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Abstract—Autonomous Vehicles (AVs) are expected to be 
intelligent enough to perceive the world accurately in terms of 
avoiding road obstacles. Remarkable progress has been made in 
3D road scene perception of AVs through machine learning and 
computer vision methods, but  existing solutions rely on 
expensive 64 beams LiDAR point clouds for the 3D positioning 
of objects. In this paper, we propose a simple yet effective 
approach that is based on the success of 2D object detection to 
estimate 3D positions of the vehicles in front of AVs. Our 
approach relies on camera RGB images for predicting size and 
orientation of 3D bounding boxes of AVs by using a novel deep 
neural network (DNN) and LiDAR 3D point clouds for distance 
estimation. For testing and training, KITTI and Waymo 
datasets are employed. We have converted 64 beams of LiDAR 
point clouds into 32 and 16 beams point clouds for model 
performance analysis. Based on the results, the proposed 
method proved to be robust with sparse point clouds without 
compromising accuracy. 

Keywords— LiDAR, point clouds, 3D vehicle detection, 
autonomous vehicles, self-driving car, deep learning, fusion 

I. INTRODUCTION 
An AV system is composed of three major components: 

Sensing and perception, localizing and mapping, applications 
for driving policy [1].  In this paper, we consider the sensing 
and perception aspects that are responsible for positioning 
objects in the surrounding environment of autonomous 
vehicles so that information  can be  collected  for manoeuvre 
and obstacle avoidance [2]. 

While  human drivers  make use of visual, auditory, and 
cognitive senses, AVs perceive the world with multiple 
sensors to overcome the shortcomings of using only one.  
There are several types of  sensor mounted on autonomous 
vehicles for visual object detection: Passive sensors, such as 
monocular, stereo cameras, and infrared cameras; active 
sensors including GPS, LiDAR, IMU, radar and sonar [3]. In 
recent years, most 3D object detection algorithms have 
preferred to use monocular cameras and LiDAR sensors. A 
monocular camera outputs digital images in texture and 
reveals the shape of the objects in the form of pixel values, 
such as RGB, YUV, or other colour systems [4]. On the other 
hand, LiDARs detect object location accurately in the range 
of meters but have radiation limitation [5]. Unlike digital 
cameras, LiDARs cannot discriminate objects based on 
texture and colour [5]. LiDAR data has been utilized in 
multiple ways in AV systems, for example, front-view 2D 
projected form [6], top-view or BEV projected form [7], voxel 
form (ie.e, 3D grid cell) [8], or raw form only [9][10]. 
Methods need to be found for integrating the information from 
LiDAR and cameras to work together for visual object 
detection. 

    With the advent of low-cost GPUs and DNNs, there has 
been remarkable progress made in the field of 2D object 
detection based on digital images by using the algorithms like 
Faster R-CNN [11], YOLOv4 [12], and YOLOv5 [13]. 
However, in order to make successful manoeuvre of AVs,  
fine estimate of distance and  shape of the front lying obstacles 
is necessary [14]. In this paper, we propose a cost-effective 
solution for 3D vehicle detection in the context of AVs. A 
novel framework to estimate 3D bounding boxes and 
orientations of the front lying vehicles is proposed based on 

the success of 2D vehicle detection by using deep neural 
networks (DNNs). The contribution of this paper is 
summarized as follows: 

• An specialized  DNN is proposed that exploits 
MobilNetV2 [33] for feature extraction with three 
detection branches pertaining to 3D box size, orientation 
and confidence score. 

• The algorithm works on the fact that the 3D centre of a 
vehicle is the translation of its 2D centre in the form of 
world coordinates. 

• Relying on actual information of LiDAR beams, vehicle 
distance from AVs is estimated by using trigonometry 
concepts. 

• In the model, a specialized algorithm is proposed to 
mitigate occlusion problem based on top-mounted 
LiDAR. 

• For experiments and results,  the benchmark KITTI dataset 
[15] is employed, which is further enhanced by using the 
Waymo dataset. The model performance is tested over 
multiple beams LiDAR point clouds to verify the 
robustness of the results. 

