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 I 

Abstract 

Masked face recognition has made great progress in the field of computer vision since the 

popularity of Covid-19 epidemic in 2020. In countries with severe outbreaks, people are 

required to wear masks in public. The current face recognition technology, which takes 

use of the whole face as input data is quite well established. However, when people are 

use of face masks, which will reduce the accuracy of face recognition. Therefore, we 

propose a mask wearing recognition method based on MobileNetV2 and solve the 

problem that many of models cannot be applied to portable devices or mobile terminals. 

The results indicate that this method has 98.30% accuracy in identifying the masked face. 

Simultaneously, a higher accuracy is obtained compared to VGG16. This approach has 

been proven to work well for the practical needs.  
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Chapter 1 

Introduction 

 

 

This chapter is composed of five parts: The first part introduces 

the background and motivations, the second part includes the 

research question, followed by the contributions, objectives, and 

structure of this report. 
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1.1 Background and Motivation 

Since the outbreak of the COVID-19 epidemic, its rapid spread has posed a serious threat 

to people's ordinary lives. To prevent cross-infection and the expansion of the epidemic, 

the World Health Organization (WHO) has proposed that wearing masks properly in 

public places and maintaining a safe distance is an effective way to prevent its spread 

(Asadi & Cappa, 2019). However, due to lack of awareness, uncomfortable to wear masks 

and other reasons, it is difficult to reach the standard of people wearing masks consciously 

(Wang, 2018). A survey conducted in Japanese society shows that no more than 23.1% 

of the population wears masks properly (Masaki, 2020). Therefore, it is very important to 

detect whether masks are worn in public places and whether they are worn in a standard 

way.  

In 2006, the theory of deep learning was proposed, the field of imaging represented 

by computer vision is developed rapidly. Due to the increased amount of data and 

computing power today, it makes deep learning work well to its advantage, especially in 

target detection and image feature extraction (Zhang, 2015). Face recognition algorithms 

are already popularly applied to our real life. However, the mainstream masked face 

detection algorithms before the COVID-19 epidemic required tagged samples, the 

network models require a high computer hardware configuration, with the problem that 

could not be applied to portable devices or mobile (Jamadar, 2020). 

The most general approach to masked face recognition is to consider face 

recognition as a classification task. The classification network is trained based on the 

large dataset. The fully connected classification layer in the last layer of the network is 

removed and the remaining network layer is employed as the face feature extraction 

network. The output of the last layer of this network is feature data, but now the sizes of 

deep nets are enormous (Adjabi & Benzaoui, 2020). The existing experiments have 

shown that the accuracy of mask recognition using deep learning method Retina Face and 

VGGFace2 is only 94.5% (Aswal, 2020). This accuracy is not optimal for practical 

applications. Image processing using convolutions is one of the frequently used methods 
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in the field of computer vision. By tackling less data where the face is marked, transfer 

learning in deep learning can handle it well which means that these models are already 

trained by using other data (Gultom, 2018). MobileNetV2 from Keras is one of the 

representatives of transfer learning techniques (Lee & Lum, 2020). The MobileNet model 

was firstly proposed in 2017 that is a lightweight convolutional neural network designed 

for mobile devices. After gradual development, optimization, and update iterations, 

MobileNetV2 was presented in 2019. This lightweight network transfers the mask 

wearing recognition problem to a classification problem by using a target detection 

network. It effectively reduces the number of network model parameters and greatly 

diminishes the computing time (Andrew, 2017). The parameters of the model size are 

around 5M (Elmahmudi & Ugail, 2019).  

The trend of image recognition is to use deeper layers in the training model, which 

results in increased computing resources and reduces the efficiency of the artificial neural 

network (ANN). The Vision Transformer (ViT) has proven to be a faster model for big 

data processing, and the operation principle of ViT we locate the image to the attention 

mechanism according to the attention mechanism set forth in the paper Attention is all 

you need (Ashish, 2017) and classify the category through the multi-layer perceptron. 

Transfer learning is harnessed by us to simplify ANN training. Transfer learning 

uses weights that have been previously trained in a large dataset, only the untouched data 

set is finely adjusted, so that the new model created by the specific gravity has higher 

accuracy (Barman, 2019). The weight of the transfer learning training is generally based 

on a large dataset like ImageNet, consisting of more than ten thousand of categories which 

help to learn with higher accuracy in training and improve the generalization of the model.  

For visual object recognition of whether a mask is worn or not, we train the model 

using two separate datasets from Kaggle having the same faces with and without face 

masks. We take use of OpenCV framework in addition to image processing methods. We 

obtained a real-time detection accuracy 98.3% in our results. This accuracy is 2% higher 

than the same test conducted in 2020 (Hu & Ge, 2020). We used the Masked Face-Net 
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dataset (Adnane, 2021) to train on the correct wearing of masks, which contains 137,016 

mask images and consists of four categories: mask, mask chin, mask mouth chin and 

mask mouth nose. This dataset collected by the Flickr-Faces-HQ dataset has more age 

and ethnic distinctions than other datasets (Karras & Laine, 2018). 

1.2 Research Questions 

As we mentioned, the purpose of this study was to investigate the use of MobileNetV2 

and transformer on mask wear and whether it is worn properly. We also consideration 

how to improve its accuracy. Therefore, the questions studied in this report are, 

(1) What are the advantages of ANN for classifying images and extracting features? 

(2) Why the attention mechanism used in ViT has better performance than other model 

architectures? 

The core purpose of this study is to use deep learning to identify mask wear. Therefore, 

we need to choose the best model to obtain a higher recognition accuracy. In the study of 

use mask properly, we need to evaluate several models to get the best results. 

1.3 Contributions 

The core of this project report is to classify and capture image features through deep 

learning and transformer technology to obtain high-precision real-time recognition. 

