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Abstract 

Automatic or auxiliary driving system is becoming popular in recent years. Safe 

following distance monitoring will help the driver to prevent traffic accident happens. 

There are a spate of ways to implement this system, traditional image process, or deep 

learning methods, we will discuss how deep learning can improve the system 

performance, in lane detection, following distance estimation, vehicle ego-speed 

estimation, vehicle tracking and re-identification, and finally, complete this safe 

following distance monitoring system. 
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Chapter 1 

Introduction 

 

 

This chapter is beginning of this report, it contains 5 parts: In the 

background and motivations, we explained the importance of keep 

a safe following distance. In related technological background, the 

research questions are asked, basically it provide what needs to be 

achieved to make improvement on safe following distance 

monitoring. Our contributions are detailed, including specified 

targets that need to be approached. Objective is related to with a 

brief plan of how to approach the targets. Structure of this report 

is presented for an overview of this report. 
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1.1 Background and Motivation 

Safe following distance monitoring is essential in road safety for vehicle following and 

securely overtaking (Feng, 2010), to give the response time for the driver, and left the 

emergency brake distance for the vehicle, it is the predetermined minimum following 

distance between the leading and following vehicle (Takagi, 2011). Many countries have 

suggested the “3-seconds” or “4-seconds” rule in their road code, it can be explained by 

if the vehicle speed is 10 m/s, the safe following distance will be 30 or 40 meters. 

    Object seems smaller when it goes far is a common expressions of perspective, in a 

2D image, the object distance can be estimated if it’s real size is known. There are many 

objects in the traffics that we can use as reference, such as the lane width was supposed 

to be constant in the same section of road. 

    Speed is relative, we perceive our driving speed by the object movement around us, 

and the acceleration acting on us, however, as human, most of us are very hard to identify 

our driving speed by just our eyes. In fact, many traffic accidents were started with 

incorrect speed estimation made by the driver. GPS is a very good channel to access the 

vehicle speed, but it could drop offline, or lose accuracy in urban canyon environments 

(Ge, 2003). Inertial Measurement Unit (IMU) acceleration data can be used for calculate 

the speed (Li, 2020), but it will produce cumulative error. We require an alternative 

method instead, to monitor our driving speed in order to compute the safe following 

distance. Simultaneous Localization and Mapping (SLAM) matches the corresponding 

image features (such as an unknown landmarks) in sequenced frames, and use these 

features to estimate the position of camera, and the relative motion between them in 

frames, but most SLAM technologies rely on stereovision algorithm or equipment (Md. 

Tanvir, 2018), which is not what we desired.  

    Optical flow was mainly used at visual odometry (Chen, 2017), for estimating the 

camera's ego-motion, or works combine with road geometric data to estimate the vehicle 

or aircraft’s relative position or trajectory. 
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    Vehicle re-identification was more like vehicle brand recognition, most researches 

are focusing on how to achieve a better performance on the dataset, and ignoring the real 

scenario. It is technically impassable to compare two vehicle images that has no shared 

views, and those manually labeled part features are not obvious, or representative enough 

to distinguish vehicles in the same brand, therefore, vehicle re-id technology is mainly 

used for ranking to narrow the search scope, or as an alternative when license plate is not 

applicable. 

    However basically all vehicle re-id algorithm performs quite well when the images 

have the exactly same view and the light condition is identical, especially if there is only 

one view (just front, back or side) visible for the vehicle, with the vehicle's rectangular 

structural characteristic, we will have minimum background semantic information. 

1.2 Research Questions 

We need the vehicle speed to estimate the vehicle’s position after 3 or 4 seconds, and lane 

and vehicle detection to confirm that if we are following a vehicle, also, vehicle re-

identification to track the front vehicle, to find out that how long have we been following 

that car. And most importantly, we need to estimate our following distance. As it’s a 

project about deep learning, we will discuss that how deep learning improve the methods 

in accuracy and universality, therefore, the research questions would be: 

(1) What deep learning method can be implement for lane detection? 

(2) How will deep learning be used at vehicle ego-speed estimation? 

(3) How will deep learning solve the problems in front vehicle detection and tracking.  

(4) How to estimate the current following distance? 

    The core idea of our work is to use different deep learning method to achieve the 

requirements in computing and monitoring the safe following distance for vehicle, 

therefore, we need to investigate, evaluate and compare these potential deep learning 
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methods, to choose the appropriate one in each purpose. When necessary, we also need 

to collect new data to train the model or to evaluate our system. 

1.3 Contributions 

The theme of this project is to compute and monitoring the safe follow distance by visual 

base on deep learning, it’s a modularized program that can be divided into 4 parts, (1) 

lane detection, (2) following distance estimation, (3) vehicle ego-speed estimation, (4) 

vehicle re-identification and tracking.  

1.4 Objectives of This Report 

Firstly, this report till introduce the traditional methods to approach our modules: the lane 

detection, following distance and ego-speed estimation, and vehicle re-identification and 

tracking, we will demonstrate and discuss the behavior and limitation of these methods, 

and evaluate the advantages of deep learning based method on these research areas.    

    Then, a visual based safe distance monitoring system is proposed, by the data 

outcomes from our modules, and we can divide objectives of this report corresponding to 

the modules, to compute the optical flow field from image frames, and use CNN to 

estimate the real-world speed from it, use structural features to detect lanes from the 

image, and geometric perspective to convert the distance in pixel level measurement to 

real-world measurement. At last, detect the front vehicle and use its classification features 

to track it by re-identifying this vehicle. Algorithms were approached by Python. 

And finally, we discussed visual scenarios that may collapse our system.   

1.5 Structure of This Report 

The structure of this report is described as follows: 

▪ In Chapter 2, we will provide a literature review on lane detection, following 

distance estimation, vehicle ego-speed estimation, vehicle re-identification and 

tracking, we will separately discuss them in traditional methods and in deep 
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learning methods. 

▪ In Chapter 3, we will implement the deep learning research methods and 

algorithm we choose. We will present our dataset, and how these methods satisfy 

the design purpose of each module of the system.  

▪ In Chapter 4, we will demonstrate and evaluate the result of each system module 

and the entire system, and compare to the traditional methods. We will also state 

the limitations of these methods. 

▪ In Chapter 5, we will analysis and discuss the experimental results. 

▪ At last, in Chapter 6, we make a conclusion to summarize our research outcomes 

and planning for the feature works.                          
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Chapter 2 

Literature Review 

 

 

In this chapter, we analysis the research questions and find 

feasible solutions in traditional and deep learning, present cross 

and inner comparison of them. The focus of this paper would be 

the four modules that construct vehicle safe following distance 

monitoring system.  
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2.1 Introduction 

Monitoring vehicle safe following distance can prevent us from the rear-end accidents, 

there are many direct methods for distance detection, but they all has some weakness in 

driving scenarios, such as ultrasonic ranging method has a 4 to 5 meters of detection range, 

because ultrasonic speed can be easily influenced. Millimeter wave radar works well at 

long range detection, but it’s too expensive and over complex as a vehicle device. And as 

kind of visible light, laser is just not suitable with traffic ranging. 

