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Abstract. Intelligent Transportation System (ITS), including unmanned vehicles, 

has been gradually matured despite on road. How to eliminate the interference 

due to various environmental factors, carry out accurate and efficient traffic sign 

detection and recognition, is a key technical problem. However, traditional visual 

object recognition mainly relies on visual feature extraction, e.g., color and edge, 

which has limitations. Convolutional neural network (CNN) was designed for 

visual object recognition based on deep learning, which has successfully 

overcome the shortcomings of conventional object recognition. In this paper, we 

implement an experiment to evaluate the performance of the latest version of 

YOLOv5 based on our dataset for Traffic Sign Recognition (TSR), which unfolds 

how the model for visual object recognition in deep learning is suitable for TSR 

through a comprehensive comparison with SSD (i.e., single shot multibox 

detector) as the objective of this paper. The experiments in this project utilize our 

own dataset. Pertaining to the experimental results, YOLOv5 achieves 97.70% 

in terms of mAP@0.5 for all classes, SSD obtains 90.14% mAP in the same term. 

Meanwhile, regarding recognition speed, YOLOv5 also outperforms SSD. 
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1   Introduction 

In recent years, with the outbreak of Artificial Intelligence (AI), the vehicle-aided 

driving system has updated previous driving mode. By acquiring real-time road 

condition information, the system promptly reminds drivers to make accurate 

operations, thereby prevent car accidents due to driver fatigue. In addition to the 

auxiliary driving systems, development of autonomous vehicles also requires rapid and 

accurate detection of traffic signs from digital images. 

Traffic Sign Recognition (TSR) is to detect the location of traffic signs from digital 

images or video frames, given a specific classification [22]. The TSR methods basically 

make use of visual information such as shape and color of traffic signs. However, the 

conventional TSR algorithms are facing drawbacks in real-time tests, such as being 

easily restricted by driving conditions, including lighting, camera angle, obstruction, 

driving speed, and so on. It’s also very difficult to achieve multitarget detection, easy 

to miss visual objects because of slow recognition [23]. 

With continuous improvement of computer hardware, the limitation of artificial 

neural networks has been well alleviated, which has brought machine learning into a 

golden time of development. Deep learning is a type of machine learning methods [1]. 

A deep neural network model simulates the neural structure of our human brain while 
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processing information. Using this neural network model to extract the effective 

features from the road image is much better than the conventional TSR algorithms, 

which has the potential to improve the robustness and generalization of the algorithms 

[2]. 

The research outcomes in TSR not only avoid traffic accidents and protect drivers, 

but also help inspect traffic signs on roads efficiently and accurately, which reduce 

unnecessary manpower and resources. In addition, it also provides technical support for 

unmanned and auxiliary driving. Therefore, the research work based on deep learning 

has tremendous significance and is invaluable to our daily life. 

In this paper, we mainly investigate how to achieve an accurate and real-time TSR 

model based on deep learning. Our contributions lie in three aspects. Firstly, we collect 

and augment sample images to form a new dataset for our traffic signs, which contains 

2,182 images with eight classes. Secondly, regarding the latest version of YOLOv5, we 

implement our experiments and evaluate TSR performance based on our dataset. The 

key metrics and parameters provide a few essential references for further explorations 

and exploitations. Finally, we conduct a detailed comparison of TSR performance 

between YOLOv5 and SSD. We also analyze and justify the advantages and 

disadvantages of these two deep learning models. 

We review literature in Section 2, our methods are depicted in Section 3. Our results 

are showcased in Section 4. Our conclusion and future work will be presented in 

Section 5. 

2   Literature Review 

TSR has always been a hot research topic in recent years. For this purpose, TSR is 

investigated to detect traffic sign region and non-traffic sign area in complex scene of 

images, TSR is to extract the specific features represented through traffic sign patterns 

[3]. The existing TSR methods are basically grouped into two categories: One is based 

on traditional methods, the other is related to deep learning methods. 

    The main steps of TSR methods based on color and shape of a given image are to 

extract the visual information contained in the candidate area, capture and segment the 

traffic signs in the image, and correctly label the signs through patter classification [4]. 

