kalman filtering [5, 22], but Kalman filtering is a linear dynam-
ical system for signal filtering [17, 2]. In control theory, Kalman filtering, i.e., Linear Quadratic
Estimation (LQE), is an algorithm that produces estimates of unknown variables by estimating a
joint probability distribution over the variables for each timeframe [15, 55].
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Reinforcement learning enables a computer to make a series of decisions and maximize the cu-
mulative reward for the task without human intervention and without being explicitly programmed
to achieve the task. MATLAB lists all examples of reinforcement learning at:
https://www.mathworks.com/help/reinforcement-learning/examples.html.

An example to swing up and balance pendulum with image observation could be found from:
https://au.mathworks.com/help/deeplearning/ug/train-ddpg-agent-to-swing-up-and- sbalance-pendulum-
with-image-observation.html.

The screenshots are shown in Figure 5.2, Figure 5.2(a), (b) and (c) display the pendulum in
various positions amid the swing.

In recent years, the journal Nature has published a slew of papers related to reinforcement
learning [7, 101, 26, 31]. The high quality work has highlighted the state-of-the-art research work
and greatly uplifted the popularity and depth of reinforcement learning.

Fig. 5.2: An example shows to swing up and balance a pendulum with an image
observation modeled in MATLAB.

5.4 Control Theory

In deep learning, mathematical control theory could support our model training process, from the
continuous observations of loss and accuracy, we make decisions whether our training process
should go on or not. In robotics, we can control our algorithms using the mathematical control
theory as well.

5.4.1 Mathematical Control Theory

A starting point of control theory [35] is the differential equation

ẏ = f (y,u),y(0) = x 2Rn,u 2 U 2Rm,m,n,2Z + (5.48)

where u(·) is control function, U is the set of control parameters. In control theory, we have:

• Controllability: If an arbitrary state z is reachable from an arbitrary state x in a time t = T ,
y(T ) = z; t = 0, y(0) = x.

• Stabilizability: k(x̄)= ū is called a stabilizing feedback if f (x̄, ū)= 0 and ẏ(t)= f (y(t)),k(y(t))).
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• Observability: ẏ(t) = f (y,u), y(0) = x, w = h(y) where h(·) is observation function.
• Optimality: Looking for a control function u(·) which minimizes the integral I =

R T
0 g(y(t),u(t))dt+

G(y(T )), g(·) and G(·) are given functions, the time t = T > 0 is fixed.

Classical control theory is a linear system described by a differential equation

ẏ = Ay(t)+Bu(t),y(0) = x 2Rn (5.49)

where w(t) =Cy(t) is an observation, t � 0.
The unique solution of this equation is q̇ = A(t)q(t)+a(t), q(t0) = q0 2Rn, t0 2 [0,T ] is

q(t) = S(t)S�1(t0)q0 +
Z T

0
S(t)S�1(s)a(s)ds

where t 2 [0,T ], Ṡ = A(t)S(t), S(0) = I. The function S(t), t 2 [0, t] is called fundamental solution.
Let A 2M(n,n) and consider linear systems,

ż = Az,z(0) = x 2Rn. (5.50)

The solution is
zx(t) = S(t)x = eeAx, t � 0. (5.51)

The system is stable, if zx(t)! 0, x 2Rn as t!+•.
If P is a nonsingular matrix and A is a stable matrix, then matrix PAP�1 is stable, PAP�1 =

diag(J1, · · · ,Jr), Ji is Jordan blocks, w(A) = sup{Re(l ) : l 2 s(A)}< 0.
If polynomial p(l ) = l n + a1l n�1 + · · ·+ an�1ln,l 2 C is stable, then all its coefficients

a1, · · · ,an�1 are positive.
The system ḟ (t) = Ay+Bu, y(0) = x 2 Rn is stabilizable or the pair (A,B) is stabilizable if

there exists a matrix K 2M(m,n) such that the matrix A+BK is stable.
The system ḟ (t) = Ay+Bu, y(0) = x 2Rn is completely stabilizable if and only if for arbitrary

w > 0 there exist a matrix K and a constant M > 0 such that for an arbitrary solution yx(t), t > 0
of ẏ(t) = (A+BK)y(t), y(0) = x, then |yx(t)|< Me�wt |x|, t � 0.

For a nonlinear system,

ẏ = f (y,u),y(0) = x 2Rn,w = h(y) (5.52)

where f (·) 2Rn, h(·) 2Rk.
If f (·) is continuous, for a number c > 0, then

| f (x,u)| c(1+ |u|+ |x|) (5.53)

and

| f (x,u)� f (y,u)| c|x� y|. (5.54)

For an arbitrary control u(·), there exists exactly one solution. Assume that the pair (A,B) where
A 2M(n,n), B 2M(n,m), is controllable, and shows that

ẏ = Ay+Bu,y(0) = x (5.55)

is locally controllable at 0 2Rn in arbitrary time T > 0.
Assume that the mapping f (·) is differentiable at f (ū, v̄), with

A = fx(ū, v̄),B = fu(ū, v̄) (5.56)

The nonlinear system is called linearisation at (x̄, ū).
Assume that the pair (A,B) where A 2M(n,n), B 2M(n,m), is controllable, which shows that
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ẏ = Ay+Bu,y(0) = x (5.57)

is locally controllable at 0 2Rn in arbitrary time T > 0.
Assume that the mapping f (·) is continuously differentiable in a neighbourhood of a point (x̄, ū)

for which f (x̄, ū) = 0. The linearization is controllable, the nonlinear system is locally controllable
at the point x̄ in arbitrary time T > 0.

The nonlinear system is locally controllable at x̄ 2Rn, if and only if (i.e., iff) the pair (A,B) is
controllable,

Ax̄+Bū = 0,8ū 2Rm. (5.58)

Let’s assume that the state equation is independent on the control parameter.

ż = f (z),z(0) = x 2Rn (5.59)

and the observation is w(t) = h(z(t)), t � 0.
This system is observable at a point z if there exists a neighbourhood D of z such that for

arbitrary x1 2 D, x1 6= x, there exists t > 0 for h(z(t,x)) 6= h(z(t,x0)).
Bellman equations are a derivation of dynamic programming equations which solve linear reg-

ulator problem based on a finite time interval.
Regarding control system, ẏ = f (y,u),y(0) = x, if the control interval is [0,•], the cost func-

tional is

J(x,u) =
Z •

0
g(y(t),u(t))dt. (5.60)

Our aim is to find û(·) for all u(·)

J(x, û) J(x,u), (5.61)

has exactly one nonnegative, continuous, and bounded solution v = v̂.

5.4.2 Stochastic Control Theory

Let (W ,F ,P) be a complete probability space, (W ,F ) is a measurable space, P is a probability
measure on F . Let (U,d) be a Polish space [24], i.e., U is a separable complete metric space with
a metric d, let B(U) be a field generated by the open subsets of U . X : W 7!U is called a U-valued
random variable if X is U-measurable. If U 2Rd , we call X as a d-dimensional random variable.

A stochastic process X = (X(t); t 2 [0,T ]) is a family of d-dimensional random variables, de-
fined on (W ,F ,P). Based on a continuous Markov process with transition probability function
p(·), if the condition X(s) = s is given, then the probability distribution of the process (X(t); t > s)
does not depend on its past (X(t); t < s), the initial condition is X(s) = x.

Let q 2 (0,T ], consider d-dimensional stochastic control theory (SDE),

dX(t) = b(t,X(t),W)dt +a(t,X(t),W)dW (t), t > q . (5.62)

With the initial condition Xq = X(q), b(·) and a(·) are the drift coefficient and the diffusion
coefficient, respectively, we see X = (X(t), t 2 (q ,T ]) is a solution if X is a continuous and satisfies

X(t) = Xq +
Z t

q
b(t,X(t),W)dt +

Z t

q
a(t,X(t),W)dW (t), t 2 (q ,T ]. (5.63)

The solution X is unique if

p(X(t) = X̂(t), t 2 [q ,T ]) = 1. (5.64)
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5.4.3 Fuzzy Control Theory

Let x 2F (X) be a fuzzy set over the universe of discourse X , 0 a  1. The set is called a-level
set or a-cut of the fuzzy set µ [23].

[x]a = {x 2 X ,µ(x)> a} (5.65)

The operations on fuzzy sets include:

• The intersection of two fuzzy sets µ1 and µ2, µ1\t µ2(x) = t(µ1(x),µ2(x))
• The union of two fuzzy sets µ1 and µ2, µ1[t µ2(x) = s(µ1(x),µ2(x))
• The complement of the (ordinary) set, µ̄(x) = 1�µ(x), ¯̄µ = µ .

Fuzzy relations refer to model dependencies, correlations or connections between variables,
quantities, or attributes.

xRy = (x,y) 2 X⇥Y = R (5.66)

where relation R over the universes of discourse X and Y is a subset of the Cartesian product X⇥Y
of X and Y .

A fuzzy set G 2F (X⇥Y ) is called (binary) fuzzy relation between the universes of discourse
X and Y . For every fuzzy set µ 2F (X), we have (G1 �G2)[µ] = G2[G1[µ]].

Let G1 2 F (X ⇥Y ) and G2 2 F (Y ⇥ Z) be fuzzy relations, the composition of two fuzzy
relations is

G1 �G2 = supmin{G1(x,y),G2(y,z)|y 2 Y} (5.67)

between the universes of discourse X and Z. Equivalently,

(x,z) 2 R1 �R2,9y 2 Y ((x,y) 2 R1^ (y,z) 2 R2) (5.68)

and

(G1 �G2)(x,z) = sup(min(G1(x,y),G2(y,z))|y 2 Y ) (5.69)

For step function x(s) = 1
s , using the general equation y(s) = G(s)x(s), we obtain the step

response

y(s) = G(s)
1
s
. (5.70)

A system is called stable if, for t ! •, its step response converges towards a finite value.
Otherwise, it is said to be unstable.

A linear system is called stable if for an input signal with limited amplitude, its output signal
will also show a limited amplitude. This is the BIBO-Stability (i.e., bounded input - bounded
output).

The overall output quantity u of a controller can be computed as an overlapping of these vectors
by using u = Âki(z(t))ui, where ki(z(t)) are the truth functions. The vector z(t), for that the truth
function ki takes the value ‘1’ and all other truth functions the value ‘0’. The vector ui is the output
vector of the controller at the i-th supporting point. The weighting factor ki(z(t)) depends on actual
value of the input variables.

For a fuzzy controller u = Âk(x)iui = u>k(x), fuzzy clustering refers to Fmin(U,W,X) =
ÂÂui jd(wi,x j), d(wi,x j) is the distance of the data object x j to the cluster wi, U= (ui j), Âui j = 1.
Fuzzy c-means algorithm (FCM) takes into account of d(wi,x j) = kwi� x jk2. Fuzzy c-varieties
algorithm (FCV) is based on d((vi,ei),x j) = ((x j�vi)>ei)2.

Fuzzy systems provide the possibility of interpreting the controller and introducing prior knowl-
edge. Artificial neural networks contribute its capability of learning and the possibility of automatic
optimization or automatic generation of the whole controller. With neural fuzzy systems, the pos-
sibility to learn a controller and then interpret its control strategy by analyzing the learned fuzzy
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rules and fuzzy sets, if necessary, revise them regarding the stability criteria. With the mapping
onto a neural network structure, we are able to provide that there are adequate training data to
optimize the parameters of a fuzzy set.

Neural fuzzy controllers are grouped in cooperative and hybrid models. In cooperative models,
the neural net and the fuzzy controller operate separately. A hybrid fuzzy controller is interpreted
as neural net which can be implemented with the help of a neural net.

Compared to classical control, fuzzy controller is a nonlinear characteristic surface without
internal dynamics, which can be interpreted as nonlinear state space controller. The design of a
fuzzy controller is usually based on heuristics. Fuzzy controllers have a high degree of robustness.

5.5 Optimization

Optimization is the core method in deep neural networks. The optimization includes linear pro-
gramming-based [8], nonlinear-based [1, 2], dynamic-based [4], or neural network-based one [52],
etc. Local optimization and global optimization are the main problems that the optimization aims to
solve. The local minimum and global minimum are always sought in the optimization algorithms.

There are two categories of optimizations: Unconstrained optimization and constrained opti-
mization. The unconstrained optimization refers to the optimization without constraint conditions.
Meanwhile, the constrained optimization refers to the optimization having constraint conditions.
Most of optimization problems with constraint conditions, therefore it is constrained optimization.
The constraints are usually with regard to (i.e., w.r.t.) or subject to (i.e., s.t.) constraint conditions.

Linear programming problem is

x⇤ = argmax
x

f (x) (5.71)

it is subject to (i.e., s.t.) a condition Ax = b.
In linear programming, if we modify the parameters such as A, b will be changed to A+DA

and b+Db, where DA and Db are the small changes, we need to check how they will affect our
optimization, find out whether the solution of this optimization problem is under control or not.

In optimization, we have multiple objective programming problem. How to find the best solu-
tion of this multiple objective programming problem is a key issue in mathematical optimization.
Usually, we need to seek the derivatives. Sometimes, if we could not find the derivatives of a func-
tion for seeking the local optimization solution, we may extend the problem by using mathematical
regularization [35].

For dynamic optimization problem, we also need to calculate the derivatives. If the deriva-
tives could not be found, one of solutions is to utilize genetic algorithm (GA). Modern optimiza-
tion refers to nature-inspired computing. Usually, the modern optimization algorithms include ge-
netic algorithm (GA), simulated annealing, particle swarm optimization, ant colony optimization,
etc. [25].

5.6 Data Fitting

If y = f (z,x1, · · · ,xn), yk = f (zk,x1, · · · ,xn), k = 1, · · · ,m, m > n, the best solution is to minimize

e(x1, · · · ,xn) =
m

Â
i=1

(yi� f (zi,x1, · · · ,xn))
2 (5.72)

or
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e(x1, · · · ,xn) =
m

Â
i=1

(yi� fi(x1, · · · ,xn))
2. (5.73)

Therefore,

∂e(x1, · · · ,xn)

∂xi
=

∂
∂xi

m

Â
i=1

(yi� fi(x1, · · · ,xn))
2. (5.74)

Linear least squares problem: If the functions fk(x1, · · · ,xn), k = 1, · · · ,m are linear, let

ky�Axk2 = (y�Ax)>(y�Ax)

be minimized as x = (x1, · · · ,xn)>, namely,

min
x2Rn
ky�Axk

)5x[(Ax�y)>(Ax�y)] = 2A>Ax�2A>y = 0

) A>Ax�A>y = 0

) x = (A>A)�1A>y. (5.75)

If the function f (x) = ( f1, · · · , fm)> is nonlinear, y = (y1, · · · ,ym)>, let ky� f (x)k2 be mini-
mized as x = (x1, · · · ,xn)>, the Jocobian matrix is

∂J(x)
∂x

=

2

64

∂ f1
∂x1

· · · ∂ f1
∂xn

· · · · · · · · ·
∂ fm
∂x1

· · · ∂ fm
∂xn

3

75= 0 (5.76)

The solution x̄ of the nonlinear least squares problem satisfies

ky� f (x̄)k2  ky� f (x)k2. (5.77)

The solution is given by using Gauss-Newton method

x(i+1) := x(i)�—�1 f (x(i)) f (x)(i). (5.78)

For nonlinear function, if

f (x ) = f (x0)+ f 0(x0)(x �x0) = 0 (5.79)

then,

x = x0�
f (x0)

f 0(x0)
. (5.80)

The generalized Newton method for solving systems of equations is given by

xi+1 = xi�
f (xi)

f 0(xi)
(5.81)

where i = 0,1,2, · · · .
A sequence xi 2Rn is convergent if and only if for every e > 0, there exists an N(e), such that

|xl � xm|< e , 8l,m� N(e).

