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Abstract 

Surveillance today is widely used in public safety and security. Additionally, more and 

more people have their own smartphones, the advancement has led to a large amount of 

video data being generated every day. Recognizing human actions from digital videos can 

not only contribute to the public safety, but also transform a large amount of video data 

into usable information. Therefore, in this thesis, we propose a YOLOv7-based model 

that utilizes various attention mechanisms for human action recognition. In the options of 

attention mechanisms, we choose CBAM and SimAM attention as our main framework. 

Based on these two attention mechanisms, in this thesis, we propose three models: 

YOLOv7+CBAM, YOLOv7+SimAM, and YOLOv7+CBAM+SimAM. The three 

models are able to recognize five human actions (i.e., clapping, punching, walking, 

waving, running). In addition, the dataset in this thesis is to select suitable data samples 

from six public datasets, we acquire these data samples that can be employed for YOLOv7 

training and testing. 

Finally, through this dataset, YOLOv7 using the attention mechanism improves the 

accuracy by 7% over the base model. After the experiment, the accuracy of 

YOLOv7+CBAM+SimAM model is the highest one, which is up to 99.6%. The 

computing speed has also been improved, which takes 295ms to process one video frame 

on average. 

Keywords: Human action recognition, YOLOv7, SBAM attention mechanism, SimAM 

attention mechanism 
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Chapter 1 

Introduction 

 

 

The first chapter of this thesis consists of five distinct parts. Among them, the 

first section introduces the background and motivation of this thesis through 

a brief introduction, in which we explain the applications of human action 

recognition in intelligent surveillance systems.  In the second section of this 

chapter, we present the specific details of the research question in detail. In 

the third section, we describe the relevant contributions of this thesis. 

Building on the previous three sections, the research objectives of this thesis 

are stated in Section IV, and the structure of thesis is summarized in Section 

V. 
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1.1 Background and Motivation 

Affected by the rapid development of monitoring equipment technology, many digital 

monitoring devices have been installed at every corner of our society (Kieran & Yan, 

2010). The popularity and installation of these surveillance equipment have brought a 

large number of surveillance videos (Yan, 2019). There is a large amount of information 

in these surveillance videos. In order to facilitate extraction of latent values in the video 

data, relevant technologies in the field of computer vision were widely explored (Yan, 

Kieran, Rafatirad, & Jain, 2011). 

Computer vision is abbreviated as CV which refers to a simulation of human vision 

that allows computers to use digital cameras or other related equipment (Xu, et al., 2021). 

This simulation not only means that what the computer sees is as same as what a person 

sees, it also means that the computer can understand what it sees in a picture or video. 

This means that the computer visually behaves like human beings. Therefore, the field of 

computer vision also belongs to a more specific application of artificial intelligence 

(Lemley, Bazrafkan, & Corcoran, 2017). Computer vision tasks encapsulate object 

classification (Bansal, Yan, & Kankanhalli, 2003), visual object detection (Shen, Chen, 

Nguyen, & Yan, Flame detection using deep learning, 2018), and image segmentation 

(Mail & Lucas, 2018). The realization of these tasks often relies on machine learning and 

further deep learning (Liu, Yan, & Yang, 2018). The use of machine learning, deep 

learning and other technologies in CV brings greater possibilities for the processing of 

complex visual signals, and further realizes more accurate target recognition, target 

tracking and other applications.  

Various video surveillance systems are now widely existing at every corner of human 

society (Wang, Kankanhalli, Yan, & Jain, 2003), such as parking lots, supermarkets, 

banks, factories, mines, and other places often have a large number of monitoring 

equipment (Fan, et al., 2015). This owns to the continuous development of human society, 

the living standards of most human beings have been significantly enhanced compared 

with the past, which makes people pay much more attention on their own security issues. 
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This has led to the explosive proliferation of the need for video surveillance systems, but 

the conventional surveillance systems often fail to actively monitor and monitor video 

content in real time (Grasso & Schembra, 2018). They usually hire many security staff 

members to observe the surveillance video synchronously or to analyze the video 

information recorded in the surveillance system manually after abnormal behaviors and 

events occur. These videos can be used in flame detection (Shen, Chen, Nguyen, & Yan, 

2018), license plate recognition (Wang, Bacic, & Yan, 2018), object tracking and 

detecting pedestrian trajectories (Wang, Zhang & Yan, 2020), identifying, and comparing 

visual objects (Zheng, Yan & Nand, 2017), recognizing human behavior (Wang & Yan, 

2019), etc. The focus of this thesis is on the problems of human action recognition from 

video, which becomes increasingly important as the number of surveillance videos grows. 

Traditional usages of surveillance videos to identify human action, most of the 

effective information can only be obtained by relying on considerable number of manual 

operations. This also brings up a great deal of problems. The energy of person is often 

very limited. As the working hours enhance, the energy and concentration of people will 

plummet. When a person's energy drops, he may not be able to notice the occurrence of 

aberrant situations at the first time, resulting in some undue losses. The methods that can 

automatically recognize human actions are now urgently needed as a result of this.  

Computers automatically detect and recognize human actions through video footage 

or image sequences are generally referred to as human action recognition (Lu, Shen, Yan, 

& Bačić, 2018). The method of human action recognition enables continuous real-time 

recognition that runs continuously for 24 hours, as well as automatic and efficient analysis 

of the video data gathered. The applications for human action recognition are numerous. 

In terms of video surveillance, it is utilized in a variety of public settings, including 

prisons, courts, education, transportation, public security, and many others, in addition to 

banks, post offices, and telecommunications. Additionally, it is crucial in big warehouses 

and military locations (Tripathi, Jalal, & Agrawal, 2017). 

Patient monitoring system (Gul, Yousaf, Nawaz, Rehman, & Kim, 2020), medical 
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care (Wentao Hu1, Huang, Zhan, & Yang, 2020), human-computer interaction (Malibari, 

et al., 2022), virtual reality (Ma, 2021), smart home (Zamil, Rawashdeh, Karime, & 

Hossain, 2019), smart security (Rathod, et al., 2020), athlete-assisted training (Guo, Mu, 

Xiong, Liu, & Gu, 2019), motion capture (MathieuBarnachon, SaïdaBouakaz, 

BoubakeurBoufama, & ErwanGuilloua, 2014), environmental control and monitoring 

(Li-ming, Huang, & Tan, 2013),  sports and entertainment analysis (Wu, et al., 2022) have 

all made extensive use of human action recognition. 

In addition, human behavior recognition methods were also employed for content-

based video indexing (Saoudi & Jai-Andaloussi, 2021), etc. To sum up, the visual analysis 

of human motion has great practical significance. On the other hand, due to the 

complexity of human movement and the variability of the external environment. The 

influence of environmental factors such as cluttered background, occlusion, and 

perspective changes. This makes human action recognition and detection still a very tough 

problem. It is also a very attractive and challenging problem (Khan, et al., 2020). 

Relevant research work on the identification and analysis of human behavior dates to 

1973. Johansson presented a human model in their experimental study (Johansson, 1973). 

In the model specifically, the behavior of the human body is split into 12 relevant points. 

This point model method for describing behavior plays a crucial guiding role in later 

action recognition algorithms based on human structure. Later, a series of techniques that 

can recognize human actions have been put forth. Although various methods can produce 

accurate recognition, the effectiveness of recognition has always been a challenge. This 

challenge was not resolved until the development of deep learning and related 

technologies, which utilizes deep learning and related technologies to human behavior 

recognition (Yan, 2021). This is a very effective concept, as demonstrated by subsequent 

technical advancement and reality. The use of deep learning methods for human action 

recognition greatly saves manpower. The emergence of these methods has greatly 

improved the efficiency of the monitoring system. 

Deep learning is broadly employed for human action recognition, more and more 
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action recognition is prone to maturity. For example, human action recognition using 

convolutional neural networks (Karpathy, et al., 2014) (Chauhan, Ghanshala, & Joshi, 

2018) and recurrent neural networks (Ng, et al., 2015). Some issues also exist. The 

majority of deep learning methods for human action recognition now in use rely on 

additional feature extraction methods. People also need to select the right feature 

extraction strategies in addition to the necessity for deep learning techniques. People 

frequently must spend a lot of time through this. The time needed for recognition also 

enhances because the majority of deep learning approaches are unable to achieve end-to-

end recognition. Therefore, a deep learning method that can be applied to fastly and 

swiftly action recognition becomes crucial. 

The literature on this topic is constantly being produced in light of the impact of these 

aspects on the recognition of human behavior and the advancement of deep learning 

technology (An & Yan, 2021). This makes it possible for this thesis to conduct further in-

depth research work based on past knowledge, thus, the research questions of this thesis 

are proposed. 

1.2 Research Questions 

In this thesis, we implemented human action recognition through surveillance videos. In 

this thesis, we take use of relevant methods and techniques of deep learning to complete 

the implementation, we improve the accuracy of entire recognition process by using these 

methods. In addition, the analysis of these methods and techniques can help us better 

understand the related processes of general human action recognition. We also improved 

the recognition methods by analyzing current deep learning human action recognition. 

Therefore, the research questions proposed in this thesis are:  

(1) Which efficient deep learning methods can be applied to human behavior 

recognition? 

(2) In order to realize human action recognition, YOLOv7 was selected as the basic 

model? How should we improve this method? 
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(3) Will the use of attention mechanism in the model make human action recognition 

much efficient? 

(4) After the experiment is successfully conducted, how to evaluate the model 

performance? 

The research questions raised are all progressive, which can help us better understand 

them. Human action recognition is the core of this thesis. To this end, we firstly look for 

what human action recognition methods are currently being proposed. We discovered that 

YOLO-based human action recognition method not only is executed quickly but also 

eliminates the needs to find additional feature extraction methods. Therefore, we choose 

YOLOv7 as the base model to implement human action recognition, and improve the 

model to get a better outcome. 

1.3 Contributions 

In this thesis, we mainly conducted the implementation of human action recognition. By 

the end of this project, we are able to achieve:  

(1)  Efficiently recognize human behavior from video. 

(2) Seamlessly filling the gap of human action recognition using YOLOv7. 

(3)  The accuracy of human action recognition is improved by adding an attention 

mechanism to the model. 

(4) Timely Increasing the attention mechanism so as to reduce the time required for 

the recognition. 

This thesis will also introduce existing human action recognition methods. These 

contents will be introduced in the second chapter.  

In addition, in order to get a better training effect. In this thesis, we combine multiple 

datasets to create an action dataset for training that fits the model used in this thesis. The 
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focus of this thesis is on two attention mechanisms, which improve the accuracy of human 

action recognition. This is covered in Chapter 3. 

1.4 Objectives of This Thesis 

In this thesis, we firstly present a brief introduction to the related methods of human action 

recognition. Then, we discuss and analyze the principles of these methods. The extensive 

discussion will help us determine the method used in this thesis. 

In addition, in order to be able to recognize human actions in video data, we propose 

three models for human action recognition based on YOLOv7. Based on YOLOv7, we 

combine CBAM and Siam attention mechanisms to improve the final recognition 

accuracy. 

Finally, in this thesis, we also analyze the experimental results. We compare the 

proposed new model with the base YOLOv7 model and compare their performance on 

human action recognition. The selected method is determined by comparison and other 

evaluations as well as its final performance. 

1.5 Structure of This Thesis 

The structure of the thesis is as follows: 

We will discuss literature reviews in Chapter 2. The analysis and introduction to the 

existing human action recognition are introduced related to human action recognition. In 

addition, Chapter 2 will introduce the relevant knowledge of deep learning and how these 

methods are applied to the disparate processes of human action recognition. 

The research method of this thesis will be discussed in detail in Chapter 3. In this 

chapter, we will not only introduce the specific experimental method, but also present the 

overall design and layout of the experiment. Finally, we also introduce the dataset and 

evaluation method used. 
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We will brief the methods in Chapter 3 in Chapter 4. We will present the results of 

the experimental results in the form of graphs. This can help us better present the results 

of our research. In addition, the limitations of the method are also introduced in this 

chapter. 

In Chapter 5, we will analyze and discuss the experimental results and in Chapter 4. 

Finally, in Chapter 6, we conclude the whole thesis and present our future work. 
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Chapter 2 

Literature Review 

 

 

The focus of this project is on human action recognition based on 

deep learning. Therefore, in this chapter, we will concentrate on 

the related methods of human action recognition.  
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2.1 Introduction 

The applications of human action recognition are very wide. In the field of intelligent 

surveillance, related technologies will gradually develop into the foundation of 

identification (AminUllaha, KhanMuhammadb, UlHaqa, & WookBaik, 2019). This is 

closely related to the development of human life. In the future of human life, surveillance 

cameras will only increase (Wang, Yan, Kankanhalli, Jain, & Reinders, 2003). In addition, 

video data will only become more and more. As a result, the need to identify human 

behavior in videos will only proliferate. It is precisely because of this prospect that the 

corresponding identification technology has gradually become the key to the research 

field, attracting more and more attention from technicians and scholars. In view of this, 

in this thesis, we will conduct in-depth research on various existing human action 

recognition technologies. 