Although TSR requires color and shape information which is employed to improve the 

recognition accuracy. The problems of illumination changes or color fading of traffic 

signs, as well as the deformation and the occlusion of traffic signs, are still unresolved 

problem [24]. Conventional machine learning methods usually selected specified visual 

features and take use of the features to classify the classes of traffic signs. The specific 

features include Haar-like features, HOG features, SIFT features, and so on [5].  

Conventional TSR methods are based on template matching, which needs to extract 

and utilize the invariant and similar visual features of traffic signs, the matching 

algorithms are run for pattern classification. The feature representation of these 

methods needs to be specified well, which is a tough problem to describe the visual 

features precisely, because of the variations of traffic signs [27, 28].  

The neural networks, Bayesian classifier, random forest, and Support Vector 

Machine (SVM) are employed as classifiers. However, the performance of 
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conventional machine learning methods depends on the specified features, they are 

prone to missing the key features. Furthermore, for different classifiers, corresponding 

feature description information is required. Hence, traditional machine learning 

methods have limitations, their real-time performance is not comparative relatively. 

Deep learning utilizes a multilayer neural network to automatically extract and learn 

the features of visual objects, which has merits for image processing [6]. CNN models 

are one of the most popular deep learning approaches for TSR. TSR algorithms are 

based on region proposals, also known as two-stage detection algorithm, the core idea 

is selective search [7], its advantages are the great performance of detection and 

positioning, but the cost is a large amount of computations and high-performance 

hardware for computing.  

The CNN models encapsulate R-CNN, Fast R-CNN, and Faster R-CNN. Faster R-

CNN combines the regression of bounding boxes and object classification, takes use of 

end-to-end methods to detect visual objects, which not only improve the accuracy of 

object detection, but also uplift the speed of object recognition. The road signs usually 

were detected from the driver's point of view, in this paper, we view the signs from the 

viewpoint of satellite images. In [28], guided image filtering was employed for the input 

image to remove image artefacts such as foggy and haze. The processed image is 

imported into the proposed networks for model training. 

Meanwhile, TSR algorithms based on regression, also known as single-stage 

detection algorithm [8]. This kind of TSR algorithms eliminate the idea of Region 

Proposal Network (RPN), and directly perform regression and classification in a 

network. You Only Look Once (YOLO) and Single Shot MultiBox Detector (SSD) 

belong to the single-stage category. 

    Visual object detection consists of two tasks, which are classification and 
positioning. Before the emerging of YOLOs, these two tasks are different in visual 

object detection. In the YOLO models, the object detection is simply converted into a 

regression problem. Furthermore, YOLOs follow an end-to-end structure of neural 

networks for visual object detection that obtains the coordinates of the predicted 

bounding boxes, the confidence of the target, and the probability of the class that the 

target belongs to simultaneously through one image input [9]. 

In 2020, three YOLO versions had been released, i.e., YOLOv4, YOLOv5, and PP-

YOLO [27, 28]. When the YOLOv4 was released, it was considered as the faster and 

more accurate real-time object detection model, which inherits the Darknet and has 

obtained a distinct average precision (AP) based on Microsoft COCO dataset while 

achieved a fast detection speed based on Tesla V100. Compared with YOLOv3, the AP 

and FPS (i.e., frames per second or video frame rate) have been effectively improved. 

YOLOv5 was published in 2020. There is little research outcome on the performance 

of YOLOv5 for TSR. Nevertheless, an experiment of detecting apples was conducted 

by using YOLOv5 to compare with the performance of YOLOv3 [10]. The 

experimental results indicate that YOLOv5 outperformed the previous model. 

YOLOv5 obtained 4.30% increment of the detection accuracy. Moreover, a similar 

experiment was conducted for the apple picking-up [11]. The comparable outcomes 

with an improved YOLOv5s model, which were 14.95% and 4.74%, are satisfactory 

by comparing YOLOv3 and YOLOv4, respectively. 