Theorem 5.1. General convergence theorem: Let function y = F(x), x,y 2Rn have a point x =
F(x ) and Sr(x ) = {x : kx�xk< r} be a neighborhood of x such as F(·) is a contractive mapping
in Sr(x ), namely,

kF(x)�F(y)k  Kkx� yk (5.82)
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where K 2 [0,1], x,y 2 Sr(x ).

For the generated sequence xi = F(xi), i = 0,1,2, · · · , xi 2 Sr(x ),

kxi+1�xk  Kkxi�xk (5.83)

If function y = f (x), x 2 Sr(x0) = {x : kx�x0k< r} has the properties:

• k f 0(x)� f 0(y)k< gkx�yk, 8x,y 2 Sr(x0), g 2 [0,1].
• f 0(x)�1 exists, k f 0(x)�1k< b , 8x 2 Sr(x0), b 2 [0,1].
• k f 0(x0)�1 f (x0)k< a , a 2 [0,1],

then,

•
xi+1 := xi� f 0(xi)

�1 f (xi) (5.84)

where xi 2 Sr(x0), i = 0,1, · · ·
•

lim
k!•

xk = x (5.85)

where x 2 Sr(x0), f (x ) = 0.
• 8k � 0,

kxk�xk< h · h2k�1

1�h2k (5.86)

where h 2 [0,1].

Given a matrix A = (ai j)n⇥n, find l 2C, such as the linear system of equations has a nontrivial
solution x 6= 0.

(A�l I)x = 0 (5.87)

where l is an eigenvalue of the matrix A, x is an eigenvector of matrix A associated with eigenvalue
l , the set of all eigenvalues are called the spectrum of A.

f(µ) = det(A�µI) (5.88)

is denoted as the characteristic polynomial

f(µ) = (µ�l1)
s1 (µ�l2)

s2 · · ·(µ�lk)
sk (5.89)

where si = s(li), s1 +s2 + · · ·+sk = n. Especially,

f(A) = 0 (5.90)

Given matrices A and B, there exists a vector x 6= 0,

Ax = Blx (5.91)

If |B| 6= 0,
B�1Ax = lx. (5.92)

and Ax = lx, then

|l | kAxk
kxk (5.93)

where r = max1in(|li|) is the spectrum radius of A.
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5.7 Polynomials

Generally, a polynomial over R is an expression of the form

f (x) =
n

Â
i=0

aixi = a0 +a1x+a2x2 + · · ·+anxn (5.94)

where n is a nonnegative integer, the coefficients ai 2 R, 0  i  n. Regarding polynomials, we
have the properties:

• f (x) = Ân
i=0 aixi and g(x) = Ân

i=0 bixi are equal, iff ai = bi 2R.
• f (x)+g(x) = Ân

i=0(ai +bi)xi (i.e., polynomial sum).
• f (x)g(x) = Âm+n

k=0 (ck)xk, ck = Âi+ j=k aib j (i.e., polynomial product).

The degree of polynomials n 2Z + satisfies:

• n = deg( f (x)) = deg( f ).
• deg( f +g)max(deg( f ),deg(g)).
• deg( f g) deg( f )+deg(g).

The ring [21], formed by the polynomials over R, is called polynomial ring over R and denoted
as R[x], 0 stands for the zero polynomial ring.

Polynomial division is defined as: Let g 2 R[x], 8 f 2 R[x], there exists q,r 2 R[x] such as
f = q ·g+ r, where deg(r)< deg(g).

The greatest common divisor is defined: g = gcd( f1, f2, · · · , fn), fi 2R[x] is a polynomial. If
gcd( f1, f2, · · · , fn) = 1, then f1, f2, · · · , fn are relatively prime.

The least common multiple is defined as: m = lcm( f1, f2, · · · , fn), fi 2R[x], i = 1,2 · · · ,n.
An element b 2 R is called a root of the polynomial f 2 R[x] if f (b) = 0 and x� b divides

f (x).
Let b 2R is a root of the polynomial f 2R[x], if k is a positive integer Z +, such as f (x) is

divisible by (x�b)k, but not (x�b)k+1, then k is the multiplicity of b.
If f (x) = Ân

i=0 aixi 2R[x], then the derivative f 0 of f is defined by f 0(x) = Ân
i=1 iaixi�1 2R[x].

If we have interpolating points f (ai) = bi, i = 0,1, · · · ,n, the polynomial is defined as Lagrange
interpolation polynomial, if

f (x) =
n

Â
i=0

bi

n

’
k=0,k 6=n

(ai�ak)
�1(x�ak) 2R[x] (5.95)

.
Generally, Lagrange interpolation [19] L(x) 2R[x] with degree k�1 is

Lk�1(x) =
k

Â
i=1

li(x) =
k

Â
i=1

k

’
j=1

j 6=i

x� x j

xi� x j
· f (xi) (5.96)

where

li(x) =
k

’
j=1

x� x j

xi� x j
(5.97)

where x0  x  xk is the base function. Lagrange interpolation has the properties:

• Error bound is

|R(x)| (xk� x0)k

k!
max

x0xxk
| f (k)(x )|. (5.98)

The remainder item is
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R(x) =
f (k)(x )

k!

k

’
i=1

(x� xi) (5.99)

where x0  x  xk.
• There exist a table of Chebyshev nodes to ensure the convergence of Lagrange interpolation:

lim
k!•

Lk(x) = f (x) (5.100)

where f (x) 2C[a,b],xi 2 [a,b].
• Runge’s phenomenon exists in polynomials, like Lagrange interpolations,

lim
k!•

( max
x2[a,b]

| f (x)�Lk(x)|) = +•. (5.101)

• Lagrange interpolation is a special case of Chinese remainder theorem (CRT) for polynomi-
als [28, 9].

Furthermore, let f 2R[x] be a nonzero polynomial, the least positive integer e for which f (x)
divides xe � 1, e is called the order of f , namely, ord( f ) = ord( f (x)) = e. For the order of a
polynomial, we have:

• Let c be a positive integer, the polynomial f 2R[x] divides xc�1 iff ord( f ) divides c.
• If e1 and e2 are positive integers, the greatest common divisor of xe1 �1 and xe2 �1 is xd �1,

d is the greatest common divisor of e1 and e2.
• ord( f ) is equal to the least common multiple of ord(g1)ord(g2) · · ·ord(gn) if f = g1,g2 · · · ,gn;

gi 2R[x] is pairwise relatively prime polynomials.
• A polynomial is symmetric f 2R[x1,x2, · · · ,xn] if f (xi1 ,xi2 , · · · ,xin ) = f (x1,x2, · · · ,xn) for any

permutation.

Exercises

Question 5.1. How to understand the differences between supervised learning, unsupervised learn-
ing, and reinforcement learning?

Question 5.2. What’s Markov decision process? Why is reinforcement learning related to Markov
decision process?

Question 5.3. Please explain what exploration and exploitation (EE) are? How does reinforcement
learning seek the tradeoff between exploration and exploitation ?

Question 5.4. What’s Bellman equation? What’s dynamic programming? What are the elementary
concepts in Bellman equation?

Question 5.5. What’s an episode in reinforcement learning?

Question 5.6. How is reinforcement learning related to gradient-descent methods?

Question 5.7. What are Q-learning and double Q-learning?

Question 5.8. What’s linear programming? What’s nonlinear programming? What’s dynamic pro-
gramming?

Question 5.09. What are modern optimization algorithms? Please list three of them.
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Question 5.10. How to understand controllability, stabilizability, observability, optimality in mod-
ern mathematical control theory?

Question 5.11. What’s the generalized Newton method for solving systems of equations?
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Chapter 6
Manifold Learning and Graph Neural Network

In this chapter, we will introduce manifold learning and graph neural networks. We hope to in-
troduce graphical probability models as the starting point of basestone. We need to introduce our
readers why we should study graphs, what we can benefit from the graphs. Furthermore, we will in-
troduce graph neural networks (GNN) and how to combine GNN with manifold learning together.

159



160 6 Manifold Learning and Graph Neural Network

6.1 Manifold Learning

Manifold alignment [23] is a class of machine learning algorithms that produce projections be-
tween sets of data, given the original datasets on a manifold. Manifold learning, which is empha-
sized on infinity continuity and was originated from differential geometry, has been applied to
nonlinear dimensionality reduction in machine learning.

Manifold [166, 55, 129] is a generalization of curve and surface, a line is 1D manifold, a curve is
2D manifold, a surface is 3D manifold, n-dimensional manifold is n-manifold. In manifold, chart
is an important concept in Euclidean space, which is related to neighbourhood. Atlas is a local
Euclidean space, a collection of topology with continuity of infinity. If a manifold is smooth, we
call it as smooth manifold. Manifolds include analytic manifolds, complex manifolds, Euclidean
manifolds, topological manifolds, etc.

In manifold, if the left continuity of function f (x)2 [a,b],x2R is equal to the right continuity,
namely,

lim
x!x0

f (x) = lim
x!x+0

f (x) = f (x+0 ) = f (x�0 ) = lim
x!x�0

f (x) = f (x0), (6.1)

where Ck is continuous if f k(x) with derivatives of order k 2Z +. C• is continuous, that means, k
tends to infinity, i.e., k! •.

A real-valued function f : U!Rn is Ck(k!•) at p2U if its partial derivatives ∂ j f
∂x1···∂x j

of all
orders j  k exist and are continuous at p 2U, U is an open set or neighbourhood [129], typically,
it is a tangent vector field.

Topological manifold [23] is defined in Hausdorff space with Euclidean distance. Topological
space is countable if it has a base, n-manifold has the base with a dimension n, which is countable.
Thus, the topological manifold is countable.

We call the pair (U,f : U! Rn) is a chart, U is a coordinate neighborhood or a coordinate
open set, f is a coordinate map or a coordinate system on U.

Two charts have a compatible relationship, if we have invertible functions Y�1(·) and F�1(·),
x2C1 and y2C2, y=F(x), F�1F(x) = x, Y�1Y(x) = x , Y�1FY(x) =F(x) and F�1YF(x) =
Y(x).

Homomorphism is a mapping which keeps the relationship

F(u · v) = F(u)�F(v),8u,v 2 A. (6.2)

where ‘·’ is the operation on X and ‘�’ is the operation on Y , 8u,v 2 X and F(u),F(v) 2 Y . This
equation indicates that before and after the homomorphism mapping, the defined operations are
reserved.

Manifold is homomorphism, that means the manifold is defined on a continuous domain. Rie-
mann manifold is a smooth manifold based on derivatives or tangent vectors that is a differentiable
manifold in which each tangent space is equipped with an inner product. The centre of manifold is
defined as a set C = {x : ax = xa = 0,x 2K,a 2 A}. A manifold is a homomorphism if there is an
open neighborhood N(x), 8x 2Rd , then f : N(x)!Rd .

Let manifolds N ⇢ Rn and M ⇢ Rn be manifolds of dimension n 2 Z + and m 2 Z +, the
continuous mapping f : N!M is C• if it is C• at every point of N. If f : N!M and g : M! P
are C• maps of manifolds, then the composite g� f : N! P is C•. Moreover, let f : N!M be a
C• map between two manifolds of the same dimension, p 2N. Then, f (·) is locally invertible at p
if and only if (i.e., iff) its Jacobian determinant det[ ∂ f j(p)

∂x1···∂x j
] is nonzero.

In most manifold learning algorithms, we assume that the input data resides on or is close to a
low-dimensional manifold embedded in the ambient space. Manifold learning has been applied to
medical image processing [48], data compression, data dimensionality reduction, noise removal,
etc. PCA (i.e., Principle Component Analysis) is a linear dimensionality reduction method, mean-
while manifold learning is for nonlinear dimensionality reduction which could be applied to noise
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removal. The data dimensionality reduction has been applied to resolve the “curse of dimensional-
ity” problem.

PCA refers to an orthogonal linear transformation that transforms the given data to a new
coordinate system so that the greatest variance by using scalar projection of the given data replies
on the principal components. The principal component decomposition of a raw vector x is given as

b = xA, (6.3)

where A = (ai j)p⇥p is a weight matrix, p 2 Z , ai j 2R. The transformation maps a data vector
x = (xi j)1⇥p from an original space to a vector b = (bi j)1⇥p in new space, xi j,bi j 2R. If 0 < l < p,
l, p 2Z , we have another mapping,

bl = xAl , (6.4)

where Al = (ai j)p⇥l , bl = (bi j)1⇥l , ai j,xi j,bi j 2R. We expect to minimize the squared reconstruc-
tion error,

e = kx�xlk2
2 > 0, (6.5)

where xl has a lower dimension than the vector x, namely, l < p 2 Z +. Hence, the principal
components of the original data are preserved, and the dimension of the raw data is reduced.

In order to implement dimensionality reduction by using PCA through the covariance method,
we seek the eigenvectors and eigenvalues of the covariance matrix

B = X�hu>, (6.6)

where X = (xi j)n⇥p is a matrix consisting of n given vectors xi = (xi j)1⇥p, h = (hi j)1⇥n, hi j = 1
and u = (ui j)1⇥p,

u1, j =
1
n

n

Â
i=1

xi, j, (6.7)

where j = 1,2, · · · , p, i = 1,2, · · · ,n, xi j,ui, j 2 R. Thus, we have the covariance matrix C from
matrix B and,

C =
1

n�1
B⇤B, (6.8)

where ‘*’ is the conjugate transpose operator. Thus,

V�1CV = L = diag(l1,l2, · · · ,ln), (6.9)

where V is the matrix consisting of eignvectors, L is the diagonal matrix of eigenvalues of C,
li 6= 0, i = 1,2, · · · ,n are eignvalues. Namely, the eignvalues satisfy the characteristic polynomial

f (l ) = |C�l I|= 0, (6.10)

where I is the identity matrix. We sort the eigenvalues in decreasing order, thus the order of corre-
sponding eigenvectors is swapped. We thus select the principal components using eq.(6.11)

d =
Âl

i=1 |li|
Âp

i=1 |li|
> 0,(p� l > 0). (6.11)

If d > 0.90 for example, li, i = 1,2, · · · , l (p� l > 0) are the main components of matrix C.

V�1
l ClVl = L = diag(l1,l2, · · · ,ll), (6.12)

where Vl is the matrix consisting of the eignvectors corresponding to eignvalues l1,l2, · · · ,ll .
Correspondingly, we have found l 2Z +, which satisfies bi = xCl , 8x.
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In manifold learning, we assume that we always are able to find the lower dimensional data
using dimensionality reduction. We assume the lowest dimensional data is hidden or embedded in
noisy data. This is our base point or hypnosis of using manifolds to machine learning, or directly
we call it as manifold learning.

