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Abstract. Autonomous cars can accurately perceive the deployment of traffic 

scenes and the distance between visual objects in the scenarios through 

understanding the depth. Therefore, the depth estimation of scenes is a crucial 

step in the obstacle avoidance and pedestrian protection from autonomous 

vehicles. In this paper, a method for stereo depth estimation based on image 

sequences is introduced. In this project, we improve the performance of deep 

learning-based model by combining depth hints algorithm and MobileNetV2 

encoder to enhance the loss function and increases computing speed. To the 

best of our knowledge, this is the first time MobileNetV2 is applied to depth 

estimation based on KITTI dataset. 

Keywords: Deep learning, automatic car, scene depth understanding, depth 
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1 Introduction 

The process of cognizing and assuming environment based on spatial perception is 

known as scene understanding [1]. A scene, in the context of autonomous cars, is the 

environment in which the vehicle is presently operating and contains the location, 

drivers, event, and their interactions [2, 39, 40, 41, 42]. In order for autonomous 

vehicles to be driven safely and smoothly in complex urban traffic environments, the 

perception and understanding of depth in traffic scenes are of paramount importance 

[47, 48, 49, 50, 51]. Therefore, through robust depth estimation of traffic scene, the 

autonomous vehicles can become true. 

Scene depth information plays an important role in advanced autonomous vehicles. 

The vehicle-related depth information can accurately perceive the operating 

environment of the vehicle and obtain the distance between the vehicle and 

pedestrians or others in traffic environment, so as to realize obstacle avoidance and 

pedestrian protection functions of autonomous vehicles. Compared with sensors, the 

driving recorder can obtain the color, texture and other information, the price is 

relatively low. Therefore, a number of scene understanding tasks are based on the 

images from driving recorder [43, 44, 45, 46]. 

The performance of depth estimate of traffic scene in autonomous automobile may 

be improved to further depth recently due to the advancement of deep learning [3]. 

Additionally, deep learning has the active benefit of transfer learning, which has 

benefited the training process of multiple traffic scenarios using a variety of 

pretrained networks and public datasets. Deep neural networks simulate high-level 
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abstraction from the visual data and encode the objects, scenes, and events in motion 

pictures using an efficient representation in order to comprehend them [4]. As a result, 

deep learning methods offer special benefits when it comes to detect the depth of a 

picture.   

One of the benefits is the end-to-end nature of deep learning, which, on the theory 

of a particularly exact recognition of individual situations, produces faster global 

information processing than standard methods. The deep learning approach can 

successfully meet the accuracy and real-time requirements for autonomous vehicles 

that must comprehend the information in complex traffic environments [5, 35, 36, 37, 

38]. 

However, for the performance of most depth estimation models based on the 

KITTI dataset [15, 16, 17, 18, 52], we found that the problem of detailed regions in 

the scene on the predicted depth map is still existing. One of the reasons is that 

incomplete feature extraction by using encoder [19, 20, 21, 22], another is that the 

network focus is on learning the depth to obtain the local minimum of the reprojection 

loss in the process of self-supervised learning, which cannot attain the global 

minimum [31]. 

Therefore, in this paper, we proffer MobileNetV2 structure as an encoder to 

transfer fine-grained details from high resolution to low resolution. At the same time, 

we employ the depth hints algorithm to compute an alternative depth value and 

incorporate it into the objective function to obtain a satisfactory result [31]. 

In this paper, literature review will be presented in Section 2, our method will be 

shown in Section 3, our conclusion will be drawn in Section 4. 

2 Literature Review 

We review the outstanding studies of deep learning and depth estimation in this paper. 

The characteristics of the end-to-end nature in deep learning [6], strong versatility [7], 

and active mobility [8] have already demonstrated powerful capabilities in traffic 

depth understanding. Moreover, the layer-by-layer process of deep learning enables 

the model to better express the information. Therefore, the method based on deep 

learning has become the standard solution for image depth estimation. 

