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Abstract. Accurate object detection on the road is the most important 

requirement of autonomous vehicles. Extensive work has been 

accomplished for car, pedestrian, and cyclist detection; however, 

comparatively, very few efforts have been put into 2D object detection. 

In this article, a dynamic approach is investigated to design a perfect 

unified neural network that could achieve the best results based on our 

available hardware. The proposed architecture is based on CSPNet for 

feature extraction in an end-to-end way. The net extracts visual features 

by using backbone subnet, visual object detection is based on a feature 

pyramid network (FPN). In order to increase the net flexibility, an auto-

anchor generating method is applied to the detection layer that makes the 

net suitable for any datasets. For fine-tuning the net, activation, 

optimization, and loss functions are considered along with multiple 

check points. The proposed net is trained and tested based on the 

benchmark KITTI dataset. Our extensive experiments show that the 

proposed model for visual object detection is superior to others, where 

other nets output very low accuracy for pedestrian and cyclist detection, 

our proposed model achieves 99.3% recall rate based on our dataset.  

Keywords: Deep neural network, road scene perception, autonomous vehicles, 

self-driving car, YOLOv5  

1   Introduction 

In the field of autonomous vehicles, accurate road scene perception plays a vital role to 
avoid accidents. Despite of plentiful advancements, visual object detection is still a 

challenging task. It demands a great deal of efforts, especially for vulnerable road users 

like pedestrians and cyclists that occupy more than half of on-road death tolls as 

published by the World Health Organization (WHO) [1]. The situation becomes even 

worse in bustling streets or under extreme weather conditions where drivers’ visibility 

is compromised due to truncation, occlusion, distances, and lighting conditions [2].  

Traditional computer vision approaches were based on Histogram of Oriented 

Gradient (HOG) [3] for feature representation with the classifiers like SVM (i.e., 

Support Vector Machine). However, recent development in Graphics Processing Unit 

(GPU) has provided opportunity to successful solutions based on deep learning. The 
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remarkable success of AlexNet [4], which won the ImageNet Classification Challenge 

2012, opened a door for very deep neural networks (DNNs). VGGNet [5] and 

GoogLeNet [6] obtained similar performance using deeper net architecture. 

Afterwards, Inception architecture was proposed as a net with multiple kernels [7] 

aiming at effective computations. ResNet [8] and DenseNet [9] emphasized on carrying 

forward the residual information to avoid extreme compression of ground information 

by using skip connections and direct connections between subsequent layers, 

respectively. Interestingly, these models were reused in other computer vision 

applications like object segmentation [7]. 

The popular approaches for visual object detection like Faster R-CNN [10] and Mask 

R-CNN [11] are based on Region Proposal Network (RPN) and Region of Interest 

(ROI) in the first stage and regression at the second stage for refining the detected 

object. On the other hand, the object detection approach in the end-to-end way has been 

adopted by YOLO (i.e., You Only Look Once) models [12], Single Shot MultiBox 

Detector (SSD) [13], and EfficientDet [14] networks which are based on a single 

regression network to detect visual objects in a speedy way.  

In this paper, we aim to detect and classify cars, pedestrians, and cyclists in real time 

by using a unified DNN with high accuracy. In the proposed solution, we investigate a 

flexible neural network. The contributions of this paper are summarized as follows: 

• The proposed method assigns different depth and width to the given baseline net 

dynamically to achieve the optimum outcomes based on the available hardware. 

• The baseline architecture is designed by using CSPNet in an end-to-end way for 

feature extraction and object detection. 

• An auto-anchor method is proposed for multiscale object detection based on k-

means clustering to generalize the network. 

 A PyTorch-based framework is proposed to attain short detection time that allows 

automated vehicles to make decisions timely. The net architecture is inspired by 

YOLOv5 [15], based on a single regression net for visual object detection. The 
optimized model is fine-tuned by using optimizations and loss functions to achieve the 

desired accuracy. Finally, the performance is evaluated based on the benchmark KITTI 

dataset [16] that provides complicated and challenging conditions to evaluate the 

performance of the proposed neural network. 