Compared to traditional models it has better generalization. By the end of this report, we 

are able to: (1) Find deep learning models with optimal performance; (2) ANN is used for 

classification recognition of mask images; (3) improve accuracy using ANN weights that 

have been trained with large datasets; (4) analysis of the accuracy of different ViT models 

in various scenarios. In addition, we compare the main models in this experiment with 

ResNet 50 and discuss their advantages and shortcomings in training, validation, and 

testing. 
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1.4 Objectives of This Report 

Firstly, we introduce the use of MobileNetV2 for real-time applications and compare it 

with traditional deep learning methods. Secondly, the latest transformer model is 

proposed according to the Paper Attention is all you need. We applied a Gaussian error 

Linear Units (GeLU) with 20 training epochs of hyperparameters and a stochastic 

gradient descent (SGD) optimizer, to training on three ViT model architectures which is 

ViT Base/16, ViT large/14 and ViT Huge/14. We found the best classification was using 

ViT Huge/14. 

 

1.5 Structure of This Report 

In Chapter 2, we will cover the literature review discussing the current research results 

on CNN mask detection with transfer learning and examine the development of 

MobileNetV2. In addition, we will discuss the different accuracy results obtained by 

training with various datasets. 

    In Chapter 3, we will introduce the research methods. Focus on the MobileNetV2 

and transformer structure. Information of dataset we use, and data augmentation also 

present in this section.  

    In Chapter 4, we will analyze our results of each ViT model. Also discuss the training 

validation and testing accuracy under various improvements. Our experiment data, some 

details that we still need to be improved are all mentioned in this section. 

    In Chapter 5, we will summarize and analyze the experimental results. 

    In Chapter 6, we will draw our conclusion and future work.                          
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Chapter 2 

Literature Review 

 

 

In this section, we highlight the literature on convolutional neural 

network (CNN) research and discuss past research work in the 

field of human face recognition.  
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2.1 Introduction 

With the increasing of global security problems, intelligent surveillance is gaining its 

attention from the public. The demands of surveillance for public security are soaring, 

such as security in banks, shopping malls, airports and markets, etc. Meanwhile, a 

growing number of residents are paying their close attention to privacy protection of their 

homes. 

2.2 Face recognition Detection Model 

As an important task in the field of computer vision, masked face recognition has been 

modeled for a long time. The studies on mask testing have been increasing since 2016, 

especially after COVID-19 epidemic. Since in the beginning, we cannot collect all face 

image data for face recognition algorithms, the face recognition task is practiced on the 

open set (Peng, 2021). This leads to the algorithmic models that can distinguish unknown 

features only on a limited dataset. 

With the development of masked face recognition algorithms, a series of loss 

algorithms for faces have emerged. From the initial Softmax-Loss (Agrawal, 2017), 

Triplet-Loss, Center-Loss to A-Softmax (Liu, 2017), L-Softmax, Arcface-Loss (Deng, 

2017), and to the AdaCos proposed in CVPR 2019. AdaCos does not require 

hyperparameters compared to the loss function and takes use of adaptive scaling 

parameters to automatically enhance the nets during the training process, showing the 

advantages of improving the speed of network convergence and making the network more 

stable, which can significantly improve the accuracy of face recognition.  

Video-based masked face recognition has been accomplished and applied to railroad 

transportation systems. Krishan et al. proposed a face mask detection and normative wear 

recognition method based on YOLOv3 and YCrCb. YOLOv3 was applied to detect 

whether the mask is worn or not, the elliptical skin color model of YCrCb is applied to 

detect skin color in the masked region, and then to determine whether the mask is worn. 
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The mAP for masked face detection is 89.07% in the experiment, the recognition rate of 

mask regulation wearing reached 82.48% (Ahuja, 2021). This value is proved to be 

unsatisfactory in our experiments. 

After YOLOv4 was released in 2020. Sharma et al. proposed a mask wearing 

detection method based on fusion of high and low frequency components of images with 

YOLOv4 net (Akhil, 2021). The experiments were conducted by web crawlers to build 

the dataset and manual data annotation, trained by Darknet framework to conduct object 

detection, the model detection accuracy reached 98.5% after the training, with an average 

detection speed of 35.2 ms. Compared to YOLOv3, YOLOv4 offers a significant 

improvement in accuracy. Since YOLOv4 is use of a mish activation function that is 

smoother than the Leaky ReLU activation function in YOLOv3, the gradient descent is 

much effective (Jia & Yang, 2018). 

Since face recognition models have been easily exposed to sunlight in open-air 

environments, changes in sunlight and facial expressions can have an impact on algorithm 

performance. Lahasan et al. conducted a work to address these challenges (Lahasan, 

2019). The evaluation is classified into three parts: Occlusion feature extraction, 

occlusion recognition, and occlusion recovery. The mask is employed as an example of 

the object of facial expression recognition, grouped it into holistic and part-based 

approaches. Experimental results show that the local matching method has better 

performance compared to the reconstruction method in partial-based mechanisms. The 

combination of local matching methods and optimization based on metaheuristic 

techniques can increase the stability of marked face recognition. However, it requires a 

large enough number of facial images for training purpose. 

2.3 Convolutional Neural Network 

There has been a great deal of research on mask classification during the COVID-19 

epidemic, and optimization of mask identification has been a hot topic. An article 

published by Albert on mask detection using a CNN model with transfer learning (Albert 
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2021), uses crowd data sets with 13 categories. One of the manual tagging results consists 

of 3200 images from 500 users. The authors improve the performance of this small dataset 

by using data augmentation and transfer learning methods, while testing different deep 

learning architectures such as MobileNet and VGG16. VGG16 has more training data 

than the MobileNet model, which contains at least 3.5 million parameters, and VGG16, 

which has 134.4 million parameters. VGG16 uses transfer learning and data augmentation 

to improve accuracy and obtain the value of 0.834 (Kalenichenko, 2017) 

The research work on face mask detection using deep transfer learning with machine 

learning methods (Mohamed, 2021) uses the Real-World Masked Face Dataset (RMFD), 

which contains over 80,000 unmasked faces and 5,000 masked faces, all extracted from 

real-world faces (Karras, 2021). Labeled Faces in the Wild (LFW) composed of 13,000 

simulated marked face is applied to the experiment (Kawulok & Celebi, 2008). The 

hybrid deep transfer learning model used in the experiments using ResNet50 as a feature 

extractor. The experiments used both decision trees and support vector machines to obtain 

the excellent performance. 99.46% and 100% accuracy were obtained on the RMFD 

dataset and LFW dataset, respectively. This research inspired our experiment. 