A comprehensive literature review is carried out in Section 
II for understanding background knowledge of this topic and 
identifying the research gap in  existing work. In Section III, 
our proposed methods are described. In Section IV, the result 
analysis is presented, and in Section V, the conclusion is 
drawn and  future work is proposed.  

II. RELATED WORK 
In this section, we  discus some of the previous   research 

work related to our domain and scope.  

A. Image-Based 3D Object Detection 
A myriad of algorithms are proposed to detect 3D 

bounding boxes from camera images via exploring into 2D 
object detection windows. In [16], the projection of a 3D 
bounding box fits tightly within its 2D window. A hybrid 
continuous loss was proposed by using multiple bins for 
object orientation prediction; the distance was poorly 
estimated. From monocular images and depth maps [17], a 3D 
object proposal was put forward for generating class 
independent proposals. The proposals were re-ranked based 
on monocular images before passing into the detection 
network; however, the heavy calculations slowed down the 
speed of visual object detection. In [18], a dictionary of 3D 
voxel patterns (3DVP) with various classes of cars were 
employed for training the classifiers.  

B. Point Clouds-Based 3D Object Detection 
LiDAR point clouds have been exploited in three major 

ways for 3D bounding box estimation: Projection-based, 
voxel-based, and raw point clouds based. Cylindrical 
projection of point clouds that gives a front view of AV was 
fed into a fully CNN to detect the positions of 3D objects [19]. 
BirdNet [20] was applied to generate BEV maps based on 
height, intensity, and density of point clouds for feeding into 
a DNN after density normalization; however, the intensity led 



to poor results. In complex YOLO [21] faster detection 
method was proposed by using BEV point clouds based on 
Euler-RPN to predict five 3D anchor boxes per grid cell.  

   In VoxelNet [8], vehicle detection was introduced by using 
point clouds with a voxel feature encoding (VFE) layer to 
generate point-wise concatenated features of vehicles. The 
information  was passed into a region proposal network (RPN) 
to predict 3D localization. With [8], in SECOND [22] and 
SARPNET [23], voxel-based 3D road second perception was 
proposed; however, computational efficiency and memory 
consumption of voxels  remain the major bottleneck for these 
algorithms [24]. 

     The raw point clouds are exploited for treating every point 
in the cloud independently based on PointNet [9]. FVNet [24] 
firstly generates a 2D region proposal based on front view 
projection of point clouds and extends 2D bounding boxes 
into 3D point cloud frustum with truncated radial distances. F-
ConvNet [25] categorized the point clouds frustum into 
multiple groups based on distance ranges. These groups of 
spatial point clouds pass through parallel PointNets to 
aggregate local point-wise features. PointRCNN [26] 
segments the whole point clouds into foreground and 
background parts to generate high-quality 3D proposals along 
with semantic features. 

C. Sensors Fusion-Based 3D Object Detection 
    In MV3D, a fusion of point clouds BEV maps, front view 
maps, and camera images was proposed to detect 3D bounding 
boxes by using a multistage fusion approach in CNN. MV3D 
did not perform well in detecting small objects. AVOD 
followed MV3D by using encoder-decoder for multilevel 
features extraction. Using  PointNets [9], FrustumNet [27]  
detects 3D objects  in the 2D detection window based on point 
clouds frustum. 

    The general trend in current research, as identified in the 
literature survey,  is that image-based 3D detection algorithms  
rely on patterns and key features, with this approach  failing 
to achieve the desired results in complex environmental 
conditions. On the other hand, 3D point clouds based 
approaches depend on costly and dense LiDARs point clouds 
to achieve desirable results. Given current research literature, 
there is a scope to  investigate cheaper and more effective 3D 
object detection  using camera images and less costly LiDAR 
point clouds. 

III. OUR METHODOLOGY 
In this paper, we propose a comparatively robust yet 

straightforward approach to 3D vehicle detection. The 
proposed method builts on top of  existing work in 2D vehicle 
detection. We assume   2D bounding boxes of front lying cars 
are already in place. The proposed model is split into two 
parts. In the first part, the size and orientation of 3D bounding 
boxes of front lying vehicles are predicted along with the 
confidence score. In the second part, LiDAR point clouds are 
projected onto image coordinates to estimate the distance of 
each detected car. In the process of projection, the distance 
information of point clouds is preserved as a third channel. 