The remaining part of this paper is organized as follows. The related work is 

critically reviewed in Section 2. Furthermore, the proposed research method is outlined 

in Section 3. Next, our experimental results are demonstrated and discussed in Section 

4, following the conclusion in Section 5. 
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2    Related Work 

2.1   Vehicle Detection 

An extensive literature survey is conducted for visual object detection in the field of 

autonomous vehicles. A myriad of DNNs have been proposed for vehicle detection. 

Faster R-CNN was applied on video frames to get the desired accuracy of vehicle 

detection in road scene perception [17], though the algorithm has a limitation in the 

speed of inference. Cao et al. [18] improved the basic structure of SSD by adding 

inception blocks and feature fusion layers in the original network to detect tiny objects 

accurately. The deep MANTA [19] was designed based on the principle of RPN to find 

ROIs that were passed into two convolutional layers and fully connected layers to get 

2D bounding boxes and key parts of vehicles. MSVD_SPP method [20] modified 

YOLOv3 [21] by using five special pyramid pooling (SPP) blocks in visual feature 

extraction. Sang et al. [22] modified YOLOv2 by combining k-means++ clustering 

algorithm for generating best-fit anchor box. Wang et al. [23] exploited Faster R-CNN 

by including multishape receptive field and anchor optimizations.  

    On the other hand [24][25], visual features such as  HOG [3] or Haar-like features 

[27] have been exploited to detect cars. A hierarchical HOG symmetrical feature was 

applied to various sides of vehicles, a modified HOG version was introduced to cover 

gradient information from different viewpoints [24]. Furthermore, a two-step object 

detection algorithm [25] was proposed based on the combined results of HOG and Harr-

like features. 

2.2   Pedestrian and Cyclist Detection 

In the field of pedestrian detection, low-level image features have been employed 

exhaustively to produce ROIs based on different sensors [28]. These models exploited 

HOG features along with multiple methods, like decision tree or Local Binary Pattern 

(LBP) [29]. HOG descriptor with SVM (i.e., Support Vector Machine) classifier has 

been applied [3] to pedestrian detection with remarkable success. However, these hand-

crafted methods remained susceptible to occlusion and other complex environments, 

not suitable for real-time scenarios. However, recent deep learning methods allow the 

network to produce high-level features of objects with real-time processing speed 

[30][31]. 

    In human recognition, thermal images have been employed in many applications [32] 

for their heat-sensitive features. Pertaining to pedestrian and cyclist detection, thermal 

images resulted in better performance than RGB images in poor visibility conditions 

[26][33]. A fusion was conducted on thermal and camera RGB images with two parallel 

SSD detection streams [26]. Faster R-CNN was exploited to adaptively merge both 

modalities by a subnetwork of gated fusion  [32]. A unified framework based on Fast 

R-CNN was employed for pedestrian and cyclist detection via multilevel feature fusion  

[34].  
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    Car and pedestrian detections have contributed to road scene perception [35][36]. 

Song et al. [35] engaged in car and pedestrian detections by using SSD model with 

MobileNet backbone subnet for a faster detection ratio. Yang et al. [36] endeavored for 

car and pedestrian detection based on YOLOv2 by replacing k-means clustering 

algorithm of anchor generation with a prior knowledge of objects in the database. 

    A RetinaNet-based model was proposed [2] to detect cars, pedestrians, and cyclists 

in autonomous driving by using RGB and stereo images along with LiDAR point 

clouds. In [2], two models, namely, Stacked Fusion Double RetinaNet (SFD-Retina) 

and Gated Fusion Double RetinaNet (GFD-Retina) with multiple fusion styles were 

proposed. Liu et al [37] proffered a lightweight neural network to detect visual objects 

on the road by using limited computing resources while preserving the accuracy. Later, 

the previous work was refined [38] by using CentreNet-based anchor-free approach by 

bringing in Atrous Spatial Pyramid Pooling (ASPP) to extract visual features of 

multiscale objects with low computational costs. 

    Based on literature review, most 2D object detection in the autonomous vehicle 

focused on individual object with little research outputs on the unified framework. 