As a red hotspot in the field of computer vision, human action recognition is a 

direction with high research value and broad application prospects (Yan, 2020). The 

existing research work on human action recognition is still at the stage of gradual 

development. At the same time, human action recognition is a research topic that has 

received much attention, and there have been a great deal of related research work on 

human action recognition in the past few decades. In this field, a slew of new algorithms 

or frameworks have been proposed, explored, and exploited. Various identification 

methods based on different technologies emerge in an endless stream. The most critical 

method is related to the recognition based on deep learning (Zheng, Yan, & Nand, 2018). 

Traditional popular method in human action recognition was to collect the action 

trajectories in the video data, extract the corresponding features according to the collected 

trajectories, and then classify the extracted features to obtain the final result. One of the 

best performing methods is a method called improved dense trajectories (iDT) (Wang & 

Schmid, 2013) (Wang, Kläser, Schmid, & Liu, 2013). However, video-based human 

action recognition is still a huge challenge. The reason is that a video often contains timing 

information that a image does not have. Due to the added timing information, a larger 
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number of computations are required. However, with the development of deep learning 

technology and massive advances in computer computing power, such as the widespread 

use of GPUs. there are more and more human action recognition and related research 

based on deep learning. The use of deep learning technology can well solve the problems 

caused by the increase in computational complexity. Therefore, in the current recognition, 

deep learning has become the mainstream (Wu, Sharma, & Blumenstein, 2017). 

Under the premise of using deep learning for human action recognition, deep neural 

networks will have different effects on the recognition results (Lu & Yan, 202). Therefore, 

deep learning networks are often the key to measuring the pros and cons of the entire 

action recognition technology. In the rest of this chapter, the corresponding methods and 

literature using different networks for action recognition will be briefly introduced, such 

as CNN, RNN, attention mechanism, Transformer, YOLO (Le, Nguyen, & Yan, 2021), 

etc.  

2.2 Human Action Recognition Based on Convolutional 

Neural Network 

Simonyan et al. (Simonyan & Zisserman, 2014) proposed a CNN-based two-stream 

network. There are two different flows in this network, spatial flow, and temporal flow. 

Among them, the spatial stream processes RGB image data, and the temporal stream 

processes optical flow data. In the structure of the network, the spatial stream takes raw 

video frames as input to capture visual appearance information, such as goals, scenes, etc. 

Temporal flow takes as input a stack of optical flow images to capture motion information 

between video frames, such as the motion information of the target object. The two 

streams will be trained separately in the network, each consisting of a CNN and a final 

SoftMax. The two networks are fused by using SoftMax. Finally, SVM was employed for 

classification. Furthermore, in the experiments, a multi-task training method was taken 

into consideration to combine two different datasets. The initial training data was 

augmented in this way, so that the final results are great based on both datasets. 



12 

 

Because of this improvement, CNN-based methods achieved performance close to 

the state-of-the-art non-deep learning methods at the time. This result further illustrates 

that motion information is very important for video action recognition. However, it is also 

noted that learning temporal information directly from raw video frames is still a very 

difficult challenge for CNNs. It is necessary to represent the movement by other means. 

At the same time, because of the success of this structure, there have been many further 

studies based on the dual-stream network. This has greatly promoted the development of 

video action recognition. 

In the two-stream network structure, because two networks exist at the same time. A 

stage is required to combine the results of the two networks to obtain the final prediction. 

This stage is often referred to as spatiotemporal fusion. Since the network (Simonyan & 

Zisserman, 2014) was fused after softmax, the network cannot learn the correspondence 

between pixels of temporal and spatial features. In response to this problem, 

Feichtenhofer et al. (Feichtenhofer, Pinz, & Zisserman, 2016) proposed a new fusion 

method in 2016, which put the fusion of spatial network and temporal network in the 

convolutional layer. In addition, in order to improve performance, the author also replaced 

the basic spatial and temporal networks with VGG-16 network. The final results of the 

experiments show that the fusion in the last convolutional layer can also achieve good 

fusion accuracy. Also, fusion in convolutional layers reduces the need for fully connected 

layers in the network. Compared with the original two-stream network, this improved 

network uses half the parameters of the original network. 

The network structure related to the basic two-stream network is relatively shallow 

(Krizhevsky, Sutskever, & Hinton, 2017). As the network deepens, the accuracy of the 

neural network tends to increase. Therefore, deeper network structures in two-stream 

networks become a noteworthy part. Wang et al. (Wang, Wang, Xiong, & Qiao, 2015)  

adopted deeper temporal and spatial networks.  Although deeper architectures achieved 

higher network performance in space, deeper temporal networks do not yield better 

accuracy by simply using a deeper network does not yield better results. After sufficient 

analysis, they believe that this is due to the video dataset is too small, resulting in an 
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overfitting problem in the final result (Soomro, Zamir, & Shah, 2012) , (Kuehne, Jhuang, 

Garrote, Poggio, & Serre, 2011). 

In order to solve the problem of overfitting, Wang et al. took use of data augmentation 

methods: Corner cropping and multi-scale cropping based on the old network. It also 

reduces the learning rate of the deep network and enhances the pre-training step. At the 

same time, the dropout ratio is increased. More GPUs are utilized to train the network. 

Through these methods, overfitting of deeper networks was successfully prevented. Final 

experimental results demonstrated that the new deep network achieves a recognition 

accuracy of 91.4% (Wang, Xiong, & Qiao, 2015). 

In fact, one of the drawbacks of the two-stream method is that it can only collect 

short-term video motion information, and it is somewhat powerless for the motion 

information in those long-term videos. To solve this issue, Wang et al. proposed a 

Temporal Segmentation Network (TSN) for video-level action recognition (Wang, et al, 

2016). In this network, a new idea was put forward, which is to split a long video into 

several short segments that can be feature extracted by a two-stream method. Each 

segment will give its own spatiotemporal features for the behavior category, and finally 

these features will be combined to achieve the final prediction result. They also made 

changes to the part of the two-stream network in the text and made sure they were the 

best. For example, in terms of the type of data, two inputs, RGB difference and warped 

optical flow field, were tried. The final result is that the combination of RGB+Optical 

Flow+Warped optical flow works best. In terms of structure selection, three network 

structures, GoogLeNet, VGGNet-16 and BN-Inception, were tried. The experimental 

results show that BN-Inception works best. Furthermore, they demonstrated that using 

TSN networks to train very deep networks on a limited training set can avoid severe 

overfitting. The final experimental results show that the network has excellent 

performance, achieving a good result of 94.2% on the UCF101 dataset. 

Because TSN has very superior performance and is relatively simple to create. 

Therefore, most of the latter two-stream methods were later developed based on TSN. 
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The improved network of TSN also emerges in an endless stream. Lan et al. proposed an 

improvement on the fusion part based on TSN. They approach a deep neural network as 

a local feature extractor. After extracting multiple local features, these local features are 

aggregated into global features. Finally, the result is obtained by SVM classification. The 

experimental results show that the final effect of this method is significantly improved.  

Zhou et al. (Lan, Zhu, Hauptmann, & Newsam, 2017) improved on temporal 

relational reasoning. A novel network based on TSN, namely, Temporal Relational 

Network, was proposed. The network is structured to perform temporal reasoning on the 

input feature maps. Different features are obtained by temporal reasoning on video frames 

of different lengths. Finally, these features are fused to get the final result. In addition, 

three fully connected layers are added to learn the weights of video frames of different 

lengths. The final experimental results demonstrate that the proposed TRN network gives 

the network the ability to discover temporal relationships in videos, and the results are 

excellent. 

Based on the two-stream convolutional network, Zhu et al (Zhou, Andonian, Oliva, 

& Torralba, 2018) applied pooling to space-time and proposed a deep learning network 

called Temporal Pyramid Pooling (DTPP). The network samples the input of the two 

streams respectively to obtain the corresponding temporal and spatial features. These 

features are then combined for pre-training using a temporal pyramid pooling layer. The 

resulting model not only has multiple time scales, but is also globally and sequence aware. 

In experimental design, DTPP will first be pre-trained on ImageNet or Kinetics. Then the 

test experiment will be carried out. The final experimental results show that the 

performance of the model is good enough. 

2.2.2 3D CNN Network 

The application of 3DCNN in human action recognition was proposed. (Ji, Xu, Yang, & 

Yu, 2012). CNNs at the time could only handle 2D data. But video data is often 3D related, 

in order to recognize human actions in the video, they created a 3D-CNN model. The 

model can directly extract features with spatial and temporal relationships through a 
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special 3D convolution kernel in the network. The feature is directly extracted from the 

input video, and the motion information of multiple adjacent frames is obtained through 

the convolution kernel, the final result is obtained according to this information. After 

many experiments, it has been proved that the use of 3D-CNN model for video human 

action recognition has a good effect compared with other methods at that time. 

To further exploit the potential of 3D CNNs, Tran et al. (Tran, Bourdev, Fergus, 

Torresani, & Paluri, 2015) extended 3D CNN from shallow to deep networks, called C3D. 

Because the model directly uses deep 3D convolutional networks (3D ConvNets) to 

process spatiotemporal features. Therefore, in terms of learning spatial features, this 

method was much faster than the Two-Stream method, and the training process was 

basically end-to-end training, and the network structure is more concise. The final test 

results show that the model has broad applicability and is easy to train and use. 

But C3D also has some problems. Due to the depth problem of the whole network, 

increasing the depth inevitably enhances the number of network parameters. This makes 

training a C3D take longer. To solve this problem, Sun et al. (Sun, Jia, Yeung, & Sh, 

2015) , proposed the FstCN network structure in 2015. They made improvements to the 

3D filters in the network. Decompose the 3D filter into a 2D and a 1D filter combination. 

This reduces the parameters of the network. The final experimental results prove that the 

dataset trained by this model achieves good performance in results. However, due to other 

problems of C3D, the mainstream network in this period is still a two-stream network 

dominated by 2D CNN. 

The advent of I3D brought a turning point for this approach. The I3D method was 

proposed by Carira et al. (Carreira & Zisserman, 2017) and achieved a height of 95.6% 

on the UCF101 dataset. Structurally, I3D will be based on the inception-V1 model, 

extending from 2D to 3D. In addition, I3D has also successfully used the image 

classification architecture in 3D CNN. By conducting and training on Kinetics400, the 

problem that 3D CNN network needs to be trained from scratch every time during training 

is solved. The emergence of this method provides a successful idea for other 3D CNN 
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methods. 

Diba et al (Diba, et al., 2017) proposed a new network structure Temporal 3D 

ConvNets (T3D) based on 3D convolution. Structurally, T3D is implemented based on 

DenseNet. The 2D convolution kernels are replaced with 3D convolution kernels. 

Furthermore, they propose a new structure called Temporal Transition Layer to replace 

the Transition layers in DenseNet. In addition, in order to solve the problem of difficult 

training of 3D convolutional networks. The authors successfully transfer the pre-trained 

weights in the 2D CNN to the 3D CNN using the transfer learning method. With the above 

improvements, their network can be directly trained on some smaller datasets and achieve 

better performance of the initial 3D CNN network. And the final performance of the 

model trained by this network is better than other methods at the time. 

The same is for improving 3D convolutional networks. Qiu et al (Qiu, Yao, & Mei, 

2017). proposed a network structure called P3D. In terms of network structure, the author 

replaces the convolution kernel in ResNet Units with a 3D convolution kernel on the basis 

of ResNet. Unlike other methods, they are not directly replaced by 3D convolutions. 

Instead, 3D convolution is approximated by a combination of spatial and temporal 

convolutions instead of 3D convolutions. Through this method, not only the number of 

model training parameters is reduced, but also the advantages of 2DCNN in pre-training 

are brought into play. Finally, the authors finally demonstrate the excellent performance 

of the model on different tasks. 

Shou et al. (Shou, Chan, Zareian, Miyazawa, & Chang, 2017) combined convolution 

and de-convolution into the network based on C3D, and created a network called 

Convolutional-De-Convolutional (CDC) Networks. The network structure can not only 

upsample in the temporal dimension, but also downsample in the spatial dimension at the 

same time. In addition, the authors believe that the granularity of the methods used in the 

past is not high enough, and for this they believe that positioning using temporal actions 

can effectively improve this value. In the final experimental results, the method runs fast 

and improves mAP. This is enough to prove that the method is very effective. 
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Although the structure of the CDC model is cleverly designed, there are also some 

problems. In a CDC network, there is a problem of loss of timing information when 

collecting information. To solve this problem, Yang et al. (Yang, Qiao, Li, Lv, & Dou, 

2018) proposed an improved CDC model and named it Temporal Preservation Networks 

(TPN). In this model, the ordinary temporal convolution in the network is replaced with 

temporal preservation convolution. This ensures that the network will keep the size of the 

receptive field unchanged without performing the timing pooling operation. And this 

change will not shorten the timing length in the network, so that the timing information 

of the network is better preserved. 

