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Abstract: Human gait recognition has intensive applications in multiple fields, such as video-based 

surveillance, digital security and forensics, etc. In order to enhance the recognition rate, this paper 

studies a gait recognition scheme based on self-adaptive Hidden Markov Models (SAHMM). Firstly, 

we present a novel feature extraction algorithm to calculate the Local Gait Energy Image (LGEI) and 

construct observation vector sets. Then, a SAHMM-based gait recognition method which adopts a 

parameter adaptation process to optimize the parameters of gait models is provided. Finally, the 

proposed method is evaluated extensively on the CASIA Dataset B for cross-walking-condition and 

cross-view gait recognition, and further evaluated on the OU-ISIR Large Population Dataset to verify 

its generalization ability with large data. Both experimental results show that the proposed method 

exhibits superior performance in comparison with those existing methods, and show great potential for 

practical applications. 
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1 Introduction 

ait Recognition is one of the most promising biometric recognition technologies，which achieves 

human identification through our walking habits and dynamic characteristics. Compared to other 

biometrics, gait has a myriad of advantages such as non-offensive, low-resolution and easy 

data-collection [1]. In recent years, video-based gait recognition has gained tremendous attention from 

multiple fields, and a number of gait recognition algorithms have been proposed [2]-[6]. There are 

many challenges in video-based gait recognition, including different camera angles, dressing and 

carrying conditions, different walking speed, etc. And till now, existing gait recognition methods 

mainly focused on different view angles, also named cross-view problems, which are widely existing in 

practical applications. However, currently the cross-view problems are still far from completely 

resolved, because the gait appearance of one person can be dramatically altered when the view angles 

changed. 

 On the other hand, Hidden Markov Models (HMM) [7] has been successfully applied to model 

temporal information on applications such as natural language recognition [8] and face recognition [9], 

and achieved remarkable results. Deng and Bao [8] propose a sparse hidden Markov model 
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(HMM)-based single-channel speech enhancement method that models the speech and noise gains 

accurately in non- stationary noise environments. In [9], adaptive HMM was used to perform 

video-based face recognition. Although HMM and its variations have been applied to human behavior 

understanding, natural language recognition, face recognition and other fields extensively, few of them 

are dealing with video-based gait recognition. 

In this paper, to improve the recognition rate of gait recognition, we propose a novel gait 

recognition solution based on self-adaptive Hidden Markov Model (SAHMM). To the best our 

knowledge, this is the first time that this approach is proposed. There are three-fold contributions of the 

novel method: first, a well-designed feature extraction algorithm is presented based on Local Gait 

Energy Image (LGEI). Second, a novel gait recognition method based on SAHMM is proposed for 

classification which takes use of a parameter adaptation process to optimize the parameters of each gait 

model. Third, we greatly advance the record scores on the CASIA Dataset B and OU-ISIR Large 

Population Dataset, demonstrating that our method can work well under the condition of gait databases 

with large capacity. 

The remaining sections of this paper are organized as follows. In Section 2, more related works on 

gait recognition will be introduced. Then, in Section 3, a SAHMM-based gait recognition method will 

be presented and demonstrated in detail, including gait feature extraction, parameter estimation and 

adaptation of gait models. Our experiments are carried out based on CASIA gait dataset to evaluate the 

proposed algorithms in Section 4, the conclusion and future work of this paper will be finally addressed 

in Section 5.  

2 Related work 

Most of the existing approaches to video-based gait recognition can be broadly classified into two 

categories, i.e., those that use GEI-based holistic features [2], [3], [10]-[12] and others that use detailed 

features[4]-[6], [13]-[15]. Gait Energy Image (GEI) [10] is a spatial-temporal gait feature 

representation, which is widely used to characterize human walking properties for gait recognition and 

gait classification. The first kinds of methods are based on the GEI and its varieties, which use the 

holistic gait information and generally do not need to extract specific gait features or construct 3D 

models. In [2], by using the GEI as original gait features, the problem of cross-view gait based human 

identification was investigated via deep convolutional neural networks. Connie et al. [3] combined 

multi-view matrix representation and a randomized kernel extreme learning machine, and proposed an 

end-to-end solution for view variation problems under Grassmann manifold treatment. To reduce the 

deteriorate effect of covariate factors in gait recognition and classification, Guan et al. [11] presented a 

class ensemble method, which was sensitive to locations of corrupted features and could generalize 

well to most covariate conditions. More recently, Islam et al. [12] designed a frequency domain gait 

representation, which was a variety of the GEI, and proposed a wavelet-based feature extraction 

method.  