Consequently, multiple pipelines need to be run parallel, which lead to an increased 

number of operations and slow down the detection speed. On the other hand, the general 

outcomes of the object detection framework [2] result in low accuracy of pedestrian 

and cyclist detection compared to vehicle detection. Therefore, the proposed 

flexibleNet based on unified framework is significant which is able to achieve desirable 

precision and recall for pedestrian and cyclist detection and suits fast road scene 

perception.  

3   Research Methods 

In this section, we have firstly discussed the proposed DNN architecture deduced from 

the recent YOLOv5 network [15], followed by the auto-anchor generating method. 

3.1   FlexiNet: Flexible Neural Network 

The architecture and complexity of deep neural networks have shown powerful ability 

in feature extraction [4][5][6], however, it is only suitable for costly hardware 

components. Moreover, naively increasing the network depth also results in overfitting 

and vanishing gradient problems [14][40]. On the other hand, a wider network captures 

fine-grained features much precisely [39]. However, our empirical results as shown in 

Fig. 3 depict that going too wide also leads to decreased accuracy. Thus, we propose a 

FlexiNet model that allows to dynamically define a network structure by using the 

multiple depths and widths attributes of the baseline architecture to achieve the 

optimum accuracy for the existing database with available hardware resources.  

    In order to avoid losing residual spatial information with very deep networks, ResNet 

models were proposed with the skip connections [40], PANet was based on adaptive 

feature pooling [41], whereas DenseNet [9] and CSPNet [42] were proposed with cross-

stage hierarchy to boost the flow of gradient information. Followed YOLOv4 [12], the 

proposed model exploits CSPNet [42] as the basic block that split the path of gradient 
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flow into two streams followed by concatenation and transition blocks to extract 

complex features of the given images as shown in Fig. 1. CSPNet has been proven to 

converge faster with no extra storage cost [42][12]. 

The proposed FlexiNet consists of multiple CSPNet blocks followed by 

convolutional blocks called partial transition blocks, which perform a hierarchical 

feature fusion mechanism [42]. The number of channels and the number of layers in 

FlexiNet are decided based on the depth and width. Every convolutional block 

comprises a Conv2D layer followed by a batch normalization and SiLU activation 

function [43].  

 

Fig. 1. CSPNet as a basic block in FlexiNet model with dynamic scaling 

Against the constraint of fixed size image restriction in object detection, the 

proposed model makes use of a Spatial Pyramid Pooling layer (SPP) [44], which was 

successfully adopted in a number of end-to-end detection architectures. The SPP layer 

concatenates the feature maps produced from three intermediate convolutional layers 

yielding a fixed-length representation with the increased receptive field. Fig. 2 shows 

the FlexiNet baseline architecture, the final size of the net is evaluated concerning the 

parameters depth_multiple and width_multiple. Eq. (1) represents the formation of each 

block in flexible neural network based on the assigned depth_multiple and 

wedth_multiple parameters. 

{
𝐹𝑖𝑛𝑎𝑙_𝑙𝑎𝑦𝑒𝑟𝑠_𝑖𝑛_𝑏𝑙𝑜𝑐𝑘 =  𝑛𝑜_𝑜𝑓_𝑙𝑎𝑦𝑒𝑟𝑠_𝑖𝑛_𝑏𝑙𝑜𝑐𝑘 × 𝑑𝑒𝑝𝑡ℎ_𝑚𝑢𝑡𝑖𝑝𝑙𝑒,

𝐹𝑖𝑛𝑎𝑙_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠_𝑖𝑛_𝑏𝑙𝑜𝑐𝑘 =  𝑛𝑜_𝑜𝑓_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠_𝑖𝑛_𝑏𝑙𝑜𝑐𝑘 × 𝑤𝑖𝑑𝑡ℎ_𝑚𝑢𝑡𝑖𝑝𝑙𝑒
       (1) 

In DNN, every convolutional layer provides feature extraction that results in losing 

fine-grained features. In order to deal with this problem, the proposed method extracts 

feature maps from three stages BB-s1, BB-s2, and BB-s3, in the backbone subnet.  

