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Abstract—A sufficient amount of training data must be pre-
pared when training a neural network for transportation signs,
which requires extensive time and labour work to complete as it
is usually done manually. This paper presents a real-time object
detection neural network to predict the transportation signs in
different environmental conditions and be sufficiently trained by
a synthetic generated dataset. Our proposed method is based on
the concept of domain randomisation, where a massive amount
of images is generated by randomly orienting the transportation
sign objects to a computer graphics rendered virtual scene.
The trained model could achieve over 80% precision and over
90% recall and mAP against the real-world test dataset. Our
proposed method showed that the generated synthetic dataset is
adequate for predicting various transportation signs. Preparing
and utilising the synthetic data can be an efficient solution to
minimise the labour cost and human error during the manual
data annotation step.

Index Terms—Artificial intelligence, YOLO, Synthetic dataset
generation

I. INTRODUCTION

Deep learning [1], [2] has captured vast attraction across
both research and industrial domains. In many computer
vision-based applications, the deep learning techniques using
convolutional neural network (CNN) [3] give significant per-
formance results in various tasks, such as image classification
and object detection. These beneficial techniques have also
been applied to the field of transportation. These tasks involve
vehicles detection [4], traffic-sign detection (TSD) [5], [6]
or real-time traffic incident classification [7]. Those studies
have also shown that they can help to reduce the labour
cost and response time during emergencies. In recent years,
there is many datasets of the traffic signs have been col-
lected in different countries, such as the Chinese Traffic Sign
Database (TSRD) [8], German Traffic Sign Dataset (GTSRB)
or Tsinghua-Tencent 100K (TT100K) [9]. These datasets are
used for the TSD task and contain many transportation signs
images in different countries and natural environment condi-
tions. However, the major drawback of using these datasets
for deep neural network training is preparing many labelled
data. The GTSRB dataset consists of more than 40 classes
and over 50000 classified images in the train/test dataset.
Meanwhile, the TT100K dataset contributes 100000 images,
but only 30000 of those contain traffic-sign instances. The

dataset samples often require extensive data annotation as
they are done manually and are generally difficult to prepare
for the unique research purpose. The sim2real transfer is
the most popular method that uses synthetic images to train
the deep neural network and minimise manually annotated
instances. The significant advantage of sim2real is that we
can easily control the ground-truth annotation without human
labour. The successfully uses of sim2real can be found in the
3D human pose estimation [10] and the industrial robotics
control system [11]. One disadvantage of using the sim2real
method is the non-realistic appearance issue between the
synthetic images and the natural scene. Many researchers
have used generative adversarial networks (GAN) to generate
realistic images from synthetic datasets to overcome this
drawback [12], [13]. However, we still need to prepare an
initial real dataset to train the GAN model and generate the
larger synthetic dataset.

The graphics processing unit (GPU) significantly improves
both gaming and deep neural network training purposes.
The latest Nvidia GPUs with the built-in compute unified
device architecture (CUDA) allow direct access to the GPU’s
instruction set and parallel computational elements for kernel-
related tasks execution [14]. It means that more large blocks
of data will be processed in parallel at the same time to reduce
the deep neural network training time [15]. The CUDA units
are also responsible for real-time high-resolution graphics
rendering tasks. Nowadays, the GPU can be easily enabled
with few popular game engines, such as Unity [16], to render
realistic images more petite than a second. The game engine’s
advantage is domain randomisation, which allows us to gener-
ate nearly unlimited synthetic images with random parameters.
An early successful example of using domain randomisation
was using various camera positions, object locations and light-
ing conditions to generate synthetic images [17]. In reality,
the transportation signs generally appear with similar shapes
and can only be distinguished by comparing their textures.
However, unexpected natural illumination or camera angles
can easily shift the original texture information and reduce
model prediction performance. Hence, the data annotation
process is the most critical step of training the deep neural
network model for transportation signs prediction where the
most accurate data labelling is required. In such a situation,
using the game engine’s power and automatic digital graphic978-1-6654-0645-1/21/$31.00 ©2021 IEEE



rendering techniques can be a suitable solution to overcome
the manual data annotation limitations and improve the deep-
learning-based prediction accuracy.

This paper proposes a novel method using the auto-generated
synthetic dataset to train an object detection deep neural
network. Moreover, our proposed method allows us to generate
nearly unlimited images representing the most natural varia-
tion in different perspectives with minimal labour cost. It is
also helpful for preparing the deep-learning-based application
prototype when time constraints are the priority. Our proposed
method uses the domain randomisation approaches, where
we generate the training images by randomly locating the
synthetic transportation signs with the natural environment
backgrounds and applying different augmentation filters. In
short, this paper produces two main contributions. Firstly,
this is the attempt of using the game engine and GPU to
generate the synthetic dataset for transportation signs detection
that can minimise the manual data annotation labour intensive
and improve dataset quality (Fig. 1). Second, we proposed
a method that can be used to predict the actual images and
quickly apply them to the prototype or production process.

