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Abstract. Sign language recognition is one of the fundamental ways to assist 

deaf people to communicate with others. An accurate vision-based sign language 

recognition system using deep learning is a fundamental goal for many 

researchers. Deep convolutional neural networks have been extensively 

considered in the last few years, and a slew of architectures have been proposed. 

Recently, Vision Transformer and other Transformers have shown apparent 

advantages in object recognition compared to traditional computer vision models 

such as Faster R-CNN, YOLO, SSD, and other deep learning models. In this 

paper, we propose a Vision Transformer-based sign language recognition method 

called DETR (Detection Transformer), aiming to improve the current state-of-

the-art sign language recognition accuracy. The DETR method proposed in this 

paper is able to recognize sign language from digital videos with a high accuracy 

using a new deep learning model ResNet152 + FPN (i.e., Feature Pyramid 

Network), which is based on Detection Transformer. Our experiments show that 

the method has excellent potential for improving sign language recognition 

accuracy. For instance, our newly proposed net ResNet152+FPN is able to 

enhance the detection accuracy up to 1.70% on the test dataset of sign language 

compared to the standard Detection Transformer models. Besides, an overall 

accuracy 96.45% was attained by using the proposed method. 

Keywords: Sign language recognition · ResNet152 · Detection Transformer · 

Feature pyramid network 

1 Introduction 

Sign language recognition is significant for deaf or hearing-impaired people [10]. Sign 

language comprises a series of gestures that can be recognized and translated into 

semantical symbols in texts. The history of sign languages does not correspond to that 

of spoken languages. For example, though the uses of the same spoken language (with 

minor differences), NZSL, BSL and American Sign Language (ASL) are unrelated 

languages and are not mutually intelligible. It is now universally accepted in the 

linguistic community that sign languages such as NZSL (i.e., New Zealand Sign 

Language), ASL (i.e., American Sign Language), CSL (i.e., Chinese Sign Language), 

etc., are natural languages with comparable power to that of spoken languages. Indeed, 

it is true that sign language is one of the great linguistic discoveries. It acts as a 

fundamental mode of communications for the hearing and speech impaired people, 

without it the communications between them and others might be difficult. 



2 

 

Sign language recognition from digital images and videos is regarded as a type of 

behavior identification. Usually, it is implemented by using machine learning 

approaches. Nowadays, deep learning is employed [6] for sign language recognition. 

Deep learning models have peformed extremely well in image processing as well as 

natural language processing, however a fundamental requirement of this class of 

models is a large dataset. In the case of sign language recognition with deep learning, 

we would need a large dataset with sign language gestures spanning the range of the 

sign language vocabulary. In general, sign language recognition has three steps: 

Detecting, tracking, and recognizing gestures. The difficulty of this recognition is that 

we need to extract task-related data or features in an efficient way. We apply Detection 

Transformer (DETR) as a basic structure to solve this problem of the RNN models 

based on sequential computations, hence large matrix multiplications could not be 

parallelized for computational efficiency. As a solution to this, the encoder-decoder 

framework was proposed which takes use of attention mechanism [7], hence it can be 

easily parallelized for machine understanding tasks. 

    The attention mechanism is employed to form an encoder-decoder framework for 

machine understanding. In 2020, Transformer was applied to Vision Transformer for 

image classification. In the work, the image is cut into blocks as serialized data for an 

encoder, and an attention mechanism is applied to match the image and classification 

labels. The novelty of this proposed method is the use of an attention mechanism to 

increase the speed of model training. It is a deep learning model entirely based on self-

attention mechanism because it is suitable for parallel computing. In this paper, the 

main contributions are: 

• We create a new model that makes use of a novel backbone network 

ResNet152 and Feature Pyramid Network (FPN) as the neck. The structure is 

able to increase input features, which boosts the quality of the final output.  

• As one part of this research work, we create our own dataset. This dataset is 

now publicly available for model training and testing at github.com. 

• Regarding the purpose of evaluations, we also compare our proposed method 

with other DETR-based models, the results surpass ResNet34, ResNet50 and 

ResNet101 in terms of AP, AP50, AP75, and F1 scores.  

The paper is organized as follows. In Section 2, we highlight previous work related 

to this research project. The methodology is explained in Section 3. In addition, our 

experimental results are detailed in Section 4. Finally, in Section 5, we conclude this 

work by highlighting the findings and future work. 

2 Related Work 

Computational sign language recognition has been a hot topic over the past decades 

[26, 27, 28, 29, 30]. In recent years, using Transformers to detect visual objects has 

become a mainstream methodology. One of them is Vision Transformer (ViT) [2]. 