In manifold learning, we construct relationship matrix between nodes or vertices xi and x j ,
i, j = 1,2, · · · ,n of a given graph G, W= {wi j}. Given a dataset with training samples X= {xi}n

i=1,
xi 2Rd , G =< X,W > is an undirected graph, W = (wi j)n⇥n is the similarity or affinity matrix,
wi j 2 [0,1]

wi j = exp(�
kxi�x jk2

gig j
), (6.13)

where gi = kxi � x jk, i 6= j is the local scale of data samples in the neighbourhood of xi. xi is
k-nearest neighbour of x j (i 6= j). Graph Laplacian is

L = D�W (6.14)

where D = (di j)n⇥n, dii = Â j wi j,8i = 1,2, · · · .
For dimensionality reduction of data samples {yi}n

i=1, yi 2RD, D� d, the eigens or spectrum-
based method is

Ly = lBy, (6.15)

where yBy> = I, I is the identify matrix. Thus, we get y⇤ by using

y⇤ = argmin
yBy>=I

yLy>. (6.16)

Given a graph, a matrix of edge weights xi 2Rd , W = (wi j)n⇥n,

L = D�W, (6.17)

where D = (dii)n⇥n, dii = Â j wi j ,

wi j =

(
exp(�kxi�x jk2

2s2 ) x j 2 N(i)
0 Others.

, (6.18)

where wi j is Gaussian kernel, N(i) is the neighbourhood of xi.

Ly = lDy, (6.19)

where Y = (yi)n is the output.
An example of manifold learning is available from the site: https://scikit-learn.org. Python has

been applied to implement the manifold methods, the examples show how to reduce the data di-
mension of a Swiss roll using manifold learning.

In contrast, a MATLAB example is available to demonstrate the Laplacian eigenmap in mani-
fold learning at: https://www.mathworks.com/matlabcentral/fileexchange/36141-laplacian-eigenmap-
diffusion-map-manifold-learning. The result is shown in Figure 6.2 for the purpose of recovering
low-dimensional geometries.

The aim of manifold learning for dimensionality reduction is to find a mapping from high
dimensional manifold to a low-dimensional space so as to represent the data points in high-
dimensional space and achieve the purpose of data dimensionality reduction. By introducing metric
to learn the inter-sample distance in each gait manifold space, we have implemented a supervised
LLE dimensionality reduction method to generate a low-dimensional gait manifold. A pedestrian
identification network is proposed and trained, which identifies a query person by comprehensively
considering the similarity between gait and its gait manifold [42].
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Fig. 6.1: Python examples for dimensionality reduction of Swiss roll by using man-
ifold learning

Fig. 6.2: MATLAB examples for the Laplacian eigenmap method of Swiss roll by
using manifold learning
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6.2 Probabilistic Graphical Models

Graphical model exists everywhere, it is not deep learning, but it is much wider than deep learning
models. There are two types of graphs: Directed graphs and undirected graphs. Bayesian networks
are directed networks, Markov random field (MRF) is a typical undirected model. In fact, we
have template-based graphical models, we need create and fill up our content there. The template-
based models are general, not specific and concrete. Meanwhile, generative model is to create a
new model while discriminative model is to adjust or modify the model to suit our requirements.
Hybrid models are to combine all of these models together.

Our variables in a graph include target variables (output), observable variables (input) and latent
variables (hidden). Inferences include exact inferences and approximate inferences. Uncertainty is
the typical concept in machine learning. The graphical inferences can help us find from what
we know to infer what we do not know. Inferences could assist us to test models and find the
sensitivities and errors.

Why do we study graphical models? Graphical model is a simple way to visualize the structure
of a probabilistic model which can be applied to design new models [55]. In graphical model, we
have various presentations, we need to find which model is explainable and which is the best one
for solving our given problem.

In graphical model, we have parameter learning, feature learning, and knowledge learning.
These are related to knowledge discovery. Latency refers to the hidden variables that we do not
know in a graph.

Graphical model insights into the properties of a model, including conditional independence
properties, which can be obtained by inspection of the graph. Complex computations, required
to perform inference and learning in sophisticated models, are expressed in terms of graphical
manipulations, in which underlying mathematical expressions are carried out implicitly.

Bayes’ theorem is the base stone of pattern classification [35]. From the prior probability,
likelihood, and evidence, we infer the posterior probability for a class. Bayes’ theorem is shown as
eq.(6.20).

P(ci|O) =
P(O|ci)P(ci)

P(O)
(6.20)

where O is observation, ci refers to class i 2Z , P(O) 2 [0,1] is the normalization factor or prob-
ability of observations, P(O|ci) 2 R is the probability of observation given class i or likelihood
probability, P(ci) is priori probability of class i, P(ci|O) is the probability of class i given observa-
tion or posterior probability. The joint probability is P(ci,O) as shown in eq.(6.21).

P(ci,O) = P(ci|O)P(O) = P(O|ci)P(ci) (6.21)

Bayesian model is a simple yet highly effective method for pattern classification in machine
learning. The joint probability of multiple variables is

P(G,S,R) = P(G|S,R) ·P(S|R) ·P(R). (6.22)

Meanwhile, the conditional probability of multiple variables is

P(G|R) = P(R,G)

P(R)
=

P(G,S,R)
P(S,R)

. (6.23)

where S is a latent variable, given the joint probabilities P(S,R) 2 [0,1] and P(G,S,R) 2 [0,1].
Naı̈ve Bayesian model is a family of simple probabilistic classifiers based on applied Bayes’

theorem with strong (Naı̈ve) assumption between the features, typically the classification only has
two classes labeled as “Yes” (e.g., +1/True) or “No” (e.g., -1/False). Naı̈ve Bayesian model has
been applied to automatically classify spam emails using the special words appeared in the emails.
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Fig. 6.3: An example of influence diagram

Influence diagram [23, 105] as shown in Fig.6.3 is a decision-theoretic diagram for making
decision under uncertainty. Influence diagram is also called relevance diagram, decision diagram or
decision network [14]. It is a generalization of a Bayesian network, in which not only probabilistic
inference problems but also decision making problems will be solved. Usually, uncertainty node is
shown as the shape oval, e.g., A and B in Fig.6.3, decision node is represented by using rectangles,
e.g., C in Fig.6.3, and value node is marked as octagons, e.g., D in Fig.6.3. Influence diagram as a
Bayesian network is a directed acyclic graph (DAG).

Markov random field (MRF) [68] is undirected graphs with conditional probability distribu-
tions. Factor graphs are encompassed in both Bayesian networks and Markov networks. Factoriza-
tion is a product of factors over cliques in the graph [55].

P(x) =
1
Z

expÂ
k

Nk

Â
i=1

wki fki(x{k}),x 2 X (6.24)

and

Z = Â
x2X

expÂ
k

Nk

Â
i=1

wki fki(x{k}). (6.25)

where Z(·) is called partition function, wki is the weights between cliques, fki is the link between
clique k 2Z + and clique i 2Z +.

A distribution PF is a Gibbs distribution parameterized by using a set of factors F =(f1(D1), · · · ,fk(Dk)),
then

F = f1(D1)⇥ · · ·⇥fm(Dm) =
m

’
i=1

fi(Di) (6.26)

Therefore,

PF =
1
Z

f1(D1)⇥ · · ·⇥fm(Dm) =
1
Z

F (6.27)

where Z = ÂX1,X2,··· ,Xn f1(D1)⇥ · · ·⇥fm(Dm) is a normalizing constant.
A conditional random field (CRF) is an undirected graph [6, 45], the network is annotated with

a set of factors f1(D1), · · · ,fm(Dm), a conditional distribution is

P(Y |X) =
1
Z

m

’
i=1

fi(Yi,Yi+1), (6.28)
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and

Z = Â
Y

m

’
i=1

fi(Xi,Yi). (6.29)

A CRF over X = {X1,X2, · · · ,Xn}, Y = {0,1},

fi(Xi,Y ) = exp(wiI(Xi = 1,Y = 1)), (6.30)

and

P(Y = 1|x1, · · · ,xk) = s(w0 +
k

Â
i=1

wixi), (6.31)

where s(·) is a sigmoid function.
Logistic CPD is

P(Y = 1|X1, · · · ,Xn) = s(w0 +
N

Â
i=1

wi), (6.32)

where s(·) is a sigmoid function. Logistic distributions only have two labels: “-1” and “+1”.
Linear or multivariate Gaussian distribution is

p(Y |x) = N(b0 +bx;s2). (6.33)

where N(·) is Gaussian distribution.
Conditional Bayesian network is

P(Y |X) = Â
Z

P(Y,Z|X) = ’
X2Y

S
Z

P(X |PX ). (6.34)

Multivariate Gaussian distribution is

P(X) =
1

(2p)(n/2)|S |1/2 e(X�µ)>S�1(X�µ). (6.35)

A joint normal distribution over {X ,Y} is P(X ,Y )⇠ N(µ,S),

µ(n+m)⇥1 =

✓
(µX )n⇥1
(µY )m⇥1

◆
(6.36)

and
S(n+m)⇥(n+m) =

✓
(SXX )n⇥n (SXY )n⇥m
(SY X )m⇥n (SYY )m⇥m

◆
. (6.37)

For Gaussian Bayesian networks, if

p(Y |x)⇠ N(b0 +b>x;s2), (6.38)

then
p(Y )⇠ N(µY ;s2

Y ), (6.39)

µY = b0 +b>x, (6.40)

and
s2

Y = s2 +b>Sb . (6.41)

The conditional density is
P(Y |X)⇠ N(b0 +b>X ;s2), (6.42)

where
b0 = µY SY X S�1

XX µX , (6.43)

and
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b = S�1
XX SY X , (6.44)

and
s2 = SYY �SY X SXX SXY . (6.45)

Gaussian distribution is

P(x) =
1p
2p

exp{� (x�µ)2

2s2 }, (6.46)

we generalize it as

P(x) =
1

Z(µ,s2)
exp(< t(q),t(x)>) (6.47)

where t(x) =< x,x2 > is inner product,

t(µ,s2) =<
µ
s
,� 1

2s
>, (6.48)

and

Z(µ,s2) =
p

2ps exp(
µ2

2s2 ). (6.49)

Linear exponential family is

Pq (x) =
1

Z(q)
exp(< t(x),q >), (6.50)

where
Q = {q 2 Rk,

Z
exp(< t(x),q >)dx < •}. (6.51)

The exponential factor family is

Fq (x) = A(x)exp(< t(q),t(x)>), (6.52)

and
Pq (x) µ ’

i
fqi (x) = ’

i
Ai(x)exp(Â

i
< ti(qi),ti(x)>). (6.53)

Bayesian networks are denoted in the corresponding way,

P(x|u) = exp(tP(X|U)(q),tP(X|U)(x,u)). (6.54)

Entropy is
H(X) = lnZ(q)�< E(t(X)), t(q)> . (6.55)

Relative entropy is

D(Pq1 ||Pq2 ) = EP(q1)[ln(
Pq1 (X )

Pq2 (X )
)] =� ln

Z(q1)

Z(q2)
+< EP(q1)(t(X )), t(q1)� t(q2)> . (6.56)

Information projection is
QI = argmin

Q2Q
D(Q||P). (6.57)

Moment projection is
QM = argmin

Q2Q
D(P||Q). (6.58)

If Gf is an empty graph, QM = argmaxD(P|Q)
Q2Gf

, then,

QM(X1,X2, · · · ,Xn) = P(X1)P(X2) · · ·P(Xn). (6.59)
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Hence,
D(P||Q) =�HP(X )+EP[lnQ(X )]� D(P|QM). (6.60)

Furthermore, if and only if Qi(X) = Pi(X), then,

D(P|Q) = D(P|QM), (6.61)

i.e., Q = QM , additionally,

D(P|Qq )�D(P|Qq 0 ) = D(Qq 0 ||Qq )� 0. (6.62)

6.3 Boltzmann Machine

Hopfield networks [13, 33, 24] is a form of recurrent artificial neural network and a type of spin
glass system. With regard to this network, on a equidistance circle, we link all the nodes together.
Boltzmann machines [2] are seen as the stochastic and generative counterpart of Hopfield nets.

Fig. 6.4: An example of the fully-connected modern Hopfield network, the weight
matrix is symmetric.

Boltzmann machine is a general “connectionist” approach to learn arbitrary probability dis-
tributions over binary vectors. For a d-dimensional binary random vector x 2 {0,1}d , an energy-
based model is,

P(x) = exp(�E(x))
Z

, (6.63)

and
E(x) =�xU>x�b>x, (6.64)

where E(x) is the energy function, Z(·) is the partition function, Âx P(x) = 1, U is the weight
parameters, x is bias parameters. Units x could be decomposed into visible v(visible) and hidden
(latent) h,

E(v,h) =�vT Rv�vT Wh�hT Sh�bT v� cT h. (6.65)

Restricted Boltzmann machines (RBM) [24] further restrict Boltzmann machines to those with-
out visible-visible and hidden-hidden connections. A deep Boltzmann machine (DBM) is a type



6.3 Boltzmann Machine 169

of binary pairwise MRFs (i.e., undirected probabilistic graphical model) with multiple layers of
hidden random variables [14, 68].