Furthermore, due to the large number of parameters in deep convolutional neural 

networks. Overfitting often occurs as a result. To change the appearance of this result, 

using a regularization method is a good option, Kim et al. (Jinhyung Kim, Wee, Bae, & 

Kim, 2020) proposed a simple regularization method to avoid this problem. This method 

is called Random Mean Scaling (RMS). The key to this technique is to regularize the 

model by changing the magnitude of the low frequency components of the features by 

RMS. And RMS can enhance the entire model by adding only a small amount of 

computation during training. After extensive experiments, the results show that the 

method is very effective compared to other state-of-the-art regularization methods. 

After a summary of the above literature, we find that the related research on the use 

of CNN for human action recognition has been relatively mature and has different 

methods. Therefore, we will introduce other deep learning networks and methods for 

human action recognition in the rest of this chapter. 

2.3 Human Action Recognition Based on Recurrent Neural 

Network 

In order to obtain better results, a method that fuses LSTM with a two-stream network is 

proposed (Ng, et al., 2015). In this method, an LSTM is used as the fusion part of the two-

stream network to connect with the underlying CNN. The final result of the experiment 
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proves that the final effect of this improvement is comparable to other methods. 

Donahue et al. is combining 2D CNN and LSTM network (Donahue, et al., 2015). A 

model called Long Term Recurrent Convolutional Network (LRCN) was proposed. 

Structurally, the basis of the CNN structure of LRCN is CaffeNet. The network extracts 

the features of each frame by using a 2D CNN, and then uses an LSTM to generate the 

corresponding action labels. Through this simple process, actions are identified through 

the network. 

The two articles both firstly combined LSTM with the two-stream network 

environment to a certain extent for video action recognition. They took use of the features 

obtained by CNN in the network as the input of the deep LSTM network and aggregate 

these features from frames into video results. In the two-stream network, they 

incorporated the temporal stream and the spatial stream into the LSTM respectively, but 

the final result is still the final output by fusing the results of the two streams. In the 

experimental results, despite this has achieved good results, adding the LSTM model did 

not produce a large improvement in results compared to the original and two-stream 

baseline networks. On the basis of this framework, more methods using LSTM have been 

proposed. 

Based on this framework, more methods using LSTM have been proposed. Li et al. 

(Li, et al., 2016) achieved action recognition by creating a hierarchical multi-granularity 

LSTM network. The network was designed based on end-to-end way. Therefore, it has a 

good performance in the experimental results. In addition, the author also proposes a new 

network fusion scheme based on multi-granularity score distribution.  

Gammulle et al. (Gammulle, Denman, Sridharan, & Fookes, 2017) proposed a 

framework for deep synthesis of CNN and LSTM. This framework maps the spatial 

features obtained through the CNN network to temporal relations through the LSTM 

network. This enables the framework to effectively utilize both spatial and temporal 

features in the network. In addition, the two sets of features, which are completely 

combined, act as the attention mechanism of the network to a certain extent. And this 
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framework also achieves high accuracy in results. 

Ullah et al. (Ullah, Ahmad, Muhammad, Sajjad, & Baik, 2017) have also made efforts 

in this regard. They also use the structure of CNN plus LSTM for human action 

recognition. But instead of using the common LSTM structure, they used a network called 

deep bidirectional LSTM. In the identification method, the method uses a feature 

extraction method that can reduce the complexity of the network. Then, the extracted deep 

features are put into the DB-LSTM network to increase network in depth through 

bidirectional propagation. In this way, the model can identify and learn those long-term 

sequences. After experiments, the identification method of this design has a significant 

improvement compared with other methods of its time. 

2.3.2 Other RNN Method 

Because the simple application of RNN network to the recognition of video sequences 

does not play a very good role, the networks can even become ineffective when the 

duration of the action to be recognized becomes longer. To solve this problem, a network 

called Lattice-LSTM (L2STM) was proposed (Sun, et al., 2017). In order to accurately 

simulate long-term complex motion, the network extends LSTM. The specific idea of this 

extension learns the process of changing the state of a memory cell at a single spatial 

location. Furthermore, this shift does not increase the complexity of the model. To make 

the training of the model better, they also propose a new joint training method. These 

improvements enabled the L2STM network to perform well on two fixed datasets and 

outperformed other well-known recognition methods at the time. 

 Although RNNs are the crux of the current sequence learning problem, there are still 

many problems in concrete practice. Shi et al. (Shi, Tian, Wang, Zeng, & Huang, 2017) 

suggested that this may be related to the lack of feedback connections in the structure of 

the network. Therefore, a structure called ShuttleNet was proposed by using GRU instead 

of RNN as the base processor of the model. For the network to perform an analogous 

function as the feedback connection, the internal processors of the network are all 

cyclically connected.  
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   With this improvement, the existing network becomes a parallel work. It conducts this 

performance through feedforward and feedback connections in the network. In the final 

experiments, they got good results after adding this structure to the RNN network 

framework. Through this improved experimental data, we can also see that using GRU in 

the network requires fewer parameters than simply using RNN. And on the action 

recognition task, we get analogous performance to the network using LSTM. 

Zheng et al. (Zheng, An, & Ruan, 2017) proposed a multilayer RNN network 

structure. They named this network structure as Multi-Level Recurrent Residual 

Networks (MRRN). There are three different levels of recognition flows in this network, 

namely low, medium, and high recognition flows. The basic structure of each recognition 

flow is composed of a ResNets network and a recurrent network model. The model fuses 

three streams that learn independently through a weighted average. In addition, since the 

model also reduces the time and space complexity of the network through shortcut 

connections. This enables the network to be trained end-to-end with higher efficiency. In 

the experimental results, the performance of the network has produced obvious 

improvement, and it is not bad compared with the new technology at that time. 

Most neural networks that are use of RNNs for human action recognition were 

designed to rely on a two-stream architecture. However, the existing two-stream RNN 

network (Sun, et al., 2018)  does not fully utilize the information in the network. Based 

on this idea, the idea of exploiting the information was proposed in the network in a 

circular fashion. So, a novel coupled recurrent network (CRN) was propounded. The most 

important thing in this loop structure is the module called Loop Interpretation Block (RIB). 

Through this module, multiple inputs to the network are processed and the features are 

extracted. In addition, in order to improve the training performance of the model, they 

also took use of an efficient training strategy suitable for the CRN network. Experimented 

on this basis. Ultimately, they demonstrate the effectiveness of the CRN network and 

achieve state-of-the-art results. 
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2.4 Attention Mechanism 

In deep learning, most design concepts are inspired by the human biological nervous 

system. Among these concepts, the attention mechanism can be regarded as a particularly 

important concept. Today's attention mechanism is one of the most unique of deep 

learning-related concepts. Using attention to process large amounts of information, it 

focuses on those unique parts of the information. 

The concept of attention was firstly proposed from Google DeepMind. (Bahdanau, 

Cho, & Bengio, 2015). The attention was applied to create a network for machine 

translation of people, called RNNsearch. RNNsearch is structurally divided into an 

encoder and a decoder, both of which are composed using a bidirectional recurrent neural 

network (BiRNN). Later, with the further development of deep neural networks, the 

attention mechanism has been widely used in various application fields. It is also used in 

the field of human action recognition. 

Based on CNN and LSTM networks, Sharma et al. (Shikhar Sharma, 2015) pioneered 

adding an attention mechanism to the network structure. By adding an attention 

mechanism to the network, the network can only focus on the part of the data set that is 

strongly related to the behavior category. In order to prove that the introduction of 

attention mechanism makes the network better, the author compares two different 

networks, which further proves that this attention CNN-LSTM network is better than the 

traditional LSTM. 

Du et al. also added an attention mechanism to the network. They propose a 

mechanism called pose-attention. Adding attention to the network not only allows the 

RNN model to learn more complex motion structures over time, it also enables simple 

pose labeling of videos through the network. The proposal of this pose attention network 

enriches the field of action recognition using RNN to a certain extent. 

A network called VideoLSTM was proposed. In order to apply ConvLSTM to human 

action recognition, an attention mechanism based on the network was introduced. Finally, 
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it got the VideoLSTM network. A new attention map is applied in this network structure. 

In addition, the network explains how to use attention on action localization via action 

class labels. Finally, the network shows improved results for action recognition on the 

results. 

The end-to-end model is important part. Song et al. proposed another recognition 

network with an attention mechanism based on LSTM (Du, Wang, & Qiao, 2017). The 

whole network consists of three parts, namely, the main LSTM network, the spatial 

attention subnet, and the temporal attention subnet. Among them, the network learns the 

relationship between nodes in disparate frames through LSTM. Based on this relationship, 

the spatial and temporal attention subnets find out which data in the data has the greatest 

impact and contribution to action recognition. The importance is automatically assigned 

to disparate joint points through the content of the sequence, that is, disparate attention is 

given. The assignment of joint importance tends to change over time. In addition, the 

authors employ an alternate joint training approach to train the network and design a 

regularized loss function to prevent the model from overfitting. 

The networks are based on LSTMs combined with attention mechanisms. This also 

means, these networks are implemented based on RNN. However, the attention 

mechanism is not only realized based on RNN, and a structure that realizes attention 

without the RNN network appears. 

Chen et al. (Yunpeng Chen, 2018) proposed a dual attention network (A2-Nets). As 

the name suggests, this is a network consisting of two attention modules. An attention 

module is responsible for collecting all spatial features together to generate a global 

feature set. The second module is responsible for distributing these features to suitable 

locations. It takes advantage of two attention maps to collect and distribute long-range 

features. In addition, it is also very convenient and fast to add this network to the existing 

deep neural network. The performance of this model was evaluated by conducting 

experiments on a video recognition dataset. On the action recognition task, the model 

achieved better performance than other models at the time. 
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The attention mechanism was combined to the CNN framework and named as the 

framework AssembleNet++ (Ryoo, Piergiovanni, Kangaspunta, & Angelova, 2020). A 

network component called peer-attention was put forward. Through this component 

network, the importance of spatiotemporal features of different convolutions can be 

learned, and different weights can be assigned to them. In addition, the attention 

mechanism can also be widely used in other CNN models. The final results of the method 

showed that the method outperformed other methods at the time. 

    Transformer is a model implemented entirely based on attention mechanism. This 

model completely abandons convolution and recursion, and adopts an encoder-decoder 

structure in structure. It was first proposed by Vaswani et al. (Vaswani, et al., 2017) for 

translation tasks of text data and achieved good results. After the concept of Transformer 

was proposed, the model achieved great success in natural language processing. In the 

task of dealing with long-term time series modeling, it has shown much better 

performance. Therefore, the applications of transformers to human action recognition 

tasks have become the research direction of many people. 

 Bertasius et al. proposed a new video action classification method (Bertasius, Wang, 

& Torresani, 2021), TimeSformer, based on the structure of Transformer. By 

decomposing video into frame-level patches, this method enables direct spatiotemporal 

feature learning. Through such improvements, the standard Transformer can be employed 

in video action classification. In addition, they also applied spatial and temporal attention 

to each block of the modulo model respectively, and called this design divided attention. 

The test results show that the newly designed TimeSformer has achieved excellent results 

in the test. 

 Video Transformer Network (VTN) is a network structure for action recognition. It 

takes use of ViT to model space and an attention-based encoder to model time (Neimark 

et al., 2021). Among them, ViT was often used as a Transformer in image classification 

tasks. In the network, the spatial features were extracted from the transformer and input 

into the attention-based encoder, MLP was taken to output the final result. The 
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experiments show that the network gives excellent results on the task of video human 

action recognition and runs faster than other methods (Neimark, Bar, Zohar, & Asselmann, 

2021). 

 Fan et al. applied Transformer to human action recognition in a clever way. Because 

Transformer has high classification performance. So, 3D frames of the video were 

converted into a 2D super image that can be directly input. The transformed data will go 

through a Transformer-based image classifier to complete action recognition. The 

experimental results proved that their idea was correct. The recognition results using this 

method on the Kinetics400 dataset achieve analogous performance to some of the best 

CNN methods (Fan, Chen, & Panda, 2021). 

 ViViT is a video human action recognition Transformer proposed by Arnab et al. 

They took use of four different spatiotemporal Transformer combinatorial structures to 

address long sequences of tokens appearing in videos. Furthermore, they also effectively 

regularized the model during training. After the extensive experiments, it is proved that 

the Transformer performs well in action recognition (Arnab, et al., 2021). 

 A model called Action Transformer (AcT) was proposed. The appearance of this 

model was inspired by Vision Transformer which is a Transformer model based entirely 

on self-attention. Furthermore, in order to get an accurate model, a new dataset 

MPOSE2021 was obtained. After extensive testing on the dataset, the proposed model 

consistently outperforms other networks using CNNs and RNNs for recognition (Mazzia, 

Angarano, Salvetti, Angelini, & Chiabergea, 2022). 