A.  Size and Orientation Estimation for 3D Bounding Boxes 
   Our aim in 3D object detection of cars is not only to solve 
the problem of correctly predicting the 3D coordinates of 
bounding boxes but also to give real-time performance. 
MobileNetV2 [28] is 11.7 times smaller in size than VGG-16 

net [29] with comparable performance, and may be used as a 
feature extractor [30, 38, 39]. Fig. 1 shows the proposed DNN 
architecture consisting of 17 bottleneck residual blocks, which 
has three operators: A 1´1 linear transformation layer, a 
depth-wise separable convolution that does lightweight 
filtering by applying a single convolutional filter per input 
channel, the last 1´1 convolution layer with ReLU6 activation 
function that performs dimensionality reduction and combines 
the filtered data creates new features [31]. The proposed 
network finishes with  three detection branches based on fully 
connected layers. 

 
Fig. 1. The architecture of MobilNetV2-based DNN to predict the 

orientation and confidence of a 3D bounding box 

The first branch is responsible for estimating the size of 
3D bounding box by using mean squared error (MSE). The 
second branch conducts orientation prediction by using L2 
loss, which plays a crucial role in final vehicle position 
detection. The third branch regresses the confidence of car 
orientations by using the softmax loss function. In the 
literature reviewed, it is found that existing methods remain 
susceptible to the orientation  difference of 180o rotated cars 
[7]. Our architecture remedies this problem by considering 
two proposals in the intervals (0, -180o) and (0, 180o) to 
predict the car orientation and confidence; the one with the 
higher confidence is selected, which is found to be much 
robust. The net loss of the network is calculated by using the 
weighted sum of all branches as given in Eq. (1), where 𝛼 
and	𝛽	are multiple coefficients of orientation and confidence 
loss respectively. 

																		𝐿!"#$ =	𝐿%"&$'( +	𝛼×𝐿)&"$*( +	𝛽×𝐿')*+ (1) 

B. The Estimation of Centre Coordinates of 3D Bounding 
Boxes 
Once the bounding box size and orientation information of 

vehicles are predicted, the second task is to estimate the centre 
distance between AVs. The algorithm works based on the fact 
that the 2D centre of a vehicle is directly related to its 3D 
centre by projecting world information on 2D image 
coordinates. In order to implement this approach, LiDAR 
point clouds are projected based on the 2D image, however 
with the following constraint conditions: 1) Ground points are 



removed based on the LiDAR position on the AV;  2) Only 
points in the 2D detection windows are utilized. Point clouds 
are projected onto the image coordinate by using the 
calibration parameters while preserving the distance 
information intact in the form of an additional channel. 

In order to convert 3D point X = (x, y, z)T into 
corresponding camera coordinate Y = (p, q, r)T,  operations 
such as translation, rotation and projection are carried out to 
execute Affine transformation [32] as given in Eq.(2): 

𝑌 = 𝑃,-./	×	𝑅′ ×	𝑋,                  (2) 
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where Prect , (	𝑓9, 	𝑓: ) and (	𝑐9, 	𝑐:)  denote focal length and 
optical parameters of the camera across x-axis and y-axis, 
respectively; 𝑏;	stands for the baseline with respect to the 
reference camera [15]. 𝑅′ and 	𝑟<=  represent rotation 
parameters and (𝑡; , 𝑡>, 𝑡8) is translation across x, y and z axes. 
Furthermore, Y is converted to 2D image coordinate (𝑢, 𝑣) as 
Eq. (3), 

!𝑢 = 𝑝/𝑟
𝑣 = 𝑞/𝑟     (3) 

As shown in Fig. 2,  the pose of vehicles is first detected 
by using the predicted size and orientation of 3D bounding 
boxes. In the case of the central vehicle, if x1>(x1+x2)/2, then 
the vehicle pose is a longitudinal side, else it orients to the 
front side. Tthe same principle is applied to all directions. In 
Fig. 3, the vehicle heading in different, forward directions is 
illustrated. The blue dots represent the predicted 2D centre (tx, 
ty) of the vehicles, whereas the yellow dots stand for the 
outermost 3D point (lx, ly, lz) across 2D centres. Finally, (tx, ty, 
lz) is considered the projected centre point on the 3D bounding 
box surface. However,  to get the exact depth estimation, we 
need further analysis. 