Image super-resolution and classification network architectures are adopted in the 

experiments to enable transfer learning to achieve 98.7% accuracy (Li, 2020). This is a 

great inspiration for our next research on transfer learning. Another study annotated the 

Medical Masks Dataset (MMD), which was divided into three categories: masked, 

unmasked and not properly masked. RestNet50 and YOLOv2 were taken to extract 

features from the annotated and non-annotated images, respectively, and it was found that 

using the annotated images as the dataset for model training had better accuracy than the 

non-annotated images (Wang, 2012). However, it is difficult to find many annotated 

images to apply for validation in deep learning studies. This inspired us to use a more 

diverse dataset which is Masked Face-Net in our experiments. 
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Chapter 3 

Methodology 

 

 

The main content of this section is to introduce research methods, 

which we use in our experiment. The chapter mainly covers the 

MobileNetV2 architecture, transfer learning in deep learning 

applied to recognition of mask wear. Two methods for enhancing 

data training are also presented. 

 

  



11 
 

3.1 MobileNetV2 

MobileNetV2 is a lightweight convolutional neural network designed for embedded or 

mobile devices. The structure of the network has two types of stride blocks, which have 

three layers in both blocks as shown in Figure 3.1, 

 

 

Figure 3.1 MobileNetV2 block 

 

The network mainly takes use of deeply separable convolution. In the first layer, there 

are several channels expanded by 11 convolution with ReLU. This allows for feature 

extraction in higher dimensions. The 33 depth-wise convolutional contains in second 

layer. In the third layer, the feature dimensionality is reduced by 11 convolutional. The 

activation function is not applied to the final dimensionality reduction layer because using 

the activation function for low-dimensional features would lose some of the extracted 

image space features. Deeply separable convolution can greatly reduce the number of 

model parameters and the amount of computation, which is able to improve the 

computational speed of the network, the training process can make full use of device 

resources, the model can also be built in embedded devices and mobiles to achieve the 

result of real-time recognition. The first layer is stride 1 block, the second layer is depth-

separable convolution with residual module as shown in Table 3.1,   



12 
 

 

Table 3.1 Deeply separable convolution with residual structure 

 

From Table 3.1, where h, w, c represents the height of the image, width of the image 

and the number of channels, respectively.  

Since the MobileNetV2 network has stride 2 layers, through using convolutional 

filtering with a step size of 2, it will cause a large loss of information. In this paper, we 

consider using the attention optimization module according to Squeeze-and-Excitation 

Networks as shown in Figure 3.2. 

 
Figure 3.2 Attention optimization module 

 

Pertaining to global average pooling in MobileNetV2 net, the use of an average 

pooling layer degrades network performance. In a 77 feature map, the perceptual domain 

of the center point and the edge points are the same, the center point includes the complete 

image while the edge points have only part of the image, so each point has a different 

weight. However, the average pooling layer represents all pixels with the same weight, it 

leads to a decrease in performance (Wei, 2019). In this paper, we take advantage of 7×7 

size convolution kernels for grouped convolution instead of global average pooling in 

MobileNetV2 network, which allows the network to learn the weights by itself instead of 

treating the weights of each point as the same, it makes the network has more 

generalization ability. 
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     The input image size of the MobileNetV2 lightweight model for face recognition 

is 224×224, the model consists of four parts. The first part outputs thirty-two 112×112 

features maps through 3×3 ordinary convolutions with a step size of 2, padding of 1 and 

takes a grouped convolution. The second part is composed of six different mobile modules 

and finally outputs 160 7×7 feature maps. In the third part, the feature dimension is 

expanded by 1×1 ordinary convolution, the final face feature map is obtained by 1280 

1×1 convolutions. In the last part, we implement the classification layer through full 

connectivity. The network structure as shown in Table 3.2, 

 

Table 3.2 MobileNetV2 architecture 

 

 

In Table 3.2, c represents the number of channels, n indicates number of repetitions 

of the residual structure, s stands for the step size of the first layer of the inverted residual 

architecture for n repetitions. 

Regarding the model to perform well on the test set, we aim to achieve generalization. 

In this experiment, we take use of stochastic gradient descent (SGD) algorithm for model 

training. To speed up the convergence and reduce the oscillation in the process of model 

convergence, the momentum factor is added to the experimental training process in this 

experiment, the model weight update strategy is shown as eq. (3.1). 

w =
1

𝑚
∑

𝜕𝐿(𝑦𝑗,𝑓(𝑥𝑗;𝑤))

𝜕𝑤
𝑚
𝑗=1                   (3.1) 
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The parameter is updated as 

 

ν =  βν −  αw.                    (3.2) 

where β represents the momentum factor which was set to 0.9 in the experiment, α is 

learning rate and the initial value is set to 0. 01. The learning rate is set to 0. 001, 0. 000 

1, and 0. 000 01 for epochs of 40, 50, and 60, respectively. 

3.2 Transformer 

In recent years, there has been an increasing interest in the study of transformer. It was 

used not only in natural language processing (NLP), but also in the field of computer 

vision. The application of transformer is the current trend in different areas of computer 

vision including audio-visual processing, image classification and face recognition (Deng 

& Zhong, 2021). The transformer structure proposed by Ashish (2017) is published to 

overcome the sequence-to-sequence problem and using full attention structure instead of 

Long Short-Term Memory (LSTM) models (Jurgen & Sepp, 1997). This architecture 

takes advantage of attention, abandoning the traditional encoder-decoder model that had 

to be combined with convolutional neural networks (CNN) or recurrent neural networks 

(RNN) (Katharina, 2017). The main purpose of this approach is to reduce computation 

and improve parallel efficiency without compromising the final experimental results, and 

two new Attention mechanisms are proposed, namely scaled dot-product attention and 

multi-head attention. However, in the field of natural language processing (NLP), 

considering that the computation of RNN or LSTM is restricted to sequential computation, 

the relevant algorithms can only compute sequentially from left to right or from right to 

left, so the problems of gradient loss and long training time will occur. Since the 

computation of time slice T depends on the computation results at moment T-1, this limits 

the parallelism capability of the model. In Figure 3.3, the experiment of the transformer 

is based on machine translation, which is essentially an encoder-decoder structure.  
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Figure 3.3 Transformer model 

 

The encoder consists of six blocks, each block is composed of a Self-Attention 

and Feedforward Neural Network (FFNN). The decoder similarly has six decoder blocks. 