    Regarding object detection with feature extraction, the head module of the 

architecture is influenced by YOLOv3 [45] and YOLOv4 [12]. In the head section, 

object detection is fulfilled by using FPN [46] for different size objects by using 

multiscale anchors. As shown in Fig. 2, visual object detection is accomplished at three 

stages H-S1, H-S2, H-S3. However, multistage detection results in various outcomes 

of bounding boxes of the same object. Using non-max suppression, these extra boxes 

are removed by keeping the one with the highest confidence score. 
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Fig. 2. The architecture of FlexiNet. The first module in the architecture is the backbone subnet 

by providing features extraction from three different stages. The head section of the network 

performs detection at three stages with multiscale objects. 

3.2    Auto-Anchor 

In order to  obtain a high level of flexibility, an auto-anchor generating method is 

proposed by using k-means clustering algorithm. The proposed algorithm at first 

generates clusters based on IoU (i.e., intersection over union) by using the ground truth 

of bounding boxes (GT_BBs) at three scales. Secondly, the mean anchor sizes 

(mean_Anchor_size) are confirmed for each cluster. The pseudocode for the proposed 

algorithm is shown as follows: 
 

Input: data GT_BBs,m 

initialize Anchor_Size[3xm] with  base_values 

no_change = False 

 

repeat 

  #generate 3xm clusters 

  for i in Gt_BBs: 

 associate Gt_BB[i] with a AnchorSize based on minimum IoU 

 

  #claculate mean_AnchorSize[nxm] of each cluster 

  For i in 3: 

    For j in m: 

      find mean_AnchorSize[ixj] based-on GT_BBs in cluster[i,j] 

      if Anchor_size[i,j] == mean_AnchorSize[i,j]: 

        no_change = True 

      else: 

        Anchor_size[i,j] = mean_AnchorSize[i,j] 

      

untill no_change= False: 

Output: Anchor_Size[3xm] 
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3.3   Workflow  

Fig. 3 illustrates the workflow of 2D road scene perception by using the proposed 

flexiNet model. In order to improve the network performance, different fine-tuning 

strategies are followed based on gradient descent optimizers, loss functions, and 

different check-points. 

 

Fig. 3. The pipeline of the proposed model  

4    Experimental Results and Evaluations 

Regarding the model evaluations, we have primarily adopted a benchmark KITTI 

dataset [16]. The dataset particularly aims to push forward the development of 

computer vision and robotic algorithms for autonomous vehicles. In the KITTI dataset, 

there are 7481 labelled images with the average resolution 1350350. Basic classes of 

interests are taken into consideration, including Car, Van, Pedestrian, and Cyclist. Fig. 

4(a) shows the distribution of data instances in the KITTI dataset. Taken a balance 

between the class instances into account, 4,000 images were adopted for training, 

validation, and testing with the proportion 8:2:2. Fig. 4(b) depicts the instance 

distribution in final dataset. All images were scaled to 640×640 resolution that have 

been normalized. Motivated by the latest progress [12][15], we exploited CutMix [47] 

and image mosaic method as the augmentation based on the training dataset with a 

wider range of semantic variations. All experiments were run by using Tesla P100-

PCIE-16GB GPU with 16 GB memory. The test results encapsulate precision, recall, 

mAP, bounding box, loss function and object loss function to demonstrate the capacity 

of the proposed model. The equations are shown as eq. (2)(3)(4).  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑡𝑝 (𝑡𝑝 + 𝑓𝑝)⁄                                                    (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑡𝑝 (𝑡𝑝 + 𝑓𝑛)⁄                                                  (3) 

𝑚𝐴𝑃 =  1/𝑛 ∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖
𝑛
𝑖=1                                            (4) 
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where precision, recall, and mAP are calculated by using true positive (tp), false 

positive (fp), and false negative (fn)  based on the predicted results. 

 
(a)                                                      (b) 

Fig. 4. The sample distribution (a) The labelled KITTI dataset with the ratio of object numbers. 

(b) The sorted KITTI dataset in the experiments including all images containing pedestrians or 

cyclists with additional images 

4.1   Network Optimization 

 

In this section, the optimized network has been identified to achieve the best 

performance based on the existing hardware. Fig. 5(a), (b), and (c) show Floating Point 

Operations (FLOPs), involved network parameters, and final mAP@0.5IoU results, 

respectively, for a set of models based on FlexiNet baseline. Interestingly, there is a 

huge difference in FLOPs and network parameters as the network goes deeper and 

wider; however, the trends are not as the same with precisions.  