The second kind of methods use detail gait information, mainly including the structural features 

and the geometry features from 3D models. Luo et al. [4] utilized a clothes-independent 3D parametric 

gait model to deal with the variation in speed, inclined plane and clothing faced by gait recognition 
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process. In [5], a covariate conscious approach for gait recognition was proposed, which addressed the 

variations in clothing and carrying conditions that could have negative impact on recognition 

performance. Tang et al. [6] assumed a 3D object shares common view surfaces in significantly 

different view, and addressed the arbitrary-view gait recognition problem by gait partial similarity 

matching. They estimated each gait pose via a level set energy cost function from silhouettes, and 

achieved shape deformation by Laplacian deformation energy function. Huang et al. [13] combined the 

gait structural profile and the shifted energy image to improve the robustness of gait recognition. In 

[14], a gait recognition system based on HMMs and dual discriminative observations for sub-dynamics 

analysis was presented. This method deployed both the gait dynamics information and the model-based 

features to improve the discriminatory capacity of their system. To deal with the large perspective 

distortion in gait recognition, Abdulsattar et al. [15] proposed an identification technique by 

reconstructing 3D models of the walking subjects. This technique used the Generic Fourier Descriptors 

as gait features, and could handle truncated gait cycles of different length. 

3 The proposed methodology  

Gait feature extraction and classifier design are the key processes in gait 

recognition problem. In this paper, a well-designed gait feature, named LGEI, and the 

related extraction algorithm is presented. Besides, HMM-based gait models are 

constructed, and a parameter adaptation method is proposed to refine them. The 

proposed method mainly includes four steps: 1) LGEI feature extraction which 

extracts gait features from the training set, the adapting set and the test set; 2) HMM 

gait models training. In this step, HMM gait models are constructed and trained using 

the training set; 3) parameter adaptation for HMM gait models. HMM gait models are 

refined by a small amount of gait data in adapting set; 4) SAHMM-based gait 

classification, which takes use of the HMM gait models with refined parameters to 

classify the gaits in the test set. The system diagram of gait recognition using the 

method mentioned above is shown in Fig. 1. 

 

 
Fig. 1. System diagram of gait recognition using the proposed method 
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3.1 Gait Feature Extraction 

Feature extraction is a crucial step in the course of gait recognition. It is usually necessary to 

detect and segment a moving object from a given video stream or motion pictures before gait feature 

extraction. At present, the algorithms of moving object detection and segmentation are well developed 

[16, 17], therefore, the focus of this paper will be on gait feature extraction and gait recognition. Amid 

gait feature extraction and HMM-based gait models training as well as gait recognition, we take gait 

contour into consideration directly. 

According to characteristics of human legs, the gait of normal walking has three states: in the state 

of Legs Together(S1)when the two legs close together, the two legs are in the same plane with a human 

body, including lifting up left foot to the side of right leg, lifting up the right foot to the side of left leg 

and normal standing; the state Left Front Right Back(S2) means that the left foot is on front of the right 

one; the state S3(Left Back Right Front) refers that the right foot is on front of the left one, as shown in 

Fig 2. Thus, a complete natural gait cycle is defined as S1→S2→S1→S3→S1, alternatively, 

S1→S3→S1→S2→S1 according to our walking habits of individuals. It should be noted that the gait 

cycle segmentation method is related to the direction of camera pointing in, when the view angle is 

suitable enough, the segmentation works very well. 