 In order to reduce the GPU memory required in the recognition process, a novel 

framework called Recurrent Visual Transformer (RViT) was proposed (Messina, Amato, 

Carrara, Gennaro, & Falchi, 2022). The framework reduces GPU memory requirements 

by using frame-by-frame processing. In RviT, the attention gate structure was added. This 

structure allows the network to establish an interaction that associates the input frame 

with the previous hidden state. RViT also incorporates the concept of circular execution 

in the network. RViT takes use of both to obtain spatial and temporal features in videos. 
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The final experimental results prove the superiority of RViT, and RViT always performs 

well on different datasets. For example, RViT can achieve 92.31% on the Jester dataset. 

These methods all reduce the complexity of Transformer's understanding model to a 

certain extent. At the same time, the calculation amount of using Transformer is reduced 

to a certain extent. In addition, it is equally feasible to introduce Transformer into neural 

network to help human action recognition. 

    The current CNN-based action recognition still has some limitations. Affected by the 

receptive field, the existing CNN models cannot capture long-range temporal information. 

Therefore, Hussain introduced Transformer. Specifically, after extracting features using 

the Vision Transformer, the features are passed into a multi-layer LSTM. Finally, the long-

term dependencies of the action were obtained. The addition of Transformer not only 

helps the network obtain relevant information about remote time, but also encodes spatial 

information relative to temporal information. Through extensive experimental 

experiments on UCF50 and HMDB51, they finally determined that the model improved 

the accuracy by 0.944% and 1.414% (Hussain, Hussain, Ullah, & Baik, 2022). 

2.5 Other Multiple Deep Learning Method for Human Action 

Recognition 

Using other methods in combination with deep learning methods can get satisfactory 

results for human action recognition. Applying trajectories to neural networks is an option 

(Yan & Kankanhalli, 2003). Wang et al. proposed a deep learning method using 

trajectories, Trajectory Pooling Depthwise Convolutional Descriptors (TDD). The 

features obtained using this method consider the advantages of traditional handcrafted 

features and deep learning features. The learned convolutional features are integrated 

together by trajectory constraints. These features are then turned into valid descriptors by 

using two different normalization methods. It is worth noting that the trajectory 

hereinafter refers to the path that the pixel is traced in the temporal dimension. To 

determine the effectiveness of the method, the experiments were conducted by using the 
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UCF101 and HMDB51 datasets. The experimental results show that the method performs 

well and is one of several methods that perform best on both datasets at the time (Wang, 

Qiao, & Tang, 2015). 

    It is helpful to extract video features by improving the recognition system using data-

driven and data-independent methods. Therefore, IDT was incorporated into the network 

while a two-stream stacked convolutional independent subspace analysis (ConvISA) 

architecture was proposed. Through this method, the new local feature descriptors are 

perfectly combined with the hand-crafted descriptors for subsequent classification. After 

experimenting with four datasets, the method reached the state-of-the-art at the time (Lan, 

Yu, Lin, Raj, & Hauptmann, 2015). 

   In an action video, the number of frames where action can be discriminated may only 

be in a few key frames. A general action recognition network assigns labels to all frames. 

Zhu et al. proposed a deep learning method to identify key volumes. The network looks 

for the Key Volume for each action of the input. And use the found data to update the 

parameters of the network. This model finally achieved 93.1% accuracy on the UCF101 

dataset (Zhu, Hu, Sun, Cao, & Qiao, 2016) 

    Diba et al. proposed an encoding layer called Temporal Linear Encoding Layer (TLE) 

in order to fuse and encode people in different positions in the video. When this encoding 

layer is added to the 2D CNN, the network can capture all appearance and motion 

throughout the video. Moreover, using this network to model data is not easy to lose 

information and the modeling method is more expressive. Furthermore, this encoding 

layer can also be used in 3D CNN. In feature extraction, the author used two different 

networks, Two-stream and C3D, to extract features. Experiments show that the 

recognition effect of TLE is very good (Ali Diba, 2017) 

 Zhao et al. proposed a new convolution algorithm based on trajectory, named as 

TrajectoryNet. In the basic structure of the network, a two-stream convolutional network 

is chosen. TrajectoryNet was proposed for model training from the data in the temporal 

dimension instead of conventional temporal convolution. Spatial convolution continues 
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to adopt regular convolutions. This approach without CNN as a fixed feature extractor 

performs well on the Action Recognition dataset dataset, with a significant improvement 

over the base two-stream network (Zhao, Xiong, & Lin, 2018). 

Yucer et al. proposed a different system for 3D human action recognition. The system 

consists of two modules. The first module consists of the Siamese-LSTM network to form 

the basic function. Throughout this module, a similarity measure between two 3D joint 

sequences in the network can be learned. The second module is responsible for the final 

identification of the output of the first module. It is worth noting that the first module can 

be separated from the system and trained independently. This can also get the final 

recognition result. Although the final experimental results are not excellent, the overall 

idea is worth learning. This system can be further developed by adding LSTMs in the 

future (Yucer & Akgul, 2018). 

The results of human action recognition are often affected by environmental factors 

such as background clutter and illumination changes. In order to understand which 

network structure can avoid the influence of these factors, Yu et al. implemented three 

different action recognition models: 3D-CNN, Two-Stream network, and CNN+LSTM. 

After extensive experiments by placing these models on the HMDB-51 dataset. They 

found that only the CNN+LSTM model can effectively avoid the influence of interference 

factors (Yu & Yan, 2020). 

Liang et al. also chose CNN+LSTM network as the method of human action 

recognition. By comparing the four structures of KNN, KNN+STIP, CNN, CNN+LSTM, 

they finally determined that using CNN+LSTM network for action recognition can get a 

good accuracy (LIANG, LU, & YAN, 2022). 

2.6 YOLO for Human Action Recognition 

Among the target detection methods based on deep learning, we divide them into two 

categories according to the detection method (Jiao, et al., 2019) : Two-stage detection and 
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one-stage detection. Most of the methods at that time utilized deep learning methods to 

analyze pictures, find out the areas where objects exist, and cut these areas out. The deep 

learning human action recognition methods, such as CNN, etc. Most of these methods are 

two-stage detection methods. This kind of methods are also called the two-stage methods. 

In general, the localization and target recognition accuracy of two-stage detection will be 

relatively high. The detection speed of single-stage detection is faster (Jiao, et al., 2019). 

One-stage detection is to directly classify each region of interest as a background or 

target object (Wu, Sahoo, & C.H.Hoia, 2020). The detection method can directly give the 

class probability of the object through only one stage. The most typical representative of 

this is YOLO (You Only Look Once) (Redmon, Divvala, Girshick, & Farhadi, 2016). 

YOLO is an advanced one-stage object detection framework. It has now gone 

through 7 versions of the evolution. In addition, YOLOR (Wang, Yeh, & Liao) which 

combines traditional compressed sensing and YOLOX (Ge, Liu, Wang, Li, & Sun, 2021) 

which does not rely on anchor boxes are also produced. As shown in Figure 2.1, we can 

briefly view the development process of the YOLO detection model through this figure. 

 

Figure 2.1: The process of YOLO model 

YOLOv1 in 2016 directly divided the image into several regions, and simultaneously 

predicted the bounding box and probability of each region, and the detection speed was 

greatly improved. However, the shortcomings are also obvious. Compared with the two-

stage detector at that time, the positioning accuracy is lacking, especially for the 

positioning of small targets (Redmon, Divvala, Girshick, & Farhadi, 2016). 
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The basic framework of YOLOv1 is shown in Figure 2.2. Firstly, we adjust the input 

image size to 448×448, and send it to CNN to extract features, and then tackle the network 

prediction results to achieve end-to-end target detection. Structurally, YOLOv1 took use 

of a backbone network like GoogleNet (Szegedy, et al., 2015) with 24 convolutional 

layers and 2 fully connected layers. It is pre-trained on ImageNet and then transferred to 

the detection task for validation on the VOC dataset (Everingham, et al., 2015). In 

addition, YOLOv1 segments the input image into 7×7 grids, and each grid predicts two 

bounding boxes, so there is 7×7×2 bounding boxes. Identify up to 49 targets. Therefore, 

YOLOv1 is not conducive to identifying dense objects and small objects. 

 

Figure 2.2: The basic framework of YOLOv1 model 

YOLOv1 abandons the traditional sliding window technology. Its CNN divides the 

input image into an S×S grid, and then each cell is responsible for detecting those targets 

whose center points fall within the grid, and each cell predicts B boundaries box and 

bounding box confidence. Confidence contains the probability that the bounding box 

contains the target and the accuracy of the bounding box. Each bounding box predicts 5 

elements: (x, y, w, h, c), which represent the position, size, and confidence of the bounding 

box, respectively. Each cell predicts (B×5+C) values, where C is the number of categories. 

Afterwards, the Non-Maximum Suppression (NMS) algorithm is used for network 

prediction. 

These problems affect the recognition performance to some extent. So, in order to 
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solve these problems. Based on YOLOv1, YOLOv2 was proposed (Redmon & Farhadi, 

2017). Compared with the previous YOLOv1 version, while maintaining the processing 

speed, YOLOv2 has made improvements in three aspects: More accurate prediction, 

faster speed, and more recognized objects. YOLOv2 draws on the VGG network to build 

a new backbone network Darknet-19. Because YOLOv1 took use of the fully connected 

layer to directly predict the bounding box, it loses a lot of spatial information, resulting 

in inaccurate positioning. Therefore, YOLOv2 introduces anchor boxes to replace the 

fully connected layers of v1 to predict bounding boxes. YOLOv2 pioneered a training 

method that uses a combination of classification and detection to extend object detection 

to objects lacking detection samples. Significantly improve the prediction accuracy while 

maintaining the advantage of fast inference. 

Specifically, YOLO9000 can be regarded as an extension of YOLOv2. It has made 

the following improvements based on YOLOv2, which greatly improves the detection 

accuracy:  

(1) YOLOv2 took use of a basic network designed by itself, and the network is 

designed with consideration. The amount of calculation of convolution makes YOLOv2 

faster. In YOLO9000, batch normalization is added to the base network to make the 

network converge faster.  

(2) Before training the detection network, it needs to fine-tune the pre-trained 

classifier on the high-resolution pictures to make the network adapt to the resolution of 

the detected pictures in advance. It also improves the accuracy of the classification 

network to a certain extent and obtains a better classifier.  

(3) The convolution was employed to replace the full connection of YOLOv2 for the 

parameters of the regression target.  

(4) By returning to the width and height of the target, the multiscale reference frame 

is used for matching training to reduce the positioning error of the detection.  

(5) Detection not only needs to classify the target, but also needs to locate the target. 
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The classification needs high-level semantic features, and the positioning needs the 

detailed information of the picture. In this method, the cross-layer feature fusion is used 

to obtain multi-scale features, and the result is the convolutional features of can be well 

suited for detection. 

The basic network of YOLOv3 is Darknet-53, which draws on the residual structure 

of ResNet (He, Zhang, Ren, & Sun, 2016) to deepen the network structure while 

preventing the problem of network convergence caused by network gradient explosion. 

During the forward pass, the pooling layer and the fully connected layer are removed, and 

the size of the tensor is changed by changing the stride of the convolution kernel. Like 

v2, Darknet-53 will reduce the output features to 1/32 of the input, so the input image 

resolution is usually required to be a multiple of 32 (Redmon & Farhadi, 2018).  

At the same time, YOLOv3 utilizes tensor splicing to expand the dimension of the 

tensor to extract more information. The specific operation is to splice the Darknet-53 

middle layer and a subsequent layer after upsampling. Without affecting the detection 

speed, the accuracy of YOLOv3 is increased by about 1 percentage point, and the 

convergence speed is faster, which further improves the target detection ability of 

YOLOv3. 

Darknet-53 has a total of 53 convolutional layers from layers 0 to 74, and the rest are 

residual layers. The 75th to 105th layers are the feature fusion layers of YOLOv3, in 

which YOLOv3 adds multi-scale detection (equivalent to neck), using 3 scales, and the 

outputs are 52×52, 26×26, 13×13 are used for detection small, medium, and large targets, 

each scale predicts 3 anchor boxes. 

In short, the predicted frames of YOLOv3 are more than 10 times larger than those 

of YOLOv2, and they are performed at different scales, so the overall detection accuracy 

and the detection accuracy of small objects have been greatly improved, so YOLOv3 can 

be regarded as a single stage one of the milestone algorithms of target detection. 

YOLOv4 summarizes various improvement methods after YOLOv3. Meanwhile, 
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YOLOv4 is more suitable for training on a single graphics card (Bochkovskiy, Wang, & 

Liao, 2020). YOLOv4 is mainly divided into two modules, one is a module that improves 

training without affecting the inference speed. The other is a module with less impact on 

inference time and higher performance reward. For example, the local Cross Stage Partial 

(CSP) (Wang, Chen, Hsieh, & Yeh, 2020) adopted in the backbone network maintains 

high inference speed while still having high accuracy. 

YOLOv4 selects CSPDarknet-53 as the backbone network. This is because 

Bochkovskiy et al. found that when the model is optimal for classification, its detection 

may not be optimal. The classification accuracy of CSPResNeXt-50 is higher than that of 

CSPDarknet-53. However, the detection accuracy of the latter is higher than that of the 

former. Therefore, CSPDarknet-53 is more suitable as the network backbone 

(Bochkovskiy, Wang, & Liao, 2020). 