 
                        (a)             (b)              (c)                       

Fig. 5. Net scaling results. (a) FLOPs executed with different networks (b) Parameters stored in 

different networks (c) mAP@0.5IoU obtained at different networks 

   As shown in Fig. 5(c), increasing the width of a net provides a significant 

improvement with the precision initially; however, it eventually results in sinking the 

performance. On the other hand, going deeper into the network improves the results at 

first, later leads to saturation, excessive computational and storage overheads. For the 

given dataset, FlexiNet attained 87.8% mAP @ 0.5 IoU with the scaling factors of width 

(0.5) and depth (3.310-1), exploiting the minimum hardware with Adam optimizer [48] 

by using GIoU loss function [49]. 

mailto:mAP@0.5IoU
mailto:92.7%25mAP@0.5IoU
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Optimizer selection plays a vital role in the deep learning pipeline. In order to 

improve the accuracy of outputs, we investigated the SGD optimizer [50] with respect 

to Adam [48] based on our hyperparameters set having learning rate 1.010-2, 

momentum 0.9, and weight decay 5.010-3. Fig. 6 depicts that SGD optimizer with 

Adam method achieved 92.7% mAP and 87.4% recall based on the given training 

dataset. We see that SGD is superior to adaptive learning methods [51][52].  

 
                       (a)   (b)       (c)                

Fig. 6. Training and validation results based on Adam and SGD optimizer (a) mAP@0.5IoU 

curves obtained based on training dataset (b) obtained recall values based on training dataset and 

(c) objectness loss curves based on the validation dataset 

The regression loss function for basic bounding boxes in the proposed model is 

GIoU, in order to further explore the model, we have tested recently published loss 

functions [49] based on the optimized net structure. The loss functions tested in this 

paper are shown as Eq. (5), (6), and (7). 

 

        ℒ𝐺𝐼𝑜𝑈   =
|𝐴∩𝐵|

|𝐴∪𝐵|
−

|𝐶\(𝐴∪𝐵)|

|𝐶|
                                              (5) 

where C is the minimal closer area of bounding boxes A and B. 

 

                                            (6) 

where a and b are central points of ground truth and predicted boxes, ρ(·) is the 

Euclidean distance, c is the diagonal length of the smallest enclosing box covered by 

the two bounding boxes. 

 

                                   (7) 

where α is a positive trade-off parameter, ν measures the consistency of aspect ratio. 

Fig. 7 shows the results obtained by using IoU loss functions. It is clear from these 

figures that DIoU and CIoU loss functions converge faster than the GIoU loss function, 

thereby give better accuracy. Fig. 7(b) shows bounding box losses by using different 

functions while Fig. 7(c) displays the final objectness loss based on the validation 

dataset. Using DIoU loss function [49] with SGD optimizer [50], FlexiNet achieves the 

best performance 94.2% mAP@0.5IoU based on the training dataset. 

mailto:mAP@0.5IoU
mailto:mAP@0.5
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                        (a)   (b)       (c)       

Fig. 7. Training and validation results based on GIoU, DIoU, and CIoU loss functions (a) 

mAP@0.5IoU curves based on training dataset (b) the loss curves for the bounding box, and 

(c) the loss curves based on the validation dataset 

 
                        (a)     (b)                       

Fig. 8. FlexiNet results based on the dataset  (a) Obtained precision and recall rates at 0.5IoU 

threshold check points (b) Precision and recall rates for the car, pedestrian and cyclist detection 

by exploiting the best check points. 

 

Fig. 8 shows the FlexiNet results based on the given dataset. In order to check the 

overfitting of the model, we have tested the model and evaluate the performance at the 

check points. Fig. 8(a) indicates that 120 epochs model achieves the best performance 

and provides 85.4% average precision and 93.9% recall rate with 0.5IoU. Fig. 8(b) 

reveals the results of car, pedestrian, and cyclist detection for road scene perception. 

The results indicate that the proposed net is efficient in achieving high recall rates that 

directly indicate a low missing rate, whereas slight low precision also allows a margin 

of improvement. 