The global energy E in a Boltzmann machine is identical in the form to that of a Hopfield
network. Mathematically,

E D
=�(Â

i< j
wi jsi · s j +Â

i
qi · s j), (6.66)

where

• wi j is the connection strength between unit j and unit i.
• si is the state of unit i, si 2 {0,1}.
• qi is the bias of unit i in the global energy function.
• wi j is represented as a symmetric matrix W = (wi j)N⇥N , with zeros along the diagonal.
• The probability of the i-th unit is

pi
D
=

1
1+ exp(� Ei

T )
. (6.67)

RBM [24] is intractable and bipartite graph, its energy function is

E(v,h) =�v>Wh�b>v� c>h. (6.68)

Therefore,

P(v = v,h = h) =
exp(�E(v,h))

Z
, (6.69)

and
Z = Â

v
Â
h

exp(�E(v,h)). (6.70)

A restricted Boltzmann machine (RBM) [24] is a generative neural network that is able to
learn a probability distribution from its set of inputs. The energy function from product of expert
(POE) [55] is

E(v,h) =�Â
i j

wi jhiv j�Â
j

b jv j +Â
i

cihi. (6.71)

The probabilities are

p(v) D
=

Âh e�E(v,h)

Âv,h e�E(v,h) , (6.72)

p(h) D
=

Âv e�E(v,h)

Âv,h e�E(v,h) , (6.73)

and

p(v,h) D
=

e�E(v,h)

Âv,h e�E(v,h) , (6.74)

hence,

p(v|h) = e�E(v,h)

Âv e�E(v,h) . (6.75)

The loss function is
L(q) = ’

v
L(q |v) = ’

v
p(v),q = (W,b,c). (6.76)

The derivatives are
∂L(q)

∂q
= Â

v

∂ lnL(q |v)
∂q

= Â
v

∂ ln p(v)
∂q

, (6.77)

ln p(v) = ln(Â
h

e�E(v,h))� ln(Â
v,h

e�E(v,h)), (6.78)
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and
∂L(q)

∂q
= Ep(h|v)(�

∂E(v,h)
∂q

)�Ep(h,v)(�
∂E(v,h)

∂q
). (6.79)

The energy function from the product of expert (POE) [55] is

E(v,h) =�Â
i j

wi jhiv j�Â
j

b jv j +Â
i

cihi, (6.80)

∂ ln p(v)
∂wi j

= p(hi = 1|v)v j�Â
v

p(v)p(hi = 1|v)v j, (6.81)

∂ ln p(v)
∂b j

= v j�Â
v

p(v)v j, (6.82)

and
∂ ln p(v)

∂ci
= p(hi = 1|v)�Â

v
p(v)p(hi = 1|v). (6.83)

A DBM is an energy-based model

P(v,h) =
1

Z(q)
exp(�E(v,h(1),h(2),h(3),h(4);q)), (6.84)

where E(·) is the energy function, v is visible layer, h(i) are hidden layers, i = 1,2,3,

E(v,h;q) =�v>W (1)h(1)�h(1)>W (2)h(2)�h(2)>W (3)h(3). (6.85)

In the case with two hidden layers,

P(vi = 1|h(1)) = s(W (1)
i,: h(1)), (6.86)

P(h(1)i = 1|v,h(2)) = s(v>W (1)
:,i +W (2)

i,: h(2)), (6.87)

and
P(h(2)k = 1|h(1)) = s(h(1)W (2)

:,k ). (6.88)

Restricted Boltzmann machines (RBMs) are created for unsupervised learning. The aim of
RBMs is to find patterns in data by reconstructing the inputs using only two layers (i.e., visible layer
and hidden layer). MATLAB and Python source codes for implementing RBMS all are available.
An example from the site: https://scikit-learn.org/ shows how to improve the classification accuracy
using a RBM.

A deep Boltzmann machine (DBM) is a type of binary pairwise MRFs with multiple layers
of hidden random variables, which is a network of symmetrically coupled stochastic binary units.
The probability assigned to vector v is

P(v) = 1
Z Â

h
e[Âi j(W

(1)
i j vih

(1)
j )+Â jl (W

(2)
jl h(1)j h(2)l )+Âlm(W

(3)
lm h(2)l h(3)m )], (6.89)

where h = {h(1),h(2),h(3)} is the set of hidden units, W = {W (1),W (2),W (3)} is the model param-
eters, p(hi|v) and p(vi|h) is independent,

p(h|v) = s(Â
j

wi j · v j + ci), (6.90)

where s(x) = 1/(1+ e�x) and

p(h|v) = ’
i

p(hi|v), p(v|h) = ’
i

p(vi|h). (6.91)
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With regard to DBM, if p(hi|v) and p(vi|h) are independent, then p(h|v) = ’i p(hi|v) or
p(v|h) = ’i p(vi|h).

DBMs are understood as multilayer perceptron with restricted Boltzmann machines. Deep be-
lief nets are thought as Bayesian belief nets [42, 116] with deep Boltzmann machines. In machine
learning,

Y = F(X,q), (6.92)

where q is the parameter vector, X is the input, Y is the labeled dataset.

EA(q) =
1
N

N

Â
i=1

E(xi,di,q), (6.93)

where {(xi,di)} is the training set, xi 2 X, di 2 D.

qk+1 := qk� e · ∂E(q)
∂q

,k = 1,2, · · · (6.94)

6.4 Graph Neural Networks

6.4.1 Machine Learning on Graphs

Graphs are a ubiquitous data structure and a universal language for describing complex sys-
tems [55]. In the most general view, a graph is a collection of objects (i.e., nodes), along with
a set of interactions (i.e., edges) between pairs of these objects. The power of graph formalism
lies both in its focus on relationships between points, as well as in its generality, rather than the
properties of individual points. Historically, the famous four color problem is thought as one of the
most stimulating problems in graph theory [34].

A graph G = (V,E) is defined by a set of nodes V and a set of edges E between these [3, 4].
We denote an edge from node u 2U to node v 2V as (u,v) 2 E. In order to represent a graph with
an adjacency matrix A = (auv)|V|⇥|V| 2 R |V|⇥|V|, u,v = 1,2, · · · , |V|, we order the nodes in the
graph so that every node indexes a particular row and column in the adjacency matrix. A(u,v) =
{au,v},au,v = 1 if (u,v) 2 E, otherwise au,v = 0. For weighted edges, au,v 2 [0,1], pertaining to
directed graph, au,v 6= av,u, generally, A(u,v) 6= A(v,u).

The goal of node classification or node attribute inference [18] in machine learning on graphs
is to predict the label, if we are only given the true labels on a training set of nodes [9]. The
key insight behind most successful node classification approaches is to explicitly leverage the
connections between nodes. Node classification is useful for inferring information based on its
relationship with other nodes in the graph. The advantage over other machine learning methods is
that node attribute inference gives us the ability to bring in context and neighbourhood information
into our predictions.

MATLAB provides an example of node classification using graph convolutional network,
which shows how to classify nodes in a graph using a graph convolutional network (GCN). The
example is based on the given the molecular structure, see:
https://au.mathworks.com/help/deeplearning/ug/node-classification-using-graph-convolutional-network.html

Relation prediction in machine learning on graphs includes link prediction, graph completion,
and relational inference [30]. It is the problem of inferring missing or finding hidden relationships
between entities. The goal is to apply this partial information to infer the missing edges. The
complexity of this task is highly dependent on the type of graph data. Relation prediction requires
inductive biases that are specific to the graph domain.

Graph clustering in machine learning on graphs is to learn an unsupervised measure of simi-
larity between pairs of graphs [36]. Meanwhile, graph regression is to take use of a labeled set of
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training data to train a mapping from data points (i.e., graphs) with regard to labels [27]. In graph
kernel methods, node degree is defined as du = Âv2V A(u,v), eigenvector centrality refers to

eu =
1
l Â

v2V
A(u,v)ev (6.95)

or
le = Ae (6.96)

where l is a constant. Clustering coefficient method means

cu =
|{(v1,v2) 2 E,v1,v2 2 N(u)}|

C2
du

(6.97)

where N(u) = {v 2 V,(u,v) 2 E}.
The Weisfeiler-Lehman (WL) kernel [38] has the steps:

• Assign an initial label l(0)(v), v 2 V to each node.
• Iteratively assign a new label to each node by hashing the multiset of the current labels within

the node’s neighborhood.
• After running k iterations of re-labeling, we now have a label l(k)(v) for each node.

In graph Laplacians, the basic Laplacian matrix is,

L = D�A (6.98)

where A is the adjacency matrix and D is the degree matrix. It is symmetric (L> = L) and positive
semi-definite

x>Lx� 0 (6.99)

where
x>Lx = Â

(u,v)2E
(x(u)�x(v))2 (6.100)

where L has non-negative eigenvalues li > 0, i = 1, · · · , |V|. The normalized Laplacians is

Lsys = D�
1
2 LD�

1
2 . (6.101)

The random walk Laplacian is LRW = D�1L [22].
Given a partitioning of the graph [26, 32] into k non-overlapping subsets A1, · · · ,Ak, Ai\A j =

/0(i 6= j), the graph cut [25] is

Cut(A1, · · · ,Ak) =
1
2

k

Â
i=1

|{(u,v) 2 E,u 2 Ai,v 2 Āi,A\ Ā = /0}|. (6.102)

There are two kinds of graph cuts [25], i.e., ratio cut and normalized cut:

• Ratio cut:

RCut(A1, · · · ,Ak) =
1
2

k

Â
i=1

|{(u,v) 2 E,u 2 Ai,v 2 Āi,A\ Ā = /0}|
|Ai|

(6.103)

• Normalized cut:

NCut(A1, · · · ,Ak) =
1
2

k

Â
i=1

|{(u,v) 2 E,u 2 Ai,v 2 Āi,A\ Ā = /0}|
vol(A)

(6.104)

where vol(A) = Âu2A du.

The generalized spectral clustering [29] has steps as follows:
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• Find the smallest eigenvectors of L (excluding the smallest).
• Form the matrix U with the eigenvectors from the first step.
• Represent each node by using its corresponding row in the matrix zu = U(u),u 2 V.
• Run k-means clustering on the embeddings zu,u 2 V.

6.4.2 Node Embeddings

Node embeddings are based upon the framework of encoding and decoding graphs [1, 7]. In
the encoder-decoder framework, an encoder model maps each node in the graph into a low-
dimensional vector or embedding. In the encoder-decoder framework, a decoder model takes ad-
vantage of the low-dimensional node embeddings and makes use of them to reconstruct informa-
tion about each node’s neighborhood in the original graph.

Node embedding algorithms compute low-dimensional vector representations of nodes in a
graph. In shallow embedding, the encoder is the function that maps node v2V to vector embedding
zv 2Rd , where zv corresponds to the embedding for node v 2 V.

ENC(v) = Z(v) (6.105)

where Z denotes the row of matrix Z corresponding to node v.
The role of decoder is to reconstruct graph statistics from the node embeddings. The goal is to

minimize the reconstruction loss. S(u,v) is a graph-based similarity measure between nodes.

DEC(ENC(u),ENC(v)) = DEC(zu,zv)⇡ S(u,v) 4= A(u,v) (6.106)

In order to achieve the reconstruction objective, we minimize an empirical reconstruction loss
L over a set of training node pairs.

L = Â
(u,v)2D

l(DEC(zu,zv),S(u,v)) (6.107)

where l(·) is a loss function measuring the discrepancy between DEC(u,v) and S(u,v). The recon-
struction objective for these approaches is written as

L = Â
(u,v)2D

kz>u zv�S(u,v)k2
2 ⇡ kZZ>�Sk2

2. (6.108)

Laplacian eigenmaps [40] is

DEC(zu,zv) = kzu� zvk2
2 (6.109)

and

L = Â
(u,v)2D

DEC(zu,zv) ·S(u,v) (6.110)

Inner-product methods are
DEC(zu,zv) = zt

uzv (6.111)

and

L = Â
(u,v)2D

kDEC(zu,zv)�S(u,v)k2
2. (6.112)

Random walk embeddings [22, 41] include:

• DeepWalk [31] and node2vec [11]:
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DEC(zu,zv)
4
=

ez>u zv

Âzk2V ezt
uzk
⇡ pG,T (v|u) (6.113)

where pG,T (v|u) is the probability of visiting v on a length T random walk starting at u, T =
{2,3, · · · ,10}.
The cross-entropy loss is

L =� Â
(u,v)2D

log[DEC(zu,zv)] (6.114)

where D is training set of random walks, which is generated by sampling random walks starting
from each node [22].

• LINE:
DEC(zu,zv) =

1
1+ e�z>u zv

(6.115)

where LINE refers to Large-scale Information Network Embeddings.

The shallow embedding methods [10] do not share any parameters between nodes in the en-
coder. The lack of parameter sharing is due to both statistically and computationally inefficient.
The shallow embedding approaches do not leverage node features in the encoder.

The shallow embedding methods are inherently transductive, the restriction prevents shallow
embedding methods from being used on inductive applications, which involve generalizing to un-
seen nodes after training.

The goal of embedding multirelational graphs (i.e., knowledge graph) is to reconstruct the
relationship between these nodes. Given a multirelational graph G = (V,E), the edges are e =
(u,t,v), the decoder is

DEC(zu,t,zv) = z>u Rt zv (6.116)

where Rt 2Rd⇥d is a matrix specified to relation t 2R. A basic reconstruction loss is

L = Â
u2U

Â
v2V

Â
t2R
kDEC(u,t,v)�A(u,t,v)k2 = Â

u2U
Â
v2V

Â
t2R
kz>u Rt zv�A(u,t,v)k2 (6.117)

where A 2R |U|⇥|R|⇥|V| is the adjacency tensor for the multirelational graph.
The cross-entropy loss with negative sampling distribution is

L = Â
(u,t,v)2E

{� logs(DEC(zu,t,zv))� gEvn2pn,u(V)[logs(DEC(zu,t,zvn ))]} (6.118)

Popularly,

L = Â
(u,t,v)2E

{� logs(DEC(zu,t,zv))� Â
vn2pn,u

[logs(DEC(zu,t,zvn ))]} (6.119)

where s(·) is logistic function, pn,u(V) is a negative sampling distribution, pn,u is a subset of nodes
from pn,u(V), g > 0 is a parameter.

The margin loss or hinge loss is

L = Â
(u,t,v)2E

Â
vn2pn,u

{max(0,�DEC(zu,t,zv)+DEC(zu,t,zvn )+4)} (6.120)

where4 is called as margin.
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6.4.3 Deep Graph Neural Networks

CNNs are well-defined only over grid-structured inputs (e.g., images). RNNs are well-defined only
over sequences (e.g., text). Graph Neural Networks (GNNs) are a kind of general frameworks for
defining deep neural networks on graph-structured data. A deep neural network over graphs would
be to simply harness the adjacency matrix as input to a deep neural network.

zG = MLP(A(1)� · · ·�A(|V|)) (6.121)

where A(i), i = 1,2, · · · , |V| is a row of the adjacency matrix. MLP(·) is a multilayer perceptron,
� is vector concatenation.

Neighborhood normalization [21] is:

• Simple normalization:

mN(u) =
Âv2N(u) hv

|N(u)| . (6.122)

• Symmetric normalization:

mN(u) = Â
v2N(u)

hvp
|N(u)||N(v)|

(6.123)

In the self-loop GNN approach, we have

h(k)
u = AGGREGATE({h(k�1)

v ,8v 2 N(u)[{u}) (6.124)

and

H(k) = s((A+ I)H(k�1)W(k)) (6.125)

Graph attention network [39] takes use of attention weights to define a weighted sum of the
neighbors,

mN(u) = Â
u2N(u)

au,vhv (6.126)

where au,v denotes the attention on neighbor v 2N(u) if we are aggregating information at node u.
Popularly, bilinear attention model [16] is

au,v =
exp(h>u Whv)

Âv02N(u) exp(h>u Whv0 )
(6.127)

MATLAB provides an example which shows how to classify graphs that have multiple inde-
pendent labels using graph attention networks (GATs). If the observations of given data have a
graph structure with multiple independent labels, the data labels could be predicted. Using the
graph structure and available information on graph nodes, a multihead self-attention mechanism is
employed to aggregate features across neighboring nodes, and computes output features or embed-
dings for each node in the graph. The output features are used to classify the graph usually after
employing a readout, or a graph pooling, operation to aggregate or summarize the output features
of the nodes. The example is available at:

https://au.mathworks.com/help/deeplearning/ug/multilabel-graph-classification-using-graph-attention-
networks.html

Using MLP(·), we have

au,v =
exp(MLP(h>u Whv))

Âv02N(u) exp(MLP(h>u Whv0 ))
. (6.128)



176 6 Manifold Learning and Graph Neural Network

The representations for all the nodes in the graph can become very similar to one another after
several iterations of GNN message passing. Oversmoothing occurs if node-specific information
becomes “washed out” or “lost” after several iterations of GNN message passing. It is quantified

by examining the magnitude of the corresponding Jacobian matrix h(k)u

h(0)v
. Jacobian matrix h(k)u

h(0)v
is a

measure of how much the initial embedding of node u influences the final embedding of node v in
the GNN.