In the overall structure of this network, the overall architecture of YOLOv4 is the 

same as that of YOLOv3, but each substructure has been improved. Structurally, YOLOv4 

deletes the last pooling layer, fully connected layer and softmax layer. Its backbone 

network consists of 5 CSP modules. YOLOv4 introduces Spatial Pyramid Pooling (SPP) 

and Path Aggregation Network (PANet) modules into the neck module. Increasing the 

receptive field via SPP separates important contextual features without slowing down the 

runtime. PANet was adopted instead of Feature Pyramid Network (FPN) in YOLOv3 for 

parameter aggregation, and use tensor connections to replace the original short 

connections. The head module, YOLOv4 has not made too many changes, and still 

inherits the multi-scale idea of YOLOv3 for prediction. YOLOv4 performs recognition 

better than YOLOv3 overall. YOLOv4 has a greater mAP and a faster training speed in 

terms of results. Additionally, YOLOv4 performs better than YOLOv3 at obscured object 

recognition. The structure of YOLO can also be further improved (Gai, Chen, & Yuan, 

2021). 

The basic structure of YOLOv5 (Wu, et al., 2021) is like YOLOv4, but it is scaled 

according to the scale of different channels, and five models of YOLOv5-N/S/M/L/X are 
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constructed from small to large according to the model. The detect speed of YOLOv5 is 

significantly faster than that of YOLOv4, but the detection performance is not 

significantly different from that of YOLOv4. Additionally, YOLOv5 makes it easier to 

train its own dataset. 

YOLOX is based on the basic structure of YOLOv3 (Bochkovskiy, Wang, & Liao, 

2020) and YOLOv5 (Wu, et al., 2021). CSPNet, SiLU activation functions and PANet are 

used. In addition, YOLOv4 models of YOLOX-S/M/L/X have been designed. These 

models are all scaled by YOLOX. In addition, the model is further reduced to build 

YOLOX-Tiny and YOLOX-Nano for mobile edge devices. 

However, methods such as YOLOv5 and YOLOX still have a lot of room for 

improvement in efficiency and speed. YOLOv6 and YOLOv7 are proposed on this basis. 

YOLOv6 has two types of models in structure. The large model uses the CSPStackRep 

block as the base block, and improves the PAN neck and proposes the Rep-PAN neck. 

Small models use RepBlock as the base block. In addition, YOLOv6 also borrows the 

structure of the YOLOX decoupling head, which has achieved good results in both 

classification and regression tasks (Chuyi Li, Chu, Wei, & Wei, 2022). 

YOLOv7 follows YOLOv6 and was proposed by the author team of YOLOv4. Under 

the same volume, YOLOv7 is more accurate than YOLOv5, 120% faster (fps) and 180% 

faster than YOLOX (fps). YOLOv7 uses an extended efficient layer aggregation network 

to enhance the ability of the network to learn. A model scaling method based on 

concatenate model is proposed, which can keep the characteristics of the model in the 

initial design and maintain the best structure (Wang, Bochkovskiy, & Liao, YOLOv7: 

Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, 2022). 

Also, tag matching has been reset. The specific structure of YOLOv7 will be introduced 

in detail in Chapter 3. 

Park et al. propose (Park, Park, & Kim, 2018) a novel object segmentation scheme 

to improve human action recognition. They use the YOLO Action Network's object 

detector. Object location and number of objects detection done using the YOLO network. 
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faster than other methods. Additionally, YOLO can instantly produce item classifications 

and associated probabilities from full photos. Experimental results show that the accuracy 

of the new scheme is improved by 15%. Wu et al. used YOLO in human action 

recognition based on skeleton data. The YOLO network they designed has only 1 

dimension. In the end, their mAP reached 81.88% (Wu, et al., 2019). 

In order to complete human action recognition, Lu et al. conducted related research 

work using the YOLOv3 model. To maximize the accuracy of their recognition, they were 

experimenting with public datasets, and they also created another dataset for their 

experiments by collecting their own data. In addition, in order to obtain a high-precision 

network learning rate suitable for the network, the network structure is continuously 

adjusted. In addition, the results of YOLOv3 are compared with the results of YOLOv2. 

This makes the method more credible and the experimental accuracy finally reaches 80.20% 

(Lu, Yan, & Nguyen, Human Behaviour Recognition Using Deep Learning, 2018). 

In 2020, Lu et al., YOLO network for human action recognition is further optimized. 

They proceeded to human action recognition using more advanced methods than 

YOLOv3. They used the more advanced YOLOv4 combined with LSTM network. 

Furthermore, they further improved the performance of the network by adding event and 

spatial information to the recognition method, as well as an attention mechanism. After a 

lot of experiments, the accuracy rate reached 97.87%. To further improve network 

performance, a new Selective Kernel Network (SKNet) model with attention mechanism 

was added to their mailbox network. Finally, an accuracy of 98.70% is achieved (Lu, Yan, 

Nguyen, 2020).  

By reviewing the various methods mentioned in the literature review, we see that 

good results can be achieved on action recognition using a variety of different methods. 

Among them, the YOLO model has great potential. By adding other structures to the 

YOLO model, the final recognition effect can often be greatly improved (Luo, Yan, & 

Nguyen, 2022).  

By sorting out related work, we found that the methods of human action recognition 
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using CNN or RNN often need to join multiple networks to improve the effectiveness of 

the experiment. Also, since the methods implemented using these methods are often not 

end-to-end, they are not very fast. The YOLO series of methods run fast and are easy to 

train. Additionally, few people are using YOLO for human action detection research. The 

method used is also YOLO or YOLOv5, and the performance is also poorer than that of 

YOLOv7. There are still gaps in research. The method of human action recognition using 

YOLOv7 are few. In response to this situation, we use YOLOv7 as the basis to achieve 

human action recognition, and the method we use is described in Chapter 3. 

  



36 

 

 

Chapter 3 

Methodology 

 

 

In this chapter, we introduce the deep learning methods used in this 

thesis. This chapter will focus on the details of deep learning 

methods and algorithms used in human action recognition. In 

addition, datasets suitable for this method will be presented.  
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3.1 YOLO v7 

After YOLO was proposed, it was a typical representative of using the one-stage method 

for classification and recognition. YOLO-based methods are known for fast speed. 

However, while achieving high running speed, YOLO inevitably sacrifices part of the 

accuracy. In recent years, YOLO-based methods have also been rapidly disseminated due 

to various deep learning techniques being proposed. A variety of different YOLO methods 

improve the accuracy of YOLO while maintaining speed. YOLOv7 is the latest method 

based on YOLO. Figure 3.1 shows the simplified structure of YOLOv7. 

 

Figure 3.1: The simplified structure of YOLOv7 model 

 From the network architecture of YOLOv7, the network consists of three parts, which 

are input, backbone, and head. Among them, Backbone is responsible for extracting 

features, and head is responsible for predicting object categories and bounding boxes. 

Unlike YOLOv5, YOLOv7 combines the neck layer and head layer of the network, 

collectively referred to as the head layer. We will explain the specific structure of 

YOLOv7 in the next section (Wang, Bochknovskiy, & Liao, 2022). 

 The basic recognition process of the network can be summarized as: (1) Preprocess 

the input image and align it into an RGB image with a size of 640x640. (2) Input the 

picture into the backbone network, and generate different three-layer outputs through the 
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backbone network. Then in the head layer, the three-layer output of the backbone network 

continues to be output as three layers of feature maps of different sizes. Finally, after the 

processing of RepVGG block and Conv, the output is predicted and the result is output. 

3.1.1 Backbone 

The specific structure of the YOLO v7 backbone layer is shown in Figure 3.2. Basically, 

it consists of the CBS module, the E-ELAN layer, and the MP layer. 

 

Figure 3.2: The structure of backbone 

The CBS module is composed of a Conv layer, a Batch normalization (BN) layer, 

and a SiLU layer. where SiLU is an activation function. The full name is the sigmoid-

weighted linear unit.  

𝑆𝑖𝐿𝑈(𝑥) = 𝑥 ∙ 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥)                                 (3.1) 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+𝑒−𝑥                                         (3.2) 

In Eq. (3.1), we see that SiLU activation function is obtained by multiplying the input 

by the Sigmoid function. Among them, the sigmoid function is also one of the common 

activation functions, and the function is expressed as shown in Eq. (3.2). 
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Figure 3.3: The curve of SiLu 

 By controlling the size and stride of the convolutional layer, CBS has different sizes. 

After four CBS modules, the feature map will become 160×160×128 size. Then input 

into the E-ELAN module. 

 The E-ELAN module is composed of multiple CBSs. The feature size does not 

change after passing through the E-ELLAN module. However, the learning ability of the 

network through E-ELAN will be improved, and more features can be learned. The 

structure of E-ELAN is shown in Figure 3.4. 

 

Figure 3.4: The structure of E-ELAN 

    From Figure 3.4, E-ELAN will generate four features, and E-ELAN will stack the 

obtained four features together to obtain the final feature extraction result. Then, this 

feature is input into the MP layer for downsampling. The structure diagram of MP is 

shown in Figure 3.5. 
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Figure 3.5: The structure of MP 

 The MP module consists of two branches together. The first branch goes through a 

maxpool operation, and then goes through a 1×1 convolution to get a sampling result. 

The second one goes through a 1×1 convolution, and then a 3×3 convolution with a stride 

of 2 to get another sampling result. Finally, MP will add the results of the two branches 

together to get the result. 

 Overall, after the input enters the backbone, it first enters 4 CBSs to obtain the feature 

map with the changed size. Then enter the E-ELAN structure to improve the network's 

learning ability of features while keeping the size unchanged. Then input into the structure 

of three MP + E-ELAN to get three feature maps of different sizes for the next head. 

3.1.2 Head 

The specific structure of Head is shown in Figure 3.6. It can be seen from the figure that 

Head is mainly composed of SPPCSPC structure, E-ELAN, MP structure and REP 

structure.  

The SPPCSPC module is composed of two modules, SPP and CSP. As shown in 

Figure 3.7, the role of SPP is to enhances the receptive field so that the algorithm can 

adapt to images of different resolutions. It obtains various receptive fields through 

maximum pooling. The CSP module reduces the amount of computation. This is because 

the feature is first to split into two parts in this module.  Then one is for conventional 

processing, and the other is for SPP structure processing. Finally, merge the two parts 

together. This method not only reduces the amount of calculation by half, making the 

speed faster but also improves the accuracy. 
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Figure 3.6: The structure of head 

 

Figure 3.7: The structure of SPPCSPC 

  

Figure 3.8: The structure of UP 

The UP module consists of a CBS and a UPSample. The UPSample module is a 

module that uses nearest neighbor interpolation for upsampling. As shown in Fig. 3.8. 

The CAT module is responsible for stacking multiple features together to get the final 
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feature result. The E-ELAN in head structure is analogous to that in the backbone. The 

difference is that the features output by E-ELAN in the head are composed of five features, 

not the four in the backbone. This is shown in Figure 3.9.  

 

Figure 3.9: E-ELAN structure in head 

 

Figure 3.10: The structure of REP 

The MP structure is just a change in the ratio of the number of channels. This causes 

the number of channels to change after the feature passes through the MP of the head, but 

does not change in the backbone. 

There are two types of REP modules. One is the training module and the other is the 

deploy module. The training modules of the REP module are all composed of 
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convolutions. There are three branches in the structure, the top branch is a 3 × 3 

convolution for feature extraction. The middle branch is a 1×1 convolution for smoothing 

features. The last branch does not do convolution operations and directly input 

transmission. Finally, the results are added together. The deploy module of REP only 

contains a 3×3 convolution with a stride of 1. It is converted from re-parameterization of 

the training module as shown in Figure 3.10. 

In the whole head, the three feature maps input by the backbone are output to the 

REP module after being processed by SPPCSPC, CBS, MP, and other structures. Output 

three different prediction results through three REP and conv layers. 

3.2 Convolutional Block Attention Module (CBAM) 

CBAM is an attention mechanism proposed (Woo et al. 2018). This attention mechanism 

combines spatial and channel attention mechanism modules. Compared with SENet 

which only focuses on the channel mechanism, CBAM achieves better results. The 

mechanism consists of two parts, the channel attention module, and the spatial attention 

module. As a generic module, CBAM can be loaded into any CNN. Because of this, 

CBAM has become a common attention mechanism. Its structure diagram is shown in 

Figure 3.11, which clearly indicates the structure of the attention module. Firstly, the 

importance of different channels, that is, the channel weights, is obtained. Then all feature 

maps are compressed into one feature map to obtain the weights of spatial features (Woo, 

Park, Lee, & Kweon, 2018). 

 

Figure 3.11: The simplified structure of CBAM 
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3.3 SimAM 

SimAM attention mechanism is also an attention mechanism that pays attention to both 

channel attention and spatial attention modules. But this attention mechanism is different 

from other mechanisms in that this mechanism can derive 3D attention weights without 

the assistance of additional parameters. In the attention mechanism at that time, the 

generation of attention weights often requires the assistance of additional sub-networks. 