 

Fig. 2. The pose estimation of the size and orientation of 3D bounding 
boxes of vehicles. The vehicle pose of longitudinal or front/back sides 
depends on its orientation and size.           

 

Fig. 3. The blue dots represent 2D centres of predicted 2D bounding boxes, 
whilst the yellow dots refer to the 3D outermost point on the central vertical 
axis on the car’s surface. The right arrow shows the reference direction. 

 
Fig. 4. The top view of cars oriented in different directions with the 3D 

centres represented in red circles. It shows the estimation of 3D vehicle 
centres through predicted 2D centres. The depth value of 3D centre 
from the surface point is based on estimated pose, orientation, size of 
the 3D boubnding box. 

TABLE I.  THE CALCULATION OF DEPTH ESTIMATION OF 3D CAR CENTRES 
BASED ON THE ORIENTATION, SIZE AND POSE OF 3D BOUNDING BOXES OF 
CARS 

O
ri

en
ta

tio
n  

 ≤
 |9

0o
| 

   

Pose Depth calculations 

Longitudinal Side 
		cos(𝜃) = 							

𝑤𝑖𝑑𝑡ℎ/2
𝑑𝑒𝑝𝑡ℎ 					 

	⇒ 		depth = 		width/2. cos(𝜃)   
Front/Back 

cos(90 − 𝜃) =
𝑙𝑒𝑛𝑔𝑡ℎ/2
𝑑𝑒𝑝𝑡ℎ  

⇒ 	depth	 = 		length/2 . sin(θ)   

O
ri

en
ta

tio
n 

>|
90

o|
 

 

Front/Back 
	cos(𝜃 − 90) =

𝑙𝑒𝑛𝑔𝑡ℎ/2
𝑑𝑒𝑝𝑡ℎ 		 

⇒ 	depth = −	length/2. sin(θ)   
Longitudinal Side 

cos(180 − 𝜃) =
𝑤𝑖𝑑𝑡ℎ/2
𝑑𝑒𝑝𝑡ℎ 	 

⇒ 	depth	 = −width/2. cos(θ)   

 
(a) 

 
(b) 

Fig. 5. A sample frame from KITTI dataset (a) BEV view of LiDAR point 
clouds after removed the ground points. (b) Image of the same frame. 
The occluded vehicles that cannot be seen in images are detectable in 
point clouds. 

    Fig. 4 illustrates the 2D centres (blue circle with yellow 
line) projection on 3D centre (red circle) of cars for different 
poses by using the predicted size of the 3D bounding box and 
orientation with respect to the reference direction. The 
trigonometry for calculating the depth of car centre is given in 
Table I, the final distance estimation of the car from AV is 
deduced by using Eq. (4). 



𝑡8 =	 𝑙8 + 	𝑎𝑏𝑠(𝑑𝑒𝑝𝑡ℎ)           (4) 

C. Occlusion 
In many road scenarios, there exists a high degree of 

occlusion among cars that is tackled by an extension using 
LiDAR point clouds. In Fig. 5, we retrieve more information 
of occluded cars in point clouds BEV view rather than from 
image view. In order to retrieve relative information of 
occluded cars, we identify the point clusters in each 2D 
detection window based on points depth gap threshold after 
removing outliers. 

 
Fig. 6. The flowchart of proposed algorithm for finding the 3D Box 

information of visible or partly visible cars based on camera RGB 
images and LiDAR 3D point clouds. 

    To handle the occlusion problem, we  primarily focus on 
the average distance and closest points of each car cluster from 
AV. Furthermore, we arrange all car indexing in ascending 
order of the closest points and identify the immediate front 
cars for all the occluded ones. From this viewpoint, we only  
consider occluded cars related to the ones whose centres are 
hidden behind others, since we cannot retrieve the direct laser 
distance of their centre points on the surface. To calculate the 
3D centre of occluded vechiles, the gap between the closest 
points from the immediate front to the vehicle under 
consideration is utilized for relative distancing. Fig. 6 shows 
the flowchart of the proposed algorithm for finding the 3D box 
information of fully visible as well as occluded cars. 