II. METHODS

Transportation sign materials. We used the New Zealand
standard road signs in this paper that are categorised into
three different types: (1) compulsory, (2) warning, (3) in-
formation. All the details of the transportation signs can
be obtained at the NZ Transport Agency official website
(https://www.nzta.govt.nz/roadcode/). In general, it has hun-
dreds of different transportation signs in New Zealand; but we
only used the top 50 common road signs for the deep neural
network training: speed limit (R1-1, R1-1.1, R1-1.2); Speed
Limit Derestriction (R1-3); Temporary (R1-8); No Stopping
(R6-10.1); Disabled Parking (R6-55); Bus Parking (R6-53);
Motorcycle Parking (R6-51); No Parking: Bus Stop (R6-
71); No Parking (R6-70); No Parking: Taxi Stand (R6-72);
Attention (TW-2); Road Works (T1A); Stop (R2-1); Turn
Left or Right (R3-11); Turn Left (R3-8); Turn Right (R3-
10); Go Straight (R3-9); Priority Over Oncoming Vehicles
(R2-8); Wrong Way (R3-7); No Turn Left (R3-1); No Turn
Right (R3-2); No U-Turn (R3-3); Road Closed (R3-6); One-
way traffic (R3-12); Traffic lights ahead (W10-4); Must Turn
Left/Right (R4-1); May Proceed Straight or Turn Left/Right
(R4-3); Must Proceed Straight (R4-2); Give Way (R2-2); Give
Way at Roundabout (R2-3); Give Way to Oncoming Vehicles
(R2-7); Except Bus (R3-5.1); Bus Lane (R4-7); Buses Only
(R4-7.1); No Entry (R3-4); School; No Exit (A40-1).

Synthetic dataset generation as shown in Fig. 2. The trans-
portation image pool contains the transportation sign images,
saved as individual image files. Each of those sign images
will be cropped to the fixed size of 1280 × 1280. For the
background images, over 1400 outdoor landscape images,
including day and night time, are used as the ”background
images pool”, and they are cropped to the sized of 1500 ×

2250. The process of synthetic data generation is described
as follows. Firstly, one or multiple images will be randomly
selected from the ”transportation images pool” and carefully
pasted to the transparent canvas of size 1500 × 2250. The
probability of displaying single or multiple signs on the
same background is set to 50. Secondly, another image of
the background is selected from the ”background images
pool”. The selected transportation sign images then will be
augmented by applying random filters such as rotation, the x
and y coordinates, scaling, blur, noise. However, the coordinate
values are restricted to a specific range so that the signs do
not exceed the background size. They are dependent on the
size of the sign image after scaling and its rotation angle.
Lastly, the transportation signs are pasted to the transparent
canvas according to the described parameters, and the canvas
will be pasted on the top of the selected background. During
the synthetic dataset generation, the bounding box with the
same size as the sign image is created along with its label
name. The size and the coordinates of the bounding boxes are
normalised between 0 and 1 by diving by the width and height
of the background. This procedure can generate an image size
of 1500 x 2250 with the transportation signs randomly oriented
inside a random outdoor background. It takes 6 hours to
produce over 100000 trainable images and their corresponding
labels files. While in the real world, it would take weeks or
months to complete a similar process.

Real-world and synthetic datasets for model evaluation.
In order to compare the deep neural network training per-
formance, we prepare a real-world dataset consisting of 350
images of transportation signs taken using different pho-
tography equipment such as the digital camera or build-
in mobile camera. Each image has a size of 1500 x 2250
and contains single or multiple images of the transportation
signs. We use the same values to determine the bound-
ing box boundaries described in the previous step. The la-
belling process is done manually with the online open-source
RoboFlow (https://blog.roboflow.com/labelme/). This manual
process takes more 2 weeks to complete with the help of
over 30 volunteers. We also prepare another synthetic dataset
generated using the proposed method, consisting of the same
number of images as the real dataset.

Deep neural network model. We use the ”You only look
once” – version 3 (YOLOv3) [18] model to train the datasets
and the build-in ImageNet [19] pre-trained weights for the
convolutional layers. The state of the art of YOLOv3 is
classifying the entire input image and directly outputting
the bounding box coordinates and class names. YOLOv3 is
claimed to significantly improve over its predecessors by using
the residual blocks, skip connections and upsampling (Fig. 3).
These changes aim to resolve the small object detection issues
in YOLOv2 and increase the accuracy rate. The YOLOv3
model can detect objects in three different scale levels at
layer 82nd, 94th, and 106th. This type of network design is
inspired by the Feature-Pyramid Network (FPN) developed in



Fig. 1. Overview of the proposed training process of transportation signs detection. The traditional method is done with manual data labelling that
requires more time and labour cost to complete, while our proposed method can reduce these drawbacks by using the auto rendered computer graphics to
generate the synthetic dataset for the deep neural network model.