It is also feasible to infer 3D weights directly from current neurons. Therefore, they 

defined an energy function to help them efficiently infer such three-dimensional weights. 

A single SimAM module can be a computational unit that can be used to enhance the 

expressiveness of features in convolutional neural networks. It can take any intermediate 

feature as input and convert it into a feature with constant size and more expressive power. 

A simple structure is shown in Figure 3.12. By comparing with other attention 

mechanisms, the final experimental results show that the attention mechanism is very 

effective (Yang, Zhang, Li, & Xie, 2021).    

 

Figure 3.12: The simplified structure of SimAM 

3.4 Research Designing 

Human action recognition is the core of this thesis. In this thesis, we take use of YOLOv7 

as the base network for human action recognition. And use the attention mechanism as 
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the complementary structure of the network. The two jointly build a model of YOLOv7+ 

attention mechanism as a typical method for human action recognition in this thesis. In 

terms of overall design, this thesis has designed three disparate models. They are 

YOLOv7+CBAM, YOLOv7+SimAM and YOLOv7+CBAM+SimAM respectively. 

Among them, YOLOv7+CBAM and YOLOv7+SimAM are implemented by adding the 

attention mechanism to YOLOv7 respectively. YOLOv7+CBAM+SimAM is 

implemented by adding these two methods to YOLOv7. By using these three models, we 

will realize the recognition of the five actions of clutching, boxing, walking, waving, and 

running. 

In addition, since the underlying network structure is YOLO. Therefore, in this thesis, 

we create a new dataset YOLOv7 Action based on KTH (Schuldt, Laptev, & Caputo, 

2004), UCF-101 (Soomro, Zamir, & Shah, 2012), Weizmann (Gorelick, Blank, 

Shechtman, Irani, & Basri, 2005), HDBM (Kuehne, Jhuang, Garrote, Poggio, & Serre, 

2011), UTKinect-Action3D (L Xia, 2012), MSR Action datasets (Yuan, Liu, & Wu, 2011).  

    Among them, there are 6 actions in the KTH dataset are performed by 25 people 

multiple times in indoor and outdoor environments. The data in the UCF-101 dataset is 

real action video data collected from YouTube. There are 101 action categories in the 

dataset, and the recorded actions tend to have a cluttered background. The Weizmann 

dataset consists of 90 action video sequences in which 9 different people perform 10 

different natural actions in the dataset. The HDBM dataset has 51 action categories, 

mostly collected from movies. UTKinect-Action3D has three different types of action 

data: RGB, depth and bone joint position, and there are ten action categories in total. In 

this thesis, we only use RGB data as a complement to other datasets. The dataset 

incorporates appropriate action videos from these six datasets, then converts these video 

data into data that can be trained in YOLOv7 as the training set for this thesis. Figure 3.13 

shows an example image of the dataset used in this thesis. 
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Figure 3.13: video frames as examples from this dataset. (a) Clapping, (b) Boxing, 

(c) Walking, (d) Waving, (e) Running, (f) Boxing and Waving 

3.4.1 YOLOv7 + CBAM 

Among the recognition models, YOLOv7 is the core part of the whole network. All 

calculations will go through YOLO's backbone and head. The introduction of the attention 

mechanism is to modify the backbone and head of YOLOv7. Since YOLO is a network 

structure based on a convolutional neural network. It is very common to introduce 

attention mechanism to enhance the performance of the network. 

In the model of YOLOv7+CBAM, CBAM is added in both backbone and head. In 

the backbone, we add CBAM between the CBS module and the E-ELAN module. In 

addition, CBAM was also added after the other E-ELAN of the backbone. In the header, 

CBAM is added to the E-ELAN. We named this structure E-ELANCBAM. Then use this 

new module to replace the E-ELAN module in the CAT module and the UP module. The 

specific improved structure is shown in Figure 3.14. In E-ELANCBAM, we are use of 

CBAM to replace the last CBS in the original E-ELAN. 3.15 shows the specific structure. 
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Figure 3.14: The structure of YOLOv7+CBAM 

 

Figure 3.15: The structure of E-ELANCBAM 

3.4.2 YOLOv7 + SimAM 

Like the YOLOv7+CBAM model, the SimAM module is still placed in the backbone and 

head in the structure of the YOLOv7+SimAM model. In terms of specific improvements, 

we firstly add a SimAM module after the four CBS modules and before the first E-ELAN 

module. Then, we add the SimAM module after the remaining three E-ELANs in the 

backbone. This is an improvement on the backbone of the YOLOv7+SimAM model. In 

the head, we add the SimAM module to the E-ELAN module between the CAT module 

and the UP module. We name this model E-ELANSimAM. The overall structure is shown 
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in Figure 3.16. In E-ELANSimAM, we are use of SimAM model to replace the last CBS 

in the original E-ELAN. 3.17 shows the specific structure. 

 

Figure 3.16: The structure of YOLOv7+CBAM 

 

Figure 3.17: The structure of E-ELANSimAM 

3.4.3 YOLOv7 + CBAM+SimAM 

The YOLOv7 + CBAM + SimAM model is based on a combination of the first two 

models. The improvement of this model is based on the improvement of the previous two 

models. The purpose is to apply the first two attention mechanisms together in the 

YOLOv7 network. We add E-ELANCBAM to the backbone of the YOLOv7 + CBAM + 
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SimAM model. We replaced the original E-ELAN module of the backbone with this 

module. In the head, the E-ELAN SimAM module is introduced. Still this module was 

added to replace the E-ELAN module between the CAT module and the UP module. The 

overall structure of YOLOv7+CBAM+SimAM is shown in Figure 3.18. 

 

Figure 3.18: The structure of YOLOv7+CBAM+SimAM 

3.4.4 Algorithms 

Whether the network performance is excellent or not is often closely related to the training 

process. In this thesis, the network structure is based on YOLOv7. Therefore, the loss 

function of YOLOv7 itself is chosen to be used in the use of the loss function. There are 

three types of loss functions in YOLOv7 bounding box loss, confidence loss and 

classification loss. These three losses can be defined as, 

𝐿𝑎𝑙𝑙 = 𝐿𝑏𝑜𝑥 + 𝐿𝑜𝑏𝑗 + 𝐿𝑐𝑙𝑠                                   (3.3) 

Among them, 𝐿𝑏𝑜𝑥 is responsible for viewing the error between the predicted frame 

and the calibration frame, that is, the bounding box loss. 𝐿𝑜𝑏𝑗  is responsible for 

calculating the confidence loss of the network, which is called object confidence loss.  

𝐿𝑐𝑙𝑠  is responsible for calculating whether the anchor box and the corresponding 



50 

 

calibration classification are correct, that is, the classification loss. 

Classification Loss and Object Confidence Loss 

 Both the confidence loss and class loss functions in YOLOv7 are based on the Binary 

Cross Entropy loss (BCE) function with sigmoid. The BCE loss function is shown as eq. 

(3.4). 

𝐵𝐶𝐸 =  − ∑ 𝑦(𝑖)𝑁
𝑖=1 log  �̂�(𝑖)  +  (1 − 𝑦(𝑖)) log (1 − �̂�(𝑖))                 （3.4） 

where �̂� represents the probability that the model predicts that the i th sample is a certain 

class, and 𝑦(𝑖) represents the label. Therefore, there will be different calculation methods 

for label ‘0’ or label ‘1’. For multiclassification problems, it is equivalent to expanding 

the dimension of the label itself.  

The object confidence loss is calculated using pairs of samples obtained by matching 

positive samples. The object confidence loss function is shown in Eq. (3.5). 

𝐿𝑜𝑏𝑗(𝑝𝑜 , 𝑝𝑖𝑜𝑢) = 𝐵𝐶𝐸𝑐𝑙𝑠
𝑠𝑖𝑔

(𝑝𝑜 , 𝑝𝑖𝑜𝑢; 𝑤𝑜𝑏𝑗)                                   (3.5) 

where po is the object confidence score in the prediction box, piou is the iou value of the 

predicted box and its corresponding target box. In the function, piou is used as ground-

truth and po to calculate the final object confidence loss through BCE. The classifcation 

loss is analogous to the confidence loss. The classification loss function is shown as 

Eq.(3.6),  

𝐿𝑐𝑙𝑠(𝑐𝑝, 𝑐𝑔𝑡) = 𝐵𝐶𝐸𝑐𝑙𝑠
𝑠𝑖𝑔

(𝑐𝑝, 𝑐𝑔𝑡; 𝑤𝑐𝑙𝑠)                                    (3.6) 

where  𝑐𝑝 is the class score of the predicted box, 𝑐𝑔𝑡 is the one-hot representation of the 

target box category. In the function, the two are calculated by BCE to obtain the final 

class loss. 
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Bounding Box Loss 

The loss function of bounding box loss is CIoU Loss. This loss function is proposed based 

on IoU (Yu, Jiang, Wang, Cao, & Huang, 2016). The IoU is shown in Eq. (3.7), 

𝐿𝐼𝑜𝑈 =  − ln(𝑖𝑜𝑢)                                               (3.7) 

The bounding box loss is shown as Eq. (3.8), 

𝐶𝐼𝑂𝑈𝐿𝑂𝑆𝑆 = 1 − 𝐶𝐼𝑂𝑈 − (𝐼𝑂𝑈 −
𝑑𝑜

2

𝑑𝑐
2 −

𝑣2

1−𝐼𝑂𝑈+𝑣
)                           (3.8) 

where  𝑑𝑜  is the distance between the center point of the target frame and the center point 

o of the prediction frame, 𝑑𝑐 is the diagonal distance of the target frame. 𝑣 is a parameter 

to measure the consistency of the aspect ratio. The definition of  𝑣 is shown in eq.(3.9). 

𝑣 =  
4

𝜋
(𝑎𝑟𝑐𝑡𝑎𝑛

𝑤𝑔𝑡

ℎ𝑔𝑡 − 𝑎𝑟𝑐𝑡𝑎𝑛
𝑤𝑝

ℎ𝑝 )2                                   (3.9) 

where  𝑤𝑔𝑡  and ℎ𝑔𝑡 are the width and height of the real target box. 𝑤𝑝 and ℎ𝑝 are the 

width and height of the prediction box. 

3.5 Evaluation Methods 

After the recognition of human actions is achieved through the model, the final 

performance of the results needs to be evaluated. We will perform ablation experiments 

on the obtained results to determine the performance of the model. There are many 

classification methods that can be used in this project. Such as accuracy, recall, precision, 

etc. In order to evaluate the model performance, the various evaluation methods used in 

this project will be laconically introduced next. 

Before introducing evaluation methods, we need introduce four different concepts. 

In order to describe the method used more simply, this thesis calls both the predicted 

result and the real result true as TA. The prediction result is true, and the real result is 

false is called FA. The prediction result and the real result are both false and called FA. 

The prediction result is false and the real result is true is called FB. Most of the evaluation 

indicators are calculated by the four. 

The first evaluation metric is accuracy. Accuracy is the percentage of correct 
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predictions in all quantities. It is shown in eq.(3.10). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝐴 + 𝑇𝐵)

 (𝑇𝐴 + 𝑇𝐵 + 𝐹𝐴 + 𝐹𝐵)
                                   (3.10) 

The second evaluation metric is Precision. Precision is the proportion of correctly 

predicted results out of all predicted true results. It is shown in eq.(3.11). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝐴

 (𝑇𝐴 + 𝐹𝐴)
                                              (3.11) 

The third evaluation metric is Recall. Recall is the number of true predictions checked 

out of all true results. It is shown in eq.(3.12). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
 𝑇𝐴

(𝑇𝐴+𝐹𝐵)
                                                  (3.12) 

F1 is the fourth evaluation metric. It is calculated by precision and recall. F1 is often 

used as a complement to both, the bigger the better. It is shown in eq.(3.13). 

𝐹1 =  
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                                       (3.13) 

The fifth metric is the confusion matrix. The confusion matrix displays TA, TB, FA, 

and FA in the form of graphs, making the results more intuitive. As shown in Table 3.1. 

Table 3.1: Confusion matrix 

True Situation Prediction Situation 

Positive Negative 

Positive TA TB 

Negative FA FB 
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The sixth indicator is mAP, through which the detection ability of the trained model 

on all categories can be determined. mAP is calculated by calculating the average value 

of all APs. In a broad sense, AP is the area under the PR curve obtained with recall as the 

abscissa and precision as the ordinate. It is shown in eq.(3.14). 

𝑚𝐴𝑃 =  
∑ 𝐴𝑃𝑖

𝐾
𝑖=1

𝐾
                                                    (3.14) 

 Image bounded by Precision and Confidence. Image bounded by Recall and 

Confidence. Image bounded by F1 and confidence. These images can all be used to 

evaluate the performance of the model. In addition, the runtime of the recognition action 

can also be used as one of the evaluation criteria. The YOLO algorithm has always been 

known to run fast. Running time can be regarded as an evaluation index of efficiency. In 

general, a model with a shorter runtime and higher recognition accuracy is better. All 

these methods can be used as evaluation indicators. 
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Chapter 4 

Results 

 

 

The main content of this chapter is the experimental results and 

comparison of human action recognition. In addition, the 

environment for the experiment will be briefly described. At the end 

of this chapter, the limitations and limitations of the project are 

discussed. 