However, each block has an extra Encoder-Decoder Attention as shown in Figure 3.4. As 

with all generative model, the output of the encoder is used as the input to the decoder. 

 

Figure 3.4 Block structure 
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    In Figure 3.5, the encoder consists of Nx identical layers. Each layer consists of two 

sub-layers, a multi-head self-attention mechanism and a fully connected feed-forward 

network, where each sub-layer adds residual connection and normalization, the output of 

the sub-layer can be represented:  

𝑆𝑜 = 𝑁 (𝑥 + (𝑆(𝑥)))                 (3.3) 

 

 

Figure 3.5 Transformer specific model structure 
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3.3 Multi-Head Self-attention 

The core idea of the attention mechanism of the transformer algorithm is to calculate the 

mutual relation of each word with all the words in the sentence, and then consider the 

interrelationships reflect to some extent the relevance and importance of the different 

words in the sentence. Therefore, the importance (weight) of each word can be adjusted 

to obtain the new expression of each word, which contains not only the word, but also the 

relationship between other words and the word. As a result, the word vector can be 

expressed more comprehensively.  

    Using an attention mechanism that reduces the distance between any two positions 

in the sequence to a constant, the attention layer can capture a global contact in a single 

step, since it directly compares the sequence, but the cost is that the computational effort 

is N * 2. However, since it is a pure matrix operation, this computational amount is not 

serious. In contrast, RNNs require a step-of-step recursion to capture, whereas a CNN 

needs to expand the perception area by cascading, which is an obvious advantage of the 

attention layer. 

The dividing the model into multiple heads to form multiple subspaces allows the 

model to focus on different facets of information. Transformer or Bert specific layers have 

unique functions (Nguyen, 2021), with the bottom layer being more syntactically focused 

and the top layer being more semantically focused. Most heads in the same layer have the 

same pattern of attention. In some cases, Multi-head is not necessary, removing some 

heads will still work well, because in the case of enough heads, these heads already can 

focus on location information, grammatical information and rare words, some more heads 

will appear noise. In addition, the difference between the heads decreases as the number 

of levels increases. The effect of initialization on the variance of the transformer layers 

and pointed out that the large variance of the bottom header is due to the gradient 

vanishing problem of the transformer (Ivan, 2019). Therefore, a reasonable initialization 

can reduce the variance of the underlying headers and improve the effect. 
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3.4 Vision Transformer 

In the previous deep learning experiment, image classification techniques have been using 

CNN as the main architecture. However, Transformer can be used for image classification 

research and reduces the calculation time by five times more than the current convolution 

architecture and obtains higher accuracy (Alexey, 2010). 

Vision Transformer (ViT) is different from the usual image classification structure. 

Figure 3.6 shows the ViT model structure. 

 

Figure 3.6 Vision Transformer model structure 

 

    ViT directly tiled the image into patches, which leads to ignoring the information 

between each patch. Important facial features under this method are segmented into 

different tokens, our model modifies the ViT marking method to make the image patches 

overlap and the information between the patches can be displayed more clearly. The 

image is divided into several parts according to the number of patches. This approach not 

only improves the performance of the original ViT, but also adds additional computational 

cost. This thought was extracted from a face recognition application by Zhong (2021). It 

is necessary to turns the two-bit digital image into a one-dimensional vector. Eq. (3.4) 

shows this process, 

𝑥 ∈ 𝑅 𝐻𝑊𝐶 → 𝑥 ∈ 𝑅𝑁  (𝑝2𝐶)
                   (3.4) 
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where H, W represents the resolution of the image, C represents the number of channels. 

It is converted into 𝑅𝑁  (𝑝2𝐶)
, where p represents the number of patches, 𝑁 = 𝐻𝑊/ 𝑝2 

and the embedding results will be encoded by the transformer. Such transformers for 

natural language processing tasks require an embedded input. Jimmy (2016) in his article 

Layer Normalization distributes the sum of the inputs of a neuron in a mini batch of 

training by layer normalization process. Compared to batch normalization, normalized 

input sums by mean and variance have a greater time advantage. Eq. (3.5) shows the key 

components of capturing an image using Multi-Headed Attention, 

𝐴𝐻(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)  𝑉                   (3.5) 

where 𝐴𝐻  represents the Attention Head, Q represents the pure input value from the 

embedding, K is the input substitution, V is the dot product of the ratio between Q and K 

and has SoftMax activation. The word vector multiplication 𝑄, 𝐾, 𝑉 parameter matrix 

plays an important role in self-attention. A dot product is performed between each word 

in the sequence to remove the computational similarity and includes the word itself. The 

value of the dot product of qi and ki will be the largest for the same magnitude. In the 

weighted average of SoftMax, the proportion of the word itself is also the largest, which 

results in little specific gravity of the other words and cannot effectively utilize the context 

information to enhance the semantic representation of the current word. In contrast, 

multiplying the 𝑄, 𝐾, 𝑉 parameter matrix can make each word different, and the above 

influence can be reduced to a great extent. Figure 3.7 shows the diagram of this Self-

Attention calculation, 

In order to make h different projections of queries, keys, and values, mapping the 

dimensionality of 𝑑𝑘 and 𝑑𝑣 (Ashish, 2017), the results are stitched together by Scaled 

Dot-Product Attention and finally output by a linear mapping, which enables the model 

to obtain location information under different subspaces by Multi-Headed Attention. The 

model is shown in Figure 3.8. 
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Figure 3.7 The diagram of self-attention calculation 

 

Figure 3.8 Multi-head linear attention 

 

Multi-head linear attention projects Q, K, V by h different linear variations and 

stitches the different attention results together. transformer usually uses Multi-Head 

Attention in three places. Firstly, encoder-decoder Attention. The input is the output of 
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Encoder and the Self-Attention output of the decoder, where the self-attention of the 

Encoder is used as key and value. The self-attention of the decoder is used as query. 