 

 

Fig.2 A natural gait cycle 

 After the completion of gait cycle segmentation, we can extract the gait features based on LGEI. 

As the first gait representation [10], given the binary gait silhouette images ( , )tB x y at time tin a gait 

cycle, the Gait Energy Image (GEI) is defined as: 

 
1

1
( , ) ( , )

N

t

t

G x y B x y
N =

=                                   (1) 

where N is the number of video frames in a complete cycle, t is the frame index, xand y arethe 

coordinates of an image pixel. Figure 3 shows examples of GEI in a complete cycle, where (a) and (b) 

are from the same person, but with different angles of view; (c) and (d) are from another person with 

different view angles also. 
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(a) (b) (c) (d) 

Fig.3 Examples of GEI in a compete cycle 

 

Generally, GEI reflects major shapes of gait silhouettes related to variations over a complete gait 

cycle. GEI has three basic characteristics [18]: (1) all the silhouette images are the space-normalized 

energy images of the target individual; (2) GEI is seen as the time-normalized accumulative energy 

image of the target individual in a complete gait cycle; (3) what pixels with bigger values in GEI means 

that actions occur more frequently at these points. In this paper, we refine the GEI by splitting each gait 

cycle into several segments and calculate relevant LGEIs on each segments, as shown in Figure 4. 

Compared with traditional GEI representation based on a complete gait cycle, LGEI utilizes more 

important details of gait changes in each gait cycle, and reduces sensitivity to variations in the view 

angle and other factors. The proposed feature extraction algorithm is given in Algorithm 1 by 

summarizing the above results. 

 

Algorithm 1.LGEI-based gait feature extraction 

Input:Periodic gait data of the person X 

Output: Feature vector set of the person X 

Step 1.Find the key frames. Divide each gait cycles in the periodic gait dataset P={Vi, 1≤i≤NC}, and get 

a sequence of key frames I={Ij,1≤j≤NF}, where NF≥5, and the value of NF= 5 has been adopted in our 

experiments.  

Step 2.Calculate LGEI for each key frame. The calculation of LGEI within the small neighborhood of 

each key frame is shown as Figure 4. It is easy to see that the use of GEI within a small neighborhood 

to replace a single key frame can reduce the key information loss caused by simple hard segmentation； 

 

Fig. 4 Diagram of LGEI calculation 
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Step 3. Construct feature vector set. If W and H denote the width and height of each LGEI respectively, 

then the related original feature vector set S is given by, 

  1, 2,...,
T

W=S s s s  (2) 

where sk (k=1, 2,…,W) are H-dimensional feature vectors. 

Step 4. Reduce dimension of each original feature vector using Principal Component Analysis (PCA) 

and obtain a new low-dimension observational state set O, which is the final feature vector set, 

      , ,  1,  ,  1, ,  1,  i j k F C Vi No N j N k  =O                      (3) 

where NF is the number of key frames extracted from each gait cycle, NC is the number of total gait 

cycles segmented from each gait image sequence, NV is the number of gait image sequences for the 

tracking person. The feature vector set O will be partitioned into a training set and a test set, which will 

be applied to parameter estimation and gait model test in Section 3.2 and Section 3.3. 

3.2 HMM Gait Model Training 

Suppose the state set of gait observation of the given person m is   1,  m k SS ks N , where Ns is the 

number of implicit states, we construct a SAHMM gait model ( ), ,m A B π . A is the state transition matrix 

which is defined as: 

 ( ) 1 , 5ij j ia P S S i j= =  A  (4) 

where
ija is the probability that the implicit state is Si at time t, the implicit state is Sj at timet+1. B is the 

confusion matrix defined as, 

 ( ) 1 5,1ij j i Fb P O S i j N= =    Β  (5) 

Where bij is the probability at time t the implicit state is Si and the observed state is Oj; NF stands for the 

number of observable states. Considering a person’s walk normally is periodic and the gait cycles are 

relatively stable, we extract five key gaits as the implicit states of SAHMM model, i.e. S1(Two Feet 