 

 

  



55 

 

4.1 Data Collection and Experimental Environment 

The main purpose of this thesis is to obtain a model that can efficiently recognize human 

actions in video sequences. Thus, a suitable dataset is essential. There are several 50 

videos in the dataset. Amongst them, 45 videos are 5 to 10 seconds in size, and each video 

data contains only one action. In the remaining video data, each data has multiple actions 

or more than one person performing actions. There are a total of 5 action classes in the 

dataset, such as clutching, boxing, walking, waving, and running. The dataset has a total 

of 1030 labels, the specific number of labels for each action is shown in Table 4.1. 

Table 4.1: The number of labels 

Action Labels  

Clapping 187 

Boxing 213 

Walking 252 

Waving 188 

Running 190 

 We have not yet created a test dataset for the model. In the test dataset, there are 130 

images and 15 videos. The data in the dataset also comes from the 6 datasets mentioned 

in the previous chapter. These datasets were selected to contain data for 5 actions that 

could be identified. In order to ensure the accuracy of the test results, the data selection 

in the test set avoids the data used in the training set. 

 Most of the experiments for human action recognition projects are performed in 

Colab, such as training models. Testing is performed locally. The experimental training 

process is run on an A100-SXM4-40GB high-performance graphics card in a virtual 

environment. This drastically reduces the time it takes to train. 
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4.1.1 Human Action Recognition Train Result 

In Chapter 3, we propose three different YOLO models. To facilitate comparison of 

results and determine whether the performance of the model has improved, we trained 

four models of YOLOv7, YOLOv7+SimAM, YOLOv7+CBAM, 

YOLOv7+CBAM+SimAMsige, respectively. Each model goes through 150 iterations 

during training, and the batch-size is set to 16. Finally got 4 different results. 

    The basic YOLOv7 network takes 1.5 hours for the network to complete 150 epochs 

of training. Figure 4.1 shows the trend of precision and recall. The abscissa in the figure 

is the number of training epochs. Recall fluctuates wildly in the middle. In the 150 epochs 

of YOLOv7 training, both tend to stabilize as the number of epochs enhances. 

 

Figure 4.1: Precision and recall of YOLOv7 

 Figure 4.2 shows the changes in mAP values in the YOLOv7 model. The number 

after @ represents the threshold for judging iou as a positive or negative sample. mAP@.5: 

Indicates the average mAP with a threshold greater than 0.5. mAP@0.5:0.95 means from 

0.5 to 0.95 in steps of 0.05, taking the average mAP over 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 

0.8, 0.85, 0.9, 0.95. The value of mAP enhances gradually with the increase of epochs. 
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Figure 4.2: The mAP of YOLOv7 

 Figure 4.3 reflects the relationship between accuracy F1 and confidence of YOLOv7. 

In the machine learning problems of multi-classification, F1-score is often employed as 

the final evaluation method. The F1 and confidence results of the boxing curve are 

evidently worse than the overall findings in the figure. The results of all other action 

curves are superior to the average. While YOLOv7 achieves better F1 results between the 

confidence levels of 0.2 to 0.4. The highest F1 of YOLOv7 is 0.92. 

 

Figure 4.3: F1_curve of YOLOv7 

    Figure 4.4 shows the confusion matrix of YOLOv7. From the data on the confusion 

matrix, we get the overall accuracy of the YOLOv7 model. The accuracy of a single action 
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can also be obtained directly. The specific results are that the accuracy of action “Clapping” 

is 0.95, the accuracy of action Boxing is 0.90, the accuracy of action “Walking” is 0.92, 

the accuracy of action “Waving” is 0.94, and the accuracy of action “Running” is 0.94. 

 

Figure 4.4: The confusion matrix of YOLOv7 

Figure 4.5 shows the PR diagram of YOLOv7 which represents the relationship 

between precision and recall. The area enclosed by the curve is the mAP@0.5 value for 

that action. The mAP@0.5 of action “Clapping” is 0.98. The mAP@0.5 of action “Boxing” 

is 0.964. The mAP@0.5 of action “Walking” is 0.97. The mAP@0.5 of action “Waving” 

is 0.973. The mAP@0.5 of action “Running” is 0.963. 
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 Figure 4.5: The PR_curve of YOLOv7 

For the YOLOv7+CABM network, it takes 1.48 hours to complete the training of 

150 epochs. Figure 4.6 shows the trend of precision and recall. In the 150 epochs of 

YOLOv7+CBAM training, both tend to stabilize as the number of epochs enhances. 

Figure 4.7 shows the changes in mAP values in the YOLOv7+CBAM model. 

 

Figure 4.6: The precision and recall of YOLOv7+CBAM 
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Figure 4.7: The mAP of YOLOv7+CBAM 

 Figure 4.9 indicates the relationship between accuracy F1 and confidence of 

YOLOv7+CBAM. The boxing curve of F1 and confidence results also are obviously 

worse than the figure's overall findings. All other action curves produce results that were 

in most cases better than average. YOLOv7+CBAM achieves better F1 results within the 

confidence interval of 0.4 to 0.6. The highest F1 of YOLOv7+CBAM is 0.99. 

 

Figure 4.8: F1_curve of YOLOv7+CBAM 

 Figure 4.9 shows the confusion matrix of YOLOv7+CBAM. The specific results are 
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that the accuracy of action “Clapping”, “Boxing”, and “Running” is 0.99, the accuracy of 

action “Walking” is 0.98, and the accuracy of action “Waving” is 1.00. 

 

Figure 4.9 The confusion matrix of YOLOv7+CBAM 

 

Figure 4.10 PR_curve of YOLOv7+CBAM 

 Figure 4.10 shows the PR diagram of YOLOv7+CBAM which represents the 

relationship between precision and recall. The area enclosed by the curve is the mAP 
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value for that action. The mAP@0.5 of actions “Clapping”, “Boxing”, “Waving”, and 

“Running” is 0.995. The mAP@0.5 of action “Walking” is 0.994. 

For the YOLOv7+SimAM network, it costs 1.43 hours to complete the training of 

150 epochs. Figure 4.11 shows the trend of precision and recall. The precision has a high 

value at the beginning, and then gradually returns to normal. In the 150 epochs of 

YOLOv7 training, both tend to stabilize as the number of epochs enhances. Figure 4.12 

shows the changes in mAP values in the YOLOv7+SimAM model. 

 

Figure 4.11 The precision and recall of YOLOv7+SimAM 

 

Figure 4.12 The mAP of YOLOv7+SimAM 

 Figure 4.13 shows the relationship between accuracy F1 and confidence of 
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YOLOv7+SimAM. YOLOv7+SimAM achieves a good F1 with a confidence interval of 

0.4 to 0.8. The highest F1 of YOLOv7+SimAM is 1. Among them, the curve of action 

Boxing is slightly worse than other curves.   

 

Figure 4.13: F1_curve of YOLOv7+SimAM 

Figure 4.14 shows the confusion matrix of YOLOv7+SimAM. We get the accuracy 

of each action from the matrix. The specific results are that the accuracy of action 

“Walking” is 0.99, the accuracy of action “Boxing” is 0.98, and the accuracy of actions 

“Clapping”, “Waving”, and “Running” is 1.00. 

 Figure 4.15 shows the PR diagram of YOLOv7+SimAM, which represents the 

relationship between precision and recall. The mAP@0.5 of five actions are 0.996. In 

addition, we only see one overall curve from the graph, and all other curves are covered 

by the overall curve. 
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Figure 4.14: The confusion matrix of YOLOv7+SimAM 

 

Figure 4.15: PR_curve of YOLOv7+SimAM 
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For the YOLOv7+CBAM+SimAM network, it costs 1.44 hours for the network to 

complete 150 epochs of training. Figure 4.16 shows the trend of precision and recall. In 

the 150 epochs of YOLOv7+SimAM training, both tend to stabilize as the number of 

epochs enhances. Figure 4.17 shows the changes in mAP values in the 

YOLOv7+CBAM+SimAM model.  

 

Figure 4.16: The precision and recall of YOLOv7+CBAM+SimAM 

 

Figure 4.17: The mAP of YOLOv7+CBAM+SimAM 

 Figure 4.18 shows the relationship between accuracy F1 and confidence of 

YOLOv7+ CBAM+SimAM. The F1 score ranges from 0 to 1. 1 is the best and 0 is the 

worst. F1 of YOLOv7+CBAM+SimAM achieves better results with a confidence interval 

of 0.4 to 0.8. The highest F1 for YOLOv7+CBAM+SimAM is 1. 
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Figure 4.18: F1_curve of YOLOv7+CBAM+SimAM 

 Figure 4.19 shows the confusion matrix of YOLOv7+CBAM+SimAM, except for 

the accuracy of action Walking, which is 0.99, the accuracy of all other actions reached 

1.00. 

 

Figure 4.19: The confusion matrix of YOLOv7+CBAM+SimAM 
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Figure 4.20 shows the PR diagram of YOLOv7+CBAM+SimAM, which represents 

the relationship between precision and recall. The actions “Clapping”, “Boxing”, 

“Waving”, “Walking”, and “Running” are all 0.996 for mAP@0.5, which is as same as 

the overall result for mAP@0.5. 

 

Figure 4.20:  PR_curve of YOLOv7+CBAM+SimAM 

4.1.2 Human Action Recognition Test Result 

After the training process is complete, it is time to test the performance of the model. 

Below we show the results of the four models YOLOv7, YOLOv7+CBAM, 

YOLOv7+SimAM, YOLOV7+CBAM+SimAM after being tested on the test set. The 

results incorporate the recognition results of but one action, the recognition results of 

multiple actions and some wrong recognition results. Figure 4.21, Figure 4.22, Figure 

4.23, Figure 4.24, and Figure 4.25 show the recognition results of each of the four models 

for a single action. Image 4.26 shows the recognition results of the four models for 

multiple actions. We clearly see that the recognition results using the 

YOLOv7+CBAM+SimAM model are better than the other models. Figure 4.27, on the 

other hand, shows wrong recognition results. These results are incorrect action 

recognition, while others are failure to recognize the action. 
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（a） 

 

(b) 

  

（c） (d) 

Figure 4.21: The results of four models for recognizing action Clapping. (a) YOLOv7, 

(b) YOLOv7+CBAM, (c)YOLOv7+CBAM, (d)YOLOv7+CBAM+SimAM 

 

(a) 

 

（b） 



69 

 

 

(c) 

 

(d) 

Figure 4.22: The results of four models for recognizing action Boxing. (a) YOLOv7, (b) 

YOLOv7+CBAM, (c)YOLOv7+CBAM, (d)YOLOv7+CBAM+SimAM 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.23: The results of 4 models for recognizing action Waving. (a) YOLOv7, (b) 

YOLOv7+CBAM, (c)YOLOv7+CBAM, (d)YOLOv7+CBAM+SimAM 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.24: The results of four models for recognizing action Walking. (a) YOLOv7, 

(b) YOLOv7+CBAM, (c)YOLOv7+CBAM, (d)YOLOv7+CBAM+SimAM 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4.25: The result of four models for recognizing action Running. (a) YOLOv7, (b) 

YOLOv7+CBAM, (c)YOLOv7+CBAM, (d)YOLOv7+CBAM+SimAM 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.26: The results of two actions recognition using the 4 models. (a) YOLOv7, (b) 

YOLOv7+CBAM (c)YOLOv7+CBAM, (d)YOLOv7+CBAM+SimAM 
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(a) 

 

(b) 

  

(c) (d) 

Figure 4.27: The wrong results. (a) Lot wrong label, (b) Label does not completely 

cover the object, (c) Incorrect recognition result, (d) Recognition fail 

4.2 Limitations of the Research 

From the experimental results, our proposed algorithm achieves successful outcomes in 

the human action recognition task. But there are also many limitations that need to be 

improved. These restrictions include: 

Although in this dataset, we collected human actions occurring in disparate contexts 

and environments from multiple public datasets, there are still some unrecognized or 

misrecognized actions. There are still some issues with the dataset we created. More 

context and actions in the environment are needed to optimize the dataset. 

Only five classes of human actions can be successfully recognized. In human action 

related video data, there is more than one action, and often multiple actions appear one 
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after another. Multiple consecutive actions performed in longer videos are not well 

recognized. Therefore, we need to add more actions within the identifiable range. Expand 

the number of actions in the dataset. 