Second, encoder self-attention which input Q, K, V are the input embedding and position 

embedding of the Encoder. The last is decoder self-attention. In the self-attention layer of 

the decoder, it can access the front of the current position, and the input Q, K, and V are 

the input embedding and positional embedding of the decoder. Specifically, as seen in Eq. 

(3.6) and Eq. (3.7), 

𝑀𝐻(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐴𝐻1, … , 𝐴𝐻𝑛)𝑊𝑜                   (3.6) 

ℎ𝑖 =  𝐴(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝐼
𝑉)                   (3.7) 

where MH represents the Multi Head, the number of heads is multiplied by 𝑊𝑜 value. 

This enables the best feature extraction of the transformer encoder to handle the important 

parts. This processing model differs from the past, and most of the features currently 

extract the critical portion of the image using the residual neural network (ResNet) feature 

extractor (Kaiming, 2015). However, this self-attention on the transformer encoder does 

not require other features to be extracted, it can produce better results. The last layer of 

the transformer encoder is a multi-layer perceptron and using GeLU activation (Kevin, 

2016). Each of its outputs is based on our categories in the dataset, which are divided into 

four categories in our case.  

    Another computational method of similar complexity but with additive attention, 

which proves that when 𝑑𝑘 is small the computational results are similar to dot-product 

and when 𝑑𝑘is large, it performs better compared to dot-product without scaling. The 

attention in the transformer still needs to be scaled. A large dot product of vectors will 

push the SoftMax function to a region with a small gradient, which will be mitigated by 

scaled. Analogy Sigmoid, a relatively large input would cause a gradient of SoftMax to 

become very small. As an improvement, a dropout can be added after the SoftMax, which 

we will demonstrate in future experiments. 
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3.5 Information of Dataset 

Artificial neural networks (ANN) are cores of deep learning algorithms, which names and 

structures are inspired by the human brain, imitating the way biological neuron signals 

are transferred to each other, enabling the machine to operate like our human brain. ANN 

can iteratively process the image through image recognition to learn extraction features 

of various images and classify the use of the mask. ANN provide the optimal performance 

based on the size and uniqueness of the data (Greg & Paul, 2010).  

Through our research work, we see that the masked face-net dataset (Adnane, 2021) 

meets to our research needs. The dataset contains sixty-nine files, a total of 137,016 digital 

images of the same people with and without the mask. These images have been 

categorized into four tags which are full masked, mask covering chin, mask covering 

mouth and chin and mask covering nose and mouth. Compared to the real-world masked 

face recognition dataset (RMFRD), which contains only 95,000 images (Dalkiran, 2020). 

The data in the masked face-net network collected by the Flickr-Faces-HQ (FFHQ) 

dataset contains a much wider range of skin color, age, and race differences (Karras, 2018). 

We select one of these files separately for training and testing. The class imbalance is 

avoided because proportion of photos with and without masks is the same. We set the size 

of all images to 224224. The experimental environment is MS Windows 10 operating 

system. We take use of an NVIDIA GeForce RTX 3080 to train the model on Anaconda 

using Jupyter for simulation. 

 

3.6 Data Augmentation 

If we are use of such a huge dataset, ANN has a much better classification structure due 

to the learning of each pixel in the digital image. At the same time, the data augmentation 

function enables data enrichment. The process of data augmentation uses digital image 

processing to change images, such as simply by flipping, rotating, shifting, and other 

minor changes to convert them into new form of digital images (Yang, 2016). Novanto 



23 
 

(2021) etc., proposed that the data augmentation has a significant impact on the training 

results of the ANN, with higher accuracy and lower loss values and helps ANN to 

recognize different patterns compared to no data augmentation. We also demonstrated in 

our experiments that the confidence level of the individual masked image using the 

standard MFD test is 0.95, while using data augmentation based MFD is 0.99 as shown 

in Figure 3.9, 

 

(a) 

 

(b) 

Figure 3.9: Individual masked image (a) Standard MFD (b) Data augmentation based 

MFD 
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   The most popular technology is an auto augmentation (Cubuk, 2018), which takes use 

of a search algorithm controller RNN to perform random selection enhancement on a 

batch of images, sampling the data, and applying the probability of the optimal search 

algorithm. However, Auto Augmentation has the shortcoming that a large amount of time 

needs to be spent when processing such large datasets. In 2019, Cubuk etc., proposed 

another improvement technique for Rand Augmentation, which reduces the 

computational process by eliminating the search for the best increment at some phase and 

using a random distribution on the dataset to eliminate the search space for the best 

classification result, reducing the search space from 1034  to 102 . Although rand 

augmentation spent less time than auto augmentation, the accuracy of 1% is only 

improved compared to the latest algorithm, and the search space cannot be increased 

linearly with the size of the data set. 

3.7 Transfer Learning 

The original intention of transfer learning is to save time in manually labeling samples, 

using pre-trained weights of neurons to train architectures that allow models to migrate 

through existing source domain data to target domain data, thereby training a model 

suitable for the target domain. If the data has similarities in the transfer learning process, 

the type and resolution of the digital image can be well applied. The VIT architecture 

produces a better result if multiple datasets are used for training and before other data 

being fine-tuned (Alexey, 2020). However, the type and diversity of data has a significant 

impact on the use of transfer learning (Karl, 2016). When performing transfer learning, 

we default different tasks to having relevance, but how to mathematically describe the 

intensity of correlation between tasks is a subjective decision to the human. Therefore, 

we selected ImageNet as a pre-trained model of fine-tuning in our study (Richard, 2009), 

since it contains over 14million annotated image datasets according to the WordNet 

hierarchy (Jonathan, 20115), ensuring a high generalization of the learned network. 
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3.8 Gradient-weighted Class Activation Mapping (Grad-

CAM) 

The layers of convolutional units in CNN as target detectors in the model network, 

although no supervision of the target position is provided. While it owns the ability to 

locate objects in the convolutional layer, this function is lost when fully connected layer 

is employed for classification, and the concept of Grad-CAM is proposed on this basis 