Together), S2(Right Foot Through the Left Side), S3 (Left Foot Through the Right Side), S4(Left Front 

Right Back), S5(Right Front Left Back) as shown in Figure 5. 
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Fig.5 The hidden state transition diagram of the proposed SAHMM 

 

By default, the gait cycle in our experiments starts from the state of two legs standing still, in most 

cases the gait begins from the state S1 and seldom from S4 and S5. Thus, the state probability π is 

initialized as, 

 

1

2 3

4 5

0.4

0.3

0



 

 

=


= =
 = =

 (6) 

Combined with the actual situation of normal walking, we set the initial values of state transition 

probability A and matrix B as, 

 

0.0 0.0 0.0 0.5 0.5

0.0 0.0 0.0 0.01.0

0.0 0.0 0.01.0 0.0

0.01.0 0.0 0.0 0.0

0.0 0.01.0 0.0 0.0

 
 
 
 =
 
 
 
 

A  (7) 

 

1.0 0.0 0.0 0.0 0.0

0.01.0 0.0 0.0 0.0

0.0 0.01.0 0.0 0.0

0.0 0.0 0.01.0 0.0

0.0 0.0 0.0 0.01.0

 
 
 
 =
 
 
 
 

B  (8) 

Taken the gait feature vector set mV of given person m as training data, the purpose of parameter 

estimation for the SAHMM model m  is to optimize three parameters A, B and π . In gait recognition 

based on image sequences, the state transition matrix A and the confusion matrix B cannot be obtained 

directly, hence we use the forward-backward algorithm [19] to obtain the local optimal solution. The 
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forward-backward algorithm firstly initializes the parameters of the SAHMM gait model and takes use 

of the given training data to evaluate the reliability of the initialization parameters, finally adjusts the 

initialization parameters by minimizing the errors they cause. Specifically, given gait observation 

sequences Vm, the SAHMM model m and its initialization parameters, we get, 

( ) ( )i ,t t i m mP q s V = =         (9) 

 ( ) ( )1, , ,t t i t j m mi j P q s q s V += = =                            (10) 

where ( )t i is the local probability of the implicit state Si at time t, ( ),t i j  is the local probability of 

the implicit state converting from Si at time t to Sj at time t+1.Finally, we use the eq. (11)~eq.(13) to 

iteratively refine the initialization parameters of m and obtain a set of locally optimal parameters for (A, 

B, π ). 

 ( )ˆ
i t i =  (11) 

 ( ) ( )
1 1

1 1

ˆ ,
T T

ij t
t t

a i j i 
− −

= =

=    (12) 

 ( ) ( )
1 1

ˆ
T T

ij t t
t t

b i i 
= =

=    (13) 

3.3 Parameter Adaptation for Gait Models 

In practical applications of gait recognition, due to external factors that affect the view angle of 

the camera, clothing and weight bearing, there often is a mismatch between the training data and the 

practical test data, which will lead to decline gait recognition performance. By parameter adaptation 

which adopts data from a real environment to adjust the parameters of gait models, it is therefore 

possible to solve this problem. HMM parameter adaption methods usually are getting well with the 

maximum a posteriori (MAP) estimation [20], which combines prior knowledge and the knowledge 

obtained from adaptive data, then perform linear interpolation between initial parameter and adaptive 

data to obtain final mean vector. The advantage of this method is that it makes use of prior knowledge 

of the model parameters, thus it has good consistent and incremental features, especially when the 

adaptive data is large enough. However, the MAP-based methods are sensitive to the amount of 

adaptation data. When the volume of adaptation data is little, the mean after adaption will depend on 

the initial one. 

In order to overcome the disadvantages of parameter adaption methods using MAP, we propose an 
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incremental adaptive method based on Cox regression analysis. By utilizing the relationship between 

HMM parameters, the proposed method employs a small amount of adaption data to adjust the gait 

model parameters effectively. Suppose the output of SAHMM gait models is mixed with Gaussian 

distribution, and the output distributions before and after the adaptive processing are, 

( ),m ij ij =                                     (14) 

( ),m ij ij =                                     (15) 

where 
ij and

ij  are the j-th means of Gaussian mixed distribution of the i-th state before and after 

the adaptive processing respectively; 
ij and

ij are the covariance matrices before and after the 

adaptive processing separately. 