In the past years, there are already heaps of studies related to depth estimation 

[23,24,25,26] based on deep learning in indoor and outdoor scenes. Fully 

convolutional network is one of the most popular structures in deep learning. The 

improved fully convolutional network [9] was applied to depth estimation. Different 

from the previous pretrained network, the fixed fully connected layer is employed to 

obtain the image-to-image conversion. Iro et al. [9] directly removed the fully 

connected layer and replaced it with a network having a pretrained network structure 

to return the high-level features to the same size as the original image. The entire net 

was regarded as an encoder-decoder process. The advantage is to streamline the 

parameters to make better use of GPUs. Moreover, the improved network can directly 

process images with any sizes instead of the fixed size of the network input and 

output like a normal fully connected network.  
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By observing the experimental results, FCRN [9] using ResNet-50 performed well 

in overall depth prediction, but the expression of details is not perfect. Through 

comparisons, the method [10] can better reflect the detailed information. It is a 

combination of global and local strategies. This strategy takes use of coarse network 

to predict the overall trend, and harnesses the fine network to perform local tuning on 

the overall trend. The depth dimensions obtained by this method are all smaller than 

the original image. One pixel of the predicted small depth map can represent the 

overall depth of the current position information, make the RMSE (Root Mean Square 

Error) smaller, but it will also lose a lot of depth information. This is the reason why it 

is not as good as FCRN [9] in overall depth estimation, but it handles details and 

contours better. 

    Although multilayer neural networks had outstanding performance in depth 

estimation. However, in the training process of the supervised learning model, it is 

necessary to obtain in advance the reference standard of the depth value 

corresponding to a large number of input data as the training samples, so as to carry 

out the backpropagation of the neural network. However, in reality, it is very costly to 

obtain the depth information corresponding to the scene. Therefore, a number of 

studies circumvent the problem of obtaining depth information at a high cost through 

unsupervised learning methods [27, 28, 29, 30]. 

An unsupervised CNN for single view depth estimation was proposed [11]. The 

proposed model takes advantage of a structure similar to FCN without the 

participation of a fully connected layer. The volume of the model is smaller and 

computing speed is faster. At the same time, the participation of skip-connect ensures 

the relative integrity of the output feature details. Moreover, this model has the pre-

trained network structure as the encoder part, which can achieve relatively good 

results in the case of insufficient training data. 

    Based on the model [11], the algorithm and structure were improved. Different 

from the FCNs, the disparity corresponding to the current feature size for the 

outermost 4 layers of the decoder part was estimated [12] that passed to the lower 

layer of the decoder after upsampling. This can ensure that each layer extracts 

disparity, which is equivalent to conduct a coarse-to-fine depth prediction. Since most 

models has taken use of bilinear differences, the range of the gradient always comes 

from the surrounding four coordinate points. The advantage of coarse-to-fine is that 

the prediction can make the gradient from a coordinate point rather from the current 

position. 

From the perspective of learning methods, the vigorous development of deep 

learning was driven by large-scale annotated data, supervised learning promotes the 

development of deep models towards higher and higher performance. However, a 

large amount of labeled data often requires huge costs, more and more research work 

has begun to focus on how to improve the performance of the model without 

acquiring data labels. Hence, there are heaps of studies focusing on self-supervised 

learning and unsupervised learning for depth estimation. 

Pertaining to stereo matching or binocular depth estimation, a device like LiDAR 

is extremely bulky and expensive, what it can collect is sparse depth information, 

what we need is a dense depth map; however, devices based on structured light can 
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often only perform depth information annotation in indoor scenes, it is difficult to 

achieve high annotation quality in outdoor traffic scenes. Therefore, self-supervised 

learning has received more and more attention in stereo matching. 

According to the review of these literatures, in this paper, we introduce a depth 

estimation model which combines MobileNetV2 and depth hints to achieve high-

resolution depth estimation images with lower errors. 

3 Our Methods 

In stereo matching algorithms based on convolutional neural network, supervised 

learning is basically a regression method which takes use of smooth L1 loss to 

calculate the errors between the predicted disparity value and the real disparity value 

to supervise the learning of the network. For the self-supervised learning, the 

algorithm mainly outputs labels from the feature of the original image, the features of 

the disparity map to achieve the purpose of training the deep learning model. 