Visual distance detection is based on computer vision, the challenges in this method are 

complex weather condition, illumination and road environment, and deep learning can 

adopt those difficulties. 

2.2 Lane Detection 

Traditionally, lane detection is about image processing, a pixel level segmentation, in 

purpose of highlighting these white and yellow lines that exist on the image. especially 

when there are vehicles in the lanes. another method is to assume the lanes by the camera 

position and steering wheel angle, which was mainly used for vehicle trail prediction in 

parking assist systems. But occlusions, road maintenance, lighting and other 

environmental condition would interference the detection. 

    We can convert the frame image into line drawing of objects’ boundaries by Canny 

edge detection (Canny, 1986). First we convert the 3-chennel RGB image into grayscale 

image, the gray value of each pixel is between [0,255], this process can simply be done 

by OpenCV. Then we apply Gaussian blur on this grayscale image to filtering out the 

unwanted noises. After preprocessing, the Canny edge detector works as follows: 

𝐺𝑥 = [
−1 0 1
−2 0 2
−1 0 1

]

𝐺𝑦 = [
1 2 1
0 0 0

−1 −2 −1
]

                       (2.1) 
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    It starts with computing the horizontal 𝐺𝑥 and vertical 𝐺𝑦  gradient of each pixel, 

and respectively convolves with 3×3 gradient template. Then we can compute the 

magnitude and direction by the following equation: 

𝑀[𝑢, v] = √𝑃[𝑢, v]2 + 𝑄[𝑢, v]2

 
𝜃[𝑢, 𝑣] = tan−1 (𝑄[𝑢, 𝑣], 𝑃[𝑢, 𝑣])

                 (2.2) 

    The candidate edge points were trimmed by the non-maximum suppression method 

and we can use double thresholding method to reduces the number of false edges. The 

non-maximum suppression method remains only one-pixel width for every edge, which 

has the highest gradient in the gradient direction. It makes the edges sharper. 

    The double thresholding method sets two thresholds, maximum and minimum. 

Those greater than maximum threshold are directly detected as edges, while those lower 

than min are detected as not edges, and for these pixels in the middle range, if it is adjacent 

to an edge, we define it as an edge, otherwise it’s not. 

    After Canny edge detection, to isolate the lanes from all objects’ edges in the image, 

one common solution is using mask to segment the area of lanes, it could be defined by a 

3 vertexes triangular mask, or a 4 vertexes trapezoidal mask. At last, use Hough Transform 

algorithm to detect straight lines and link them as the final lane detection result (Deng, 

2018). One method is use the lane vanishing point to decide the mask for the segmentation 

of region of interest by fitting (Hongru, 2021), and deep learning (Lee, 2017). 

    There are two kinds of deep learning methods for lane detection, one treats it as a 

semantic segmentation or instance segmentation task such as LaneNet (Davy, 2018) and 

SCNN (Tang, 2018), the other uses visual features to predict sequential lane points. In 

“Ultra-Fast Structure-aware Deep Lane Detection” (Zequn, 2020), they have proposed a 

method that not based on dense prediction, but used row anchors and cells to convert it 
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into an image classification problem, which has greatly improved the time complexity in 

lane detection. This method achieved 96.06% accuracy on the Tusimple dataset. The main 

idea of this method is predefine the image into segmented rows, and selecting cells that 

classified as lane: 

 

Figure 2.1 Lane points prediction based on cell selecting 

    It computes the probability distribution in each row, and use it to select the lane cell. 

The time complexity for pixel level segmentation is the image width×height, and when 

using row anchors, it becomes row number×image height, which is much faster. 

2.3 Vehicle Following Distance Estimation  

Perspective is the most popular method in distance estimation by monocular vision 

camera, on visual, the object size changes in inverse proportion to the distance, we can 

measure the distance if we know the object size and the camera focal length. 
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Figure 2.2 Horizontal triangulation 

    If Z is the distance, W is the real object width under the target vehicle, w is the pixel 

object width in the image, and f is the camera focal length, the following distance Z can 

be estimated by: 

𝑍 =
𝑓𝑊

𝑤
                             (2.3) 

    This triangular geometry theory does not consider the observation angle so it can not 

apply on deviate vehicles, and the error rate depends on the uniformity of the reference 

object width (Katsuyuki Nakamura, 2013).  

    License plate has the unified size, so it could be used as the standard measurement, 

however, the safe following distance can be over 60 meters, even the vehicle will seem 

so small in our visual in this far. 

    The width of vehicles is similar; 1.83 meters could describe 80% vehicles’ width by 

hot-selling cars statistics in 2015 (Bao, 2016). In this method, to avoid using camera 

attributes, they have also created fitted curve function to explain the relationship between 

the vehicle width in pixel, and the distance in meters. Artificial neural network has been 

used for long distance detection (Karthika, 2020), which’s more accurate with around 1% 

to 3% relative error. 3D detection can be used at distance estimation of vehicles in other 

lanes (Zhe, 2020). But vehicle width is not actually regulated, and small cars should not 

be just ignored. 

    Lanes have the unified width (Kang, 2017), we use it as the object of reference. 
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2.4 Vehicle Speed Estimation 

Traditionally our vehicle uses photoelectric encoders to detect the spin of wheels to 

provide us a relatively accurate speed on the speedometer (Malvezzi, 2001), but when the 

vehicle is sliding by insufficient friction or the wheels’ diameter changed, this method is 

no longer reliable, and many vehicles do not supply the port to access the speed reading. 

Usually a drive recorder or dash-cam receives the vehicle speed information from the 

GPS system, but GPS signal is not always reliable as it could be blocked or interfered. 

Therefore, to catch the relative motion between the camera and the scene, optical flow 

the pixel level motion between video frames can be used as an alternative method. If we 

know the length of a lane marking, we can simply calculate the speed by the time interval 

for them vanishing at the bottom of the frame (Han, 2016). 

    Optical flow can represent the relative motion between the camera and the scene 

between two frames, it is how our brain sense our ego-motion (Smith, 2008), which was 

constructed by the motion speed and direction of pixels from one frame to another. Optical 

flow can be used at moving object segmentation (Kun, 2016), Image registration 

(Alexandru, 2015), and human body action recognition (Jue, 2017). 

    Most optical flow algorithms assume that the brightness of images stay constant, 

images are sequenced with time continuity or the objects from adjacent images has only 

moved slightly. 