Also, there is a slight shortage of video data to perform multiple actions 

simultaneously. Although most of the recognitions are successful, misrecognition occurs, 

and the recognition result is not good. This shows that the model has not been trained 

enough due to data problems in the recognition of multiple actions.  
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Chapter 5 

Analysis and Discussions 

 

 

The focus of this chapter is on analysis and comparison of the 

various experimental results. The results were from four different 

YOLO models and will be compared. Specifically, more details on 

performance comparisons are presented in this chapter. 
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5.1 Analysis 

We directly presented multiple results for human action recognition using YOLO-based 

models in the previous chapter. We analyze and discuss the results presented in the 

previous chapters in detail in this chapter. The results that cannot be displayed directly 

are tabulated for analysis. 

 The result of loss functions often indicates whether the network performance is 

superior or not. After a sample passes through the model, a predicted value is obtained. 

The difference between the predicted value and the true value is the loss. In the process 

of model training, the smaller the loss, the better the performance of the model. The loss 

function used by the four models of this thesis is consistent. After compared the last 10 

losses of the four models, we found that the loss functions of the four models finally 

converged. Among the four models, the loss of the network using the attention mechanism 

is analogous, and the loss of the three networks using the attention mechanism is smaller 

than that of YOLOv7. A comparison of the most recent 10 epoch losses is shown in Figure 

5.1. 

 

Figure 5.1: The last 10 epoch losses. 

The loss on the validation set is equally important. By comparing the validation set 



76 

 

losses of the four models, we found that the losses of the four models gradually decreased 

with the progress of epochs, are finally stabilized. This shows that the four models have 

been well trained, and the performance of the models is guaranteed. Specifically, the 

YOLOv7 model has an overall more volatile loss and slightly higher loss values than the 

other models. Figure 5.2 illustrates the val loss of the four models. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.2: The val loss. (a) YOLOv7, (b) YOLOv7+CBAM (c)YOLOv7+CBAM, 

(d)YOLOv7+CBAM+SimAM 

Besides the losses, there are other ways to evaluate the performance of the model, 

such as accuracy, precision, recall, mAP, training time. Among them, except for the 

training time, other four values are bigger. Table 5.1 shows the similarities and differences 

of these metrics across the four models. Among them, the four indicators of YOLOv7 are 

the worst among the four models. In terms of running time, YOLOv7+SimAM has the 

shortest running time, which is 1.438 hours. But on the other four indicators, 

YOLOv7+CBAM+SimAM is either higher than other models or is numerically equal to 

other models. For example, YOLOv7+CBAM+SimAM is equal to YOLOv7+SimAM in 

terms of accuracy, and 0.08 higher than YOLOv7+CBAM. 
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Table 5.1: The performance comparison. 

Model Accuracy Precision Recall mAP 

@.5 

Training 

time 

YOLOv7 0.930 0.933 0.912 0.970 1.500 

hours 

YOLOv7+CBAM 0.990 0.990 0.993 0.995 1.470 

hours 

YOLOv7+SimAM 0.994 0.998 0.997 0.996 1.438 

hours 

YOLOv7+CBAM+SimAM  0.996 0.998 0.999 0.996 1.441 

hours 

 

PR_cruve refers specifically to the RP graph. Among them, P represents the precision, 

and R refers to the recall rate. The changes in the graph represent the relationship between 

precision and recall. The RP curve is generated with recall as the abscissa and precision 

as the ordinate. The area enclosed under the curve can be identified as AP. The area 

enclosed by the PR curve is AP. In a PR diagram, if one curve A in the PR diagram 

completely surrounds the other curve B. Then, A must be better than B at this time. The 

closer the curve of the image is to the upper right corner, the better the performance of 

the model represented by the curve. PR cruve generated by observing the four models. 

We found that the curves generated by all models did not fluctuate much, indicating that 

the training effect was good. In the areas generated under the curve, only YOLOv7 model 

has a significantly smaller area than the other models, only 97% of the total area. The area 

enclosed by other models is YOLOv7+CBAM, equals to 99.5% of the total area. 

YOLOv7+SimAM for 99.6% of the total area. YOLOv7+CBAM+SimAM for 99.6% of 
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the total area. This shows that the training effect of the three is basically the same. The 

training effect of YOLOv7 is slightly worse. Figure 5.3 shows the PR map comparison of 

the four models. 

 

Figure 5.3: The PR of four models 

 In addition, the results of individual actions are also noteworthy. By comparing 

numerical values such as the accuracy of individual actions in disparate models, it is 

possible to intuitively understand which actions are well-recognized in disparate models. 

If an action needs to be recognized, it is clear which model is better at recognizing that 

action. 

Table 5.2: The final result of each action in YOLOv7 

Action Accuracy Precision Recall mAP @.5 

Clapping 0.950 0.889 0.947 0.980 

Boxing 0.900 0.966 0.797 0.964 

Walking 0.920 0.902 0.952 0.970 

Waving 0.940 0.925 0.936 0.973 

Running 0.940 0.983 0.930 0.963 

 As shown in Table 5.2, by using YOLOv7, the “Running” action is the one with 

higher values among all actions. The recognition of the clapping action is the shortcoming. 

This is because the accuracy of clapping is too low compared to other actions. Overall, 

YOLO without attention mechanism is still inferior to YOLO with attention mechanism 

in action recognition. 
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Table 5.3: The final result of each action in YOLOv7+CBAM 

Action Accuracy Precision Recall mAP @.5 

Clapping 0.990 0.995 0.997 0.995 

Boxing 0.990 0.986 0.984 0.995 

Walking 0.980 0.981 0.996 0.995 

Waving 1.000 0.989 1.000 0.973 

Running 0.990 1.000 0.987 0.995 

 From Table 5.3, we get that action “Waving” is the best action that YOLO+CBAM 

is good at recognizing. Among them, recall and accuracy reached 1.0. In addition, the 

recognition of running also performed well. Its precision also reaches 1.0. 

Table 5.4: The final result of each action in YOLOv7+SimAM 

Action Accuracy Precision Recall mAP @.5 

Clapping 1.00 0.997 1.000 0.996 

Boxing 0.990 1.000 0.983 0.996 

Walking 0.980 0.996 1.000 0.996 

Waving 1.000 1.000 1.000 0.996 

Running 1.000 0.998 1.000 0.996 

 

 The action with the highest recognition accuracy on YOLO+SimAM is also the 

action “Waving”. All values are 1.0 except mAP. The evaluation metrics for other actions 

were equally high. In terms of accuracy, “Running”, “Waving”, and “Clapping” all have 

reached 100%. The mAP values are 0.996, which further indicates that all actions in the 

model are well recognized. 

Table 5.5: The final result of each action in YOLOv7+CBAM+SimAM 

Action Accuracy Precision Recall mAP @.5 

Clapping 1.000 0.999 1.000 0.996 

Boxing 1.000 1.000 0.995 0.996 

Walking 0.990 0.991 1.000 0.996 

Waving 1.000 0.998 1.000 0.996 

Running 0.990 1.000 0.999 0.996 

 The performance based on YOLO+CBAM+SimAM model is much better. As shown 

in Table 5.5, the accuracy, precision, recall, and mAP all reached 0.99. Many of them 
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even reached the level of 1. In general, the performance of YOLO+CBAM+SimAM and 

YOLO+SimAM is not much different. The performance of single action recognition is 

very good. 

 Disparate models based on the test set also have differences in recognition speed. 

Since the test set consists of video and image together. So, the time is also split into two 

parts, 6 videos consist of 1,364 frames. The test set contains a total of 1,494 frames. 

Table 5.6: The differences in detection time for various models. 

 YOLOv7 YOLOv7+ 

CBAM 

YOLOv7+ 

SimAM 

YOLOv7+ 

CBAM+SimAM 

Image data detection time 

(s) 

73.030s 71.930s 40.197s 40.647s 

Video data detection time 

(s) 

764.723s 731.655s  399.864s 422.835s 

Detection time spent per 

frame (ms) 

561ms 537ms 295ms 310ms 

 

The final results are shown in Table 5.6, YOLOv7+ SimAM has the fastest processing 

speed, followed by YOLOv7+ CBAM+SimAM. 

5.2  Discussions 

We experimentally compared four disparate models. The accuracy rate of human action 

recognition through the YOLOv7 model is 93%, the accuracy rate is 93%, the recall rate 

is 0.912, the mAP@.5 is 0.970, and the training time is 1.5 hours. The recognition time 

of a single frame is 561ms. Compared to the other models, the action recognition results 

using only YOLOv7 are relatively poor among the four models. However, the overall 

recognition accuracy still maintains a good level, and it is also a successful human action 

recognition model. 

Compared with YOLOv7, the YOLOv7+CBAM model has indeed been improved in 

terms of accuracy, precision, and other indicators. Among them, the accuracy is 99%, the 

precision is 99%, the recall is 0.993, and the mAP@.5 is 0.995. But the running time of 
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this model is not much faster than YOLOv7. The training time of the model is 1.47 hours, 

which is only 0.3 hours faster than the base model. The recognition time for a single frame 

is 537ms, which is only 24ms faster than the base model. In general, though the overall 

recognition has reached a good level, there are still some shortcomings in single-action 

recognition, such as boxing. 

The YOLOv7+SimAM model is another successful model. In the experiment, its 

indicators are mostly among the best among the four models. The overall accuracy of the 

model is 99.4%, the precision is 99.8%, the recall is 0.997, and the mAP@.5 is 0.996. In 

terms of training time, this model is the fastest of the four models, taking only 1.438 hours. 

The recognition time of a single frame is also the fastest at 295ms. The accuracy also 

reaches 99% in the recognition of a single action, which is a very good model. 

YOLOv7+CBAM+SimAM model is based on the YOLOv7+CBAM model and 

YOLOv7+SimAM, adding two attention mechanisms to the network to jointly perform 

the task of human action recognition. In terms of accuracy, the model achieved an 

accuracy of 99.6%. In addition, the precision is 99.8%, the recall is 0.999, and the 

mAP@.5 is 0.996. The running time is also greatly reduced compared to YOLOv7. The 

detection time of a single frame is only 310ms. However, the training time of 

YOLOv7+CBAM+SimAM is slightly longer than that of the YOLOv7+SimAM model. 

The training time of the model is 1.441 hours, which is 0.4 hours slower than 

YOLOv7+SimAM. This may be due to the two attention mechanisms used in the network. 

In the recognition of a single action, the performance of the model is also excellent, and 

the recognition performance of all actions is higher than that using the YOLOv7+SimAM 

model. 

In conclusion, our deep learning methods based on the YOLO model and attention 

mechanism can accurately identify human actions in videos. In addition, the running 

speed of the model also has certain advantages. The implementation of three disparate 

model methods improves the accuracy of action recognition using YOLO models. The 



82 

 

proposed four models all have good recognition performance. Overall, the task of 

recognizing human actions has been successfully accomplished.  
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Chapter 6 

Conclusion and Future Work 

 

 

In this chapter, we firstly give a general summary of the whole 

thesis. We elaborate on the thesis and methods. Then, based on 

the results and shortcomings of the experiments, we find future 

research directions, we summarize the work that needs to be 

conducted in the future. 
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6.1 Conclusion 

The goal of this thesis is to find ways to effectively identify human actions. After 

summarizing human action recognition methods, we propose a YOLO-based approach 

for human action recognition. The latest YOLOv7 for human action recognition was 

proposed. In addition, two disparate attention mechanisms were employed based on 

YOLOv7. These two attention mechanisms were successfully applied to YOLOv7 for 

human action recognition, and three YOLO-attention models were implemented, namely 

YOLOv7+CBAM, YOLOv7+SimAM and YOLOv7+CBAM+SimAM models. 

In this thesis, we successfully demonstrate that it is feasible to use attention 

mechanism based on YOLOv7 for human action recognition. The experimental results 

show that the accuracy of YOLOv7 using the attention mechanism is improved up to 7%. 

The YOLOv7+CBAM, YOLOv7+SimAM and YOLOv7+CBAM+SimAM models 

proposed in this thesis can all achieve good accuracy results, 99%, 99.4% and 99.6%, 

respectively. The accuracy of YOLOv7+CBAM+SimAM model is the highest one. The 

running time is faster than the base YOLOv7 model. Also, despite the runtime of 

YOLOv7+SimAM is faster, only 1.5% faster than the YOLOv7+CBAM+SimAM model. 

The accuracy of the YOLOv7+CBAM+SimAM model is 0.2% higher than that of the 

YOLOv7+SimAM model. Therefore, among all the models proposed in this thesis, the 

YOLOv7+CBAM+SimAM model performs the best. 

6.2 Future Work 

In future, YOLOv7 can continue being served as the network foundation. On this basis, 

various networks are continuously developed in YOLO. A better model compared to the 

current model is sought.   

Using more efficient convolutional layers to replace the existing generic convolutions 

is our future work direction. In addition, the attention mechanism in YOLOv7 further 

reduces the running time of YOLOv7+CBAM+SimAM. We will load more models in 
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YOLOv7 to improve the running speed and recognition effect. 

Another work that needs to be implemented is to expand the datasets. The public 

datasets were developed based on the datasets we create. We will increase more classes 

of human actions in the datasets with more complex backgrounds.  A larger and richer 

dataset will improve the final result of model training. In addition, human action 

recognition in real time is also a working direction for us. 
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