Fig. 2. Synthetic dataset preparation process. a The real-world images of different New Zealand transportation signs with their code are described
below each image. These signs were also used for the real-world dataset. b Synthetic dataset generation where the images are generated by combining the
transportation signs with random background images together with various augmentation filters. The details of generated ground-truth label (bounding box)
are shown at the bottom.

2017 [20]. FPN allows the model to learn objects of different
sizes. The smaller detection blocks detect the objects with
lower resolution or large objects, and the greater detection
blocks are used for smaller objects. In the training process of

this paper, we keep the same training parameters as described
in the YOLO original paper. The network is trained for 80
iterations, with 8 is the batch size, and four is used for sub-
division.



Fig. 3. YOLOv3 neural network architecture.

Model evaluation metrics. To measure the accuracy of the
object detection model, we use the two common metrics which
are used in MS COCO [21] and Pascal VOC [22] dataset.

The recall metric evaluates how well the objects have been
detected (Equation 1) and can be calculated by obtaining
the intersection-over-union (IoU) value. The IoU determines
the overlap between the predicted bounding and the ground
truth over their area union. If the IoU value is greater than a
threshold value (generally set to 0.5), it is considered as true-
positive (TP), otherwise false-positive (FP). The false-negative
(FN) is made when no prediction is made for a particular
ground truth bounding box.

recall =
TP

TP + FN
(1)

The mean average precision (mAP) metric calculates the
mean value of average precision over the IoU thresholds,
where the precision can be obtained using Equation 2. In
precision equation, the value of false-negative is replaced by
false-positive (FP). The Pascal VOC used a static threshold
of 0.5 for the mAP, commonly called mAP0.5. Another mAP
metric is mAP[0.5:0.95], where the threshold is from 0.5 to
0.95.

precision =
TP

TP + FP
(2)

Software and hardware requirements. We use Python 3.8
and PyTorch (ver.1.7.1) for the deep neural network training
back-end. Single GPU (GeForce RTX 2080 Super) is used
for the model training, which has 384 tensor cores that
could produce up to 11.15 TFLOPS for FP32. Each epoch
takes approximately 32 minutes to complete, or it requires an
average of 19 milliseconds to process a single image.

III. RESULTS EVALUATION

Model evaluation. As described in the previous Section,
we trained four different datasets with the same models. We
used 3 model versions of YOLOv3 (tiny, 416, SPP) for this
experiment. The training parameters were kept the same in
order to minimise the potential training bias. We generated
two synthetic datasets using the proposed method; one has
50 different class names (100K), and the other consists of
35 class names (350). Table 1 summarises the quantitative
evaluation using values of recall, precision, and mean average
precision (mAP). Our proposed method achieved over 98%
for the 100K dataset and over 70% for the 350 dataset.
Significantly, the synthetic dataset could produce an average
of 42% higher than the real-world dataset. It means that
the synthetic dataset can predict the bounding box position
with a very low false-negative rate. There is the same result
with the false-positive value found in the precision records
where our synthetic dataset could achieve over 87% and an
average of 18.7% higher than the real-world dataset. The mAP
values, which were calculated based on the IoU thresholds,
comparable mAP0.5 values scored over 90% for the synthetic
dataset. The higher IoU threshold (mAP[0.5:0.95]) scored over
57% for the synthetic dataset. The experiment results suggest
that the model’s ability to predict the transportation sign and
its bounding box is better in the case of synthetic than the
real-world images.

Predictions under different conditions. We further experi-
mented with examining how well the model predicted under
different lighting and weather conditions (Fig. 4). In order to
complete this experiment, we collected the real-life images
taken from either personal cameras or by vehicles driving
video streams. The images and video streams are conducted
under different conditions: morning, night-time, raining or
foggy. The results indicated that the models could predict most



transportation signs with an average of over 50% accuracy rate.
Significantly, the rates could reach 70% under poor lighting
conditions.

IV. CONCLUSION

In this paper, we showed that utilising the synthetic dataset
can successfully train the object detection deep neural network
model to classify the real-world images of New Zealand
transportation signs. Our proposed method uses the power
of the graphic processing unit (GPU) to generate a nearly
unlimited image within a short period. It is labour cost-efficient
and practical compared with the manually labelling techniques.
The experimental results indicated that our synthetic dataset
could score similar prediction accuracy rates as the real-world
dataset. Significantly, our dataset could achieve promising per-
formance under poor conditions, such as low-lighting or foggy
weather. Our method is strongly recommended for low-cost
applications or prototypes for transportation or deep neural
network-related projects. However, we are only implementing
and test our solution on a desktop environment for this stage.
In practice, the commercial application should be able to
run on different platforms with various hardware restrictions.
Furthermore, we aim to expand the project to mobile platforms
such as iOS and Android, where we can generate the synthetic
dataset and train the models using on-mobile GPU.