    We can estimate the optical flow between two frames from the projection of object 

motion in three-dimensional space on two-dimensional imaging plane, each pixel 

outcomes with a 2D vector, if the time interval between frames is very short, we consider 

this vector is the pixel instantaneous velocity in that frame, which’s also called “optical 

flow vector”, all these vectors constitute the optical flow field of the image, which 

describes the motion field in the real world for motion analysis. If we define 𝐼(𝑥, 𝑦, 𝑡) as 

the pixel intensity, 

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑡 + 𝑑𝑡)                  (2.4) 

where 𝑡 is the time dimension, 𝑥, 𝑦 are the 2D coordinate of this pixel in the frame, and 
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d is the deviation. We can apply Taylor expansion for the left side of equation, 

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥, 𝑦, 𝑡) +
𝜕𝐼

𝜕𝑥
𝑑𝑥 +

𝜕𝐼

𝜕𝑦
𝑑𝑦 +

𝜕𝐼

𝜕𝑡
𝑑𝑡 + 𝜀               (2.5) 

where 𝜀 is an infinitesimal of second order, so we can just ignore it. Then we express 

the previous equation with it, 

𝜕𝐼

𝜕𝑥
𝑑𝑥 +

𝜕𝐼

𝜕𝑦
𝑑𝑦 +

𝜕𝐼

𝜕𝑡
𝑑𝑡 = 0                       (2.6) 

At last, divide this formula by 𝑑𝑡 to get the optical flow equation, 

𝜕𝐼

𝜕𝑥
𝑢 +

𝜕𝐼

𝜕𝑦
𝑣 +

𝜕𝐼

𝜕𝑡
= 0                         (2.7) 

where 𝑢 and 𝑣 are the horizontal and vertical pixel velocities respectively as they were 

calculated by distance divided by time, 
∂𝐼

∂𝑥
 , 

∂𝐼

∂𝑦
 and 

𝜕𝐼

𝜕𝑡
 are the horizontal, vertical and 

time gradients in image respectively. We get this question from eq. (3.9): 

𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 = 0                        (2.8) 

The variables u and v are still remains unknown; the equation cannot be solved with two 

unknown variables, therefore, we need constraint conditions, and there are four different 

methods to calculate the optical flow field: 

(1) Gradient based. It uses the spatiotemporal differences in image gray scale to 

calculate the velocity vector of pixels. 

(2) Matching based. The matching could be regional or on features, feature matching 

tracks the features in the image, which’s robust to large scale motion and 

brightness changes of the target. And regional matching first locates the similar 

regions from two images, and calculate the motion vector by region movement. 

(3) Phase based. Extract the phase information from images to calculate the motion 

vectors. 
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(4) Deep learning based. Treat the optical flow prediction problem as a supervised 

deep learning problem. 

The estimated optical flow field could have different motion vector density according to 

the method. Sparse optical flow methods are represented by the Lucas Kanade method 

(Bruce, 1981), it’s a gradient based method, which finds the extreme points in the image 

and retract those points from the next frame, to get the motion vector. 

    Dense optical flow computes movement on each pixel point from the current image 

to each pixel point in the image next, therefore it’s time complexity is higher but also 

more accurate. We can use color to indicate the direction of optical flow, and brightness 

to indicate the speed: 

 

 

Figure 2.3 Use color to indicate dense optical flow 

    The evaluation of optical flow model is defined by average End-Point Error (EPE), 

the EPE is the average Euclidean distance on each vector in a frame. It’s impossible to 

label the optical flow ground truth manually, usually they are point cloud data collected 

by laser scanner.  

    FlowNet (Alexey, 2015) algorithm has proposed to learn the concept of optical flow 

by CNN model, they have created the Flying Chairs artificial dataset, and proved that we 

can use an artificial dataset to train the model and estimate the optical flow in real world 

images, however this method was not very competitive to the existing highly fine-tuned 

methods. And FlowNet2 (Ilg, 2017) was improved from FlowNetSimple and 

FlowNetCorr with a better performance on large scale pixel displacements, and got an 

average EPE of 3.96 on the Sintel-clean dataset (Butler, 2012). Recurrent All-Pairs Field 

Transforms (RAFT), the average EPE is 1.609 on the Sintel-clean dataset. There are three 

parts in this network: 
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(1) Feature Encoder. Take the pixel shift from two images as feature. 

(2) Context Encode. Take the contextual feature from one image, to remain the same 

position for the optical flow predicted in the image 

(3) Update. Use the output of the two encoders, and compute the similarity in feature 

level by dot product similarity: 

similarity = cos (𝜃) =
𝐴⋅𝐵

∥𝐴∥∥𝐵∥
=

∑  𝑛
𝑖=1 𝐴𝑖×𝐵𝑖

√∑  𝑛
𝑖=1 (𝐴𝑖)2×√∑  𝑛

𝑖=1 (𝐵𝑖)2
 (2.9)                        

    BRAFT algorithm (Jia, 2021) was based on RAFT, but segments the image into 

blocks, and use the strength-weakness correlation in pixel pairs to calculate the blokes’ 

visual similarity to clarify the edge of object in optical flow, which is powerful for moving 

object segmentation, but not very suitable for ego-motion optical flow.  

    However, in order to get the real vehicle speed from frames, we still require the depth 

of these vectors in the optical flow, which’s impassable for civil vehicles. In visual 

odometry, monocular visual odometry can only detect 2-dimension pixel movement, 

which can directly use for estimate the ground speed of unmanned aerial vehicle with a 

known flight altitude (Chunhui, 2014), or the distance to the roof for indoor robot (Lin, 

2019), and we can use features from the image to minimize the re-projection error for 

estimating the speed. And stereo visual odometry can detect the depth, but it requires two 

cameras and the depth detection only reliable in a limited visual range. 

    It has been proved that we can CNN model to predict the camera’s ego-speed from 

optical flow alone (Alexey, 2015) (Memisevic, 2015), this method won’t be extremely 

precise because the predictions were highly dependents on the theoretical universal depth 

distribution, and we can only make assumptions of the pixel’s depth base on its shape, 

vector distribution, direction and intensity. It is impossible to find a dataset with all traffic 

conditions that we could encounter, but we could do some data augmentation in the 

existing dataset. 
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2.5 Vehicle Tracking and Re-Identification 

Vehicle detection is a problem of classification and localization objects in the traffic, we 

require not only the existence of the car, but also the location of the car in the image, 

before deep learning, we use the image visual features (Ma, 2017), for example, use the 

Histogram of Oriented Gradient of the object as feature and a use classifier such as 

support vector machine to classify the image. 

    YOLOv5 (Glenn, 2020) is a deep learning algorithm that has the excellent 

performance in object detection, it is a lightweight algorithm and fast in object detection, 

which can help us to segment all vehicles as candidates from the image. 