4.2   Model Comparisons 

 

Based on the detection results, FlexiNet performance is compared with popular 

detectors at present on the same platform with different IoU thresholds. Fig. 9 shows 

that FlexiNet and YOLOv4 [12] outperform Faster R-CNN [10] and EfficientDet-B1 

[14]. Fig. 9(b) indicates that FlexiNet achieved the best recall rate and the lowest 

mailto:mAP@0.5IoU
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missing rate over other models. YOLOv4 proves better in terms of precision that reveals 

lower false positives detection. 

 

                        (a)         (b)                       

Fig. 9. The comparison of FlexiNet model with popular methods for visual object detectors (a) 

Average precision with different IoU thresholds (b) Recall rates with different IoU thresholds 

    Table 1. shows the overall performance of FlexiNet and other detectors based on the 

KITTI dataset with complexity at 0.5 IoU threshold for car, pedestrian, and cyclist 

detection. Recall rate is the prime focus in autonomous driving because it contributes 

to false negative rates (missing objects), the most crucial parameter for avoiding 

accidents. The results obtained through FlexiNet show the best recall rate over all three 

classifiers, whereas YOLOv4 attained a better average precision. On the other hand, 

Faster R-CNN [10] and EfficientDet-B1 [14] unfold weak performance identifying 

cyclists, show the difficulty in differentiating cyclists from stand-alone cycles or 

pedestrians. Fig. 10 illustrates the detection results of cars, pedestrians, and cyclists 

presented on the road using detection images. 

Table 1. The comparisons for FlexiNet model with other popular detectors based on the KITTI dataset 

with complexity at 0.5 IoU threshold  

    

    

   Model Name 

Car 

 (recall%) 

Pedestrian  

(recall%) 

Cyclist  

(recall%) 

AP 

(%) 

Saved  

model 

 size 

(MB) 

    

   fps 

Easy 

 

Medium Hard Easy Medium Hard Easy Medium Hard 

  Faster R-CNN 96.1 76.3 68.7 80.6 66.7 43.6 12.4 9.1 6.8 46.3 7 5 

  EfficientDet-B1 96.4 72.6 68.8 80.0 77.2 46.2 17.5 16.3 5.9 53.1 27 15 

  YOLOv4 99.4 93.8 90.3 96.4 71.4 74.2 99.9 98.6 83.9 91.8 244 25 

  FlexiNet (Our) 99.7 95.0 91.2 98.3 93.3 83.2 99.3 99.3 99.3 83.2 54 100 



 12 

 

Fig. 10. The detection results of cars, pedestrians, and cyclists by using the proposed FlexiNet 

based on the KITTI dataset 

Based on the results achieved, one of the most important findings worth notifying is 

the importance of network balancing. Fig. 5 demonstrates that increasing the width and 

depth of DNN is not always the best option, in fact, the network needs to be fine-tuned 

with various depths and widths to optimize its structure. In FlexiNet, multiple factors 

have been incorporated to improve the performance like the selection of gradient 

descent optimizers and loss functions. Moreover, as shown in Fig. 8, early stopping is 

also a good choice if the results start degrading after certain epochs. Albeit FlexiNet 

remained unsuccessful in achieving the best precision compared to YOLOv4, it gives 

the lowest false negative rate, which takes account of autonomous vehicles along with 

four times higher speed. In addition, training the YOLOv4 model requires more time 

and memory as compared to FlexiNet. 

5   Conclusion 

In this article, we have proposed an end-to-end flexible net for object detection. The 

flexibleNet allows the architecture to be selected based on available hardware and 

dataset. CSPNet [42] is employed as a backbone network with SPP to obtain the 

complicated features of the input images. The deep net is supported by FPN to detect 
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multiscale visual objects. The proposed network is fine-tuned by using the gradient 

descent optimizers and loss functions. FlexiNet yielded the lowest rates of false-

negatives in road scene perception based on KITTI dataset [16] with remarkable 

computing speed.  Furthermore, the comparison with other nets shows our proposed 

model achieves desirable results. In future, we will work for decreasing the rates of 

false positives for visual object detection [53,54,55,56]. 
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