Firstly, ViT segments an image into a grid of squares and flattens each square into a 

single vector by concatenating all pixel channels in a square. Transformer is 

independent on the structure of the input images, so positional embeddings are added 

https://github.com/
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to each square, which enables the model to be trained with the input images. The feature 

maps were identical in the top layers of the deep ViT model; a re-attention method was 

proposed to enhance the features. As a result, the Top-1 accuracy was improved up to 

1.6% by using the datasets ImageNet [3]. 

    Though Vision Transformer has a good performance, it still needs to be pre-trained 

based on massive data (e.g., JFT-300M, 300 million images) and fine-tuned based on 

the ImageNet dataset to achieve comparable performance to the CNN method, which 

requires enormous computational resources that limits the applications of the ViT 

method.   

    The computational complexity is related to the square of the token. The token is a 

non-overlapping patch sequence from cutting images. If the input feature map is a 56×

56 image, it will have matrix operations around 3000+, which requires a large number 

of computational calculations. At the same time, the number of tokens in the original 

Transformer and the hidden size remain unchanged. Regarding the ResNet structure 

and the pyramid structure, the higher the number of layers, the less the number of 

tokens. To this end, we make use of local window self-attention by considering a part 

of the feature map for self-attention, and find a way to interact with this local 

information. Convolutions are made in order to replace the fully connected layer, which 

reduces the parameters and hence the computational cost.  

    The main advantage of data-efficient image Transformers (DeiT) [4] is that it does 

not require a massive amount of pre-training data, as it only relies on ImageNet data to 

generate the results. 

One of the reasons that Transformer requires enormous computing power is that the 

model itself cannot encode the position of an object. The Transformer is different from 

CNN, which requires positional embedding to encode the position information of 

tokens. That is, disrupting the order of tokens in sequence will not significantly change 

the outcome. If the location information of a patch is not provided to the model, the 

model needs to be trained through the semantics of patches, which increases the training 

costs. In order to solve this problem, the fixed-position coding has been harnessed in 

DETR. Positional encoding is a 2D method proposed in 2020 [5]. The positional 

encoding is added to the self-attention of the encoder and multi-head attention of the 

decoder; object queries are also plugged into the decoder’s attention modules. Multi-

head attention makes use of multiple queries to compute multiple inputs in parallel.  

Regarding sign language recognition, gesture representation can be of various types, 

such as class-related attributes [12], class labels [13], and handcrafted features [14, 15, 

16]. In addition, typical methods were applied to 2D CNN to extract feature maps from 

input images and then recognize sign language gestures from temporal information [17, 

18]. In the same way, 3D CNN [19, 20, 21] is an updated version of 2D CNN, which 

extracts visual features by applying 3D convolutional layers. 3D CNN shows excellent 

performance in extracting feature maps [31]. In this paper, our proposed method is to 

adopt CNN to extract feature maps from input images and add FPN to enhance the 

features from each layer of CNN. 
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Fig. 1. The structure of DETR 
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    A spate of computational methods have been proposed to translate sign languages 

from digital videos to natural languages, textual sentences [22, 23, 24, 25]. Yin et al. 

[8] proposed STMC-Transformer to improve the state-of-the-art ways by using 7 BLEU 

based on the video-to-text translation of the 2014T dataset. Camgoz et al. [9] put 

forward the method by using connectionist temporal classification loss based on the 

Transformer to have an end-to-end translation. The performance was evaluated based 

on PHOENIX-Weather-2014 dataset; the performance was improved from 9.58 to 

21.80 in BLEU-4 scores. Rastgoo et al. proffered a method called zero-shot sign 

language recognition (ZS-SLR). In the research work, a Transformer was employed for 

hand detection with AutoEncoder (AE) based on Long Short-Term Memory (LSTM). 

As a result, the proposed method showed better performance than other methods based 

on four datasets: RKS-PERSIANSIGN, First-Person, ASLVID, and isoGD [11].  

Besides, the languages based on multimedia technology have attained great progress. 

Bastanfard et al. proposed a speech therapy system for hearing impaired children [32]. 

Minoofam et al. proffered an adaptive reinforcement learning framework called RALF 

through Cellular Learning Automata (CLA) to produce semantic meanings [33]. 

Additionally, an algorithm called spatial-spectral HSI classification has been put 

forward for extracting more effective features [34].  