(Ramprasaath, 2016). The application of ANN over many years is realized by human 

expertise, but it is important to visually interpret it, this enables the user to understand the 

operation of the system. Each training process in ANN requires a gradient to calculate 

and update the weights. The GRAD-CAM uses this gradient to obtain a coarse positioning 

map, and global average pooling is used to reflect which pixel points the model is using 

to classify the image in the form of the heat map as shown in Figure 3.10, 

 

Figure 3.10: Classified the face that don’t wear mask correctly 

 

   As shown in Figure 3.10, the wearer exposes the nose portion resulting in an incorrect 

mask wearing. In the report, we compare the ViT model trained using the transfer learning 

and the ResNet model based on the residual network, respectively. The key to the ResNet 

network is the residual cell in its structure, which contains cross-layer links as shown in 

Figure 3.11, 
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Figure 3.11: Deep residual network model 

 

The curve in the Figure 3.11 can transfer the input directly across the layer, perform 

the same mapping, and then add to the result of the convolution operation. The input image 

is X, the output is H, the output after convolution is a nonlinear function of F(X), the final 

output is H (X) = F (X) + X, and such output can still perform non-linear transformation. 

The ResNet50 network model we used in our experiments contains 49 convolutional 

layers and one fully connected layer as shown in Figure 3.12, 

 

 

 
 

Figure 3.12: ResNet50 architecture 

 

    The ResNet50 network model we used in our experiments contains 49 convolutional 

layers and one fully connected layer. We split it into seven parts, the first part mainly 

convolves the input, regularization, activation function, and maximum pooling 

calculation, and the second, third, fourth, and five-part structure contains residual blocks, 

where the green titles are used to change the dimensions of the residual blocks. The input 
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of the network is 224 x 224 x 3, the output is 7 x 7 x 2048 through convolution calculation 

of the fifth part, the pooling layer converts it into a feature vector, and finally, the classifier 

calculates this vector and outputs the category probability. 

    The operation of ViT is different from ResNet50, which does not use convolution 

blocks, but rather the architecture will process the last layer of token-independent 

attention blocks. Eq. (3.8) and Eq. (3.9) shows the formulae for calculating 𝐴𝑘-weights 

and Grad-CAM, respectively. 

𝑎𝑘
𝑐 =  

1

𝐻∗𝑊
 ∑ ∑

𝜕𝑌(𝑐)

𝜕𝐴𝑖𝑗
𝑘

𝑊
𝐽=1

𝐻
𝐼=1                    (3.8) 

𝐿𝐺𝑟𝑎𝑛𝑑−𝐶𝐴𝑀
(𝐶)

 =  RELU (∑ 𝑎𝑘
(𝑐)

𝐾 𝐴𝑘)                   (3.9) 

where H, W represent the height and width of the image, 𝑎𝑘
𝑐  represents the weighting of 

𝐴𝑘, K represents the Kth channel of A in the feature layer. Category C represents the  

𝐿𝐺𝑟𝑎𝑛𝑑−𝐶𝐴𝑀
(𝐶)

 ∈ 𝑅𝑊∗𝑉. First, the gradient of this class C is calculated, and the activation 

value of the feature map 𝐴𝑘 is defined as a before the 𝑦(𝑐) is activated by SoftMax 

activation. Through Eq. (3.6), it can be known that 𝑎𝑘
𝑐   is to perform backpropagation 

of the prediction score 𝑦(𝑐) through the prediction category C, and then calculate the 

weight of each channel K in the feature layer A by using the gradient information of the 

reverse transmission to the feature layer. The data of each channel of the feature layer is 

weighted and summed by a, and the Grad-CAM is obtained by the ReLU activation 

function (Agarap 2018). The purpose of using the ReLU function is to filter out negative 

pixels and focus on significant portions of the gradient mapping on the image.  
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Chapter 4 

Results 

 

 

The main content of this section is to collect training data and 

analysis accuracy of each Vision Transformer model results, we 

also discuss the limitations of the project in the end of this section. 
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4.1 Evaluation Indicators 

In this report, we introduce accuracy, recall, and precision to evaluate the performance of 

image classification task models. The accuracy rate is the proportion of correct 

predictions over all samples using the formula as shown in Eq. (4.1). TP in the formula 

denotes the sample predicted to be positive among all positive samples; TN shows the 

sample predicted to be negative among all negative samples; FP indicates the sample 

predicted to be positive among all negative samples; FN reflects all positive samples 

predicted to be negative samples. Although accuracy can be employed to determine 

overall correctness, it is not a good indicator of results in the case of an unbalanced sample. 

The high accuracy obtained can be validated by sample balance. 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                 (4.1) 

    Recall is the proportion of the number of correctly predicted positive samples to the 

actual number of positive samples, its equation is shown in Eq. (4.2), 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                  (4.2) 

The precision is the probability of predicting the actual positive sample in a positive 

sample, its equation is shown in Eq. (4.3), where a higher recall means a higher 

probability that an actual useless user will be predicted 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
                   (4.3) 

4.2 Training Result Analysis 

Combined with the evaluation metrics, the accuracy, recall and average accuracy of each 

classification of the two datasets were calculated, the evaluation results are shown in 

Table 4.1.  

    From the evaluation results, MobileNetV2 neural network has good effect on the 

recognition whether the mask is worn or not, the average accuracy, recall and precision 

rates of each class are above 97%. To further verify the effectiveness of the algorithm, we 

compare the algorithm in this paper with other deep learning algorithm VGG16 using the 
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same dataset. The result is shown in Table 4. In our experiments, we made use of batch 

size variations of 2, 4, 8, 16 and 32. A batch size of 8 means that the data set is divided 

into eight batches for neural network training. 

Table 4.1 Experiment results in the training data 

 

Table 4.2 Different model using batch size variations 

 

     The result is shown in Table 4.2, the more batches get the better training and 

validation accuracy. Even on the batch four, MobileNetV2 already got 100% accuracy of 

training and validation. Compared to VGG16, the maximum accuracy rate of 98.70% was 

only obtained in 32 batches, we chose to use 32 batches as in the number of epoch 

experiment as shown in Table 4.3. 