IV. OUR EXPERIMENTS 
To test the proposed method, we take use of the 

benchmarks  KITTI dataset [15] and Waymo dataset [33] that 
contain a high degree of occlusion, truncation and complex 
environmental conditions. For each dataset, 2,400 images 
were used in our experiments that were split into the ratio of 
8:2:2 for training, validation, and test purposes. We retrieved 
2D detection results based on our previous work [34], given 

94.5%mAP@0.5IoU and 1.5% loss based on the KITTI 
dataset while 97.2%mAP@0.5IoU on Waymo dataset. We 
have trained MobileNetV2 as a feature extractor from scratch 
by replacing the final fully connected layers. 2D object 
detection results are cropped into 224´224 windows so as to 
train the proposed DNN based on Tesla P100-PCIE-GPU with 
16.2GB memory. We investigated SGD with momentum [35] 
and Adam [36] gradient descent optimizers with 1.0´10-3 
learning rate and 0.9 momentum during the experiments, 
which result in better performance of SGD than Adam. 

A. DNN performance 
1) Result analysis based on the KITTI dataset 

In order to analyse the 3D box size and orientation results 
of cars, we tested the proposed DNN on image datasets as well 
as early fused datasets (point clouds projected on images). Fig. 
7(a) shows an example of LiDAR BEV point clouds of the 
KITTI dataset. Fig. 7(b) displays the RGB image of the same 
frame. On the other hand, Fig. 7(c) depicts the early-stage 
fusion of image and point clouds. Our experimental results 
based on the KITTI validation dataset are shown in Fig. 8. We 
see that the images are better for feature extraction using the 
proposed DNN, without extra computations, than the early 
fusion dataset. Fig. 9 represents detection results with respect 
to distances from AV. Based on the experiments, the neural 
network performance is promising in the 20~50 meters range 
using camera images, achieving 85.7% size accuracy and 
79.7% orientation accuracy of the bounding boxes.  

 
  (a)                                 (b)                               (c) 

Fig. 7. Single frames in KITTI dataset (a) LiDAR point cloud (b) Image of 
the same scene (c) Early fusion of point clouds and image by projecting 
point clouds onto the image by using calibration parameters. 

 
                                     (a)                                   (b) 

Fig. 8.  The comparison of validation loss results of the proposed DNN for 
early fused vs image only data formats based on KITTI datasets (a) 
dimension loss curves (b) orientation loss curves of 3D bounding boxes 

2) Result analysis based on Waymo dataset 
 

For further verification, we checked the net performance 
based on Waymo dataset [33] by taking into account night and 
rainy scenes. Fig. 10 shows the validation results obtained 
through start and end points  of the network with the Waymo 
dataset. Compared to the KITTI dataset, using the Waymo 
dataset, we achieved 99.5% accuracy in terms of orientation 
as shown in Fig. 10(a); however, the prediction loss of the 3D 
bounding box size converged at 15.0% is shown in Fig. 10(b).  

B. Estimation Results of 3D Bounding Boxes 
Fig. 11 illustrates the outcomes of intermediate steps of the 

proposed algorithm. Fig. 11(a) shows 2D bounding boxes  
obtained with their confidence scores by using our previous 



2D vehicle detection work [35]. Each proposal was fed into 
the proposed DNN net to yield the size and orientation of 3D 
bounding boxes around car objects. Fig.11(b) displays the 
projected point clouds on the image in the predicted 2D 
detection windows after removing ground points. Fig. 11(c) 
shows the 2D centre of detected cars by using small circles 
(i.e., p1) with their depths estimated by using projected point 
clouds, whereas the outermost 3D points on the vehicle 
surface using 2D central y-axis are represented with big circles 
(e.g., p2). After merging p1 and p2, we estimated 3D car centres 
projection on the 3D bounding box surfaces, which is further 
extended to the inner centre by using the orientation and 
dimensions values based on their pose. Furthermore, these 3D 
centres were converted into world coordinates by using 
inverse projection and inverse rotation-translation matrices. 
The final positions of 3D bounding boxes are presented in Fig. 
11(d).  Fig. 12 shows the images of detected 3D bounding 
boxes by using Waymo dataset based on proposed network.  
                                     (a)                                   (b) 

 
Fig. 9. The detection accuracy of the proposed DNN over distance range 

based on the KITTI dataset (a) prediction accuracy of 3D bounding box 
w.r.t distances (b) accuracy of car orientation w.r.t distances. 