SSD is well known since it has been proposed [12]. Meanwhile, the SSD model is 

already being improved and employed to detect visual object in various fields. 
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Recently, the experiments are implemented based on CTSD dataset with the improved 

SSD model, the results reach 94.40% for the precision and 92.60% of the recall [13]. 

Besides, a comparison of traffic sign recognition between SSD and YOLOv2 was 

carried out [14]. The GTSRB dataset was taken into consideration. In general, SSD was 

21.00% less than YOLOv2 in accuracy, the latter was 16.00% faster than the SSD 

model. 

3   Methodology 

3.1   YOLOv5 

The series of YOLO models have been updated to YOLOv5. The accuracy of visual 

object detection continues being updated; the regression is always adopted as its core 

idea. In this experiment, we take the latest version of YOLOv5 as one of the NZ-TSR 

models. The structure of YOLOv5 algorithm is very similar to that of YOLOv4. The 

entire network model is divided into four parts: Input, backbone, neck, and the 

prediction layer. In Fig.1, the network structure of YOLOv5 is shown in detail. 

 

 

Fig.1. The diagram of YOLOv5 structure 

 

In the input part, YOLOv5 and YOLOv4 both utilize mosaic method to enhance the 

input data. The algorithm needs to normalize the input image to a fixed size, the 

standard size of the image is 608×608×3. In addition, the network training is based on 

initial anchor box to obtain prediction box through comparing it with the actual 

annotated box and updating the network model parameters iteratively [25]. 

The backbone part contains focus module and CSP module [15]. The key step of the 

focus model is to compress height and width of the input image through slicing 

operation. The images are spliced to carry out the integration of image dimensional 

information (i.e., width and height) into the channel information to increase input 

channels. On the aspect of CSP module, two branches of CSP module are designed in 

YOLOv5, which are CSP1_X and CSP2_X [16]. Amongst them, CSP1_X module is 
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mainly employed for the backbone network, CSP2_X is mainly taken into use in the 

neck network. 

The neck part in YOLOv5 mimics to YOLOv4, which adopts FPN+PAN structure. 

Feature Pyramid Network (FPN) is working from top to bottom and utilizes upsampling 

operation to transfer and fuse information to obtain predicted feature maps [26]. In 

contrast, PAN (Path Aggregation Network) is a feature pyramid from the bottom to top. 

In the prediction part, different from YOLOv4, YOLOv5 makes use of GIoU_Loss 

as the loss function, which effectively solves the problem if the bounding boxes do not 

coincide [17]. GIoU is calculated as 

𝐺𝐼𝑜𝑈 = 𝐼𝑜𝑈 − 
|𝐶−(𝐴∪𝐵)|

|𝐶|
, (1) 

where C expresses the smallest box for arbitrary bounding boxes A and B, enclosing A 

and B. After that, the ratio of the area C is calculated and subtracted from the IoU of A 

and B. GIoU is treated as a distance. So GIoU loss is derived as 

 

𝐺𝐼𝑜𝑈_𝐿𝑜𝑠𝑠 = 1 − 𝐺𝐼𝑜𝑈 =  1 −  (𝐼𝑜𝑈 − 
|𝐶−(𝐴∪𝐵)|

|𝐶|
). (2) 

3.2   SSD 

The SSD model utilizes multiple size detection boxes while extracting object features 

and generating various feature maps that strengthen the ability of network feature 

extraction. The SSD model mainly contains two parts as shown in Fig.2. 

 
Fig.2. The diagram of SSD network structure 

 

The first part is basic feature extraction network, which adopts VGG-16 network 

without dropout layer, FC8 and softmax classification layers. It replaces the fully 

connected layers FC6 and FC7 in the ordinary VGG network with convolutional layers 

Conv6 and Conv7 [12]. In the second part, four convolutional layers of Conv8, Conv9, 

Conv10, and Conv11 have been newly added. Each convolutional layer utilizes a 1×1 

convolution kernel for dimensionality reduction and then makes use of a 3×3 

convolution kernel for feature extraction [18]. 
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The loss function of the SSD model consists of two parts: The localization loss (Lloc) 

and the confidence loss (Lconf) [19]. The entire loss function is weighted sum of 

localization loss and the confidence loss, as shown in Eq.(3). 