There are several ways to approach vehicle tracking: 

(1) Region Based tracking. Use the location, size or the intensity histogram of the 

rectangular detection bounding boxes between consecutive frames, it’s highly 

depends on the vehicle detection performance. 

(2) Model Based Tracking. Create geometric model of vehicle by prior knowledge, 

vehicle motion, this method is accurate but also costly. 

(3) Feature Based Tracking. Perform matching in consecutive frames using vehicle 

features, this method performs well in occluded conditions. 

    Kalman filter has been used for moving object tracking (Zeng, 2009) for decades, it 

locks on the given signal feature and track it. Image depth can be used for object tracking 

in 3-D scene (Gutev, 2019), it can be approached by binocular vision camera (Tian, 2011), 

and would be more accurate to works combine with range radar (Jie, 2021). But it is costly 

and not suitable with long range target. 

    The most identical feature of a vehicle is the license plate (Watcharapinchai, 2017) 

(Jung, 2018), and the annual inspection signs can identify the vehicle in similar outfits to 

a certain extent (Liu X. a., 2018), but our system requires to track the vehicle from a 

relatively far distance, so the outfit of the vehicle could be the only parameter we can get 

in most cases, the similarity of image can be compared by the pixel level difference, and 
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deep learning has the advantage to solve the change in background and view angle 

problem. 

    The image similarity at pixel level can be calculated with the histograms of two 

images (Mich, 2001). 

 

Figure 2.4 Histograms of vehicle images 

    It can be compared by the image structural similarly, which includes: 

(1) Brightness. The average grayscale value. 

(2) Contrast ratio. grayscale standard deviation. 

(3) Structure. The structure of pixels. 

    The features could be got from the image, such as the layout of vehicle components, 

or beyond the image, such as the classification confidences of each class, which’s widely 

used at vehicle re-identification region. Object part feature can be used in re-id for vehicle 

as well as for person (Sun, 2018), the fine-grained classification uses local features for 

vehicle, such as the vehicle logo, shape of driving mirror, lights and windows, cargo in 

the back for trucks, and the color of license plate (He, 2019). Their work was pretty much 

based on the image resolution, which has higher computation cost. Also, manually 

labeling vehicle parts has limited its generalization performance.  

    If the image for each vehicle is too few or imbalanced in the dataset, there will be 

inter-class problem, the model cannot learn enough feature from the vehicle class, it’s a 

common classification problem. Spatial-temporal information of the vehicle has been 

used to restrict the matching range by where the target may possibly be. They have used 

two-stage framework, Siamese-CNN and path-LSTM, and achieved an average Jaccard 

Similarity (AJS) of 96.39% (Shen, 2017). However, using those extra vehicle information 
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requires additional computational load, and the time complexity was depending on a 

chain MRF model. 

    If we use global feature to conduct re-id, the model would still focus on the primary 

vehicle components such as the light. 

 

 

Figure 2.5 Global feature in re-id 

    Most re-id algorithm would do re-ranking for post process, such as the “k-reciprocal 

Encoding” method (Zhong, 2017), it takes the candidate from the re-id result, compute 

the Mahalanobis distance for the initial ranking list, Jaccard distance for the k-reciprocal 

ranking list, if the target image appears in k rank, it is more likely to be a true match, and 

afterward, we can add weight to this candidate in re-ranking. spatial-temporal information 

can also be used at re-ranking (Jiang N. a., 2018). Vehicle post process is very important 

in vehicle ranking problem, but it takes huge amount of calculation to go over each sample 

in the category for every search target. 
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Chapter 3 

Methodology 

 

 

In this chapter, we are going to articulate the research methods for 

deep learning, and how to implement them to approach our 

objectives. We will also demonstrate the dataset we have used and 

the data structure at each stage. 
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3.1 Dataset 

There is no dataset especially designed for speed estimation, but we found the ego-vehicle 

 speed value exists in odometry datasets. The KITTI dataset (A. Geiger, 2012) consists 6 

hours of real-world traffic driving recordings that captured in a mid-size city called 

Karlsruhe, it has included traffic situations of city, highway, residential and campus. 

    Videos in KITTI was recorded in 10 frames per second, and it gives more than 

90,000 frames in total, we took the RGB image sequences, and converted them into 

optical flow data to train our CNN model, and there are .txt files that contain the vehicle’s 

forward and leftward velocity, in consider of we only require the velocity for safe 

following, we choose to use the forward velocity as the ground truth label. 

 

 

 

Figure 3.1 The examples of frames from KITTI 

    Image sequences from KITTI are short (from ten seconds to a few minutes) and 

discontinuous with each other. Velocity values in this dataset was recorded in by GPS 

(Global Positioning System) and IMU (Inertial Measurement Unit). 
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Table 3.1 Velocity in KTITTI dataset 

vn velocity towards north (m/s) by GPS 

ve velocity towards east (m/s) by GPS 

vf forward velocity, parallel to earth-surface (m/s) by IMU 

vl leftward velocity, parallel to earth-surface (m/s) by IMU 

vu upward velocity, perpendicular to earth-surface (m/s) by IMU 

 

    The GPS velocities were measured by the coordinate displacement (latitude and 

longitude), and IMU uses the acceleration records to calculate the velocity. Normally in 

a short scale distance of vehicle movement, IMU velocity is more accurate than GPS, we 

used the parameters from GPS and IMU to calculate the travel distance between frames 

at one sample from KITTIl. 

 

 

Figure 3.2 GPS and IMU velocity in meter per frame  

    The distance data that calculated with IMU data by integral method is smoother than 

the data recorded by GPS. Although there will be accumulative errors for IMU, we require 

only the accuracy on the velocity between each frames. As a conclusion, we choose to 

use the IMU forward velocity as the speed ground truth, and the speed frequencies for 
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some samples are shown below: 

 

Figure 3.3 Examples of speed frequency from KITTI 

    One problem in this dataset is the missing speed value for static vehicle, when the 

vehicle is not moving, the speed reading is a negative number, we have reviewed the 

dataset, and there is no data for driving backwards, therefore we modified them to 0 m/s. 

 

 

Figure 3.4 The optical flow by RAFT, driving and stop 

Figure above is the optical flow produced by RAFT, we use color to represent the speed 

vector. For vehicle re-id, we have used the Veri-776 dataset (Liu X. a., 2016), it contains 

more than 49,357 cropped images of 776 vehicles, there are 37,778 images for training 

and 11,579 images for testing, each vehicle appears in only one of the training or test set.  
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Figure 3.5 Image samples from Veri-776 

    Vehicles were photographed in environment of urban-area roads by 2 to 18 different 

cameras, images have different brightness, shooting angle, resolution and occlusion 

condition. In the version of Veri-776 dataset we have received, license plates were 

blocked by black rectangles.   