    The neural network is trained based on the dataset until it is reset to the beginning 

of the round. In Table 5, MobileNetV2 achieved 100% training and validation accuracy 

on epoch 20. Meanwhile, VGG16 only gets 55.01% and 47.82% training and validation 

accuracy, respectively. VGG16 still does not reach 100.00% accuracy on epoch 50. As a 
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result, the pre-trained MobileNetV2 model has better accuracy than VGG16 which can 

obtain the best model. 

Table 4.3 Different model using epochs variations 

4.3    Results of ViT Comparison 

In the previous section, we pointed out using ViT for mask detection. According to 

Alexey's article on transformer research, a variant of ViT as shown in Table 4.4.  

Table 4.4: Details of Vision Transformer model variants 

 

As we can see from the table above, the ViT Base/16 indicates that it contains 16 x 

16 input patch size, 12 layers of encoder, 768 hidden sizes, 3072 of multilayer perceptron 

(MLP) in encoder, 12 heads and 86 million overlay parameters, where the sequence length 

of the transformer is inversely proportional to square of the patch size. ViT Large/16 

indicates that it contains 16 x 16 input patch size, 24 layers of encoder, 1024 hidden sizes, 

4096 of MLP in encoder, 16 heads and 632 million overlay parameters. ViT Huge/14 
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indicates that it contains 14 x 14 input patch size, 32 layers of encoder, 1280 hidden sizes, 

5120 of MLP in encoder, 16 heads and 632 million overlay parameters. We have 

investigated what impacts on the accuracy of training, validation, and test data for 

architecture of different models in experiments as shown in Table 4.5, 

Table 4.5 Details of accuracy of Vision Transformer model 

 

 

     Table 4.5 shows the training results of the three ViT models after 20 epochs and 

selected the highest precision values. As can be seen from the experiment results, Vit 

Huge/14 has the highest accuracy for train, validation, and test portions, with the accuracy 

of each data set exceeding 0.8, especially the accuracy of the test set reaches nearly 0.93. 

Meanwhile, though ViT Large/16 has nearly three times the size parameters of ViT 

Base/16, only the performance of the validation portion exhibits slightly outstanding 

performance, and the rest of the performance is the worst. Training and evaluation results 

for three ViT architectures as shown in Figure 4.1 and Figure 4.2, respectively. 

    The training accuracy of the ViT architecture is indicated by each epoch from 

figure4.1. The ViT Huge/14 architecture obtained the highest accuracy on the 20th epoch, 

which is 0.81259. It reached a precision of nearly 0.8 at the 7th epoch but fell back to its 

initial precision of 0.52 at the 8th epoch, and then improved at the 13th epoch. ViT Base/16 

obtained the highest precision of 0.76144 at the 19th epoch. In comparison, the accuracy 

of the ViT Large/16 is maintained below 0.6 before the 15th epoch, and the highest 

accuracy of 0.72248 is generated under the 18th epoch.  
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Figure 4.1 Training accuracy of three ViT in 20 epochs 

 

 

 

Figure 4.2 Evaluation accuracy of three ViT in 20 epochs 

 

From Figure 4.2, we see that the evaluation result and the training result of each ViT 

model architecture are not too large. The evaluation accuracy of 0.81782 obtained by ViT 

Huge/14 at the 19th epoch is higher than the 0.76536 obtained by ViT Base/16 at the 13th 
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epoch and the 0.77217 obtained by ViT Large/16 at the 20th epoch. As can be seen from 

the test results, the overall comparison of the accuracy of the ViT Huge/14 structure is 

generally higher than the other two ViT architectures. We use the ViT Huge/14 

architecture to perform the next study on the accuracy of the amplification on the training 

and validation set. 

 

4.4 Results of Augmentation on Accuracy of Training and 

Validation sets 

Based on the above experiments, we chose ViT Huge/14 with higher accuracy and 

avoiding overfitting to improve the accuracy using a random augmentation method on the 

training and validation set. We compared the impact on accuracy with and without 

augmentation in our experiment. Table 4.6 shows the results. 

Table 4.6 Details of accuracy using and without augmentation on ViT Huge/14 

 

Table 4.6 shows the accuracy comparison between the ViT Huge/14 training and 

validation sets using and without data augmentation respectively. As we can see from the 

table, the data set using augmentation gives a higher degree of accuracy. In particular, the 

validation set has improved significantly, with the validation value improving from 

0.81782 to 0.83121. There was also a slight improvement in the training set, with the 

precision of the training data improving from 0.81259 to 0.82547. This indicates that the 

raw data processed by data augmentation has achieved a higher degree of performance 

and accuracy, especially in the validation set. Figure 4.3 and Figure 4.4 shows training 

accuracy and validation accuracy using and without augmentation on ViT Huge/14 in 20 
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epochs. 

 

Figure 4.3 Training accuracy of ViT Huge/14 using and without augmentation in 20 

epochs 

 

 

Figure 4.4 Validation accuracy of ViT Huge/14 using and without augmentation in 20 

epochs 
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From Figure 4.3, we see, in the training of the ViT model, the highest accuracy is 

achieved by comparing the training set without data augmentation in the 20th epoch, and 

the ViT Huge/14 with the data augmentation obtains the highest accuracy on the 14th 

epoch to reach 0.82547. On the evaluation set, the ViT Huge/14 using data augmentation 

also obtains higher accuracy, reaches 0.83121 in the 14th epoch, and the lifting amplitude 

is more obvious. As a result, data augmentation performed on a data set can generate 

higher accuracy and faster convergence. 

 

4.5 Results of Transfer Learning on Accuracy of Training and 

Validation Sets 

We demonstrate that the use of data augmentation makes a significant improvement in 

the accuracy of the validation and training sets. To test the impact of pre-training weights, 

we compared the ViT Huge/14 model on the ImageNet-21K after data augmentation with 

and without pre-training weights. The results we derived are shown in Table 4.7. 

 

Table 4.7 Details of accuracy using and without transformer learning on ViT Huge/14 

 

 

 

    Table 4.7 shows the accuracy using and without transformer learning on ViT 

Huge/14. It can be seen from the table that the pre-training weights are used to obtain 

higher accuracy than the without pre-training weights, and the lifting amplitude is obvious. 
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On the training set, an accuracy of almost 0.98144 was obtained using the pre-trained 

weights, which is significant compared to the 0.82547 obtained when not used. It is also 

possible to obtain a higher accuracy on the validation set by using a pre-trained weight 

model, which achieves 0.95009 and without using a pre-training weight only 0.83121. 