 

𝐿(𝑥, 𝑐, 𝑙, 𝑔)  =  
1

𝑁
(𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐)  +  𝛼𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔)), (3) 

 

where N represents the number of positive instances in the prediction box, c is the 

confidence of the predicted classification, l is the prediction box by using the proposed 

model, g is labelled box for the ground truth, α is weight coefficient of the localization 

loss and the confidence loss [21]. 

The confidence loss function (Lconf) adopts softmax loss [20], the input is confidence 

of each classification c, Lconf is presented in Eq.(4). 

 

𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐)  =  − ∑ 𝑥𝑖𝑗
𝑝 𝑙𝑜𝑔(ĉ𝑖

𝑝
) − ∑ 𝑙𝑜𝑔(ĉ𝑖

0)

𝑖∈𝑁𝑒𝑔

𝑁

𝑖∈𝑃𝑜𝑠

, (4) 

ĉ𝑖
𝑝

 =  
𝑒𝑥𝑝(𝑐𝑖

𝑝
)

∑ 𝑒𝑥𝑝(𝑐𝑖
𝑝

)𝑝
. (5) 

 

The localization loss function (Lloc) adopts smooth L1 loss [21] as the parameters of 

the prediction box (l) and the labelled box (g) for the ground truth. It also includes the 

center coordinate position (x, y), width w and height h. So Lloc calculation is shown in 

Eq.(6). 

 

𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥)  =  {
0.5𝑥2,         |𝑥| < 1

|𝑥| − 0.5,      |𝑥| ≥ 1
 (6) 

𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔)  =  ∑ ∑ 𝑥𝑖𝑗
𝑘 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑙𝑖

𝑚  − 𝑔𝑖
𝑚)𝑚∈{𝑐𝑥,𝑐𝑦,𝑤,ℎ}

𝑁
𝑖∈𝑃𝑜𝑠 , (7) 

 

where 𝑔𝑖
𝑚 is offset of the labelled box related to the default detection box, 𝑙𝑖

𝑚 is 

prediction box output by the model. Therefore, the prediction box output by the SSD 

model is not the direct coordinates of the prediction box but the offset of the prediction 

box is related to the detection box. 
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4 Experiments 

4.1 Data Collection 

In this experiment, we selected eight classes of traffic signs with high awareness and 

important safety significance. Because of sparsity of traffic signs on road, we collected 

traffic sign images instead of driving videos. We split them into two groups, both two 

groups are captured from the streets of our city by using our mobile cameras.  

Our dataset is composed of 2,182 traffic sign images which are labelled as “No U-

turn” (271 images), “Road bump” (329 images), “Road works” (294 images), “Watch 

for children crossing” (176 images), “Crosswalk ahead” (313 images), “Give way” (317 

images), “Stop” (286 images) and “No entry” (196 images), which are shown in Table 

1. 

Table 1. Our dataset summarization  

 

Class Sample Num. Class Sample Num. 

No U-turn 

 

271 
Road 

bump 

 

329 

Road works 

 

294 

Watch 

for 

children 

crossing 

 

176 

Crosswalk 

ahead 

 

313 
Give 

way 

 

317 

Stop 

 

286 No entry 

 

196 
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4.2 Dataset Augmentation 

For the raw data in our dataset, a few images were captured in landscape view. Firstly, 

we made use of the software called JPEG Autorotate to rotate the images to portrait 

direction. After that, due to ultrahigh definition images with too long training time, we 

resized the image whilst keeping the same aspect ratio between width and height. Thus, 

we normalized all images in our dataset to be 1128×2016 and 1536×2048. 

The image annotation for model training in YOLOv5 requires the label information. 