    In lane detection, we used the TuSimple dataset (TuSimple: Tusimple benchmark, 

2021), it has 3626 video clips for train and 2782 video clips for test, each clip includes 20 

image frames from 1 second video. 

    The ground truth was labeled as points in form of invariable y-axis set from 160 to 

710 with an interval of 10 that stored as “h_sample”, and corresponding uncertain x-axis 

that stored as “lanes” to represent the x position of lane. The “-2” value means at this y-

axis; lane does not exist. 

 

 

Figure 3.6 The ground truth format from TuSimple dataset 
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Each lane label is actually a set of coordinates in the lane, not the lane region. 

3.2 ResNet 

Usually, the increase of depth of layer causes the degradation problem on the model, 

accuracy remains or even decreases, we expect the rest layers can remain all the features 

when it performs the best in our model, which was called “identity mapping” (Kaiming, 

Identity Mappings in Deep Residual Networks, 2016), but because of we used the 

nonlinear activation function Relu (Nair, 2010), we cannot reverse the information loss 

from the layer outputs. ResNet (Kaiming, Deep Residual Learning for Image Recognition, 

2016) used residual learning to solve this problem. It takes the outputs from previous 

layer (or layers) by a shortcut connection, add to the output from this layer, and this this 

sum result as the input of the activation function. 

𝑂 = ℱ(I, {𝑊𝑖}) + 𝐼                                 (3.1) 

ℱ = 𝑊2𝜎(𝑊1𝐼)                                    (3.2) 

Where O is the output of residual block and I is the input, ℱ is the residual function, 𝜎 

is Relu, 𝑊2 and 𝑊1 are the weight from two layers. It’s compulsory to have least two 

layers in this block. 

3.3 Lane Detection 

Traditional lane detection is highly depending on the region of interest mask, and deep 

leaning method is much less relying on it, and mainly use it in purpose increase the 

structural similarity of the frame with the training set, or reduce detection range above 

the horizon to increase the detection speed. 
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Figure 3.7 Frame mask for Hough Transform(top) and deep learning (bottom) 

    We extract lanes by using the color of pixels (TsungYing, 2006), but all other 

vehicles, guardrails, street lamps, even the sky and shadows could make the detection fail, 

because in some cases, it’s hard to distinguish the lanes and environment by a grey level 

threshold, particularly in scene of vehicles. “Ultra-Fast Structure-aware Deep Lane 

Detection” (Zequn, 2020), we used ResNet-34 as back bone, the image is divided into 

cell blocks in predefined row anchors, we use ResNet to verify if lane exist in each cell 

blocks and select them, finally outputs those selected cell coordinates.  

    One challenge in lane detection is the no-visual-clue problems (Jiang L. a., 2019), 

to predict the lane when it was occluded. We knew that lanes have the characters of 

smooth, rigid and continues, missing lane points can be estimated and filled by the 

location of selected cells, it is defined as the structure loss: 

𝐿𝑠𝑡𝑟 = 𝐿𝑠𝑖𝑚 + 𝜆𝐿𝑠ℎ𝑝                        (3.3) 

Which is contributed by the loss coefficient 𝜆, similarity loss and shape loss: 

𝐿sim = ∑  𝐶
𝑖=1 ∑  ℎ−1

𝑗=1 ∥∥𝑃𝑖,𝑗,: − 𝑃𝑖,𝑗+1,𝑖∥∥1
                         (3.4) 



25 
 

For similarity loss, 𝑃𝑖,𝑗 is the probability on j-th row anchor, and ∥ ∥1 means L1 norm, 

the sum of absolute difference. 

𝐿𝑠ℎ𝑝 = ∑  𝐶
𝑖=1 ∑  ℎ−2

𝑗=1 ∥ (𝐿𝑜𝑐𝑖,𝑗 − 𝐿𝑜𝑐𝑖,𝑗+1)

−(𝐿𝑜𝑐𝑖,𝑗+1 − 𝐿𝑜𝑐𝑖,𝑗+2) ∥1

𝑃𝑟𝑜𝑏𝑖,𝑗,: = softmax(𝑃𝑖,𝑗,1:𝑤)

𝐿𝑜𝑐𝑖,𝑗 = ∑  𝑤
𝑘=1 𝑘 ⋅ 𝑃𝑟𝑜𝑏𝑖,𝑗,𝑘

                    (3.5) 

where 𝑃𝑟𝑜𝑏𝑖,𝑗,:  is the probability at each location,  𝑃𝑖,𝑗,1:𝑤   is vector in w dimension, 

𝑃𝑟𝑜𝑏𝑖,𝑗,𝑘 is the probability of the i-th lane, the j-th row anchor, and the k-th location. The 

overall loss they proposed in this method was defined as, 

𝐿total = 𝐿𝑐𝑙𝑠 + 𝛼𝐿𝑠𝑡𝑟 + 𝛽𝐿𝑠𝑒𝑔.                        (3.6) 

where 𝛼 and 𝛽 are loss coefficients. And beside the structure loss, they have also used 

𝐿𝑐𝑙𝑠 classification loss, which based on cross entropy loss with one extra dimension for 

“no lane” label, and one-hot label as the ground truth for cells in the row, and they have 

also used the cross entropy as auxiliary segmentation loss 𝐿𝑠𝑒𝑔 for training only. 

    Images from TuSimple dataset have been resized to 288×800 as the input to the 

ResNet for classification, after a fulling conduct layer and reshape to probabilities in row 

anchors, for cell selecting in group classification. Meanwhile during training, multi-scale 

features output from ResNet layers has been used by auxiliary segmentation to model 

local features. The performance of lane detection can be evaluated by accuracy in 

TuSimple dataset 

 accuracy =
∑  clip 𝐶clip 

∑  clip 𝑆clip 
                          (3.7) 

where 𝐶clip  is the lane points correctly predicted, and 𝑆clip  means the total amount of 

ground truth in each clip. 

3.4 Vehicle Tracking Based on Re-Identification 

Vehicle re-id in deep learning is based on classification, each vehicle will be treat as an 
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individual class, and we will use the confidence result from each class to generate the 

feature matrix, and give the similarity outcome by calculate the matrix distance. We have 

to assume that input images are vehicle images, as there are only class level features in 

that matrix. We used YOLOv5 to detect and produce bounding boxes to isolate all vehicle 

targets from the image, then find the closest one in our lane, and extract the features by 

ResNet-50. The image re-id preprocess is: 

• Resizing. Resize the image to 200×200. 

• Random Horizontal Flipping. For preventing model overfitting, randomly rotate 

the image horizontally. 

• Random Cropping. To reduce the noise and increase the model’s stability for 

missing value. 

• Normalizing. To fit the deep learning network, mean = [0.485, 0.456, 0.406], std 

= [0.229, 0.224, 0.225]. 