    In this study, the loss is calculated by using reconstruction. It is assumed that the 

left image as a reference image is 𝐼𝑖𝑗
𝑙   where (i, j) represent the position coordinates of 

the pixel point. According to the predicted disparity d and the right image 𝐼𝑖𝑗
𝑟 , the 

reconstructed left image 𝐼𝑖𝑗
𝑙  is generated through the warping operation. However, in 

order to avoid that the reconstructed image has a high loss, we will utilize structural 

similarity index measure (SSIM) as image quality to comprehensively calculate the 

photometric errors between the reconstructed image and the original image [32]. 

𝐿 =
1

𝑁
∑ 𝛼

1−𝑆𝑆𝐼𝑀(𝐼𝑖𝑗
𝑙 ,𝐼𝑖𝑗

𝑙 )

2𝑖,𝑗 + (1 − 𝛼) ‖ 𝐼𝑖𝑗
𝑙 − 𝐼𝑖𝑗

𝑙 ‖                            (1) 

where 𝛼 is the weight of the basic reconstruction loss and similarity loss. Single-

scaled SSIM and simplified 33 filtering are adopted, 𝛼  is set to 0.85. 

Our network architecture extends the shared encoders [32]. A sequence of three 

images were fed into the model, where the first pair of images was employed to 

predict depth, the remaining two images were applied to predict pose. The difference 

is that, for depth network, we added MobileNetV2 as our encoders as shown in Fig. 1.  

Although most KITTI-based depth estimation currently employs ResNet as 

encoder, compared to ResNet using standard convolution to extract features, 

MobileNetV2 utilizes the combination of depth-wise convolutions with point-wise 

convolutions can exponentially reduce the time complexity and space complexity. 

Moreover, in order to suit for depth-wise convolution, the inverted residual block 

applied by MobileNetV2 can extract features in higher dimensions. Regarding pose 

estimation, we make use of axis-angle representations to predict the rotation and scale 

the rotation and translation outputs by 0.01. All three pairs of images provided to the 

pose and depth network share with the same parameters [31]. 
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Fig. 1.  The network structure of depth estimation based on network architecture and 

MobileNet v2 module. 

 

    To avoid the network gets stuck in a local minimum and fail to seek the global 

minimum, we employ the Semi-Global Matching (SGM) algorithm to generate a 

depth hint. We are use of depth hint for regression if the reprojected image generated 

with depth hint is more accurate than the network estimated [31,33]. The SGM 

algorithm sets a global energy function related to the disparity map, composed of the 

disparity of each pixel to minimize this energy function, 

𝐸(𝐷) = ∑ (𝐶(𝑃, 𝐷𝑃) + ∑ 𝑃1𝐼[|𝐷𝑃 − 𝐷𝑞| = 1]𝑞∈𝑁𝑝
+ ∑ 𝑃2𝐼[|𝐷𝑝 − 𝐷𝑞| > 1]𝑞∈𝑁𝑝

)𝑃   (2) 

where D is the disparity map, p and q are the pixels in the image, 𝑁𝑝 is the adjacent 

pixel point of the pixel point 𝑃𝑑, 𝐶(𝑃, 𝐷𝑃) is the cost of the pixels if the disparity of 

the current pixel is 𝐷𝑃, 𝑃1 and 𝑃2 are penalty coefficients, which are applicable if the 

disparity value in the adjacent pixels of pixel P and the disparity difference of P is 

equal to 1 and greater than 1, respectively.  

The steps of the SGM algorithm are listed as follows: 

Step 1 (Pre-processing): Employ Sobel operator to process the source image, map 

the image processed by the Sobel operator to a new image, and obtain the gradient 

information of the image for subsequent calculation costs. 

Step 2 (Cost calculation): Use the sampling method to calculate the gradient cost of 

the pre-processed image gradient information and apply the sampling method to 

calculate the SAD cost of the source image. 