Gating methods are employed to improve the stability and learning ability of RNNs. The gated
updates are very effective at facilitating deep GNN architectures and preventing oversmoothing:

zu = h(k)
u = GRU(h(k�1)

u ),m(k)
N(u) (6.129)

where GRU(·) denotes the update equation of the gated recurrent unit (GRU) cell.
Relational graph neural networks [15](RGNN) has the transformation function:

mN(u) = Â
t2R

Â
v2N(u)

Wt Hv

fn(N(u),N(v))
(6.130)

where fn(·) is a normalization function that depends on both the neighborhood of the node u as
well as the neighbor v.

R-GNN has drastic increase in the number of parameters, the relations of this increase lead to
overfitting and slow learning.

GNNs are employed for one of three tasks: Node classification, graph classification [44], or
relation prediction:

• Node classification [5]:

L = Â
u2V

softmax(zu,yu) (6.131)

softmax(zu,yu) =
c

Â
i=1

y(i)u
ez>u wi

Âc
j=1 ez>u w j

(6.132)

where wi, i = 1, · · · ,c are trainable parameters.
• Graph classification [44]:

L = Â
Gi

kMLP(zGi )�yGik
2
2 (6.133)

where MLP(·) is a densely connected neural network with a univariate output and yGi is the
target value for training graph Gi.

• Graph embedding [28]: Deep graph infomax (DGI) maximizes the mutual information between
node embedding zu.

L =�Â
u2V

EG log(D(zu,zG))+ gEĜ log(1�D(ẑu,zG) (6.134)

In graph convolutions, let f (·) and h(·) be two functions, general continuous convolution oper-
ation ‘?’ is:

( f ?h)(x) =
Z

x,y2Rd
f (y)h(x�y)dy (6.135)

Convolution translation (or shift) is

f (t +a)?g(t) = f (t)?g(t +a) =4( f ?g)(t +a) (6.136)

A corollary convolutions regarding difference operation is:
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4 f (t)?g(t) = f (t)?4g(t) =4( f ?g)(t) (6.137)

where4 f (t) = f (t +1)� f (t) is the Laplace (i.e., difference) operator.
For a cyclic chain graphs or chain-cyclic graphs [19],

f ?h(t) =
N�1

Â
t=0

f (t)h(t� t) = Qhf (6.138)

where Qh is a matrix of the convolution operation with function h, e.g.,

Qh =
N�1

Â
i=0

aiAi
c (6.139)

where f = [ f (t0), · · · , f (tN�1)]> and

Ac(i, j) =
⇢

1 if i = ( j+1) mod N;
0 if otherwise. (6.140)

For a cyclic chain graph, matrix Qh has the properties:

• Translation equivariance (commutativity):

AcQh = QhAc. (6.141)

• Difference operator:
LcQh = QhLc (6.142)

where Lc = I�Ac.
• These requirements are satisfied for a real matrix Qh if

Qh =
N�1

Â
i=0

aiAi
c (6.143)

In general graph convolutions, for an arbitrary graph with adjacency matrix A and a filter h, the
convolution matrix is

Qh =
N

Â
i=0

aiAi. (6.144)

Laplace operator simply corresponds to the difference operator (i.e., the difference between
consecutive time points).

Lx(i) = A(i, j)(xi�x j) (6.145)

which measures the difference between the value of signal x(i) at a node i and the signal values of
all of its neighbors.

By considering the eigendecomposition of the general graph Laplacian,

L = ULU> (6.146)

where the eigenvectors U is the graph Fourier modes. The matrix L is the corresponding eigenval-
ues along the diagonal.

Fourier transform of signal (or function) f 2R |V| on a graph is,

s = U>f. (6.147)

Its inverse Fourier transform is

f = Us. (6.148)

A graph convolution via elementwise products is,
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f�G h = U(U>f�U>h) (6.149)

where U is the matrix of eigenvectors of the Laplacian L and �G is harnessed to denote that this
convolution is specific to a graph G.

In Hilbert space embeddings of distributions, we represent the density p(x),x 2Rm under the
feature map f : Rm!R as

µx =< f(x), p(x)>=
Z

Rm
f(x)p(x)dx. (6.150)

A well-known example of a feature map of the Gaussian radial basis function (RBF) kernel is
f(x) = exp(�ex)2, etc. RBF functions are typically applied to build up function approximations
of the form

y(x) =
N

Â
i=1

wif(kx�xik). (6.151)

A graph G = (V,E) defines a Markov random field as

p({xv},{zv}) µ ’
v2V

Y(xv,zv) ’
(u,v)2E

F(zu,zv) (6.152)

where Y(·) and F(·) are non-negative potential functions, Y(xv,zv) indicates the likelihood of a
node feature vector xv, given its latent node embedding zv, F(·) controls the dependency between
connected nodes.

Given a Markov random field, we approximate the posterior based on the assumption

p({zv}|{xv})⇡ q({zv}) = ’
v2V

qv({zv}). (6.153)

In the mean-field approximation using KL divergence,

KL(q({zv})|p({zv|xv})) =
Z

q({zv}) log
q({zv})

p({zv|xv})
dzv. (6.154)

The updated Hilbert space embedding for node v is based on its neighbors’ embeddings [43] as
well as its feature inputs.

µ(t)
v = s(w(t)

v xv +w(t)
u Â

u2N(v)
µ(t�1)

u ). (6.155)

Two graphs are isomorphic if and only if (iff) there exists a permutation matrix P such that

P>A1P = A2,PX1 = X2 (6.156)

where two graphs G1 and G2 with adjacency matrices A1 and A2, as well as node features X1 and
X2.

Two graphs being isomorphic means that they are essentially identical in terms of their under-
lying structure. Graph isomorphism [37] has the following optimization problem,

minp2PkA2�PA1P>k+kPX1�X2k! 0 (6.157)

Graph isomorphism network (GIN) [17] is defined as,

h(k)
u = MLP(k)((1+ e(k))h(k�1)

u + Â
v2N(u)

h(k�1)
v ) (6.158)

where e(k) is a trainable parameter.
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6.4.4 Graph Generating

The goal of graph generating is to create models that can generate realistic graph structures. The
key challenge in graph generating is to generate graphs that have desirable properties.

The Erdös–Rényi (ER) model simply assumes that the probability of an edge occurring between
any pairs of nodes is equal [8]. i.e., P(A(u,v) = 1) = r 2 [0,1], 8u,v 2 V,u 6= v.

Stochastic block models (SBM) [12] seek to generate graphs with community structure. i.e.,
P(A(u,v) = 1) = C(i, i), C(i, j) 2 [0,1]|V|⇥|V| is a block-to-block probability matrix.

Preferential attachment (PA) model [35] connects new nodes to existing nodes with a probabil-
ity that is proportional to the existing node degrees.

P(A(u,v)) =
d(t)

v

Âd(t)
v0

, (6.159)

where d(t)
v denotes the degree of node v at iteration t.

We jointly train the encoder and decoder so that the decoder is able to reconstruct graphs. We
assume a probabilistic encoder model qf , a probabilistic decoder model pq , a prior distribution
p(Z),Z 2 N(0,1) over the latent space. Given a set of training graphs,

L = Â
Gi2{G1,G2,··· ,Gn}

Eqq [pq (Gi|Z)]�KL(qq (Z|Gi)kpq (Z)) (6.160)

We seek to maximize the reconstruction ability of the decoder, i.e., the likelihood term Eqq
while minimizing the KL divergence between the posterior latent distribution qq (Z|Gi) and the
prior pq (Z).

The encoder generates latent representations for each node in the graph. The decoder takes
advantage of embeddings as input and uses the embeddings to predict the likelihood of an edge
occurring between the two nodes.

• Encoder model: Given an adjacency matrix A and node features X, we generate mean µz and
variance sz,

Z = e � exp(log(sz))+µz, (6.161)

where e 2N (0,1).
• Decoder model: The independence between edges defines the posterior over the full graph,

which corresponds to a binary cross-entropy loss over the edge probabilities.

pq (G|Z) = ’
(u,v)2V2

pq (A(u,v) = 1|zu,zv) = s(z>u zv). (6.162)

A general GAN-based generative model [34, 26] is:

• The generator network gq (·) is trained to generate realistic (but fake) data samples.
• The discriminator df (·) is to distinguish between real data samples and samples generated by

the generator.
• To train a GAN, both the generator and discriminator are optimized jointly in an adversarial

game:

L = min
q

max
f

{Ex⇠pdata(x) log[1�df (x)]+Ez⇠pseed (z) log[df (gq (z))]} (6.163)

where pdata(x) denotes the empirical distribution of real data samples (e.g., a uniform sample
over a training set) and pseed(z) is the random seed distribution.

In modeling edge dependencies,
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p(G|z) = ’
(u,v)2|V|2

p(A(u,v)|z). (6.164)

In the autoregressive approach, we assume that edges are generated sequentially and that the
likelihood of each edge can be conditioned on the edges.

p(G|z) =
|V|

’
i=1

p(L(vi, :)|L(v1, :), · · · ,L(vi�1, :),z) (6.165)

where L denotes the lower-triangular portion of the adjacency matrix A.
Recurrent models for graph generating include:

• GraphRNN: A hierarchical RNN to model the edge dependencies.

hi+1 = RNNgraph(hi,L(vi, :)) (6.166)

where RNNgraph denotes a generic RNN state update.
• GRAN: Graph Recurrent Attention Networks [20],

p(L(vi, :)|L(v1, :), · · · ,L(vi�1, :))⇡GNN(L(v1 : vi�1, :), X̂) (6.167)

where X̂ is the input feature matrix.

We compute the distance between the statistical distribution on the test graph and generated
graph by using the total variation distance [2],

d(si,Gtest ,si,Ggen ) = sup
x2R

|si,Gtest (x)� si,Ggen (x)| (6.168)

where si,Gtest and si,Ggen are particular statistic si based on test graph and generated graph.

Exercises

Question 6.1. Please list the algorithms for data dimensionality (dimension) reduction and the dif-
ferences between them.

Question 6.2. Why could manifold learning be applied to dimensionality reduction?

Question 6.3. What are the directed graphs and undirected graphs? Please give an example for
each category.

Question 6.4. What are the linear exponential families? Please give an example.

Question 6.5. What are the relationships between relative entropy, information projection, and mo-
ment projection?

Question 6.6. What are the aim and feature of Restricted Boltzmann machines (RBMs)? Why are
deep Boltzmann machines thought as multilayer perceptron with RBMs?

Question 6.7. What are the differences between MRF and CRF?

Question 6.8. What are the linear exponential families? Please give an example.

Question 6.9. What are the relationships between relative entropy, information projection, and mo-
ment projection?
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Question 6.10. What are the differences when convolutional neural networks are applied to graphs
and digital images?
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Chapter 7
Transfer Learning and Ensemble Learning

In this chapter, we start from transfer learning and introduce the relationship between learners. We
are use of ensemble learning to combine them together and hope to get a strong learner from a
weak learner by changing the training dataset or adjusting parameters of networks. Our ultimate
goal is to implement a robust classifier for pattern classification.
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7.1 Transfer Learning

7.1.1 Concepts of Transfer Learning

Transfer learning (TL) is a research problem in machine learning (ML) that focuses on stored
parameters while solving one problem and applying it to another task but relevant problem [23, 7].

In this chapter, we will introduce how to use well-trained parameters to test a new model. We
hope transfer learning [44, 34] is able to save our computing time and costs [35]. After imple-
mented transfer learning, the performance of new models may be good, or may not, thus we have
to train the new models again and improve the model by using new dataset.

Transfer learning is a new model of machine learning, which is employed to change the training
targets. We reuse our previously trained models and save our computing resources. In the past, a
lot of work has been developed for deep learning. The best paper from IEEE CVPR’18 is related
to Taskonomy which is based on transfer learning. In transfer learning, the questions are: What
is transfer learning? what will be transferred? when to be transferred? how to implement transfer
learning?

Transfer learning is a machine learning method where a model was developed for a task that is
reused as the starting point for a model on a second task [106]. Transfer learning extracts knowl-
edge (i.e., parameters, features, samples, instance, etc.) from a task and applies it to a new task.
Transfer learning is famous for unique features of a model and its parameters are available. After
simple adjustment, the parameters could be confirmed and applied to new applications.

In transfer learning, corresponding to the discovered knowledge, we have sample transfer, in-
stance transfer, parameter transfer, feature transfer, etc. According to the labels and domain knowl-
edge, we group transfer learning to many categories, e.g., supervised learning, unsupervised learn-
ing, reinforcement learning. Transfer AdBoost (TrAdBoost) is a typical example.

Transfer learning is subject to the labels of source task and target task. Transfer learning allows
domain D, task T, and distribution in training dataset and test dataset to be different. Because the
domains are distinct, the tasks will be dissimilar.

Given domain D = {X,P(X),X 2 X}, DS 6= DT implies XS 6= XT or PS(X) 6= PS(Y ).
Given task T = {Y,P(Y |X),Y 2 Y}, TS 6= TT implies YS 6= YT or P(YS|XS) 6= P(YT |XT ).
If DS = DT , then TS = TT .
If DS 6= DT , then TS 6= TT or P(XS) 6= P(XT ).
If TS 6= TT , then YS 6= YT or P(YS|XS) 6= P(YT |XT ),YS 2 YS,YT 2 YT .
We have three kinds of transfer learning: Inductive learning [156], transductive learning, and

unsupervised learning (e.g., clustering), their domains, tasks, and algorithms are all different. Cor-
respondingly, there are multiple methods for transfer learning: Sample-based transfer learning,
feature-based transfer learning, parameters-based transfer learning, etc.

Inductive transfer learning [106] aims at improving the target predictive function fT (·) in DT
by using the knowledge in DS and TS, where TS 6= TT . In inductive transfer learning, we transfer
the samples, knowledge, and parameters.

Transductive learning [106] refers to the situation where all test data are required to be seen at
training time, the learned model cannot be reused for future data. Transductive learning could be
applied to knowledge and parameter transfer.

Transductive transfer learning aims at promoting the target predictive function fT (·) in DT by
using the knowledge in DS and TS, where DS 6= DT and TS = TT .

Unsupervised transfer learning (e.g., clustering or dimensionality reduction)[106] aims to im-
prove the target predictive function fT (·) in DT using the knowledge in DS and TS, where TS 6=TT ,
YS and YT are not observable. No labelled data is observed in the source and target domains in
training.

In transfer learning, a network is needed as well as training data and training algorithms. Train-
ing options should be specified when a network is being trained. Most of time, training data is
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needed, which needs huge workload to collect the training data and data augmentation. The train-
ing rate is related to how fast the network will be converged and what are the final trained parame-
ters of the network. In transfer learning, we need to estimate and evaluate the outcomes of transfer
learning. We need to ensure that the results will be much better [6].