    In addition, we applied random brightness on the vehicle by segment it from the 

background, and randomly adjust the brightness by -20% to +20%. The segmentation was 

done by foreground mask generator GrabCut from OpenCV: 

 

Figure 3.8 GrabCut foreground mask generator 

    The model training part for re-identification is similar to classification, so we choose 

to cross entropy loss to evaluate the model. 

𝐻(𝑝, 𝑞) = −∑  𝑥 (𝑝(𝑥)𝑙𝑜𝑔 𝑞(𝑥) + (1 − 𝑝(𝑥))𝑙𝑜𝑔 (1 − 𝑞(𝑥)))                          

(3.8) 



27 
 

where p is the expected probability distribution output, and q is the actual output, and x 

is the amount of information. In PyTorch, the cross entropy loss in calculated by 

combining the softmax, log, and NLLLoss: 

𝐻(𝑝, 𝑞) = −∑  𝑥 (𝑝(𝑥)𝑙𝑜𝑔 𝑞(𝑥)                           (3.9) 

 

Figure 3.9 Cross entropy loss of vehicle re-id 

    A re-id model can be to evaluate by mean Average Precision (mAP): 

𝑚𝐴𝑃 =
1

|𝑄𝑅|
∑  𝑞∈𝑄𝑅

𝐴𝑃(𝑞)                          (3.10) 

    It’s basically the sum of average precisions divide by the number of class, we have 

576 classes in the Veri-776 training dataset, each class represent one vehicle. The re-id 

model can also be evaluated by Rank-N, it means in ranking, the probability in percentage 

of that the correct target can be found in the top N predictions. 

 

 

 



28 
 

Table 3.2 Vehicle re-id performance 

mAP Rank-1 Rank-5 

42.41% 56.25 82.57. 

 

Figure 3.10 Vehicle re-id ranking 

    The mAP of this model on Veri-776 is 42.41%, however, the evaluation of vehicle 

ranking requirement is stricter: 

(1) Cross view. Compare the vehicle’s front to its back, or a plan view to aerial view. 

(2) Different camera. Images from the same camera must be excluded. 

(3) Long scale of time length. Illumination or weather condition could be very 

different. 

    But to track the vehicle in our front, we don’t have those restricts, all vehicles are 

expected to have the same orientation, under the sight of one same camera. The 

performance for the same camera and view is much better, it against the standard 

valuation criteria for re-id, but more close to our tracking needs. 
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Table 3.3 Vehicle re-id same camera and view 

mAP Rank-1 Rank-5 

94.3% 98.2 99.7. 

 

    The outcome of re-identification is a matrix of confidence values for each class as 

the feature map, to compare them we can use matrix Euclidean distance: 

 Euclidean Distance (T,P) = √

[
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− 2 ∗ 𝑇𝑃𝑇                          

(3.11) 

Where T and P are the two matrix. 

Euclidean distance works fine with similarity ranking, but we need to normalize the 

distance to determine if two images were the same vehicle. Cosine distance is another 

measurement for matrix distance: 

 Cosine Distance (T,P) = 1 −
∑  𝑛

𝑖,𝑗=1 𝑡𝑖𝑘𝑝𝑖𝑗

√∑  𝑛
𝑖,𝑗=1 𝑡𝑖𝑗

2 √∑  𝑛
𝑖,𝑗=1 𝑝𝑖𝑗

2
                       (3.12) 

    It outcomes with a number from 0 to 1, which’s more apposite for similarity 

comparison. We took the images from the test set of Veri-776 dataset that shoot from the 

same camera ID to find the threshold value of similarity to our vehicle tracking module, 

and found that when the threshold set to 0.97, the accuracy is the highest. 

Table 3.4 Threshold of similarity for re-id 

Cosine Similarity Accuracy 

1.000 0% 
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0.990 7.32% 

0.980 57.58% 

0.975 82.76% 

0.970 97.51% 

0.965 86.39% 

    The light reflation on vehicle may produce huge light spot in the image, usually those 

images will be considered as polluted and exclude from the re-id dataset, so we record 

the re-id result in the past 1 second, and take the highest on to represent them. In addition, 

we knew that even if the recall rate is only 1%, on average, error will still occur once 

every 100 frames, it could be as short as only 5 seconds for vehicle tracking when using 

a 20 fps camera, in this case, Rank-20 is much more reliable, it’s acceptable for vehicle 

safe following distance monitoring when the update of Boolean value of vehicle 

following delays for 1 second.  The vehicle can be defined by: 

if (Cosine Similarity in last 20 frames > 0.97):   

    return True 

else:   

   return False. 

3.5 Image to Optical Flow to Speed 

In this section, we used RAFT to convert the image frames into optical flow data, and 

then use CNN to get the speed value. The model is shown as Figure 3.11. 
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Figure 3.11 Image to Optical flow to speed by convolutional neural network 

    We chose to use the “City” and “Road” category from the KITTI dataset to train our 

model, generate optical flow requires pair of image, therefore we removed the last vehicle 

speed record for every image sequence, finally there are 15123 optical flow data in total. 

 

Figure 3.12 Speed distribution for optical flow data 

    We split the data into train set 80% and test set 20%: 

  

Figure 3.13 Speed distribution for train and test set 
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In training, the system takes 1242 × 375 RGB image from the KITTI dataset as 

input, then we use RAFT to convert the pair of RGB images into optical flow vector fields, 

in form of vector matrix that has the same width and height, but stored the horizontal 

vertical speed information in each pixel instead RGB channel value. In principle optical 

flow vector field is a speed image, but there was no existing standard file format to save 

them, so we just saved the array by NumPy (Numerical Python). and before the data input 

to the CNN model, we preprocess the optical flow between two consecutive frames by:  

(1) Horizontal flipping. Use mirrored image to extend the train set. 

(2) Random rotating. Randomly rotate the consecutive frames for from -5 to 5 

degrees, and add 0 to fill the gap 

    This is for data augmentation, we did the flipping and rotation on the optical flow 

matrix during training, when each time they were picked from the training set. 

Then the optical flow vectors go into the convolutional layers that connected by 

RELU activation function to extract features, followed by flatten, dropout and dense to 

reduce overfitting and prepare for output.  

The choice of loss function is determined by the usage and output of the model, 

unlike classification tasks output with a discrete list of class probabilities, this is a 

regression task, which outputs only the predicted vehicle speed value, and we need to 

compare this value with the ground truth speed, the performance is basically how close 

these two numbers are, and Mean Squared Error (MSE) was commonly used in regression 

tasks in deep learning, which was defined as, 

  𝑀𝑆𝐸 =
1

𝑚
∑  𝑚

𝑖=1 (𝑦𝑖 − 𝑓(𝑥𝑖))
2
                              (3.13) 

where m the number of samples, for sample i,  𝑦𝑖 is the predictions and 𝑓(𝑥𝑖) are the 

ground truth values. However, outliers, such as error value in the ground truth, or extreme 

circumstance will cause serious influence to the MSE loss. Particularly for this project, 

the optical flow data was produced by deep learning method RAFT, so it contains some 
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errors and at some speed range, there were too few images in our dataset, on another hand, 

the speed ground truth from this dataset was detected by the Inertial Measurement Unit 

(IMU) installed on the vehicle, it could also produce outliers. 