Step 3 (Dynamic planning): There are four paths by default, and the parameters P1 

and P2 of path planning are set and SAD Window size. 

Step 4 (Post-processing): There are four parts: Uniqueness detection, sub-pixel 

interpolation, left-right consistency detection, and connected area detection. 

We apply the root mean squared error (RMSE), absolute relative error and squared 

relative error with the 1.25 as the threshold as the evaluation methods. 
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                             𝐴𝐵𝑠𝑅𝑒𝑙 =
1

𝑁
∑

|𝑑𝑖−𝑑𝑖
∗|

𝑑𝑖
                                             (3) 

                             𝑆𝑞𝑅𝑒𝑙 =
1

𝑁
∑

|𝑑𝑖−𝑑𝑖
∗|

2

𝑑𝑖
                                              (4) 

where 𝑑𝑖  and 𝑑𝑖
∗ are the ground truth and predicted depth at pixel i and N is the total 

number of pixels. 

                                              RMSE=√
1

𝑚
∑ |𝑑𝑖 − 𝑑𝑖

∗|
2𝑚

𝑖=1                                     (5) 

where 𝑑𝑖  is the real depth information, 𝑑𝑖
∗ is the predicted depth value, and m is the 

total number of pixels. 

4 Experimental Results 

We run the experiments based on the KITTI dataset which consists of calibrated 

stereo video registered to LiDAR measurements of a city, captured from a moving 

car. We totally obtained 1,000 data points for training and testing as shown in Fig.2. 

The dataset is split into training set and test set at a ratio of 7:3, the resolution of the 

training images are all 3201024. 

In this experiment, we apply depth hints as a substitution of depth ground truth. If 

the loss using depth hints is smaller than the network using ground truth for 

regression, we reply on depth hints to optimize the network. The visualization of 

depth hint maps is shown in Fig. 3. 

    The result shows in Fig. 4 that the model is able to well identify the distance in the 

scene. Moreover, the boundaries of vehicles, walls, traffic light and other objects 

displayed in the output images are of high definition. The depth information of the 

main objects in the color maps are also relatively high. In our preliminary 

experimental results, RMSE is up to 4.083. 

In order to ensure the stability and reliability of our network, we take use of Root 

Mean Squared Error (RMSE), Absolute Relative Error (AbsRel), and Squared 

Relative Error (SqRel) as evaluation metrics to compare the performance of the 

networks with different encoders when training the same data set as shown in Table.1. 

The results show that the MobileNetV2 encoder performs better than ResNet-18 and 

ResNet-50 based on all three evaluation methods with and without using depth hints. 

In the case of employing the MobileNetV2 as the backbone, the network with depth 

hints outperforms the other networks. This may indicate that in this dataset, 

MobileNetV2 combined with depth hints is able to achieve outstanding performance. 
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Fig.2. The original RGB images as the training data 
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Fig. 3. The visualization of depth hints 

 
Fig. 4. The depth estimation of traffic scenes with color maps at pixel level (Brighter colors 

indicate closer distances, darker colors show greater distances) 

Table 1. Comparisons of multiple deep neural networks 

Training modality AbsRel SqRel RMSE 

ResNet-18 0.132 0.86 4.518 

ResNet-50 0.121 0.777 4.467 

MobileNetV2 0.115 0.736 4.293 

ResNet-18 + depth hints 0.131 0.81 4.384 

ResNet-50 + depth hints 0.120 0.726 4.395 
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5 Conclusion 

We initially demonstrate a MobileNetV2 method combined with depth hints to infer 

high-resolution depth maps from 2D images. Through comparisons, we see that in 

this dataset, MobileNetV2 combined with depth hints performed better than other 

encoders. At present, the RMSE of this model has reached 4.083. 

In the near future, in order to expand this work, we will generate a depth 

information data set of traffic scenes in New Zealand and conduct depth estimation of 

traffic scenes based on this data set. Moreover, we will further optimize this algorithm 

to obtain a higher resolution depth estimation map. 
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