Deep learning architectures mostly aim at the classification tasks and benefit from off-the-
shelf models which can significantly simplify the model development as they can be modified and
adapted according to the new task [47]. Furthermore, this domain gains from transfer learning,
where a model was built for a task that is used for another custom task [10]. In transfer learning,
the model is trained based on a public dataset and the initial weights of this trained model are
employed for the task instead of assigning random weights as conducted in a network designed
from scratch. Usually, the last fully connected layer that is responsible for final classification is
fine-tuned, i.e., presenting the images of new classification task to the network where weights of
specific layers are adjusted as conducted in regular training process.

7.1.2 Taskonomy

Taskonomy is a word from the task taxonomy which refers to the rewarded paper: Disentangling
Task Transfer Learning, published in IEEE CVPR 2018 [156]. Taskonomy is a fully computational
approach for modeling the structure of visual tasks through transfer learning in a latent space.
The word “structure” means a collection of computational relations specifying which tasks supply
useful information to another. The taxonomy was created using a four steps process:

• Step 1. Task Specific Modeling: A task-specific network for each task is trained.
• Step 2. Transfer Modeling: All feasible transfers between sources and targets are trained.
• Step 3. Ordinal Normalization Using Analytic Hierarchy Process (AHP): The task affinities

acquired from transfer function performances are normalized.
• Step 4. Computing the Global Taxonomy: A hypergraph is synthesized which can predict the

performance of any transfer policy and optimize for the optimal one.

In taskonomy, the transfer operation is such a function that a small readout function Ds!t is
trained to map representations of source task’s frozen encoder to target task’s labels.

Given a source task s and a target task t, where s2 S and t 2T, a transfer network trains a small
readout function for t given a statistic image computed for s.

Ds!t = argmin
q

EI2D(Lt(Dq (Es(I)), ft(I))) (7.1)

where ft(I) is ground truth of t for image I. Ds!t is parameterized by qs!t minimizing the loss Lt .
The dataset for taskonomy consists of 4 million images of indoor scenes from about 600 build-

ings, each image has an annotation for every task. Unknown labels were generated by using the
methods of knowledge distillation [18].

The results of taxonomy are evaluated by using two metrics: Gain and quality. Gain is the win
rate (%) against a network trained from scratch using the same training data as transfer networks.
Quality is the win rate (%) against a fully supervised network that was trained with 120K images.

7.2 Ensemble Learning

In statistics and machine learning, ensemble learning methods are use of multiple learning algo-
rithms to obtain better predictive performance than any algorithms alone [32].
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One classifier is not enough in machine learning, because it only reflects one aspect and has
mistakes or shortcomings. Multiple learners work together will make the classification better. The
previous weaker classifiers, after the ensemble learning, will be much stronger [38]. The classi-
fication results of a classifier at least should be above 50%, the stronger classification should be
beyond 50%. The essential ensemble learning methods include averaging, weighted average, and
majority voting [29].

Averaging is method based on a simple average over all the predictions from the different clas-
sifiers. Weighted average is based on the weights which are proportional to a classifier’s capability
and performance. In majority voting method, the prediction is based on the most frequent class.

A set of diverse learners differ in the decisions so that they complement each other [4]. We
combine multiple learners and free ones for taking a decision [15]. (1) Draw random training sets
from the given samples or training dataset (e.g., Bagging, etc.) (2) Train further base-learners (e.g.,
boosting, cascading, etc.) (3) Mix multiple experts.

y = f (d1,d2, · · · ,dL|F), (7.2)

and
c = argmax

i=1,2··· ,K
yi, (7.3)

where f (·) is the combining function with F denoting its parameters, c is the returned class num-
ber. Classifier combination rules include the operations Â(·), max(·), min(·), ’(·) and the simple
voting wi = w j 2 {1,0}. If we are use of combination function Â(·), mixing multiple learners is
shown as

yi = Â
j

w jd ji,Â
j

w j = 1,w j � 0. (7.4)

We have multiple methods to combine learners together. The applications such as gait recogni-
tion will decide which way of the combination will be applied [139, 38].

Stacking refers to stack standardization. All classes have the same attributes. Stacking com-
bines multiple models and multiple attributes together. Stacking mixes multiple models via a meta-
model [4]. The meta-model is trained based on outputs of the base-learners. Stacking achieves
higher accuracy than using individual classifiers [3].

Stacking source code is available for public. WEKA also has the corresponding function. Be-
sides, the ensemble learning methods which WEKA offers include Bagging, random forest, Ad-
aBoost, voting. See the interface of WEKA with an ensembling method in Figure 7.1.

Bootstrapping [4] is any test or metric that relies on random sampling with replacement. Boot-
strapping performs inference about a sample from resampled data. Bootstrapping is a straightfor-
ward way to derive estimates of standard errors and confidence intervals.

Bagging(i.e., Bootstrap Aggregating) [4] is a voting method whereby base learners are made
differently by training them over various training sets.

Bagging has each model in the ensemble vote with equal weight. A learning algorithm is an
unstable algorithm if the learning algorithm has high variance.

A learning algorithm is stable if different runs of the same algorithm based on the same dataset
lead to learners with high positive correlation.

A forest is an ensemble of decision trees F = {T1,T2, · · · ,Tn}, which delivers a prediction for a
sample x by averaging the output of each tree,

pF (y|x) = 1
k

k

Â
h=1

pTh (y|x). (7.5)

Boosting [4] is to generate complementary base learners by training the next learner boosting
on the mistakes of the previous learners.

A boosting algorithm combines weak learners to generate a strong learner. Boosting involves
incrementally building an ensemble learning by training each new model to emphasize the train-
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Fig. 7.1: An ensemble method provided by the famous machine learning software:
WEKA

ing that previous models misclassified. Reducing misclassication is an effective way for boosting
classification. In the boosting classification, the weights of classifications are various.

Boosting is interpreted as an optimization algorithm based on a suitable cost function. For a
training set {(xi,yi)}, i = 1, · · · ,n,

F(x) D
=

M

Â
i=1

gi ·hi, (7.6)

where hi is the base learner.

F̂(x) = argmax
F

Ex,y[L(y,F(x))], (7.7)

where L(·) is the cost function.
By using the steepest descent5Fm�1 L(·), m = 1,2, · · · , we have

Fm(x) = Fm�1(x)� gm ·
n

Â
i=1
5Fm�1 L(yi,Fm�1(xi)) (7.8)

where

gm = argmax
g

n

Â
i=1

L(yi,Fm�1(xi))� g5Fm�1 L(yi,Fm�1(xi))). (7.9)

Thus, the derivatives or gradients need to be calculated. This algorithm could be written in
computable source code.

AdaBoost(i.e., Adaptive Boosting) takes use of the same training set over and over, the clas-
sifiers should be simplified so that they do not overfit [41]. The dataset should not be changed.
AdaBoost is able to combine an arbitrary number of base learners based on weights. The success
of AdaBoost is due to its salient property of increasing margin.

Cascading is a multistage method where there are a sequence of classifiers and the next one is
applied only when the preceding ones are not confident [4]. Cascading has been applied to face
detection, this ensemble learning could be applied to general visual object detection. Cascading
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generates a rule (or rules) to explain a large part of the instances as cheaply as possible and stores
the rest as exceptions.

For ensemble learning, all open Python source codes are available from the scikit-learn.org
website at: https://scikit-learn.org/stable/modules/classes.html] module-sklearn.ensemble. See the
screenshot of the scikit emsembling methods in Figure 7.2.

Scikit-learn is a free software machine learning library for the Python programming language.
The library was developed based on NumPy, SciPy, and matplotlib.

MATLAB meld results from many weak learners into one high-quality ensemble predictor
by using ensemble learning. The methods include bootstrap aggregation (Bagging), random for-
est, boosting algorithms, etc. Boosting algorithms encapsulate adaptive boosting, gentle adaptive
boosting, adaptive logistic regression, linear programming boosting, least squares boosting, robust
boosting, random undersampling boosting, etc. See the screenshot of MATLAB ensemble methods
based on regression tree [13] in Figure 7.3.

The motivation for adopting ensemble learning classification is to boost the generalization
of the system. Single learner may have a limited capability to capture the distribution of data;
therefore, an aggregated decision of multiple weak-learners can improve the learning capability
of classification system by overcoming the limitation of a single weak-learner. Ensemble learn-
ing draws final decision from multiple diverse learners that may improve the robustness of the
system [16, 40].

The diversity of base-learners for classification is the basis of ensemble learning which is in-
corporated in multiple ways [24]. Usually, it is achieved by using: 1) Diverse learning algorithms
or with their different configurations, 2) manipulation of feature spaces, 3) subsampling training
instances.

In ensemble learning, the diversity is integrated by combining base learners to learn various
features. An averaging method is harnessed to combine the base learners and generate the final
decision. Furthermore, weighted averaging method is also implemented and suitable weights were
assigned to the base classifiers for improving classification outcomes.

Recently, with the development of deep learning, ensemble learning has been employed after
the convolutional operations for improving the classification by combining outputs of deep learning
classifiers [14, 49]. Ensemble learning was employed for early AD diagnosis [42, 1, 20]. DenseNet-
121, DenseNet-161, and DenseNet-169 were utilized as the base classifiers [22, 21, 33], then the
results were ensembled by using the well-trained weights. In our project, our proposed method was
evaluated based on a dataset from the Alzheimer’s Disease Neuroimaging Initiative for the early
diagnosis of this illness [22, 21].

Deep Belief Networks (DBN) were proffered as the base classifiers, the final prediction was
determined by using a voting scheme [29].

In our project of the early diagnosis of AD, we proposed an ensemble classifier based on the
ConvNets [21]. ResNet-50, NASNet, and MobileNet as learners are combined together. The base
learners were trained by using the end-to-end process instead of directly extracting convolutional
features for training classifiers. The ensemble learning was implemented based on the base classi-
fiers to improve the performance of early diagnosis of AD.

The training of base classifier includes two stages. Firstly, the ConvNet is fixed as we train the
fully connected network as a classifier in order to fit the weights of the fully connected layers clas-
sifier. The fully connected layer on the top was randomly initialized, a large weight updates would
be propagated. Otherwise, the representation that were previously trained by using the ConvNet
will be modified. The base classifier will be trained based on fine tuning between fully connected
layers and released layers of ConvNet to fit more features on the early diagnosis of AD by using
the end-to-end process. These base classifiers are eResNet-50, eNASnet, and eMobileNet.

We trained our base classifiers by using the end-to-end process. We trained the base classifier in
order to fit the model more robust. In the end, the output of the base learner ConvNet was combined
to improve the accuracy and stability.

In the project regarding human behaviour recognition [86, 28], we explore and exploit the state-
of-the-art methods for human behavior recognition. More importantly, in order to attain our goal,
spatiotemporal information was collected and employed to the implementation of our research
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Fig. 7.2: Ensemble methods provided by scikit-learn
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Fig. 7.3: Ensemble methods provided by MATLAB

project. We adopted ensemble learning with deep learning methods. We proposed Selective Ker-
nel Network (SKNet) and ResNeXt with attention mechanism, which generate positive results to
recognize human behaviours.

In the project related to human gait recognition [139], we put forward an effective method of
gait recognition: Cross-view gait recognition based on ensemble learning. The proposed method
greatly enhances the effectiveness and reduces the sensitivity of gait recognition under various
view angles conditions. An algorithm based on ensemble learning combinines several gait learners
together, which utilizes a well-designed gait feature based on area average distance. The contribu-
tion of this research work is to resolve the multiview angles problem of gait recognition through
assembling several gait learners.

7.3 Knowledge Distillation

Conducting classification or making predictions using a whole ensemble of models is cumbersome
due to a large number of users. It is possible to compress the knowledge in an ensemble into a
single model. A possible way is to distilling Knowledge in an ensemble of models into a single
model [18]. Neural networks typically produce class probabilities by using a “softmax” output
layer,

qi =
exp(zi/T )

Â j exp(z j/T )
(7.10)

where T is a temperature that is normally set to 1.0, qi is a probability of each class.
The general solution “distillation”, is to raise the “temperature” of the final softmax until the

cumbersome model produces a suitably soft set of targets. We train the small model to match these
soft targets.

The distillation strategy achieves the desired effect of distilling an ensemble of models into a
single model that works significantly better than a model of the same size that is learned directly
from the same training data. The distillation approach is able to extract more useful information
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from the training set than simply using the hard labels to train a single model. The distilling works
very well for transferring knowledge from an ensemble or from a large highly regularized model
into a smaller and distilled model.

Exercises

Question 7.1. What’s knowledge transfer? How to use the learned knowledge in transfer learning?

Question 7.2. Based on data labels, how to group transfer learning models?

Question 7.3. How to train multilabel classification?

Question 7.4. What are the applications of deep neural networks in ensemble learning?

Question 7.5. How to understand reinforcement learning is the third machine learning method
which is different from supervised learning and unsupervised learning?

Question 7.6. Please list data dimensionality reduction methods.
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Glossary

Activation function In artificial neural networks, the activation function of a node defines the
output of that node given an input or set of inputs.

AdaBoost Adaptive Boosting, a voting method for training a boosted classifier

Autoencoder An autoencoder is a neural network that learns to copy its input to its output.

Average pooling Calculating the average for each patch of the feature map.

Atlas A specific collection of charts which covers a manifold

Bagging Bootstrap AGGregatING, a machine learning ensemble meta-algorithm designed to
improve the stability and accuracy of machine learning algorithms used in statistical classification
and regression

Banach spaces Complete normed vector spaces

Bayesian inference A method of statistical inference in which Bayes’ theorem is used to
update the probability for a hypothesis as more evidence or information becomes available

Bayesian learning Using Bayes’ theorem to determine the conditional probability of a hy-
potheses given evidence or observations

Bayesian network A decision network, which is a type of statistical model that represents a
set of variables and their conditional dependencies via a directed acyclic graph (DAG)

Boltzmann machine Stochastic Hopfield network with hidden units, a type of stochastic re-
current neural network

Boltzmann distribution The distribution maximizes the entropy.

Boosting An ensemble meta-algorithm for primarily reducing bias, and also variance[1] in su-
pervised learning, and a family of machine learning algorithms that convert weak learners to strong
ones

Bootstrapping Test or metric that uses random sampling with replacement

CapsNet Capsule Neural Network, which is a type of artificial neural network (ANN) for better
modeling hierarchical relationships of an object

Capsule A set of neurons that are individually activated for various properties of a type of
objects
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Cascading A particular case of ensemble learning based on the concatenation of several classi-
fiers, using all information collected from the output from a given classifier as additional informa-
tion for the next classifier

Chart An invertible map between a subset of the manifold and a simple space such that both the
map and its inverse preserve the desired structure

Clique tree The junction tree algorithm, a method in machine learning to extract marginaliza-
tion from general graphs

CNN Convolutional neural network

Convex The line segment between any two points on the graph of the function lies one side of
the graph between the two points.

ConvNet Convolutional neural network

Convolution A mathematical operation for two functions produces a third function expressing
how the shape of one is modified by the other.