    In this case, Mean Absolute Error (MAE) is less sensitive than MSE, as it calculates 

the absolute value of the distance from predation and the ground truth：  

  𝑀𝐴𝐸 =
1

𝑚
∑  𝑚

𝑖=1 |𝑦𝑖 − 𝑓(𝑥𝑖)|                              (3.14) 

    But for gradient solving, MAE is more complex than MSE, which’s detrimental for 

model convergence and learning. Huber Loss propose has been proposed as an 

equilibrium (Wang, 2020):  

𝐿𝛿(𝑦, 𝑓(𝑥)) = {

1

2
(𝑦 − 𝑓(𝑥))2,     |𝑦 − 𝑓(𝑥)| ≤ 𝛿

𝛿|𝑦 − 𝑓(𝑥)| −
1

2
𝛿2,    |𝑦 − 𝑓(𝑥)| > 𝛿

                       (3.15) 

where 𝛿  is a hyper-parameter, when |𝑦 − 𝑓(𝑥)| ≤ 𝛿 , Huber Loss is equal to MSE,  

when |𝑦 − 𝑓(𝑥)| > 𝛿, Huber Loss becomes alike to MAE. Commonly we set 𝛿 = 0.5 

to achieve the balance between those two loss functions, and it could be adjusted or 

optimized by cross validation in future. The benefit of using Huber loss to train the model 

are that it’s more stable than using MSE, and faster than MAE. At last, we used Adam 

optimizer (Diederik, 2017) for the optimization. We stopped the training at 20 epochs as 

the test loss curve became smooth. 

3.6 Program Implementation 

PyTorch is an open-source, end-to-end deep learning framework in Python, it has sample, 

concise API ports and the balance between usability and speed, although it may not 

perform as good as Tensorflow in accuracy, but the training time is shorter and the user 

experience is also much better, which makes it more suitable for research purpose. 

    Open Source Computer Vision (OpenCV) is a powerful and cross platform image 

processing and computer vision library, we used it to read the frames from video or 
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sequenced images, preprocess them and display the detection outcomes by its image 

editing module. 

 

Figure 3.14 Huber loss of vehicle Speed estimation 

Table 3.5 Software dependencies 

Dependency Version 

Python 3.8 

OpenCV-Python 4.4.0.44 

PyTorch 1.9.0+cu102 
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Chapter 4 

Results 

 

 

In this chapter we will demonstrate our system and evaluate the 

experimental result for each module by traditional method and 

deep learning method. We will also present the limitations or 

issues in the system. 
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4.1 Safe Following Distance Monitoring System Flow Chart 

 

 

Figure 4.1 Flowchart of the system 

When the system takes the first frame, there’s nothing we can do, because there’s no way 

to tell the speed from one single image, the system will be initiated since the second frame 

input, and the speed estimation was done independently, because it uses optical flow field 

as input data.  

   The system requires the existence of lanes as well, we will find the left and right lane 

by their inclined angle, when both lanes detected, we will lock on the vehicle between 

these two lanes. If there is such a vehicle in front of us, we use the re-identification method 

to count that how long we have been following it, when it has reached a given threshold 
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time, such as 3 seconds, the following distance alert system turns on, otherwise it will 

compute and display that distance in another color. 

When the following time is enough, and our distance to the front vehicle is beyond the 

safe line, the alert will be sent. 

4.2 Performance Analysis 

 

Figure 4.2 Speed distribution in test set and predictions 

    Obviously this model is not sensitive with very low speed, only less than half 

predictions for speed between zero and one were correct, it may because of when the 

vehicle is turning, the speed could be very low, but the visual was not static like when it 

stops at the intersection. And for high speed driving, it seems there wasn’t pretty enough 

training data in speed above 17 m/s, and those frames were mainly coming from the “road” 

category, and the environment of highway were trends to be constant and “duplicated”.  
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Figure 4.3 Mean of absolute speed difference on the test set 

    The global mean absolute speed difference is more than 6 m/s, but if we only look 

at speed from 2 m/s to 16 m/s, the error becomes less than 2 m/s. 

 

Figure 4.4 Mean of absolute speed difference in percentage on the test set 
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    The model performs not very well at high speed, and for very low speed and 0 speed, 

the error was not too high, so it’s unlikely to cause false alert in slow driving. Moreover, 

vehicle speed from 10 km/h to 60 km/h is representative for urban road driving, and when 

we apply “3-4 seconds rule” when driving at 20 m/s speed, the safe following distance 

will be above 60 or 80 meters, which is also beyond the robust detection range for lanes 

and following distance. And apparently the driver would not rely on this assist system 

when driving very slowly, the safe following distance can be flexible in traffic jam 

scenarios. Firstly, we apply Canny edge detection on the image, and use mask to extract 

the area of lanes 

 

Figure 4.5 canny edge detection: original image, converted line drawing and mask 

 

   Then, we apply Hough transform to get all the straight lines, and poly fit them to get 

two continues lines as detection result, and at last, use slope to distinguish left and right 

lanes. The weakness of this method is the segmentation of the region of interest, it’s 

limited by the influence of manual selection or post-processing technology. 

In deep learning lane detection method, the functionality of mask is to crop the frame 

image, make the structure of image closer to those from the training dataset: 
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Figure 4.6 Deep learning lane detection 

 

    Corpping and resizing the image to 288×800 is all the preprocessing method we used 

for deep learning method in lane detection, it has solved the generalization problem, and 

general occlusion in traffic such as the front hood or other vehicles cannot influence the 

detection. And most importantly, this method still performs a very fast detection speed. 

For vehicle re-id, the similarity is defined by cosine distance: 

 

Figure 4.7 Vehicle re-id cosine distance, classification feature based and pixel based. 

 

    The image in left middle is the tracking target, and next two are the same vehicle in 

ideal condition, in forth image the brightness was dropped by 15%, fifth image is another 

vehicle, and last image is a non-vehicle object. 

    Pixel similarity performs well in ideal condition, and the classification feature 

similarity is more reliable in brightness fluctuations, and non-vehicle objects. Generally, 

YOLO will narrow the background, this deep learning advantage is not very obviously. 
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  (a) 

  (b) 

  (c) 

Figure 4.8 Demo of the safe following distance system 

 

    We test the entire system on a dash camera video, the white area in our lane shows 

us the safe following distance, which changes according to our driving speed, and for 
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vehicles following us, because of we don’t have backward driving videos in the training 

dataset, we just switched the sequence of this frame and the previous frame image to 

produce the optical flow, so technique this speed is the “forward” speed in previous frame.  