In this paper, we utilized a labelling tool, namely Labellmg. Especially, we need to 

convert the format which suits to YOLO because the default format was designed for 

PascalVOC. Each label comprises of five parameters: Index of classification, center 

point coordinates (x, y), width w, wx1, and height h, hy1. Once all labelling work 

is accomplished, we group all images in our dataset into training test and test dataset 

with the proportion 8:2. We put images and corresponding annotation files into our 

folders, respectively. 

Compared to YOLOv5, the dataset for training in the SSD model requires the 

VOC2007 format. Therefore, in Labellmg, we adopted the default format. The image 

labelling information is stored as a .xml file in the specified folder. The.xml file contains 

the label classes, coordinates, width, and height. The formal VOC2007 dataset 

encompasses Annotations folder, ImageSets folder, JPEGImages folder, 

SegmentationClass folder, and SegmentationObject folder. 

For the SSD dataset in our experiment, we define the sample number in training-

validation dataset as 80.00% of the total, the number of test dataset is 20.00%, and the 

numbers of training and validation datasets are 64.00% and 16.00%, respectively. 

4.3 Implementations 

In order to implement the TSR experiment with YOLOv5 and SSD based on our own 

dataset, we took use of Google Collaboratory (Colab) platform with powerful GPU 

support. The key configuration of our hardware and software as well as the parameters 
of our experiments is listed in Table 2. 

 

Table 2. The key configuration and environment parameters of our experiments 

 

Operation System Ubuntu 18.04.5 LTS 

GPU Tesla P100-PCIE-16GB 

RAM 26GB 

Programming Language Python 3.7.10 

CUDA Version 11.0.228 

PyTorch Version 1.8.1 

 

Once the experimental environment is completely set up, we need to mount our 

Google Drive to Colab and access the prepared dataset. For the experimental 

parameters, YOLOv5 is shown on the left side in Fig.3 (a), SSD is presented on the 

right side in Fig.3(b). 
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(a) 

 (b) 

Fig.3. YOLOv5 vs SSD experimental parameters (a) YOLOv5 (b) SSD 

 

4.4   Experimental Results  

YOLOv5 model has an excellent visualization function in the result. At first, we 

visually display its final recognition results for our dataset as shown in Fig.5. From 

Fig.4, we clearly observe TSR in our YOLOv5 experiment is dramatically accurate. 

 

  

Fig.4. TSR results by using YOLOv5 

 

In Table 3, we state the precision of “Road bump”, “Cross walk”, “Give way”, and 

“No entry”. The lowest precision obtained by “No U-turn” is 0.94. In terms of recall, 

the values for almost eight classes are all over 90.00%, which indicates the excellent 

TSR performance of YOLOv5 in our dataset. Therefore, undoubtedly, for the mean 

average precision, “No U-turn” obtains as high as 99.50%, all other classes are around 

97.00%. It demonstrates that the YOLOv5 model is able to achieve the completely 

accurate prediction of NZ-TSR in our dataset. 
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In the end, all specific evaluation metrics of YOLOv5 in our dataset are shown in 

Fig.5. Especially, the second and third columns are the mean values of the loss 

functions of the training dataset and the validation dataset for visual object detection 

and classification, respectively. The smaller the value is, the better the recognition 

performance of the model will be. 

    Usually, the most convenient and direct way to evaluate the experiment results is 

accuracy. In this paper, we make use of PR curves to demonstrate the tradeoff between 

precision rates and recall rates of the TSR performance of the models. 

 

Table 3. The YOLOv5 experimental results with our dataset 

 

Classes of traffic signs Precisions Recalls mAP@0.5 

No U-turn 0.937 1.000 0.995 

Road bump 1.000 0.903 0.965 

Road works 0.979 0.897 0.928 

Watch for children crossing 0.997 1.000 0.995 

Crosswalk ahead 1.000 0.979 0.986 

Give way 1.000 1.000 0.995 

Stop 0.984 0.938 0.975 

No entry 1.000 0.938 0.976 

 

 

Fig.5. All specific evaluation metrics of YOLOv5 in our dataset 
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Fig.6. Precision-recall curves for eight classes in the SSD experiments 

 

In Fig.6, we see mAP@0.5 results for eight classes in the SSD experiment. Overall, 

the accuracy of TSR in almost all classes reaches nearly 90.00%. In particular, the TSR 

of “Give way” has the best performance, the final average precision is as high as 
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97.06%. However, the average precision of “Watch for children crossing” is quite low, 

only 78.32%. The reason is highly remarked that the number of instances of that 

specific class is lower than others. 