Pertaining to Detection Transformer, as shown in Fig. 1, this structure consists of 

the ResNet152, which replaces ResNet50 as the backbone. DETR adopts a regular CNN 

backbone to get 2D representations of input images. The model flattens it and passes it 

to the Transformer encoder for positional encoding. The Transformer decoder then 

takes a small number of positional embeddings as input, the target query additionally 

participates in the output of the encoder. Each output embedding of the decoder is 

passed to predict bounding boxes and detect object classes or shared feedforward 

network (FFN) without target class. 

 

Fig. 2.  The structure of ResNet152 + FPN 

As shown in Fig. 2, the contribution of this paper is to propose a new model that 

consists of ResNet152+FPN. Deep residual nets make use of residual blocks to improve 

the accuracy of the existing models. The concept of “skip connections” lies in the core 
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of the residual blocks. It takes use of output from one layer of the network and quickly 

feed it into the next layer or even deeper into the neural network. We are use of jump 

connections to construct the ResNet, which can resolve the computational burden 

problem of a deep neural network. This is the strength of the new type of artificial 

neural networks. 

    ResNet152 is a ResNet model, which has 150 convolutional layers along with one 

max-pooling layer and one average-pooling layer. The FPN naturally exploits the 

pyramidal form of CNN features and generates feature pyramids with strong semantic 

information on all scales. Therefore, the structure of FPN is designed with a top-down 

structure and horizontal connections to fuse the shallow layer with high resolution and 

the deep layer with rich semantic information. Therefore, constructing a feature 

pyramid with strong semantic information on all scales from a single input image on a 

single scale is possible without incurring high costs. Thus, FPN can enhance the feature 

extraction of ResNet152 at multiple scales. Besides, an RTX 3060 GPU accelerates the 

training process to achieve computational efficiency. 

3 Methodology 

In order to improve the accuracy and speed of the proposed methodology for sign 

language recognition, in this paper, we make use of ResNet152 to replace the ResNet50 

as a backbone. Its aim is to increase convolutional layers and improve the feature map. 

As shown in Fig. 2, the backbone makes use of the improved ResNet152 network. The 

function of FPN structure is to enhance the feature maps for each scale of the network 

as the neck part before data processing.  

ResNet152 has two basic blocks, called Conv Block and Identity Block. The 

functionality of Conv Block is to change the dimension of the network, the input 

dimension and output dimension of Identity Block. The dimensions are the same that 

can be connected to deepen the net. As shown in Fig. 3, ResNet152 is based on 

ResNet50; the difference between ResNet152 and ResNet50 is that ResNet152 has 36 

blocks, ResNet50 has 6 blocks. Thus, ResNet152 can get better results. Equation (1) is 

used to calculate the size of the feature map, 

 

𝑤′ =
𝑤 + 2𝑝 − 𝑘

𝑠
+ 1 (1) 

where w is the size of convolution input matrix, k is the convolution kernel size, s is the 

length of convolution steps, and p is the padding. The size of input images is 224×224 

pixels. After downsampling convolutions, multiple 1×1 convolutions and 3×3 

convolutions, the scales of output feature maps are 7×7, 14×14, 28×28, 56×56 which 

are calculated as  

S(𝑖,𝑗) = (𝑋 × 𝑉) ∑ ∑ 𝑥

𝑁𝑀

(𝑖 + 𝑚, 𝑗 + 𝑛)𝑣(𝑚, 𝑛) (2) 
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where x is the variable of the input image, v is the convolution kernel, M × N is the size 

of the input image [1]. Compared with ResNet50, ResNet152 has more convolution 

blocks and convolution kernels. The semantic information and location information of 

multi-scale features are output to the neck and enhance object detection accuracy. 

 

 

Fig. 3.  The structure of ResNet50 and ResNet152 

In FPN nets, the convolution kernel calculates the feature map, the feature map 

usually becomes smaller than the last few layers. However, multiple feature layers 

whose output is as same as the original size, are called the same network stage. For the 

feature pyramid in this paper, a pyramid level is defined for every stage, and the output 

of every stage at the last layer is selected as the reference of feature maps. The choice 

is usually natural. The reason is that there should be the most robust features in the 

deepest layer for each stage. Specifically, pertaining to ResNets, we take use of the 

output of residual structure of each stage, denote these residual module outputs as C2, 

C3, C4, C5 corresponding to the outputs of conv2, conv3, conv4, and conv5. We know 

that they have steps 4, 8, 16, 32 related to the input image. Conv1 is not included in this 

pyramid framework by considering the memory footprint. 