DAG Directed acyclic graph, a finite directed graph with no directed cycles

DBM Deep Boltzmann machine, a type of binary pairwise Markov random field which is a
undirected probabilistic graphical model with multiple layers of hidden random variables

Decision tree A decision support tool that uses a tree-like model of decisions and their possible
consequences, including chance event outcomes, resource costs, and utility

Decision rule A function which maps an observation to an appropriate action.

Deep learning Deep neural network has powerful ability of nonlinear processing using a cas-
cade of multiple layers network for feature transformation and end-to-end learning.

DRL Deep reinforcement learning, using deep learning and reinforcement learning principles to
create efficient algorithms

Double Q-learning An off-policy reinforcement learning algorithm, where a different policy
is used for value evaluation than what is used to select the next action

Dynamic Bayesian network A Bayesian network represents sequences of variables.

EKF Extended Kalman filter, nonlinear Kalman filter which linearizes about an estimate of the
current mean and covariance

Ensemble learning The process by which multiple models are strategically generated and
combined to solve a particular computational intelligence problem

Entropy A measure of the unpredictability of the state, or equivalently, of its average informa-
tion content.

Event In textual topic detection and extraction, an event is something that happened somewhere
at a certain time.

Exponential family A set of distributions, where the specific distribution varies with the pa-
rameter

Factorization A product of factors over cliques in thegraph

Fourier transform A mathematical transform that decomposes a function into its constituent
frequencies

Fuzzy optimization A mathematical model which deals with transitional uncertainty and in-
formation deficiency uncertainty
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GCD The greatest common divisor of two or more integers, which are not all zero, is the largest
positive integer that divides each of the integers.

Genetic algorithm A metaheuristic inspired by the process of natural selection that belongs
to the larger class of evolutionary algorithms.

Gibbs distribution A probability distribution or probability measure

Gibbs measure The unique statistical distribution that maximizes the entropy for a fixed ex-
pectation value of the energy

Global optimization The task of finding the absolutely best set of admissible conditions to
achieve your objective, formulated in mathematical terms

Hausdorff space A topological space in which each pair of distinct points is separated by a
disjoint open set

Hilbert spaces An inner product space which is complete as a metric space

Induced subgraph G[S] is the graph whose vertex set is S and whose edge set consists of all
of the edges in E that have both endpoints in S⇢ G = (V,E).

Influence diagram A compact graphical and mathematical representation of a decision situa-
tion

Isometry congruence, a distance-preserving transformation between metric spaces, usually as-
sumed to be bijective

Joint entropy A measure of the uncertainty associated with a set of variables

Kalman filter The optimal linear estimator for linear system models with additive independent
white noise in both the transition and the measurement systems

KL divergence Kullback–Leibler divergence or relative entropy, a measure of how one prob-
ability distribution is different from a second and reference probability distribution

Latent variables The variables that are not directly observed but are rather inferred (through
a mathematical model) from other variables that are observed (directly measured)

LCM The smallest common multiple of two integers a and b is the smallest positive integer that
is divisible by both a and b.

Lipschitz continuity A strong form of uniform continuity for functions

Linear Dynamical System A dynamic Bayesiannetwork where all of the dependencies are
linear Gaussian

Linear programming A technique for the optimization of a linear objective function, subject
to linear equality and linear inequality constraints

LSTM Long short-term memory network

MAP Maximum a posteriori probability estimate, an estimate of an unknown quantity, that
equals the mode of the posterior distribution

Manifold A topological space with the property that each point has a neighborhood, a second
countable Hausdorff space that is locally homeomorphic to Euclidean space.

Manifold learning An approach for nonlinear dimensionality reduction

Markov chain A stochastic model describing a sequence of possible events in which the prob-
ability of each event depends only on the state attained in the previous event
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Markov process A stochastic process that satisfies the Markov property

Max pooling Applying a max filter to non-overlapping subregions of the initial representation

MDP Markov decision process, a discrete-time stochastic control process

Metadata Data about data, namely additional information of a given set of data

Metric A function that defines a concept of distance between any two members of the set, which
are usually called points

Metric space A set together with a metric on the set

MGU Minimal Gated Unit

MLE Maximum likelihood estimation, a method of estimating the parameters of a probability
distribution by maximizing a likelihood function, under the assumed statistical model, the observed
data is most probable.

MNIST The Modified National Institute of Standards and Technology(NIST) dataset

MRF Markov random field which is a set of random variables having a Markov property de-
scribed by an undirected graph.

Multiobjective programming A part of mathematical programming dealing with decision
problems characterized by using multiple and conflicting objective functions that are to be opti-
mized over a feasible set of decisions

Mutual information A measure of the mutual dependence between the two variables

Naive Bayes Model A family of simple probabilistic classifiers based on applying Bayes’
theorem with strong independence assumptions

NLAR Nonlinear autoregressive model

Norm A real-valued function defined on the vector space

Normed space A vector space over the real or complex numbers, on which a norm is defined.

Observable variable Manifest variable in statistics, a variable that can be observed and di-
rectly measured

Orbifold A generalization of manifold allowing for “singularities” in the topology

Padding The filled region of an image boundary is applied to fill up the edge region with zero.

Parameter estimation The process of using sample data to estimate the parameters of the
selected distribution

Particle swarm optimization A computational method that optimizes a problem by itera-
tively improving a candidate solution with regard to a given measure of quality with a population
of candidates, moving the particles in the search-space according to the position and velocity

Partition functions A generating function for expectation values of various functions of the
random variables

PGM Probabilistic graphical model or structured probabilistic model which is a model for a
graph to expresses the conditional dependence structure between random variables

Q-learning A model-free reinforcement learning algorithm to learn a policy telling an agent
what action to take under what circumstances
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Random forests An ensemble learning method for classification and regression by construct-
ing a multitude of decision trees at training time and outputting the class that is the mode of
classification regression of the individual trees.

RBM Restricted Boltzmann machine, a variant of Boltzmann machine with the restriction that
their neurons must form a bipartite graph

Regularization The process of adding information in order to solve an ill-posed problem or to
prevent overfitting

Reinforcement learning Approximate dynamic programming or neuro-dynamic program-
ming, which is teaching a software agent how to behave in an environment by telling it how good
it’s doing

ResNet Deep residual network

Reward function A function defines the goal for an agent.

RNN Recurrent neural network

Roots of a polynomial Those values of the variable that cause the polynomial to evaluate to
zero

SARSA State–action–reward–state–action, an algorithm for learning a Markov decision process
policy, used in the reinforcement learning area of machine learning

Siamese neural network Twin neural network, an artificial neural network that uses the
same weights while working in tandem on two different input vectors to compute comparable
output vectors

Single shot The tasks of visual object localization and classification are done in a single forward
pass of the network.

Squashing function A function that squashes the input to one of the ends of a small interval

SSD Single shot multibox detector

Stride The step length of convolution operations

Target variable The variable whose values are to be modeled and predicted by other variables

Temporal difference learning A class of model-free reinforcement learning methods which
learn by bootstrapping from the current estimate of the value function

Tensor A generalization of vectors and matrices to potentially higher dimensions

TensorFlow A framework to define and run computations involving tensors, represent tensors
as n-dimensional arrays of base datatypes.

Time series analysis Analyzing time series data in order to extract meaningful statistics and
other characteristics of the data

Time series forecasting The use of a model to predict future values based on previously
observed values

Transfer function This function is used for transformation purposes, from input nodes to the
output of a neuron.

Transfer learning A machine learning method where a model is developed for a task which
is reused as the starting point for a model on a second task.

Transformer A deep learning model that adopts the mechanism of self-attention, differentially
weighting the significance of each part of the input data.
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YOLO You only look once
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Lloyd Richard Welch (1927 – )
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A

Abnormal detection 113
Absolute loss function 16, 92
Acceptance-rejection method 105
ACM Turing Award 11
Activation function 93, 113
AdaBoost 11, 18, 187
Adam optimizer 108
Adaptive boosting 187, 188
Adaptive logistic regression 188
AdBoost 184
Adding noises 55
Additive seasonality 112
Adjacency matrix 171, 175, 179
Adjacency tensor 174
Affine transformation 55
Affinity matrix 162
Age estimation 19
Aging recognition 50
AlexNet 11, 12, 48, 49, 75
Algebra 18
AlphaStar 32
Alzheimer’s disease 22
Analytic Hierarchy Process 185
Analytic manifold 160
Anchor box 76, 77, 80
ANN 47
ANN toolbox 47
Anomaly detection 113
Answer intent 103
Ant colony optimization 152
Applied mathematics 143
Approximate inference 164
AR 49
ARIMA 49
ARMA 111

Artefact removal 55
Artificial intelligence 50
Artificial neural network 47, 113
Associative 60
Associativity 116
Atlas 160
Attention mechanism 22
Attention network 47, 50
AUC 48
Auto-correlation analysis 49
Autocorrelation 111
Autocorrelation correlogram 111
Autocovariance 111
Autocovariance lag 111
Autoencoder 6, 16, 33, 34, 130
Autonomous vehicle 50
Autoregressive 49
Autoregressive integrated moving average

49
Autoregressive language model 102
Average cost function 92
Average loss function 16
Average pooling 75

B

Backward pass 5, 33
Bagging 18, 186, 188
Banach space 118
Bandit problem 143
Bart 96
Basic algebra 19
Batch normalization 80
Baum-Welch algorithm 89
Bayes’ theorem 132, 134, 135, 164
Bayesian classifier 32
Bayesian model 164
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Bayesian network 164, 165, 167
Behavior cloning 103, 104
Bellman equation 16, 141, 143
Bellman equations 150
BERT 96
Bessel’s inequality 118
Bezier function 62
Bias vector 93
Big data 4, 19
Bilinear attention model 175
Binary cross-entropy loss 179
Binary pairwise MRF 169
Biometrics 50
Bipartite graph 169
Bivariate correlation 116
BLEU 101
Blinding 103
Blur 55
Boltzmann machine 168
Boosting 32, 186, 188
Bootstrap aggregating 186
Bootstrapping 186
Bounding box regression 78
Brightness adjustment 56
Byte Pair Encoding 101

C

Caffe system 44
Caffe2 system 44
Calculus 18
CapsNet 20, 71
CapsNets 84
Capsule Network 20
CAPTCHA 33
Cascading 186, 187
Cauchy sequence 114
Cauchy’s inequality 117
Cauchy-Schwarz inequality 118
Chain rule 65, 93, 133–135
Chain-cyclic graphs 177
Characteristic polynomial 161
ChatGPT 11, 17, 96
Chebyshev distance 115
Chebyshev node 156
Children’s Book Test 101
Chinese remainder theorem 156
Clipping 55
Clique 165
Cloud computing 4, 19, 48
Cluster computing 48
Clustering 33, 47, 184
Clustering coefficient method 172
CNN 11, 20, 22, 33, 44, 71, 75

Colab 50
Color adjustment 55
Color jittering 55
Commonsense reasoning 100
Commutative rule 63
Commutativity 60, 116
Comparisons 103
Complex manifold 160
Complex number 119
CompressedNet 18
computational linguistics 7
Computer vision 19, 32, 50
Concave function 136
Conditional Bayesian network 166
Conditional density 166
Conditional entropy 18, 133, 134
Conditional probability 164
Conditional random field 165
Confusion matrix 48
Constrained optimization 152
Continuous conditional entropy 137
Continuous entropy rate 137
Continuous function 62, 114
Continuous joint entropy 137
Continuous Markov process 150
Contractive autoencoder 131
Contractive mapping 153
Control function 148
Control theory 31, 143, 147, 148
Controllability 148
Convex 134
Convex function 135, 136
ConvLSTM 21, 93
ConvNet 11, 75
ConvNeXt 24
Convolution 112
Convolution operation 75, 112
Convolution translation 176
Convolutional long short-term memory 21
Convolutional neural network 11, 20
CoQA 101
Correlogram 111
Cosine function 112
Cost function 91
Countable 114
CRF 165
Cropping 55
Cross-correlation analysis 49
Cross-entropy loss 174
CRT 156
Cubic polynomial 62
CVPR 29
Cyclic chain graph 177
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D

DAG 165
Darknet 13
Darknet-19 80
Darknet-53 80
Data augmentation 19, 57
Data corruption 131
DBM 12, 168, 170
DBN 11, 12, 18
Decision forest 32
Decision making 12
Decision tree 12, 32
Decoder model 173, 179
Deep autoencoder 34
Deep belief net 171
Deep belief network 12
Deep Boltzmann machine 12, 168, 170
Deep encoder-decoder architecture 86
Deep graph infomax 176
Deep Markov random field 12
Deep neural decision forest 29
Deep neural network 21, 32
Deep Q-learning 141
Deep Q-network 32
DeepMind 19
DeepWalk 173
Demonstrations 103
Denosing autoencoder 131
DenseNet 30, 83
Detection Transformer 20
DETER 97
DETR 11, 20
DETR model 25
DFT 119
DGI 176
Difference operator 177
Differentiable 61, 64
Differential equation 148
Differential geometry 160
Dimensionality reduction 6, 33, 160, 184
Directed graph 164
Directed network 18
Directional derivative 65
Discrete Fourier transform 119
Discrete random variable 134
Discriminative network 126
Discriminator 126
Distributional reinforcement learning 31
Distributive rule 63
DMRF 12
DNN 21, 32
Double Q-learning 31, 141, 147
Downsampling 75

DQN 32
Dynamic Bayesian network 18
Dynamic optimization 152
Dynamic programming 143, 152
Dynamic routing 84

E

Edge dependency 179
Element-wise product 177
ELI5 103
Elo ratings 105
Elo score 104
EM algorithm 89
EMNIST 54
Empty graph 167
Encoder model 173, 179
Encoder-decoder framework 173
End-to-end 11
Energy function 168, 169
Energy-based model 170
Ensemble learning 11, 18
Entropy 18, 91, 167
Entropy normalization 133
Entropy rate 134, 136
Episode 144
Equality 114
Erdös–Rényi (ER) model 179
Error bound 155
Euclidean distance 8, 91, 114, 160
Euclidean space 160
Event-based modelling 50
Evidence 164
Exact inference 164
Expanding 55
Exploding gradient 93
Exploding gradient problem 9
Exploitation 142
Exploration 32, 142
Exponential factor family 167
Exponential smoothing 111
Extended Kalman filter 32

F

Face recognition 50, 128
Fact-checking 103
Factor graph 165
FAIR 46
Fast R-CNN 11, 13, 49, 77
Faster R-CNN 11, 13, 20, 24, 29, 30, 77, 78
FCM 151
FCN 78, 85
FCNN 44, 130
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FCV 151
Feature learning 164
Feature map 75
Feature pyramid network 30
Feature transfer 184
Few-shot 102
Few-shot learning 103
Fine-tuning 11, 99
Fingerprint recognition 50
Finite basis 62
Finite Markov decision 143
Finite state 143
Fitting 111
Fixed-point theorem 16, 91
Flame detection 22
Flask 45
Flipping 55
Forward pass 5, 33
Fourier series 112, 118
Fourier transform 118, 119, 177
FPN 20, 30
Frequency domain 119
Frobenius norm 131
FRU 94
Fruit recognition 22
Fully connected neural network 130
Fully convolutional network 85
Function continuity 64
Function convergence 114
Function fitting 47
Function mapping 61
Functional analysis 8, 19
Fuzzy c-means algorithm 151
Fuzzy c-varieties algorithm 151
Fuzzy clustering 151
Fuzzy controller 151
Fuzzy relation 151
Fuzzy rules 152
Fuzzy set 151