 

                                     (a)                                   (b) 
Fig. 10. The validation loss results of the proposed DNN based on the 

Waymo datasets (a) prediction loss curve of 3D bounding boxes (b) 
loss curve of car orientation prediction 

 
                  (a)                                                       (b)                                                

 
        (c)                                                        (d)                                                

Fig. 11. (a) The example of predicted 2D bounding boxes based on the 
KITTI dataset (b) The projected LiDAR point clouds onto 2D detection 
windows of the image after ground points removal (c) The small dots 
show the centres of 2D bounding boxes whilst the big dots depict the 
maximum bulged out 3D surface points across y-axis of the 2D centres. 
(d) Based on the estimated 3D centres, orientations and poses of 3D 
bounding boxes of cars  

In order to analyze the proposed method based on sparse 
point clouds, we converted the KITTI point clouds into 32 and 
16 beams based on the number of points in a 360o  rotation of 
LiDAR, as shown in Fig. 13.  Fig. 14 represents the evaluation 

results of 3D box centre accuracy with 64, 32, and 16 beam 
point clouds over distances based on the KITTI dataset. Our 
results show that sparse point clouds have a noteworthy 
performance based on our algorithm, up to 40 meters of range. 
This is due to the fact that the proposed solution does not rely 
on the density of point clouds. In fact, on the horizontal stream 
of points,  cheap LiDAR point clouds provide information 
needed for  our algorithm, i.e., the closest point and distance 
from the 2D centres based on surface value. Table II 
represents the overall inference time of the proposed model 
using different density point clouds. 

 
Fig. 12. The test results of 3D car detection based on the Waymo dataset by 

using the proposed model. 

 
Fig. 13. KITTI point clouds converted into 64 beams, 32 beams and 16 beam 
LiDAR forms for model testing. Left images are the raw BEV of point 
clouds, the right images are projected point clouds onto image coordinates in 
2D detection windows with ground points removed. 

 
Fig. 14. The evaluations of the proposed model performance with 64, 32, and 

16 beams point clouds over distance range based on the KITTI dataset. 

TABLE II. THE EVALUATIONS OF THE INFERENCE SPEED USING THE 
PROPOSED MODEL WITH 64, 32, 16 BEAM POINT CLOUDS BASED ON 
THE KITTI DATASET. 

Beams density Inference time (sec) 
64 .224 
32 .212 
16 .206 

V. CONCLUSION 
In this paper, we propose a novel solution for the 

estimation of 3D bounding boxes to detect car positions on the 
road in the 3D world. In the proposed solution, we leverage 
the mature vehicle detection in 2D to position the 3D 



bounding boxes. The model extracts the 3D world coordinate 
of cars in 2D detection windows of the image plane using 
LiDAR point clouds. We firstly regressed the size and 
orientations of 3D bounding boxes of cars using 
MobileNetV2-based DNN. Secondly, LiDAR point clouds 
were exploited to get 3D centre coordinates of cars based on 
2D centres. The performance of the proposed algorithm is 
evaluated over 16, 32, and 64 beams point clouds. Our results 
prove that the proposed method provides a cost-effective 
solution for 3D vehicle detection, generating desired accuracy 
and speed. The model performance has been verified by using 
the Waymo dataset.  

In future, we will make the proposed solution more robust, 
especially for long vehicles by embedding perspective 
transformation. The performance of the proposed solution will 
be improved by using the latest low-priced solid-state LiDARs 
that hold sparse point clouds but can give accuracy up to a 
250-meter range in fixed 120o horizontal and 30o vertical field 
of view. The use of specialized deep learning neural networks 
(DNNs) [37,40] has led to potentially novel architectures for 
future vehicle detection. Exploring the features that  these 
DNNs are actually extracting layer by layer from the sensor 
information could lead to further enhancements to both sensor 
technology as well as faster control systems for vehicle 
avoidance. 
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