Given an adaption data set   1,  Am Ai i N=V v , the corresponding Cox regression model is 

defined as: 

 
0ij ij ij  = + +K k  (16) 

where
ij is the residual error, K and 0k are the regression matrix and translation vector respectively.  

To solve K and 0k , we define the objective function as, 

 ( ) ( )0 0 0( , )
T

T

p p p p ij ij ij ij
p N p N

f w w     
 

=  = − −  − − K k K k K k  (17) 

where N is the nearest neighbor set of m before the adaptive processing;
pw is the weight factor that is 

defined as, 

 
2exp( )p pw d= −  (18) 

 ( )
2

2

1

K
k k k

p p ij ij
k

d   
=

= −  (19) 

where
k

ij  is the k-th diagonal element of covariance matrix
ij . 

 From the definition, when the distance is smaller, the corresponding weight factor
pw  will be 

larger, and thus it has a great impact on the regression model. Meanwhile, if there is no corresponding 

adaption data for a mean vector, we only need to find the regression class and utilize the corresponding 

transformation matrix to conduct the adaption transformation. For a small capacity of gait recognition 

based on SAHMM, one leaf node in its regression tree represents a single component, and each node 

on the high layer stands for a set of components with similar distance, while the root node contains all 

the mixture components. When a SAHMM has multiple mixed components, the leaf nodes come along 

with the basic classes based on the initial clustering, and each of the basic class comprehends to a set of 

components with similar distance. The experimental results show that the proposed method is effective 

for gait recognition with only a small amount of adaption data. 

3.4 SAHMM-Based Gait Classification 

Given a gait observation vector set   1,
k

Nv k  =V , the observation 

sequence
1 2

...
Tk kk k

o o o=O corresponding to each vk, and theset of all the samples in gait database, a gait 
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recognition problem is converted to a SAHMM evaluation problem. Thus we only need to calculate the 

average probability, 

( )1

1

|
N

m k mN
k

P P O 
=

=                                (20) 

where each SAHMM gait model outputs the results {
mP } given the observation sequence. We take use 

of the forward algorithm to calculate the probability that each SAHMM model generates the given gait 

observation sequence V. The complete gait recognition process based on SAHMM is described as 

Algorithm 2. 

 

Algorithm 2. Gait recognition using SAHMM with parameter adaptation 

Input: Feature vectors from the training set and test set. 

Output:The model number n. 

Step1. Construct a SAHMM gait model ( ), ,m A B π for each person in current gait database, and 

initialize parameters of all gait models. The initial values of A, B and π are shown in eq. (6) ~ eq. (8). 

Step2. Use the forward-backward algorithm to obtain local optimal solution for parameters of all gait 

models. In this step, the feature vectors from the training set are adopted as eq. (11) ~ eq. (13). 

Step3. Refine the parameters of each gait model by the proposed incremental adaptive method. This 

step encompasses parameter optimization operations of SAHMM gait models, which are relatively 

complex and are able to be completed offline only. 

Step4. Calculate the average probability of all gait models. The local probability ( )t j  of each hidden 

state is obtained by recursive computations using eq. (21).The probability of generating an observation 

vector set V by each HMM gait model equals to the sum of all the local probabilities at time T, as 

shown in eq. (21) and eq.(22). 

 ( )
( )

( )( )
1

5

1

1

[2, ]

t

t

jk

t

t ij jk
i

j b t

j
i a b t T






−−

=


= 




 (21) 

 ( ) ( )
1 1

5
1

1

1|
N N

m k mN N T
k k j

jP P O  
== =

= =   . (22) 

The operations from this step have moderate computational complexity, and are able to be processed in 

real-time. 

Step5. Sort the average probabilities  mP by each gait model and get the model 
n with the 

maximum average probability. 