4.3 Limitations of the Research Work 

We verified this speed estimation module on some real dash camera videos, and we found 

some typical failure cases: 

   

(a) Predict: 9.4 m/s, GT: 17 m/s.   (b) Predict: 6.57 m/s, GT: 3.1 m/s.  (c) Predict: 18.2 m/s, GT: 30 m/s. 

Figure 4.9 Speed estimation failure cases 

    In the first case, there is a huge occlusion in this image, and the luminance is going 

to surges substantially. And the second case, the vehicle is changing lane and moving 

slowly. The third case, there is an object that casting a reflection on the windshield, and 

the environment was too humdrum, the optical flow features were insufficient to express 

such speed. 

  

 (a) (b) (c) 

Figure 4.10 optical flow error by video transcoding. The frame image (a), optical flow by 

transcode frame (b), and optical flow by original frame(c). 
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    One interesting fact for optical flow is that when we use video transcoding software 

on the videos from internet, the fluctuation of video definition caused by transcoding has 

badly affected the optical flow estimation, it results in global random pixel movement 

between frames, and the outcome looks like a disaster. Other limitations are: 

(1) Currently our method works only at straight lanes or Low angle curve lanes, as the 

distance estimation was based on the principle of perspective. 

(2) The dataset, Veri-776 is sufficient for single view vehicle tracking, but KITTI dataset 

did not supply us enough sample of driving scenarios to distinguish the surrounding 

environment without extra depth information. Also, if there are unrecognized lane 

mark such as but station, it could interference the lane detection. 

(3) The speed estimation was based on visual, if there are too many other traffic 

participants nearby, such as in a traffic jam, there’s no way to sense if we are moving. 

However, it’s also unusual to drive fast under crowded traffic environment. 

(4) Actually this system cannot tell if the vehicle is moving forward or backward, 

because there were no negative speed values in the dataset.  

(5) The lane detection used prior knowledge that the lanes should be at both side of the 

center of the X-axis, image need to be preprocessed to fit it. 

(6) Special lane, such as double lane or reversible lane were not existing in our training 

dataset, there could be a deviation on the special lanes detected, and the road 

markings, for example, bus station road marking could influence our lane detection. 

(7) The front vehicle tracking method will loss the target, if there are too large scale of 

change in illumination or occlusion that continues for more than the buffering time. 
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Chapter 5 

Analysis and Discussions 

 

 

In this chapter, we will analysis and discuss the experimental 

results from deep learning method compare to traditional 

method.  
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5.1 Analysis 

In summary, our system will more stabilize when we can access the vehicle speed from 

the GPS, it becomes quite unstable in high speed driving, but it will still give us a 

referencing speed value with around 15% error range under speed between 4 m/s to 16 

m/s, it’s not as good as those methods that have used depth information, but acceptable 

for our safe following distance estimation. The deep learning lane detection method 

performs 96% accuracy on the test dataset, and it doesn’t rely on the exacting mask to 

restrict region of interest to remove environmental interferences. 

    The distance detection is based on the lane width, it requires the focal length of 

camera in order to apply geometrical perspective method, and we could use the lane width 

and measured distance to create a fitting curve equation.  

    Vehicle similarity by classification feature is more stable in image brightness and 

background than pixel level similarity, ResNet performs 94.3 mAP for same camera re-

id, and extremely high accuracy in finding the target vehicle in the top 20 candidates, 

which takes only one second time for following confirmation, it will also prevent the 

influence caused by a blinding flash of light. 

5.2 Discussions 

Deep learning method in lane detection is more adaptable and can be equally fast, and the 

accuracy of following distance depends on the lane width detection. And it is more 

reliable for vehicle tracking and re-id. Vehicle speed estimation from optical flow field 

can be used as an alternative, when other car-carried speed system are offline. 
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Chapter 6 

Conclusion and Future Work 

 

 

In this chapter, we will summarize the method we have used, 

answering the question of “How deep learning can improve the 

methods”. And we planned our future work to address the 

weaknesses in this project. 
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6.1 Conclusion 

The safe following distance monitoring system we proposed in this paper includes 40r 

modules. For lane detection, the traditional Canny edge and Hough transform method 

requires us to remove the environmental noise, and deep learning method doesn’t have 

this region of interest issue, and performs a very fast detection speed.  

    We used the camera focal length, lane width at the bottom of frame and under the 

target vehicle as the parameters to apply the horizontal triangulation algorithm, which can 

calculate the actual distance to the target vehicle. For vehicle ego-speed estimation, RAFT 

can predict the pixel motion field between contiguous frames, and CNN can estimate the 

speed value from pixel motion to real-world motion with 2 m/s error rate in speed between 

10 km/h to 60 km/h. and the following time counting is based on vehicle detection and 

re-id, YOLOv5 is very accurate in detection, and we set the cosine difference of ResNet 

classification confidence matrix similarity threshold to 97%, and we get 97.51% accuracy 

in same camera and same view point re-identification, it’s very reliable when we use 20 

frames to confirm the result, and it’s more rubber with environmental noises.  

6.2 Future Work 

We will add scene recognition in our speed estimation module, for example, city, highway, 

or village road, and do some targeted training on our model and expend the dataset to fit 

more urban style. And try to remove those disturbed optical flow that caused by other 

moving vehicles. 

    The lane width could be affected by the camera distortion we will use depth 

estimation algorithms such as Monodepth2 (Clément, 2019), within the depth information, 

we can directly calculate the ego-speed of vehicle. 

    The dataset for speed estimation has too few samples from high speeds, and the 

distribution for other speeds was also not unified, which caused inherent bias in our model, 

we should find more data from other autonomous driving dataset, such as the BDDV 

dataset (Berkeley Deep Rrive Website, 2021) created in Berkeley, which included more 
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weather and illumination conditions. And the Apolloscape dataset (Apolloscape, 2021), 

which created in a modern city, it has the depth information for frames.  

    Currently the vehicle re-id performance is sufficient for tracking, but we can improve 

by using better network such as the Part-based Convolutional Baseline (Sun, 2018), and 

focus on the vehicle front and back side feature extraction, VehicleID dataset (Hongye, 

2016) has 221,763 images for 26,267 vehicles which was much larger than Veri776 we 

used, and the image resolution is also higher, so there are more detailed visual features 

for each vehicle.  

    The optical inference time for RAFT is rather slow, although it’s average end-point 

error is much higher, we have to balance the accuracy and system performance to achieve 

a real-time monitoring. 
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