Regarding the loss function, the output of Transformer is N predictions of visual 

object classes, where N is larger than the number of visual objects. The annotation of 

the dataset consists of two parts: One is 𝑐𝒾 representing the class of the visual object, 

the other is 𝑏𝒾 which shows the bounding box of the object. The prediction probability 
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is �̂��̂�(𝒾)(𝑐𝒾). In Fig. 4, N=5 is set as an example. This satisfies equation (3), and the loss 

function of this optimization is calculated by using equation (4). 

 

Fig. 4.  The structure of ResNet152+FPN+DETR 
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 �̂� = 𝑎𝑟𝑔𝑚𝑖𝑛𝜎 ∑ ℒ𝑚𝑎𝑡𝑐ℎ

𝑁

𝑖
(𝑦𝑖 , �̂�𝜎(𝑖)) (3) 

ℒ𝐻𝑢𝑛𝑔𝑎𝑟𝑖𝑎𝑛(𝑦, �̂�) =  ∑[−𝑙𝑜𝑔�̂��̂�(𝒾)(𝑐𝒾) + 1{𝑐𝒾 ≠∅}ℒ𝑏𝑜𝑥(𝑏𝒾, �̂��̂�(𝒾))]

𝑁

𝑖=1

 
(4) 

4 Experimental Results 

In this article, we utilize our own dataset for model training and testing to get the stellar 

performance of experimental results. There are 8,600 frames in total, 6,450 frames were 

selected for the training section, 2,150 frames were picked up for the testing. Another 

dataset contains 12 video fragments of nine classes with the labels: “Love”, ‘Good”, 

“You”, “Meet”, “Yes”, “No”, “Please”, “Name”, “My”, all these images of sign 

language gestures were created and collected by ourselves. The total number of images 

is 7,192 in this dataset, 5,000 frames were employed for the model training, 2,192 

frames were picked for the testing. Fig. 5 shows the gesture samples for the nine classes. 

 
Fig. 5. The samples of our own sign language dataset 

 

Apropos the evaluations, the metrics for evaluating our model are AP (Average 

Precision) and FPS (Frames Per Second). Regarding multiclass object detection, an 

introduction is employed for calculating the evaluation parameters: True Positive (TP), 

True Negative (TN), False Positive (FP), False Negative (FN). As shown in Table 1, 

all the experimental indexes will be calculated separately for AP, recall, and precision. 

Precision is the proportion of true examples that should be predicted as positive, 

calculated by using equation (5). As shown in equation (6), TP+FN is the number of all 
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positive samples, recall (recall rate) is the proportion of all positive samples that are 

correctly predicted. In our experiments, the average precision is calculated by using eq. 

(7).  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

𝐴𝑃 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃
 

(7) 

    In Table 1, TP, TN, FP, and FN are mainly employed to count two types of 

classification problems, and multiple classes were counted separately. The samples are 

split into positive samples and negative samples. The first letter in TP, TN, FP, and FN 

indicates whether the recognition result of the classifier is correct.   

The focus of this paper is mainly on the proposed deep learning methods based on 

DETR and its impact on the result. We mainly emphasized on four state-of-the-art 

backbones to fulfill the sign language recognition, which are ResNet34, ResNet50, 

ResNet101, and ResNet152+FPN. In Fig. 7, we demonstrate the result of sign language 

recognition from the video frames. 

Throughout our experiments, we made use of multiple deep learning methods to 

compare our experimental results. The deep learning models with the feature pyramid 

networks are much more stable and robust in sign language recognition. In Table 1, we 

compare our deep learning models for sign language recognition using our dataset. 

As shown in Table 1, compared with ResNet34, ResNet50, ResNet101 and YOLO 

series, our method ResNet152+FPN reaches the highest performance on Average 

Precision (AP) rating at 31.50%. Comparative experiments show that the new method 

improves the detection accuracy around 1.70% compared to DETR based on our 

dataset. The detection accuracy is higher than the standard DETR model in AP, AP50, 

AP75.  

In Table 2, our proposed method shows excellent results for sign language 

recognition. We are able to obtain 96.45% accuracy which has a 5.99% growth of the 

total accuracy compared with the ResNet101 + DETR. YOLOX + Vision Transformer 

for sign language recognition attains 93.72% accuracy. 

From DETR, we see the structure as shown in Fig.3, the convolution blocks and 

convolution kernels are increased step by step from ResNet18 to ResNet152. With the 

increase of convolution kernel, the feature map increases accordingly, the accuracy thus 

has been improved. 

Fig.8 shows the accuracy and validation losses. The black bar represents the 

proposed method. All the methods get the maxima, the proposed method reaches the 

highest accuracy of 96%. The proposed method also attains the best performance for 

the validation process than other methods.  