G

Gabor function 76
Gain 185
Gait recognition 19
GaitManifold 21
GAN 11, 15, 47, 48, 50, 125, 126
GAN-based generative model 179
Gauss-Newton method 153
Gaussian Bayesian network 166
Gaussian distribution 167
Gaussian function 4
Gaussian kernel 76, 162
Gaussian noise 55, 131

Gaussian radial basis function 178
GCN 20
General convergence theorem 153
General graph Laplacian 177
Generalized Newton method 153
Generalized spectral clustering 172
Generative adversarial network 6, 15, 126
Generative model 9, 164
Generative network 126
Generative neural network 169
Generator 126
Generator network 179
Genetic algorithm 152
Gentle adaptive boosting 188
Geometric transformation 55
Gibbs distribution 165
GIN 178
GIoU loss 22
Github 7
Global loss function 130
Global optimization 152
GNN 11
Goal-directed agent 142
GoogleNet 48
GPT 11, 96, 99
GPT-1 99
GPT-2 101
GPT-3 11, 102
GPT-3.5 107
GPT-4 109
Gradient clipping 9
Gradient descent 8
Gradient-based optimization 32
Gram-Schmidt process 63
Graph attention network 175
Graph classification 176
Graph clustering 171
Graph completion 171
Graph convolutional neural network 20
Graph cut 172
Graph Fourier mode 177
Graph generating 179
Graph isomorphism 178
Graph isomorphism network 178
Graph kernel 172
Graph Laplacian 162, 172
Graph neural network 6
Graph recurrent attention network 180
Graph regression 171
Graph theory 8
Graphical model 133, 164
Greatest common divisor 155, 156
GRU 21, 71
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H

Hadamard product 93, 94
Hausdorff space 160
Heat map analysis 33
Hidden Markov model 89
Hierarchical feature map 30
High-capacity models 101
Hilbert space 118
Hilbert space embedding 178
Hinge loss 174
Hinge loss function 92
Histogram of oriented gradients 20
HMM 89
HOG 20
Homomorphism 160
Hopfield network 168
HSV 55
Human preferences 103
HumanEval dataset 110
Hybrid model 164

I

ICCV 29
IDFT 119
ILSVRC 8
Image augmentation 55
Image labeler 57
Image reconstruction 32
Image Transformer 97
ImageNet 7, 75, 80, 97
Imaginary unit 119
Inception 48
Inductive learning 184
Infinity continuity 160
Influence diagram 18, 165
Information projection 167
Information theory 8, 18
Inner product 118, 145
Inner product space 118
Inner-product method 173
Instance transfer 184
InstructGPT 105
Intelligent surveillance 7
Interpolating point 155
Intersection over Union 116
Inverse DFT 119
Invertible function 160
IOU 76, 80, 116

J

Jaccard distance 116

Jaccard index 116
Jacobian matrix 176
Jensen’s inequality 134
Joint entropy 18, 133, 134
Joint normal distribution 166
Joint probability 164
JPEG lossy compression 22
JS divergence 127

K

Kalman filter 112
Kalman filtering 147
Kanade-Lucas-Tomasi algorithm 57
KL divergence 18, 107, 108, 131–133, 135,

178, 179
KLT algorithm 57
Knowledge distillation 190
Knowledge graph 174
Knowledge learning 164
Kronecker delta 63

L

Lagrange interpolation 155, 156
Lagrange interpolation function 62
Lagrangian regularization 9
LAmbDA 101
Lane detection 50
Laplacian eigenmap 162, 173
Large-scale information network embedding

174
Latency 164
Latent space 179
Latent variable 89, 164
LBP 20
Learning rate 52
Least common multiple 155
Least squares approximation 118
Least squares boosting 188
Lens distortion 55
Likelihood 164
Linear algebra 18
Linear correlation 116
Linear dimensionality reduction 160
Linear dynamic system 147
Linear exponential family 167
Linear least squares 8, 153
Linear model 112
Linear programming 152
Linear programming boosting 188
Linear quadratic estimation 147
Linearisation 149
Link prediction 171
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Lipschitz map 114
Litter detection 24
Local binary patterns 20
Local optimization 152
Log-CPB 98
Logarithm function 91
Logarithm loss function 92
Logistic CPD 166
Logistic function 4, 174
Logistic regression 13, 32
Long short-term memory 9
Loss function 8, 85, 91, 144
LQE 147
LSTM 9, 44, 48, 71, 93, 113, 130

M

Machine learning 19
Machine vision 7
Mahalanobis distance 116
Majority voting 186
Manhattan distance 115
Manifold 160
Manifold learning 6, 21, 32, 33, 160
Margin loss 174
Markov decision process 32, 142, 143
Markov random field 17, 165, 178
Markov random process 17
Marr prize 29
Mask R-CNN 29, 30, 78
Mathematical expectation 18, 91
Mathematical statistics 8
MATLAB 7, 17, 46, 47, 88, 113
MATLAB Online 47
Matplotlib 44, 188
Max pooling 75, 85
Maximum entropy 133
Maximum likelihood estimation 126
MCNN 21
MDP 142, 143
Mean 111
Membrane function 47
Meta learning 103
Metadata 53
Metric space 114
MGU 94
Microsoft COCO dataset 80
MILA 46
Minibatch 6
Minkowski distance 115
MNIST 5, 7, 54, 55
Moment projection 167
Monotonic 79
Monte Carlo method 143

MOTA 130
MRF 17, 164, 165
MRI 22
MRP 17
MS COCO 80
Multiaspectratio 76
MultiBox 83
Multichannel convolutional neural network

21
Multiclass pixel-wise segmentation 86
Multilanguage speech recognition 24
Multilayer neural network 76
Multilayer perceptron 171, 175
Multimodal model 109
Multiple object tracking 130
Multiple objective programming 152
Multiplicative seasonality 112
Multiquadratics 4
Multirelational graph 174
Multiresolution analysis 112
Multiscale 76
Multistage pipeline 76
Multivariate Gaussian distribution 166
Mutual entropy 133
Mutual information 18, 134
MXNet 44

N

n-gram 102
Naive Bayesian model 164
Natural language inference 99
Natural language processing 7, 24, 32, 49
Negative logarithm 18
Negative sampling distribution 174
Neighborhood normalization 175
Network degradation 15, 84
NIST 5
NLAR 113
NLP 49, 95, 99
Node classification 176
Node degree 172
Node embedding 173
Node2vec 173
Noise injection 55
Noise removal 160
Non-negative potential function 178
Nonlinear autoregressive model 113
Nonlinear dimensionality reduction 160
Nonlinear function 153
Nonlinear least squares 153
Nonlinear programming 152
Nonzero polynomial 156
Normalization function 176
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Normalized cut 172
Normalized entropy 18, 133
Normalized Laplacian 172
Normed space 117
Numerical analysis 8
Numerical method 51
NumPy 188
numPy 44

O

Object detection 76
Object tracking 112, 130
Objective function 91
Objective-oriented Transformer 110
Objectivity 103
Observability 149
Observable variable 164
Observation 32
Offline augmentation 56
One-shot learning 103
Online augmentation 56
Online Colaboratory 50
OpenAI 96, 99
OpenAI GPT 101
OpenCV 18
Optimal control 142
Optimality 149
Optimization 8, 152
Orthogonal space 118
Orthogonal system 112
Orthonormal basis 118

P

PA model 179
Padding 76
Parallel computing 48
Parameter learning 164
Parameter transfer 184
Parseval’s identity 118
Particle swarm optimization 152
Partition function 168
PASCAL VOC 14
Pattern classification 19, 47
PCA 6, 33, 34, 55, 160, 161
Pearson correlation coefficient 116
Pedestrian detection 50
Peephole LSTM 93
Penalty 108
Permutation matrix 178
Picasso problem 84
Pixel-wise regression 85
Placeholder 51

Planning 32
POE 169
Policy 108
Policy iteration 31, 144
Polish space 150
Polyharmonic splines 5
Polynomial 62
Polynomial division 155
Postcode recognition 11
Posterior latent distribution 179
Posterior probability 164
PPO 106, 108
PPO2 108
Prediction equation 112
Preferential attachment model 179
Principal component analysis 161
Prior probability 164
Probabilistic decoder model 179
Probabilistic encoder model 179
Probabilistic generative model 33
Probability mass function 18, 136
Probability theory 8
Product of expert 169
Proximal policy optimization 108
Pythagoras’ theorem 118
PyTorch 44, 46

Q

Q-learning 31, 141, 147
Quadratic cost function 91
Quadratic curve 62
Quadratic minimisation problem 8
Quality 185
Question answering 99–101

R

R software 7
R-CNN 11, 13, 71, 76
Random contrast 56
Random erasing 56
Random erosion 56
Random forest 12, 188
Random Forests 11
Random undersampling boosting 188
Random walk 111
Random walk embedding 173
Random walk Laplacian 172
Ratio cut 172
RBF 178
RBM 168, 169
RCN 33
Readout function 185
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Real analysis 61
Reasoning 110
Receptive field 75
Recommendation system 7, 33
Rectified linear unit 85
Recurrent model 180
Recurrent neural network 49
Recursive cortical network 33
Reflection 55
Region of interest 30, 76
Region proposal 76
Region proposal network 130
Region-based CNN 76
Regression 77
Regularization 9, 131, 152
Reinforcement learning 6, 16, 31, 48, 50,

107, 141, 142
Rejection sampling 103–105
Relation prediction 171, 176
Relational graph neural network 176
Relational inference 171
Relative entropy 133, 135, 167
ReLU 9, 79, 85
ReLU function 4, 5
Remainder item 155
Residual 112
Resizing 55
ResNet 9, 15, 30, 48, 84
ResNet152 20
Restricted Boltzmann machine 9, 168, 169
Reward learning 107
Reward model 107
Reward modeling 104
Reward sets 143
RGNN 176
Riemann manifold 160
RMS error 113
RMSE 113
RNN 21, 49, 55, 71, 88, 91
Robotics 7
Robust boosting 188
ROC 48
ROI 11, 30, 57
Rotating 55
RPN 77, 130
Runge’s phenomenon 156

S

Sample transfer 184
SBM 179
Scalable reward learning 109
Scalar field 66
Scalar multiplication 117

Scalar product 62, 65, 118
Scale API 109
Scaling 55
Scikit-learn 44, 45, 188
SciPy 44, 188
SDE 150
SDNN 20
Seasonal forecasting 33
Seasonality 111
SegNet 85
Selective kernel network 20, 22
Self-attention mechanism 97
Semantic segmentation 50
Semantic similarity 99
Sensor network 4, 19
Separable 114
SGD 10, 52
SGD method 145
SGD update 145
Shallow embedding 173, 174
Shearing 55
Siamese 125
Siamese network 47, 50, 128
SiamRPN 130
Sigmoid function 4, 79, 94
Signal decomposition 112
Signal filtering 112
Signature verification 128
SimGAN 30, 128
Similarity measure 129
Simple Deep Neural Network 20
Simple normalization 175
Simulated annealing 152
Sine function 112
SinGAN 29
Single shot 82
Single shot multibox detector 14, 22
Single task-agnostic model 100
SKNet 20
Smooth manifold 160
Smoothing 111
Softmax 13
Softmax cross entropy 85
Softmax function 77, 91
Sparse regularization 9, 131
Spatial domain 119
Spatial temporal-graph convolutional network

21
Spatiotemporal graph 21
Spectral analysis 49
Spectrum analysis 112
Speech recognition 24
Spline function 62
Square loss function 16
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Squared error cost function 91
Squashing function 85
SqueezeNet 18
SSD 11, 14, 20, 22, 71, 82
ST-GCN 21
Stabilizability 148
Stacking 186
State-space model 49
State-value prediction 145
Stationary Markov chain 136
Stationary stochastic process 136
Step function 151
Step response 151
Stochastic block model 179
Stochastic gradient ascent 106, 109
Stochastic gradient descent 6, 86
Stochastic process 150
Stride 76
Summarization 101
Supercomputing 4
Superresolution 128
Supervised learning 5
Support vector machine 12
SVM 12, 75, 76
Swin Transformer 30, 98
Symmetric normalization 175
Symmetry 114

T

Tanh function 5
Target variable 164
Taskonomy 30, 184, 185
TD error 145
TD method 143
Temporal-difference learning method 143
Temporal-difference method 145
Tensor 50
Tensor algebra 18
Tensor field 66
Tensor linearity 64
Tensor space 64
TensorBoard 51, 53
TensorFlow 7, 19, 44, 50, 51
Text classification 99
Textual entailment 100
Texture analysis 76
Theano compiler 46
Threshold autoregressive model 113
Tikhonov regularization 9
Time series 47
Time series analysis 48, 49, 110
Topological manifold 160
Topological space 160

Topological structure 71
Torch 44
TrAdBoost 184
Transductive learning 184
Transfer learning 17, 30, 33, 48, 184
Transformation function 176
Transformer 6, 11, 30
Transformers 46
Transition matrix 89, 136
Transition probability function 150
Translation 55
Triangle inequality 114
Trigonometric function 112
TriviaQA 104
Twin network 128
Tylor expansion 62

U

U-Net 30, 85
U-shaped architecture 85
Uncertainty 164
Unconstrained optimization 152
Undirected graph 162, 164
Undirected probabilistic graphical model

169
Uniform continuity 114
Unsupervised learning 5, 33, 130, 184
Updating equation 112
Upper bound 114

V

VAE 132
Value function 143
Value functions 143
Value iteration 31
Vanishing gradient 5, 83, 93
Vanishing gradient problem 9
Variance 111
Variance reduction 31
Variational autoencoder 47, 50, 132
Variational inference 132
Vector addition 117
Vector field 66
Vector product 64
Vector space 62, 116
Vehicle detection 50
Venn diagram 133
Vertebi algorithm 89
VGG 48, 86
Video dynamics detection 21
VidTr 97
Vision Transformers 20
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Visual object tracking 129
ViT 11, 20, 97
Voice recognition 50
Voting 186

W

Warp 76
Waste classification 25
Wavelet analysis 49
WCSS 80
WebGPT 103
WebText 101
Weight decay 9, 131
Weight matrix 93
Weight regularization 9
Weighted average 186
Weisfeiler-Lehman kernel 172
WEKA 186
Winograd schema challenge 101
WordTree 80

X

Xception 20

Y

YOLO 11, 13, 20, 71, 79
YOLO9000 11, 80
YOLOv2 11, 79, 80
YOLOv3 11, 13, 80
YOLOv4 11, 80
YOLOv5 11, 23
YOLOv6 11
YOLOv7 11
YOLOv8 11

Z

Zero-shot 101
Zero-shot learning 103