This method also has the same effect on the test set, its accuracy is improved to 0.95874. 

Figure 4.5 and Figure 4.6 shows training accuracy and validation accuracy using and 

without transformer learning on ViT Huge/14 in 20 epochs, 

 

Figure 4.5 Training accuracy of ViT Huge/14 using and without Transformer learning in 

20 epochs  
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Figure 4.6 Validation accuracy of ViT Huge/14 using and without Transformer learning 

in 20 epochs 

 

    In Figure 4.5, we see the training of the ViT model, the highest accuracy is achieved 

by comparing the training set without transformer learning in the 20 epochs, and the ViT 

Huge/14 with transformer learning obtains the highest accuracy on the 18th epoch to reach 

0.98144. On the evaluation set, the ViT Huge/14 using data augmentation also obtains 

higher accuracy, reaches 0.95009 in the 20th epoch. The minimum precision on both 

datasets exceeds 0.8, which is better than the highest precision without using pre-training, 

and the two models do not have a substantial decrease in accuracy due to gradient loss 

when without using pre-training set in 14th epoch. The lifting amplitude is more obvious. 

As a result, pre-training performed on a data set can generate higher accuracy and faster 

convergence. 

4.6 Comparison of ViT and ResNet50 Accuracy Results 

Based on the two sets of experiments, using both data augmentation and pre-training 

weights can significantly improve the accuracy and reduce losses in the training, 
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validation, and test sets. Therefore, in the following study we will compare the accuracy 

improvements on the training, validation and test sets using these two approaches for the 

ViT model architecture and the RestNet 50 architecture mentioned in Figure 3.23, 

respectively. The test results for each architecture are visible on Table 4.8. 

 

Table 4.8 Details of accuracy using augmentation and transformer learning on each 

model 

 

 

    In Table 4.8, we see that ViT Large16 produced a maximum precision of 0.98867 

and 0.97210 in the training and validation sets, respectively. This value is higher than the 

0.98144 for the training set and 0.95009 for the validation set obtained in the previous 

studies using ViTHuge/14. However, the highest accuracy on the test set is still 0.95874 

obtained by ViTHuge/14, higher than the 0.91533 of ViTLarge/16, which reflects the 

problem of over-fitting of the ViTLarge/16 architecture. Compared to the ViT architecture, 

the ResNet50 architecture is not as accurate in all aspects, with 0.90155, 0.91128 and 

0.87428 respectively. In Figure 4.7 and 4.8 we show the training and validation set results 

for all model architectures on 20 epochs, respectively. 
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Figure 4.7 Training accuracy of ViT and ResNet50 using augment and pretrained in 20 

epochs 

 

 

Figure 4.8 Validation accuracy of ViT and ResNet50 using augment and pretrained in 20 

epochs 
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   The performance of ViTLarge/16 performs significantly better on the training and 

validation set. The highest precision was achieved at the 6th epoch in the validation set. 

The values of ViTHuge/14 and ViTBase/16 are more average, but ResNet 50 performs 

very poorly in both training and validation. In Figure 4.8, ResNet 50 shows a significant 

drop in accuracy from 15th epoch to 18th epoch on the validation set, which is due to the 

loss of gradient.  

4.7 Analysis of Confusion Matrix 

We are use of the confusion matrix as a visualization tool to compare the classification 

results with the actual test values. According to the above experiment, the best test 

performance was obtained by ViT Huge/14 using pre-training weights and dataset 

augmentation. Table 4.9 shows the values for each type of prediction accuracy. The 

confusion matrix for test data as shown in Figure 4.9, 

 
Figure 4.9 Confusion matrix of mask recognition 
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Table 4.9 Confusion matrix on each class 

 

 

    In Table 4.9, the prediction accuracies for the mask class and the masked chin class 

were 0.9545 and 0.93103, respectively. The predicted value for the masked mouth and 

chin class is slightly lower than the other categories which is 0.88462 and the category of 

masked nose and mouth obtain 0.95652 accuracy. The probability of error presentation in 

the experiment is very low, the highest is 0.0769 tested in the Mask Mouth Chin 

classification, and the overall experimental result is quite excellent. 

4.8 Limitations of the Research 

(1) The use of sharpness-aware minimization (SAM) training ViT in the experiments 

generates a new round of forward and backward propagation, resulting in a double 

increase in computational cost per update. 

(2) With the increase of our data set, the effect of SAM is also weakened, we need to 

develop a learning method capable of improving large-scale data sets. 
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Chapter 5 

Discussions 

 

 

In this chapter, we analysis and compare the experimental results.  
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5.1 Discussions 

In this paper, we proposed the MobileNetV2 lightweight with the marked face recognition 

algorithm which is offered for public face detection in the current epidemic environment. 

In our experiments, we propose to use transfer learning to extract facial features from the 

data and perform classification. According to the experiments, we find that MobileNetV2 

model has better accuracy by comparing with VGG16. The deep learning method in this 

paper generates higher efficiency. 
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Chapter 6 

Conclusion and Future Work 

 

 

In this section, we summaries the results of our experiments and 

propose directions for future research. 
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6.1 Conclusion 

By performing data enhancement on different ViT architectures to classify various mask 

wearing modes, we conclude that the training of the existing data set is greatly improved 

by using a random enhancement method. We process the digital image with a 

predetermined number of patches and use linear projection to transform the processed 3D 

digital image into 2D. Before using the encoder, we use the attention mechanism in 

migration learning to focus on the features of the image. The resulting feature map is 

trained in a multilayer perceptron to classify classes based on those already in the library.  

    Through experimental results, we see that the prediction accuracies for the mask 

class and the masked chin class were 0.9545 and 0.93103, respectively. The classs of 

masked nose & mouth obtains 0.95652 accuracy. The experimental results obtained from 

our first attempt at using the transfer learning method show a significant performance 

improvement compared to existing convolutional baseline methods. 

6.2 Future Work 

With the increase of our data set, the effect of SAM is also weakened, we need to develop 

a learning method capable of improving large-scale data sets. 
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