REFERENCES

[1] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1, no. 2.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, 2017.

[4] S. Roy and M. S. Rahman, “Emergency vehicle detection on heavy
traffic road from cctv footage using deep convolutional neural network,”
in 2019 International Conference on Electrical, Computer and Commu-
nication Engineering (ECCE). IEEE, 2019, pp. 1–6.

[5] C. Dewi, R.-C. Chen, Y.-T. Liu, Y.-S. Liu, and L.-Q. Jiang, “Taiwan
stop sign recognition with customize anchor,” in Proceedings of the
12th International Conference on Computer Modeling and Simulation,
2020, pp. 51–55.

[6] R.-C. Chen, C. Dewi, S.-W. Huang, and R. E. Caraka, “Selecting critical
features for data classification based on machine learning methods,”
Journal of Big Data, vol. 7, no. 1, pp. 1–26, 2020.

[7] H. Nguyen, C. Cai, and F. Chen, “Automatic classification of traffic
incident’s severity using machine learning approaches,” IET Intelligent
Transport Systems, vol. 11, no. 10, pp. 615–623, 2017.

[8] Z. Zhu, D. Liang, S. Zhang, X. Huang, B. Li, and S. Hu, “Traffic-sign
detection and classification in the wild,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 2110–
2118.

[9] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “The german traffic
sign recognition benchmark: a multi-class classification competition,” in
The 2011 international joint conference on neural networks. IEEE,
2011, pp. 1453–1460.

[10] C. Doersch and A. Zisserman, “Sim2real transfer learning for 3d human
pose estimation: motion to the rescue,” arXiv preprint arXiv:1907.02499,
2019.

[11] M. Kaspar, J. D. M. Osorio, and J. Bock, “Sim2real transfer for
reinforcement learning without dynamics randomization,” arXiv preprint
arXiv:2002.11635, 2020.

[12] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb,
“Learning from simulated and unsupervised images through adversarial
training,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 2107–2116.

[13] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
arXiv preprint arXiv:1406.2661, 2014.

[14] F. Abi-Chahla, “Nvidia’s cuda: The end of the cpu?” Toms Hardware,
pp. 1954–7, 2008.

[15] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and
J. Kepner, “Survey and benchmarking of machine learning accelerators,”
in 2019 IEEE high performance extreme computing conference (HPEC).
IEEE, 2019, pp. 1–9.

[16] J. Haas, “A history of the unity game engine,” Diss. WORCESTER
POLYTECHNIC INSTITUTE, 2014.

[17] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real
transfer of robotic control with dynamics randomization,” in 2018 IEEE
international conference on robotics and automation (ICRA). IEEE,
2018, pp. 3803–3810.

[18] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[19] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[20] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
2117–2125.

[21] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

[22] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes (voc) challenge,” International
journal of computer vision, vol. 88, no. 2, pp. 303–338, 2010.



TABLE I
FULL MODEL EVALUATION. THE TABLE DESCRIBES THE EVALUATION RESULTS OF OUR SYNTHETIC DATASETS (PRESENTED IN BOLD) AND THE OTHER

TWO DATASETS CONDUCTED USING THE MANUAL DATA ANNOTATION PROCESS. THE RECALL AND PRECISION VALUES ARE SET AT THE IOU THRESHOLD
OF 0.5. THE MEAN AVERAGE PRECISION (MAP) VALUES ARE SET AT THE IOU THRESHOLD OF 0.5 (MAP0.5) AND FROM 0.5 TO 0.95 (MAP[0.5:0.95]).

Model Dataset Number of class Recall Precision mAP0.5 mAP[0.5:0.95]

NZ Signs 350 (Real) 35 0.476 0.298 0.482 0.304
YOLOv3 tiny NZ Signs 350 (Synthetic) 35 0.733 0.386 0.579 0.323

NZ Signs 100K (Synthetic) 50 0.973 0.876 0.903 0.559

NZ Signs 350 (Real) 35 0.6 0.356 0.538 0.342
YOLOv3 416 NZ Signs 350 (Synthetic) 35 0.843 0.359 0.735 0.432

NZ Signs 100K (Synthetic) 50 0.983 0.873 0.907 0.576

NZ Signs 350 (Real) 35 0.528 0.318 0.496 0.295
YOLOv3 SPP NZ Signs 350 (Synthetic) 35 0.693 0.403 0.595 0.396

NZ Signs 100K (Synthetic) 50 0.983 0.872 0.908 0.576

Fig. 4. YOLOv3 model predictions using our synthetic dataset under various light and weather conditions.