Step6. Output the model number n. 
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4 Experimental Results 

Based on the CASIA Dataset B [21], and OU-ISIR Large Population Dataset [22], we designed 

and implemented three experiments for evaluating gait recognition. Experiment I and Experiment II is 

to evaluate the cross-view and cross-walking condition gait recognition on CASIA Dataset B which 

contains gait videos of 124 individuals including 11 views evenly distributed from 0 to 180 degrees 

under three kinds of walking conditions i.e. normal conditions, wearing coats, and carrying bags;  

Experiment III is to verify its generalization ability with large data, and takes use of the OU-ISIR Large 

Population Dataset which contains gait data of 20 individuals, including 12 image sequences, 4 

sequences for each of the three directions, i.e. parallel, 45 degrees and 90 degrees to the image plane.  

 

Fig. 6 11 views examples in CASIA Dataset B 

Average recognition rate and recognition rate standard deviation are taken into consideration in 

the evaluation indexes, which reflect the correct recognition rate and stability of related gait recognition 

methods. These experiments utilize the subsets of CASIA gait database to compare the proposed 

method with the other three methods. The experimental data were obtained by random sampling and 

repeated experiments (500 times). 

 

Experiment I. Comparison of recognition rates of proposed methods on CASIA Dataset B 

 

This experiment only takes use of the gait data under normal conditions in CASIA Dataset B. There are 

8 training sets, which consist of all the data with 90 degrees of view and the randomly selected data 

from the other views with the proportion of 1%, 5%, 10%, 15%, 20%, 25%, and 35% separately. The 

experimental results are shown in Figure 7, where the horizontal axis is the percentage of the total 

adaption data, the vertical axis in Figure 7 (a) is the average recognition rate, and the vertical axis in 

Figure 7 (b)is the standard deviation of recognition rate. 
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(a) Average recognition rate 

 

 

(b) The standard deviation of recognition rate 

Fig.7 The recognition rate curves of different methods in Experiment I  

 

Figure 7 shows the comparisons of the wavelet-based method [12], the HMM-DDO method [14], 

the MAP-based adaptive method and the SAHMM-based method. The proposed method in this paper 

have higher average recognition rate and less standard deviation. This mainly owes to the use of 

adaptive parameter optimization, which easily leads to the mismatch between the training data and the 

test data. Furthermore, Figure 7 also shows that with the increase of the proportion of adaption data in 

the total test data, the average recognition rates of the four methods have all been improved. However, 

the methods have a wide range of sensitivity to the adaption data, and the standard deviations of 

recognition rate of the methods are also different. The wavelet-based and HMM-DDO methods have 

not adaptive process, when the size of adaption data is small, training data with 90 degree plays a 

decisive role in the process of model parameter estimation and the recognition rate is very low; but 
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when the adaption data is increased to more than 20%, which is very close to the normal amount of 

training data, the recognition rate will be increased sharply. Regarding the methods after an adaptive 

parameter optimization process, the recognition rate is already higher in the case of little adaption data, 

and with the increase of adopted training data, the recognition rate is relatively smooth.  

 

Experiment II. Comparisons of recognition rate of several methods on CASIA Dataset B  

 

This experiment adopted all the gait data in CASIA Dataset B including the gait data under walking 

conditions of wearing coats and carrying bags. Similar to Experiment I, we construct 8 types of training 

set from all gait data with 90-degree view and randomly selected gait data from the other views with 

the proportion of 1%, 5%, 10%, 15%, 20%, 25%, and 35%. Figure 8 shows the experimental results 

with the horizontal axis representing the percentage of total adaption data, the vertical axis in Figure 8 

(a) representing the average recognition rate as well as the vertical axis in Figure 8 (b) standing for the 

standard deviation of recognition rate. 