From Table 2 and Fig.8, we see that the proposed method has a better recognition 

rate that can reach 28 FPS compared to existing methods due to its jump connection 

structure to avoid gradient vanishing problem. ResNet152 as the feature extraction 
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network, contains more feature information and more semantic information in the upper 

layer of the feature map. Combined with the FPN structure to fuse high-level and low-

level information, ResNet152 is able to improve the average accuracy of 96.45%. For 

our proposed method as well as the compared methods, we employed an RTX 3060 

GPU and AMD Ryzen 5 5600H CPU to accelerate the training and detecting process 

to achieve better computational efficiency. 

 

Fig. 6. The results of sign language recognition 

TABLE 1. THE DEEP LEARNING MODELS FOR SIGN LANGUAGR RECOGNITION 

Models APs AP50 AP75 Param F1 FPS 

ResNet18+DETR 30.6 49.6 29.7 40M 62.2 20 

ResNet34+DETR 31.8 50.2 30.2 41M 63.0 21 

ResNet50+DETR 32.5 51.0 29.3 50M 64.2 27 

ResNet101 + DETR 33.3 51.8 29.8 62M 66.8 20 

YOLOv3 31.3 52.5 30.6 66M 67.7 22 

YOLOv4 31.7 52.8 31.8 65M 68.5 23 

YOLOv5+Attention 32.4 53.9 31.5 68M 70.8 24 

YOLOX + ViT 34.6 54.3 32.6 70M 71.6 26 

ResNet152 + FPN 

+DETR (proposed) 

35 54.8 33.9 73M 72.2 28 
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TABLE 2. THE COMPARISON OF DEEP LEARNING MODELS  

Models/Classes “Love” “Good” “You” “Meet” “Yes” “No” “Please” “Name” “My” AP 

ResNet18 + DETR 85.23% 83.82% 84.28% 84.11% 83.37% 84.45% 85.68% 84.79% 84.25% 84.44% 

ResNet34 + DETR 84.77% 85.27% 86.89% 85.83% 
84.12% 85.35% 86.63% 85.76% 85.47% 85.56 

% 

ResNet50 + DETR 87.35% 88.26% 89.71% 88.12% 
87.07% 88.34% 89.33% 88.23% 88.26% 88.29 

% 

ResNet101 + DETR 89.37% 90.49% 91.55% 89.35% 90.23% 91.30% 90.24% 89.66% 91.95% 90.46% 

YOLOv3 82.63% 83.66% 84.36% 83.11% 82.19% 83.59% 84.87% 83.41% 84.92% 83.63% 

YOLOv4 84.89% 83.02% 84.93% 85.96% 84.53% 84.75% 83.83% 84.29% 85.81% 84.66% 

YOLOv5+Attention 91.28% 92.79% 90.33% 91.28% 92.72% 91.85% 91.97% 90.38% 91.45% 91.56% 

YOLOX + ViT 93.76% 92.96% 93.94% 94.22% 93.18% 93.27% 94.39% 93.78% 92.96% 93.61% 

ResNet152 + FPN  

+ DETR (proposed) 
95.64% 96.73% 97.15% 96.27% 

96.55% 97.40% 96.16% 95.52% 96.69% 

96.45% 

 

Fig. 7. The examples of our implemented methods 

5 Conclusion and Future Work 

In this article, we employed ResNet152+FPN+DETR model to achieve a superior 

performance for sign language recognition. The experimental results show that the new 

model has better results compared to the existing methods, which attained 1.7% growth 

of accuracy by adding the FPN nets. 



13 

 

The results show that Transformer still has excellent potential for improving sign 

language recognition by adding the convolutional layers and increasing the feature 

maps to improve the model's accuracy. Although the computational complexity and 

parameters have increased a lot compared to the previous method, this problem can still 

be continuously improved in the future [10]. Besides, applying the FPN nets to the 

DETR-based models shows great betterment in sign language recognition.  

The limitation of this work is that the data corpus and the size of the dataset are 

limited because we created our own dataset. The complexity of this model is higher 

than the previously proposed recurrent neural network (RNN), however this can be 

easily compensated using more GPU power. 

In our future work, we will combine YOLO model and Transformer to obtain better 

results, which in turn will uplift the overall performance of sign language recognition. 

In addition, we intend to expand the dataset for a much wider range of vocabulary to 

increase the validation of our experiments so far. 

 

 
(a) 
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(b) 

               Fig. 8. The accuracy rates (a) and losses (b) of our implemented methods 
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