All SSD experimental results are summarized in Table 4. The results illustrate the 

SSD model has a relatively good outcome apart from “Watching for children crossing”. 

In other words, for the SSD model, the more instances the dataset contains, the more 

accurate prediction will be. 

 

Table 4. The SSD experimental results with our dataset 

 

Classes Precisions Recalls mAP@0.5 

No U-turn 0.875 0.778 0.881 

Road bump 0.895 0.864 0.880 

Road works 0.967 0.952 0.977 

Watch for children crossing 1.000 0.414 0.783 

Crosswalk ahead 0.880 0.880 0.899 

Give way 1.000 0.956 0.971 

Stop 0.912 0.722 0.897 

No entry 0.935 0.878 0.922 

4.5 Comparisons 

After conducting a comprehensive comparison of YOLOv5 and SSD in our dataset, we 

see intuitively that the mean average precision of all eight classes obtained by YOLOv5 

and SSD is 0.98 and 0.90, respectively. From the perspective of accuracy rate of each 

class, the experimental results of YOLOv5 are all better than SSD except for “Road 

works”. Furthermore, the performance of YOLOv5 for “No U-turn”, “Watch for 
children crossing” and “Give way” is remarkable, which has reached 0.99, close to 

100.00% detection. For the SSD experiment, the highest recognition accuracy is 0.98 

obtained in “Road works”. However, in “Watch for children crossing” with a small 

number of samples, the accuracy is only 0.78. In the end, on the aspect of the TSR 

accuracy in our dataset, both YOLOv5 and SSD show good capabilities, but YOLOv5 

performs a bit better. 

For the TSR efficiency, with the same number of images in the test dataset, YOLOv5 

spends only 15 seconds, while SSD needs 129 seconds. The speed of TSR by using 

YOLOv5 is 30 FPS, nearly ten times faster than SSD, which is 3.49 fps. Therefore, 

YOLOv5 outperforms SSD as well in terms of TSR efficiency. 

5 Conclusion and Future work 

This project aims to probe the accuracy and speed of TSR based on the dataset of our 

traffic signs. Hence, in this paper, we selected the latest version of the series of YOLO 
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algorithms, namely YOLOv5, to evaluate its performance. Besides, we also identify 

which model is much suitable for the TSR between YOLOv5 and SSD. In this 

experiment, we adopt a customized dataset of our traffic signs, which contains 2,182 

traffic sign images including eight classes. Then, we implement a well-designed 

experiment based on the Google Colab platform having a very strong computational 

capability. In addition, we also analyze and compare the performance of the two models 

by using our evaluation metrics. 

From the experimental results, the accuracy of YOLOv5 is up to 97.70% for all 

classes, the mean average precision in each class is over 90.00%. Hence, SSD obtains 

90.14% on the accuracy in general. But for the class with fewer samples, it only has 

78.32% recognition rate. Therefore, YOLOv5 performs better than SSD in terms of 

recognition accuracy. Furthermore, from the perspective of recognition speed, 

YOLOv5 is faster than SSD with 30 fps (frames per second), SSD only has 3.49 fps. 

We believe that YOLOv5 is more suitable for TSR in real-time traffic environment. 

In future, we will keep extending our datasets to cover all classes of our traffic signs. 

Meanwhile, more newly developed models for visual object recognition, such as Mask 

R-CNN, CapsNet, and Siamese neural network would be included. Capsule neural 

network (CapsNet) has been employed for effectively identifying a class of traffic signs 

which have spatial relationships. Compared with the well-known deep neural networks, 

capsule networks tackle the topological relationship between visual objects. In addition, 

we will adopt professional evaluation metrics to assess the performance of our models 

from multiple aspects in future [29,30,31]. 
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