In Figure 8 (a), compared to Experiment I, the average recognition rates of the four methods all 

have a significant decline. This is due to the increase of experimental data which includes complex 

interference factors such as wearing coats and carrying bags. But on the whole, our algorithm has a 

higher average recognition rate, especially when the adaption data is less. From Figure 8 (b) we see 

that with the increase of adaption data, the standard deviations of recognition rate of the four methods 

have been significantly increased, but the standard deviations with an adaptive parameter optimization 

process are relatively low. The reason is that the increase of abnormal gait data, such as wearing coats 

and carrying bags, results in the decrease of recognition rate. On the other hand, the methods with a 

process of adaptive parameter optimization reduce the imbalance between the training data and the 

test data, the corresponding standard deviations of recognition rate are relatively small.  
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 (a) Average recognition rate 

 

(b) The standard deviation of recognition rate 

Fig.8 The recognition rate curves of different methods in Experiment II. 

 

Experiment III. Recognition rates comparison of several methods on OU-ISIR Large Population 

Dataset 

In this experiment, the effectiveness of the proposed method is assessed against the OU-ISIR Large 

Population Dataset, named OULP-C1V2. This dataset comprises two main subsets, A and B. A is a set 

of two sequences per subject, and B is a set of one sequences per subject. In addition, each of the main 

subsets is further divided into 5 subsets based on the observation angles, 55-degree, 65-degree, 

75-degree, 85-degree, and including all four angles.  The data set consists of over 4,000persons 

walking on the ground surrounded by the 2 cameras at 30 fps, 640 by 480 pixels. 

 We utilize 8 different training sets including all data in subset A and select data with other views by 

1%, 5%, 10%, 15%, 20%, 25%, and 35% randomly from subset B. The related experimental results are 
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shown in Figure 9, where the horizontal axis represents the percentage of the total adaption data, the 

vertical axis in Figure 9 (a) represents the average recognition rate, and the vertical axis in Figure 9(b) 

shows the standard deviation of recognition rate as well. 

 

(a) Average recognition rate 

 

 

(b) The standard deviation of recognition rate 

Fig.9 The recognition rate curves of different methods in Experiment III 

 

Figure 9 (a) shows the MAP-based adaptive method and the proposed method in this paper have 

obvious advantages in terms of average recognition rate, compared with the wavelet-based and 

HMM-DDO methods. The reason is that the process of adaptive parameter optimization partially solves 

the mismatch problem between the training data and the actual test data. Shown as Figure 9 (b), 

multiple adaptive methods have different sensitivity to the proportion of adaption data in the test data 

set, so the stability of the recognition rate is various in large repeated experiments. On the whole, the 
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recognition rate of methods with an adaptive parameter optimization process is much stable, thus the 

corresponding standard deviation is rather small. 

The experimental results demonstrate the effectiveness of the proposed algorithm. This is mainly 

due to the well-designed feature extraction algorithm, and partially benefits from the parameter 

adaptation optimization process in the proposed SAHMM-based gait recognition algorithm. 

5 Conclusion and Future Work 

In this paper, a well-designed feature representation and the related feature extraction algorithm 

are presented. Then a novel gait recognition method based on SAHMM is proposed, we construct the 

observed state set from each gait cycle and train the SAHMM gait models. In addition, in order to 

improve the gait recognition rate, we design and implement an adaptive algorithm to automatically 

adjust the parameters of SAHMM.  

To the best of our knowledge, this is the first time we work for gait recognition using SAHMM 

algorithms, our contributions are that we, (1)present a well-designed feature extraction algorithm based 

on a new gait feature, named LGEI, which utilizes important details of gait changes in each gait cycle, 

and release sensitivity to variations in view angle; (2) propose a novel gait recognition method based 

on SAHMM for gait classification which takes use of a parameter adaptation process to optimize the 

parameters of each gait model; (3) greatly advance the record scores on the CASIA Dataset B and 

OU-ISIR Large Population Dataset, demonstrating that our method can work well under the condition 

of gait databases with large capacity. The limitation of the proposed algorithms is that, in each gait 

image sequence, changes of human moving direction according to the camera should not be too 

intensive. The problems such as how to reduce or weaken the artificially restricted conditions, how to 

improve our gait recognition algorithms to match the practical needs are our future work [23, 24]. 
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